On the continuity of Birkhoff-James ϵ -orthogonality sets

Christos Chorianopoulos* and Panayiotis J. Psarrakos[†]

February 5, 2013

Abstract

Consider two matrices $A, B \in \mathbb{C}^{n \times m}$ with $B \neq 0$, a matrix norm $\|\cdot\|$, and a real parameter $\epsilon \in [0, 1)$. The Birkhoff-James ϵ -orthogonality set of A with respect to $B, F_{\|\cdot\|}^{\epsilon}(A; B) = \{\mu \in \mathbb{C} : \|A - \lambda B\| \ge \sqrt{1 - \epsilon^2} \|B\| |\mu - \lambda|, \forall \lambda \in \mathbb{C}\},$ is a compact and convex subset of the complex plane that has been recently introduced by the authors, as a natural generalization of the classical numerical range of square matrices. In this note, we derive the continuity of $F_{\|\cdot\|}^{\epsilon}(A; B)$ with respect to A or ϵ .

Keywords: Birkhoff-James ϵ -orthogonality set, Hausdorff distance, continuity.

AMS Subject Classifications: 15A60, 47A12.

1 Introduction

The numerical range (also known as the field of values) of a square complex matrix $A \in \mathbb{C}^{n \times n}$ is defined as $F(A) = \{x^*Ax \in \mathbb{C} : x \in \mathbb{C}^n, x^*x = 1\}$ [10]. It is a compact and convex subset of the complex plane that has been studied extensively for many decades, and it is useful in studying and understanding matrices and operators; see [3, 4, 9, 10, 14] and the references therein.

The numerical range F(A) is also written in the form [4, 14],

$$F(A) = \{ \mu \in \mathbb{C} : \|A - \lambda I_n\|_2 \ge |\mu - \lambda|, \, \forall \, \lambda \in \mathbb{C} \}$$

$$= \bigcap_{\lambda \in \mathbb{C}} \{ \mu \in \mathbb{C} : |\mu - \lambda| \le \|A - \lambda I_n\|_2 \},\$$

where $\|\cdot\|_2$ denotes the spectral matrix norm (i.e., that norm subordinate to the euclidean vector norm) and I_n is the $n \times n$ identity matrix. Thus, F(A) is an infinite intersection of closed disks $\mathcal{D}(\lambda, \|A - \lambda I_n\|_2) = \{\mu \in \mathbb{C} : |\mu - \lambda| \le \|A - \lambda I_n\|_2\}$

^{*}Department of Mathematics and Statistics, University of Calgary, Calgary, AB T2N 1N4, Canada (horjoe@yahoo.gr).

[†]Department of Mathematics, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece (ppsarr@math.ntua.gr). Corresponding author.

 $(\lambda \in \mathbb{C})$. Inspired by the above intersection property, Chorianopoulos, Karanasios and Psarrakos [6] proposed a definition of numerical range for rectangular complex matrices. In particular, for any $A, B \in \mathbb{C}^{n \times m}$ with $B \neq 0$, and any matrix norm $\|\cdot\|$, the numerical range of A with respect to B is defined as

$$F_{\|\cdot\|}(A;B) = \{\mu \in \mathbb{C} : \|A - \lambda B\| \ge |\mu - \lambda|, \forall \lambda \in \mathbb{C}\}$$
$$= \bigcap_{\lambda \in \mathbb{C}} \mathcal{D}(\lambda, \|A - \lambda B\|).$$

This set is compact and convex, satisfies basic properties of the standard numerical range, and is nonempty if and only if $||B|| \ge 1$ [6].

