On the continuity of Birkhoff-James ϵ-orthogonality sets

Christos Chorianopoulos* and Panayiotis J. Psarrakos†

February 5, 2013

Abstract

Consider two matrices $A, B \in \mathbb{C}^{n \times m}$ with $B \neq 0$, a matrix norm $\| \cdot \|$, and a real parameter $\epsilon \in [0, 1)$. The Birkhoff-James ϵ-orthogonality set of A with respect to B, $F_{\|\|}(A; B) = \{ \mu \in \mathbb{C} : \| A - \lambda B \| \geq \sqrt{1 - \epsilon^2} \| B \| \| \mu - \lambda \|, \forall \lambda \in \mathbb{C} \}$, is a compact and convex subset of the complex plane that has been recently introduced by the authors, as a natural generalization of the classical numerical range of square matrices. In this note, we derive the continuity of $F_{\|\|}(A; B)$ with respect to A or ϵ.

Keywords: Birkhoff-James ϵ-orthogonality set, Hausdorff distance, continuity.

AMS Subject Classifications: 15A60, 47A12.

1 Introduction

The numerical range (also known as the field of values) of a square complex matrix $A \in \mathbb{C}^{n \times n}$ is defined as $F(A) = \{ x^* Ax : x \in \mathbb{C}^n, x^* x = 1 \}$ [10]. It is a compact and convex subset of the complex plane that has been studied extensively for many decades, and it is useful in studying and understanding matrices and operators; see [3, 4, 9, 10, 14] and the references therein.

The numerical range $F(A)$ is also written in the form [4, 14],

$$F(A) = \left\{ \mu \in \mathbb{C} : \| A - \lambda I_n \|_2 \geq |\mu - \lambda|, \forall \lambda \in \mathbb{C} \right\} = \bigcap_{\lambda \in \mathbb{C}} \left\{ \mu \in \mathbb{C} : |\mu - \lambda| \leq \| A - \lambda I_n \|_2 \right\},$$

where $\| \cdot \|_2$ denotes the spectral matrix norm (i.e., that norm subordinate to the euclidean vector norm) and I_n is the $n \times n$ identity matrix. Thus, $F(A)$ is an infinite intersection of closed disks $D(\lambda, \| A - \lambda I_n \|_2) = \{ \mu \in \mathbb{C} : |\mu - \lambda| \leq \| A - \lambda I_n \|_2 \}$

*Department of Mathematics and Statistics, University of Calgary, Calgary, AB T2N 1N4, Canada (horjoe@yahoo.gr).
†Department of Mathematics, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece (ppsarr@math.ntua.gr). Corresponding author.
(\lambda \in \mathbb{C}). Inspired by the above intersection property, Chorianopoulos, Karanasios and Psarrakos [6] proposed a definition of numerical range for rectangular complex matrices. In particular, for any $A, B \in \mathbb{C}^{n \times m}$ with $B \neq 0$, and any matrix norm $\| \cdot \|$, the numerical range of A with respect to B is defined as

$$F_{\| \cdot \|}(A; B) = \{ \mu \in \mathbb{C} : \|A - \lambda B\| \geq |\mu - \lambda|, \forall \lambda \in \mathbb{C} \} = \bigcap_{\lambda \in \mathbb{C}} D(\lambda, \|A - \lambda B\|).$$

This set is compact and convex, satisfies basic properties of the standard numerical range, and is nonempty if and only if $\|B\| \geq 1$ [6].

The analysis in [6] is based on the properties of matrix norms and the Birkhoff-James orthogonality [2, 11]; namely, for two elements χ and ψ of a complex normed linear space $(\mathcal{X}, \| \cdot \|)$, χ is called Birkhoff-James orthogonal to ψ, denoted by $\chi \perp_{BJ} \psi$, if $\|\chi + \lambda \psi\| \geq \|\chi\|$ for all $\lambda \in \mathbb{C}$. This orthogonality is homogeneous, but it is neither symmetric nor additive [11]. Furthermore, for any $\epsilon \in [0, 1)$, we say that χ is Birkhoff-James ϵ-orthogonal to ψ, denoted by $\chi \perp_{\epsilon, BJ} \psi$, if $\|\chi + \lambda \psi\| \geq \sqrt{1 - \epsilon^2}\|\chi\|$ for all $\lambda \in \mathbb{C}$. This ϵ-orthogonality is well defined and denoted by \mathcal{D}

$$\mathcal{D}(\lambda, \|A - \lambda B\|).$$

If $\|B\| \geq 1$, then for $\epsilon_B = \sqrt{\|B\|^2 - 1} / \|B\|$, we have [7]

$$F_{\| \cdot \|}(A; B) = \{ \mu \in \mathbb{C} : B \perp_{\epsilon_B} (A - \mu B) \}.$$

As a consequence, the next definition (introduced by the authors in [7]) arises in a natural way.

Definition 1. For any $A, B \in \mathbb{C}^{n \times m}$ with $B \neq 0$, any matrix norm $\| \cdot \|$, and any $\epsilon \in [0, 1)$, the Birkhoff-James ϵ-orthogonality set of A with respect to B is defined and denoted by

$$F^\epsilon_{\| \cdot \|}(A; B) = \{ \mu \in \mathbb{C} : B \perp_{\epsilon, BJ} (A - \mu B) \} = \bigcap_{\lambda \in \mathbb{C}} \mathcal{D}(\lambda, \|A - \lambda B\| / \sqrt{1 - \epsilon^2}\|B\|).$$

The Birkhoff-James ϵ-orthogonality set $F^\epsilon_{\| \cdot \|}(A; B)$ is a nonempty, compact and convex subset of the complex plane that lies in the closed disk $\mathcal{D}(0, \sqrt{\|A\|^2 / \sqrt{1 - \epsilon^2}\|B\|})$ and is quite rich in structure [7]. In this note, we obtain the continuity of $F^\epsilon_{\| \cdot \|}(A; B)$ with respect to the matrix $A \in \mathbb{C}^{n \times m}$ (see Section 3), or to the real parameter $\epsilon \in [0, 1)$ (see Section 4). The question of the continuity of $F^\epsilon_{\| \cdot \|}(A; B)$ with respect to matrix $B \in \mathbb{C}^{n \times m}$ is still open except the special case where the norm $\| \cdot \|$ is induced by an inner product of matrices (see Remark 8).
2 Preliminaries

We recall that for two compact subsets Ω_1 and Ω_2 of a metric space (X, ρ), the Hausdorff distance between Ω_1 and Ω_2 is defined by

$$d_H(\Omega_1, \Omega_2) = \max \left\{ \max_{x_1 \in \Omega_1} \min_{x_2 \in \Omega_2} \rho(x_1, x_2), \max_{x_2 \in \Omega_2} \min_{x_1 \in \Omega_1} \rho(x_1, x_2) \right\}.$$

For any $x_0 \in X$ and $\delta > 0$, we define the closed ball $B(x_0, \delta) = \{x \in X : \rho(x_0, x) \leq \delta\}$.

Definition 2. [1] Suppose (X, ρ_X) is a metric space and (Y, ρ_Y) is a complete metric space. Consider a multi-valued mapping $F : X \mapsto Y$, and let $x_0 \in X$.

(i) F is called δ-upper semi-continuous at x_0 if for every $\delta > 0$, there is a neighborhood $N(x_0) \subset X$ of x_0 such that

$$F(x) \subseteq F(x_0) + B(0, \delta), \quad \forall \ x \in N(x_0).$$

(ii) F is called δ-lower semi-continuous at x_0 if for every $\delta > 0$, there is a neighborhood $N(x_0) \subset X$ of x_0 such that

$$F(x_0) \subseteq F(x) + B(0, \delta), \quad \forall \ x \in N(x_0).$$

(iii) F is said to be δ-continuous at x_0 if it is δ-upper and δ-lower semi-continuous.