The analysis in [6] is based on the properties of matrix norms and the Birkhoff-James orthogonality [2, 11]; namely, for two elements χ and ψ of a complex normed linear space $(\mathcal{X}, \|\cdot\|), \chi$ is called *Birkhoff-James orthogonal* to ψ , denoted by $\chi \perp_{BJ} \psi$, if $\|\chi + \lambda \psi\| \geq \|\chi\|$ for all $\lambda \in \mathbb{C}$. This orthogonality is homogeneous, but it is neither symmetric nor additive [11]. Furthermore, for any $\epsilon \in [0, 1)$, we say that χ is *Birkhoff-James* ϵ -orthogonal to ψ , denoted by $\chi \perp_{BJ}^{\epsilon} \psi$, if $\|\chi + \lambda \psi\| \geq \sqrt{1 - \epsilon^2} \|\chi\|$ for all $\lambda \in \mathbb{C}$. It is straightforward to see that this relation is also homogeneous. In an inner product space $(\mathcal{X}, \langle \cdot, \cdot \rangle)$, with the standard orthogonality relation \perp , a $\chi \in \mathcal{X}$ is called ϵ -orthogonal to a $\psi \in \mathcal{X}$, denoted by $\chi \perp^{\epsilon} \psi$, if $|\langle \chi, \psi \rangle| \leq \epsilon \|\chi\| \|\psi\|$. Moreover, $\chi \perp \psi$ (resp., $\chi \perp^{\epsilon} \psi$) if and only if $\chi \perp_{BJ} \psi$ (resp., $\chi \perp^{\epsilon}_{BJ} \psi$) [5, 8].

If
$$||B|| \ge 1$$
, then for $\epsilon_B = \sqrt{||B||^2 - 1} / ||B||$, we have [7]
 $F_{||\cdot||}(A; B) = \{\mu \in \mathbb{C} : B \perp_{BI}^{\epsilon_B} (A - \mu B)\}$

As a consequence, the next definition (introduced by the authors in [7]) arises in a natural way.

Definition 1. For any $A, B \in \mathbb{C}^{n \times m}$ with $B \neq 0$, any matrix norm $\|\cdot\|$, and any $\epsilon \in [0, 1)$, the *Birkhoff-James* ϵ -orthogonality set of A with respect to B is defined and denoted by

$$F_{\|\cdot\|}^{\epsilon}(A;B) = \{\mu \in \mathbb{C} : B \perp_{BJ}^{\epsilon} (A - \mu B)\} \\ = \left\{\mu \in \mathbb{C} : \|A - \lambda B\| \ge \sqrt{1 - \epsilon^2} \|B\| \, |\mu - \lambda|, \, \forall \, \lambda \in \mathbb{C}\right\} \\ = \bigcap_{\lambda \in \mathbb{C}} \mathcal{D}\left(\lambda, \frac{\|A - \lambda B\|}{\sqrt{1 - \epsilon^2} \|B\|}\right).$$

The Birkhoff-James ϵ -orthogonality set $F_{\|\cdot\|}^{\epsilon}(A; B)$ is a nonempty, compact and convex subset of the complex plane that lies in the closed disk $\mathcal{D}\left(0, \frac{\|A\|}{\sqrt{1-\epsilon^2} \|B\|}\right)$ and is quite rich in structure [7]. In this note, we obtain the continuity of $F_{\|\cdot\|}^{\epsilon}(A; B)$ with respect to the matrix $A \in \mathbb{C}^{n \times m}$ (see Section 3), or to the real parameter $\epsilon \in [0, 1)$ (see Section 4). The question of the continuity of $F_{\|\cdot\|}^{\epsilon}(A; B)$ with respect to matrix $B \in \mathbb{C}^{n \times m}$ is still open except the special case where the norm $\|\cdot\|$ is induced by an inner product of matrices (see Remark 8).

2 Preliminaries

We recall that for two compact subsets Ω_1 and Ω_2 of a metric space (\mathcal{X}, ρ) , the Hausdorff distance between Ω_1 and Ω_2 is defined by

$$d_H(\Omega_1, \Omega_2) = \max \left\{ \max_{x_1 \in \Omega_1} \min_{x_2 \in \Omega_2} \rho(x_1, x_2), \max_{x_2 \in \Omega_2} \min_{x_1 \in \Omega_1} \rho(x_1, x_2) \right\}.$$

For any $x_0 \in \mathcal{X}$ and $\delta > 0$, we define the closed ball $\mathcal{B}(x_0, \delta) = \{x \in \mathcal{X} : \rho(x_0, x) \leq \delta\}.$

Definition 2. [1] Suppose $(\mathcal{X}, \rho_{\mathcal{X}})$ is a metric space and $(\mathcal{Y}, \rho_{\mathcal{Y}})$ is a complete metric space. Consider a multi-valued mapping $F : \mathcal{X} \mapsto \mathcal{Y}$, and let $x_0 \in \mathcal{X}$.

(i) F is called δ -upper semi-continuous at x_0 if for every $\delta > 0$, there is a neighborhood $\mathcal{N}(x_0) \subset \mathcal{X}$ of x_0 such that

$$F(x) \subseteq F(x_0) + \mathcal{B}(0,\delta), \quad \forall x \in \mathcal{N}(x_0).$$

(ii) F is called δ -lower semi-continuous at x_0 if for every $\delta > 0$, there is a neighborhood $\mathcal{N}(x_0) \subset \mathcal{X}$ of x_0 such that

$$F(x_0) \subseteq F(x) + \mathcal{B}(0,\delta), \quad \forall x \in \mathcal{N}(x_0).$$

(iii) F is said to be δ -continuous at x_0 if it is δ -upper and δ -lower semi-continuous.

(i') F is called *upper semi-continuous* at x_0 if for every neighborhood $\mathcal{N}(F(x_0)) \subset \mathcal{Y}$ of the set $F(x_0)$, there is a neighborhood $\mathcal{N}(x_0) \subset \mathcal{X}$ of x_0 such that

$$F(x) \subseteq \mathcal{N}(F(x_0)), \quad \forall x \in \mathcal{N}(x_0).$$

(ii') F is called *lower semi-continuous* at x_0 if for every $y_0 \in F(x_0)$ and every neighborhood $\mathcal{N}(y_0) \subset \mathcal{Y}$ of y_0 , there exists a neighborhood $\mathcal{N}(x_0) \subset \mathcal{X}$ of x_0 such that

$$F(x) \cap \mathcal{N}(y_0) \neq \emptyset, \quad \forall \ x \in \mathcal{N}(x_0).$$

(iii') F is said to be *continuous* at x_0 if it is upper and lower semi-continuous.

The following three lemmas are crucial in our analysis.

Lemma 3. [1, Lemma 2.1] Suppose $(\mathcal{X}, \rho_{\mathcal{X}})$ is a metric space and $(\mathcal{Y}, \rho_{\mathcal{Y}})$ is a complete metric space. Consider a multi-valued mapping $F : \mathcal{X} \mapsto \mathcal{Y}$, and let $x_0 \in \mathcal{X}$.

- (i) If F is upper semi-continuous at x₀, then it is δ-upper semi-continuous at x₀. The converse is true when the set F(x₀) is compact.
- (ii) If F is δ-lower semi-continuous at x₀, then it is lower semi-continuous at x₀. The converse is true when the set F(x₀) is compact.

Lemma 4. [7, Proposition 2] Let $A, B \in \mathbb{C}^{n \times m}$ and $0 \leq \epsilon_1 < \epsilon_2 < 1$. If the matrix A is not a scalar multiple of B, then $F_{\parallel \cdot \parallel}^{\epsilon_1}(A; B)$ lies in the interior of $F_{\parallel \cdot \parallel}^{\epsilon_2}(A; B)$, $\operatorname{Int}[F_{\parallel \cdot \parallel}^{\epsilon_2}(A; B)]$.

Lemma 5. [12] Let $A, B \in \mathbb{C}^{n \times m}$ and $\epsilon \in [0, 1)$, and suppose A is not a scalar multiple of B. Then for every $\delta > 0$, there exist scalars $\lambda_1, \lambda_2, \ldots, \lambda_k \in \mathbb{C}$ such that

$$d_H\left(\bigcap_{i=1}^k \mathcal{D}\left(\lambda_i, \frac{\|A - \lambda_i B\|}{\sqrt{1 - \epsilon^2} \|B\|}\right), F_{\|\cdot\|}^{\epsilon}(A; B)\right) \leq \delta.$$

3 Continuity in A

In this section, we derive the continuity of the Birkhoff-James ϵ -orthogonality set $F_{\parallel,\parallel}^{\epsilon}(A;B)$ with respect to matrix A.

Theorem 6. Let $A_0, B \in \mathbb{C}^{n \times m}$ (with $B \neq 0$) and $\epsilon \in [0, 1)$, and suppose that A_0 is not a scalar multiple of B. Then, the mapping $A \mapsto F^{\epsilon}_{\parallel \cdot \parallel}(A; B)$ is continuous at A_0 .

Proof. We will first prove the upper semi-continuity of the mapping. Suppose that $A_0 \in \mathbb{C}^{n \times m}$ is not a scalar multiple of B, and let $\delta > 0$. By Lemma 5, there are $\lambda_1, \lambda_2, \ldots, \lambda_k \in \mathbb{C}$ such that

$$d_H\left(G(A_0), F^{\epsilon}_{\|\cdot\|}(A_0; B)\right) \leq \frac{\delta}{2},$$

where

$$G(A_0) = \bigcap_{i=1}^{k} \mathcal{D}\left(\lambda_i, \frac{\|A_0 - \lambda_i B\|}{\sqrt{1 - \epsilon^2} \|B\|}\right).$$

Moreover, for any $E \in \mathbb{C}^{n \times m}$, we have

$$\frac{\|A_0 - \lambda_i B\|}{\sqrt{1 - \epsilon^2} \, \|B\|} = \frac{\|A_0 + E - \lambda_i B - E\|}{\sqrt{1 - \epsilon^2} \, \|B\|} \le \frac{\|A_0 + E - \lambda_i B\|}{\sqrt{1 - \epsilon^2} \, \|B\|} + \frac{\|E\|}{\sqrt{1 - \epsilon^2} \, \|B\|}$$

for $i = 1, 2, \ldots, k$. As a consequence, the set

$$\Omega(A_0, E) = \bigcap_{i=1}^{k} \mathcal{D}\left(\lambda_i, \frac{\|A_0 + E - \lambda_i B\|}{\sqrt{1 - \epsilon^2} \|B\|} + \frac{\|E\|}{\sqrt{1 - \epsilon^2} \|B\|}\right),$$

contains

$$F_{\parallel\cdot\parallel}^{\epsilon}(A_0+E;B) = \bigcap_{\lambda\in\mathbb{C}} \mathcal{D}\left(\lambda, \frac{\|A_0+E-\lambda B\|}{\sqrt{1-\epsilon^2} \|B\|}\right).$$

By [13, Theorem 1.7.3], there exists a $\gamma > 0$ such that for every $E \in \mathbb{C}^{n \times m}$ with $||E|| \leq \gamma$, $d_H(G(A_0), \Omega(A_0, E)) \leq \delta/2$. Hence, for every $E \in \mathbb{C}^{n \times m}$ with $||E|| \leq \gamma$,

$$d_H(F_{\|\cdot\|}^{\epsilon}(A_0;B),\Omega(A_0,E)) \le d_H(F_{\|\cdot\|}^{\epsilon}(A_0;B),G(A_0)) + d_H(G(A_0),\Omega(A_0,E)) \le \delta.$$

This implies that

$$\Omega(A_0, E) \subseteq F^{\epsilon}_{\|\cdot\|}(A_0; B) + \mathcal{D}(0, \delta)$$

and thus,

$$F_{\parallel \cdot \parallel}^{\epsilon}(A_0 + E; B) \subseteq F_{\parallel \cdot \parallel}^{\epsilon}(A_0; B) + \mathcal{D}(0, \delta).$$

So, the mapping $A \mapsto F^{\epsilon}_{\|\cdot\|}(A; B)$ is δ -upper semi-continuous at A_0 , and by Lemma 3, it is also upper semi-continuous at A_0 .

Next we derive the lower semi-continuity of the mapping. First we consider the case where $\epsilon > 0$. Since A_0 is not a scalar multiple of B, Lemma 4 implies that $\operatorname{Int}[F^{\epsilon}_{\|\cdot\|}(A_0;B)] \neq \emptyset$ (see also Corollary 3 in [7]). Keeping in mind the convexity of $F^{\epsilon}_{\|\cdot\|}(A;B)$, we have that for any $\mu \in F^{\epsilon}_{\|\cdot\|}(A_0;B)$ and $\delta > 0$, the disc $\mathcal{D}(\mu, \delta)$ has a nonempty intersection with $\operatorname{Int}[F^{\epsilon}_{\|\cdot\|}(A_0;B)]$. Moreover, for any $\mu_0 \in \mathcal{D}(\mu, \delta) \cap \operatorname{Int}[F^{\epsilon}_{\|\cdot\|}(A_0;B)]$, it holds that (see Proposition 16 in [7])

$$\inf_{\lambda \in \mathbb{C}} \left\{ \|A_0 - \lambda B\| - |\lambda - \mu_0| \|B\| \sqrt{1 - \epsilon^2} \right\} = \xi > 0.$$

Thus, for every $E \in \mathbb{C}^{n \times m}$ with $||E|| \leq \xi$, we have

$$||A_0 - \lambda B|| - ||E|| > |\lambda - \mu_0| ||B|| \sqrt{1 - \epsilon^2}, \quad \forall \ \lambda \in \mathbb{C},$$

or

$$||A_0 + E - \lambda B|| > |\lambda - \mu_0| ||B|| \sqrt{1 - \epsilon^2}, \quad \forall \ \lambda \in \mathbb{C}.$$

As a consequence, $\mu_0 \in F^{\epsilon}_{\|\cdot\|}(A_0 + E; B)$ for every $E \in \mathbb{C}^{n \times m}$ with $\|E\| \leq \xi$, and thus, $\mathcal{D}(\mu, \delta) \cap F^{\epsilon}_{\|\cdot\|}(A_0 + E; B) \neq \emptyset$. Hence, for $\epsilon > 0$, the mapping $A \mapsto F^{\epsilon}_{\|\cdot\|}(A; B)$ is lower semi-continuous at A_0 .

Let now $\epsilon = 0$, and assume that the mapping $A \mapsto F^0_{\|\cdot\|}(A; B)$ is not lower semicontinuous at A_0 . Then there exist a $\mu_0 \in F^0_{\|\cdot\|}(A; B)$ and a $\delta > 0$ such that for any $\xi > 0$, there is an $E \in \mathbb{C}^{n \times n}$ with $\|E\| \leq \xi$, which satisfies

$$F^0_{\|\cdot\|}(A_0+E;B) \cap \mathcal{D}(\mu_0,\delta) = \emptyset$$

Then, for every $\mu \in \mathcal{D}(\mu_0, \delta)$, there is a $\lambda_{\mu} \in \mathbb{C}$ (with $\lambda_{\mu} \neq \mu$) such that

$$||A_0 + E - \lambda_\mu B|| < |\mu - \lambda_\mu| ||B||$$

Since this inequality is strict, the quantity $|\mu - \lambda_{\mu}| \|B\|$ is positive. Thus, for every $\mu \in \mathcal{D}(\mu_0, \delta)$, the number

$$\epsilon_{\mu} = \frac{1}{2} \sqrt{1 - \frac{\|A_0 + E - \lambda_{\mu}B\|}{|\mu - \lambda_{\mu}| \, \|B\|}} < \sqrt{1 - \frac{\|A_0 + E - \lambda_{\mu}B\|}{|\mu - \lambda_{\mu}| \, \|B\|}}$$

is positive and satisfies

$$||A_0 + E - \lambda_\mu B|| < \sqrt{1 - \epsilon_\mu^2} |\mu - \lambda_\mu| ||B||.$$

Hence, if we define $\hat{\epsilon} = \min \{ \epsilon_{\mu} : \mu \in \mathcal{D}(\mu_0, \delta) \} > 0$, then it follows

$$||A_0 + E - \lambda_\mu B|| < \sqrt{1 - \hat{\epsilon}^2} |\mu - \lambda_\mu| ||B||,$$

and consequently,

$$F_{\parallel \cdot \parallel}^{\hat{\epsilon}}(A_0 + E; B) \cap \mathcal{D}(\mu_0, \delta) = \emptyset.$$

This means that the mapping $A \mapsto F_{\|\cdot\|}^{\hat{\epsilon}}(A; B)$ is not lower semi-continuous at A_0 , which contradicts the result already proved for $\epsilon > 0$.

4 Continuity in ϵ

In this section, we obtain the continuity of the Birkhoff-James ϵ -orthogonality set $F_{\parallel,\parallel}^{\epsilon}(A; B)$ with respect to the real parameter $\epsilon \in [0, 1)$.

Theorem 7. Let $A, B \in \mathbb{C}^{n \times m}$ (with $B \neq 0$) and $\epsilon_0 \in [0, 1)$, and suppose that A is not a scalar multiple of B. Then, the mapping $\epsilon \mapsto F_{\parallel,\parallel}^{\epsilon}(A; B)$ is continuous at ϵ_0 .

Proof. To obtain the upper semi-continuity of the mapping, it is enough to prove that for every $\delta > 0$, there is a neighborhood of ϵ_0 , say $\mathcal{N}(\epsilon_0)$, such that

$$F_{\|\cdot\|}^{\hat{\epsilon}}(A;B) \subseteq F_{\|\cdot\|}^{\epsilon_0}(A;B) + \mathcal{D}(0,\delta), \quad \forall \, \hat{\epsilon} \in \mathcal{N}(\epsilon_0).$$

For $\hat{\epsilon} < \epsilon_0$, Lemma 4 implies that $F_{\|\cdot\|}^{\hat{\epsilon}}(A; B) \subseteq F_{\|\cdot\|}^{\epsilon_0}(A; B)$, and the desired inclusion apparently holds.

We consider now the case where $\hat{\epsilon} > \epsilon_0$. As in the proof of Theorem 6, by Lemma 5, there exist scalars $\lambda_1, \lambda_2, \ldots, \lambda_k \in \mathbb{C}$ such that the Hausdorff distance between the set

$$G(\epsilon_0) = \bigcap_{i=1}^{k} \mathcal{D}\left(\lambda_i, \frac{\|A - \lambda_i B\|}{\sqrt{1 - \epsilon_0^2} \|B\|}\right)$$

and $F_{\|\cdot\|}^{\epsilon_0}(A; B)$ is less than or equal to $\delta/2$. By [13, Theorem 1.7.3], there is an $\hat{\epsilon}$ sufficiently close to ϵ_0 such that $d_H(G(\epsilon_0), G(\hat{\epsilon})) \leq \delta/2$, where $G(\hat{\epsilon}) = \bigcap_{i=1}^k \mathcal{D}\left(\lambda_i, \frac{\|A - \lambda_i B\|}{\sqrt{1 - \hat{\epsilon}^2} \|B\|}\right)$. Hence,

$$d_H(G(\hat{\epsilon}), F^{\epsilon_0}_{\|\cdot\|}(A; B)) \le d_H(G(\hat{\epsilon}), G(\epsilon_0)) + d_H(G(\epsilon_0), F^{\epsilon_0}_{\|\cdot\|}(A; B)) \le \delta.$$

As a consequence,

$$G(\hat{\epsilon}) \subseteq F_{\|\cdot\|}^{\epsilon_0}(A;B) + \mathcal{D}(0,\delta)$$

Since $F_{\|\cdot\|}^{\hat{\epsilon}}(A;B) \subseteq G(\hat{\epsilon})$, it follows

$$F_{\|\cdot\|}^{\hat{\epsilon}}(A;B) \subseteq F_{\|\cdot\|}^{\epsilon_0}(A;B) + \mathcal{D}(0,\delta),$$

which means that the mapping $\epsilon \mapsto F_{\|\cdot\|}^{\epsilon}(A; B)$ is δ -upper semi-continuous at ϵ_0 , and by Lemma 3, it is upper semi-continuous at ϵ_0 .

Next we prove the lower semi-continuity of the mapping. If $\epsilon_0 = 0$, then the result follows readily from Lemma 4. Let $\epsilon_0 > 0$ and $\mu \in F_{\|\cdot\|}^{\epsilon_0}(A; B)$. We will see that for any $\delta > 0$, there exists an open interval $\mathcal{N}(\epsilon_0) = (\epsilon_0 - \gamma, \epsilon_0 + \gamma), \gamma > 0$, such that

$$F_{\parallel,\parallel}^{\hat{\epsilon}}(A;B) \cap \mathcal{D}(\mu,\delta) \neq \emptyset, \quad \forall \ \hat{\epsilon} \in (\epsilon_0 - \gamma, \epsilon_0 + \gamma).$$

By Lemma 4, for any $\hat{\epsilon} \in [\epsilon_0, \epsilon_0 + \gamma)$, we have that $\mu \in F_{\|\cdot\|}^{\hat{\epsilon}}(A; B)$. Thus, it suffices to examine the case $\hat{\epsilon} \in (\epsilon_0 - \gamma, \epsilon_0)$. Moreover, if there is an $\hat{\epsilon}$ less than ϵ_0 such that $F_{\|\cdot\|}^{\hat{\epsilon}}(A; B) \cap \mathcal{D}(\mu, \delta) \neq \emptyset$, then by Lemma 4, we can set $\gamma = \epsilon_0 - \hat{\epsilon}$. Thus, for the sake of contradiction, and without loss of generality, we may assume that there exists a $\delta_{\mu} > 0$ such that $F_{\|\cdot\|}^{\hat{\epsilon}}(A; B) \cap \mathcal{D}(\mu, \delta_{\mu}) = \emptyset$ for all nonnegative $\hat{\epsilon} < \epsilon_0$. Then, choosing δ_{μ} sufficiently small, there is a $\theta \in [0, 2\pi]$ such that

$$\mu + \delta_{\mu} e^{\mathrm{i}\theta} \in \mathrm{Int}[F^{\epsilon_0}_{\|\cdot\|}(A;B)]$$

and

$$\mu + \delta_{\mu} e^{\mathbf{i}\theta} \notin F_{\|\cdot\|}^{\hat{\epsilon}}(A;B), \quad \forall \ \hat{\epsilon} \in [0,\epsilon_0)$$

Consider now a sequence $\{\epsilon_k\}_{k\in\mathbb{N}\setminus\{0\}}\subset[0,\epsilon_0)$ that converges to ϵ_0 . Then for every $k=1,2,\ldots$, there exists a scalar $\lambda_k(\mu,\theta)$ such that

$$|\mu + \delta_{\mu} e^{\mathbf{i}\theta} - \lambda_k(\mu, \theta)| > \frac{\|A - \lambda_k(\mu, \theta)B\|}{\sqrt{1 - \epsilon_k^2} \|B\|},\tag{1}$$

or

$$|\mu + \delta_{\mu} e^{i\theta}| + |\lambda_k(\mu, \theta)| > \frac{1}{\sqrt{1 - \epsilon_k^2} \|B\|} |\|A\| - |\lambda_k(\mu, \theta)| \|B\||.$$

If $|\lambda_k(\mu, \theta)| \|B\| < \|A\|$, then we have $|\lambda_k(\mu, \theta)| < \|A\| / \|B\|$. If not, then

$$|\lambda_{k}(\mu,\theta)| \|B\| - \|A\| < \sqrt{1 - \epsilon_{k}^{2}} \|B\| (|\mu + \delta_{\mu}e^{i\theta}| + |\lambda_{k}(\mu,\theta)|),$$

and since $\epsilon_k > 0$, it follows

$$|\lambda_k(\mu, \theta)| < \frac{\|A\| + \sqrt{1 - \epsilon_k^2 \|B\| \|\mu + \delta_\mu e^{i\theta}\|}}{\|B\| (1 - \sqrt{1 - \epsilon_k^2})}$$

Thus, the sequence $\lambda_k(\mu, \theta)$ (k = 1, 2, ...) is bounded, and hence, it has a converging subsequence $\lambda_{k_t}(\mu, \theta)$ (t = 1, 2, ...). If $\lambda_0 = \lim_{k_t \to \infty} \lambda_{k_t}(\mu, \theta)$, then (1) yields

$$\lim_{k_t \to \infty} |\mu + \delta_{\mu} e^{i\theta} - \lambda_{k_t}(\mu, \theta)| \ge \lim_{k_t \to \infty} \frac{\|A - \lambda_{k_t}(\mu, \theta)B\|}{\sqrt{1 - \epsilon_{k_t}^2} \|B\|}$$

or

$$|\mu + \delta_{\mu} e^{\mathrm{i}\theta} - \lambda_0| \ge \frac{\|A - \lambda_0 B\|}{\sqrt{1 - \epsilon_0^2} \|B\|}$$

This contradicts to Property (P₅) and Proposition 16 in [7], because $\mu + \delta_{\mu}e^{i\theta}$ is an interior point of $F_{\|\cdot\|}^{\epsilon_0}(A;B)$]. Consequently, the mapping $\epsilon \mapsto F_{\|\cdot\|}^{\epsilon}(A;B)$ is lower semi-continuous at ϵ_0 , and the proof is complete.

Remark 8. Let $A, B \in \mathbb{C}^{n \times m}$ (with $B \neq 0$) and $\epsilon \in [0, 1)$, and suppose that A is not a scalar multiple of B. Suppose also that the matrix norm $\|\cdot\|$ is induced by an inner product of matrices, say $\langle \cdot, \cdot \rangle$. Then the Birkhoff-James ϵ -orthogonality set of A with respect to B is a closed disk [6, 7], namely,

$$F_{\|\cdot\|}^{\epsilon}(A;B) = \mathcal{D}\left(\frac{\langle A, B \rangle}{\|B\|^2}, \left\|A - \frac{\langle A, B \rangle}{\|B\|^2} B\right\| \frac{\epsilon}{\sqrt{1 - \epsilon^2} \|B\|}\right)$$

By the continuity of the inner product and the norm, the continuity of $F_{\parallel,\parallel}^{\epsilon}(A; B)$ with respect to A, B or ϵ is readily verified. In general, it is not known to the authors whether the mapping $B \mapsto F_{\parallel,\parallel}^{\epsilon}(A; B)$ is always continuous (i.e., for all matrix norms) or not.

Acknowledgment. We wish to thank M.V. Balashov for valuable feedback and for bringing references [1] and [13] to our attention.

References

- M.V. Balashov, Geometric difference of multivalued maps, *Mathematical Notes*, **70** (2001), 147–153.
- [2] G. Birkhoff, Orthogonality in linear metric spaces, Duke Math. J., 1 (1935), 169–172.
- [3] F.F. Bonsall and J. Duncan, Numerical Ranges of Operators on Normed Spaces and of Elements of Normed Algebras, London Mathematical Society Lecture Note Series, Cambridge University Press, New York, 1971.
- [4] F.F. Bonsall and J. Duncan, Numerical Ranges II, London Mathematical Society Lecture Notes Series, Cambridge University Press, New York, 1973.
- [5] J. Chmielinski, On an ε-Birkhoff orthogonality, J. Ineq. Pure and Appl. Math., 6 (2005), Article 79.
- [6] Ch. Chorianopoulos, S. Karanasios and P. Psarrakos, A definition of numerical range of rectangular matrices, *Linear Multilinear Algebra*, 57 (2009), 459–475.
- [7] Ch. Chorianopoulos and P. Psarrakos, Birkhoff-James approximate orthogonality sets and numerical ranges, *Linear Algebra Appl.*, **434** (2011), 2089–2108.
- [8] S.S. Dragomir, On approximation of continuous linear functionals in normed linear spaces, An. Univ. Timişoara Ser. Ştiinţ. Mat., 29 (1991), 51–58.
- [9] K.E. Gustafson and D.K.M. Rao, Numerical Range: The Field of Values of Linear Operators and Matrices, Springer-Verlag, New York, 1997.
- [10] R.A. Horn and C.R. Johnson, *Topics in Matrix Analysis*, Cambridge University Press, Cambridge, 1991.
- [11] R.C. James, Orthogonality and linear functionals in normed linear spaces, Trans. Amer. Math. Soc., 61 (1947), 265–292.

- [12] H.W.J. Lenferink and M.N. Spijker, A generalization of the numerical ranges of a matrix, *Linear Algebra Appl.*, 140 (1990), 251–266.
- [13] E.S. Polovinkin, Elements of the Theory of Set-Valued Mappings (in Russian), MFTI, Moscow, 1982.
- [14] J.G. Stampfli and J.P. Williams, Growth conditions and the numerical range in a Banach algebra, *Tôhoku Math. Journ.*, **20** (1968), 417–424.