(i') F is called upper semi-continuous at x_0 if for every neighborhood $N(F(x_0)) \subset Y$ of the set $F(x_0)$, there is a neighborhood $N(x_0) \subset X$ of x_0 such that

$$F(x) \subseteq N(F(x_0)), \quad \forall \ x \in N(x_0).$$

(ii') F is called lower semi-continuous at x_0 if for every $y_0 \in F(x_0)$ and every neighborhood $N(y_0) \subset Y$ of y_0, there exists a neighborhood $N(x_0) \subset X$ of x_0 such that

$$F(x) \cap N(y_0) \neq \emptyset, \quad \forall \ x \in N(x_0).$$

(iii') F is said to be continuous at x_0 if it is upper and lower semi-continuous.

The following three lemmas are crucial in our analysis.

Lemma 3. [1, Lemma 2.1] Suppose (X, ρ_X) is a metric space and (Y, ρ_Y) is a complete metric space. Consider a multi-valued mapping $F : X \mapsto Y$, and let $x_0 \in X$.

(i) If F is upper semi-continuous at x_0, then it is δ-upper semi-continuous at x_0. The converse is true when the set $F(x_0)$ is compact.

(ii) If F is δ-lower semi-continuous at x_0, then it is lower semi-continuous at x_0. The converse is true when the set $F(x_0)$ is compact.
Lemma 4. [7, Proposition 2] Let \(A, B \in \mathbb{C}^{n \times m} \) and \(0 \leq \epsilon_1 < \epsilon_2 < 1 \). If the matrix \(A \) is not a scalar multiple of \(B \), then \(\mathcal{F}^\epsilon_{\| \cdot \|} (A; B) \) lies in the interior of \(\mathcal{F}^\epsilon_{\| \cdot \|} (A; B) \), \(\text{Int}[\mathcal{F}^\epsilon_{\| \cdot \|} (A; B)] \).

Lemma 5. [12] Let \(A, B \in \mathbb{C}^{n \times m} \) and \(\epsilon \in [0, 1) \), and suppose \(A \) is not a scalar multiple of \(B \). Then for every \(\delta > 0 \), there exist scalars \(\lambda_1, \lambda_2, \ldots, \lambda_k \in \mathbb{C} \) such that

\[
\delta_H \left(\bigcap_{i=1}^{k} D \left(\lambda_i, \frac{\| A - \lambda_i B \|}{\sqrt{1 - \epsilon^2 \| B \|}} \right), F^\epsilon_{\| \cdot \|} (A; B) \right) \leq \delta.
\]

3 Continuity in \(A \)

In this section, we derive the continuity of the Birkhoff-James \(\epsilon \)-orthogonality set \(F^\epsilon_{\| \cdot \|} (A; B) \) with respect to matrix \(A \).

Theorem 6. Let \(A_0, B \in \mathbb{C}^{n \times m} \) (with \(B \neq 0 \)) and \(\epsilon \in [0, 1) \), and suppose that \(A_0 \) is not a scalar multiple of \(B \). Then, the mapping \(A \mapsto F^\epsilon_{\| \cdot \|} (A; B) \) is continuous at \(A_0 \).

Proof. We will first prove the upper semi-continuity of the mapping. Suppose that \(A_0 \in \mathbb{C}^{n \times m} \) is not a scalar multiple of \(B \), and let \(\delta > 0 \). By Lemma 5, there are \(\lambda_1, \lambda_2, \ldots, \lambda_k \in \mathbb{C} \) such that

\[
\delta_H \left(G(A_0), F^\epsilon_{\| \cdot \|} (A_0; B) \right) \leq \frac{\delta}{2},
\]

where

\[
G(A_0) = \bigcap_{i=1}^{k} D \left(\lambda_i, \frac{\| A_0 - \lambda_i B \|}{\sqrt{1 - \epsilon^2 \| B \|}} \right).
\]

Moreover, for any \(E \in \mathbb{C}^{n \times m} \), we have

\[
\frac{\| A_0 - \lambda_i B \|}{\sqrt{1 - \epsilon^2 \| B \|}} = \frac{\| A_0 + E - \lambda_i B - E \|}{\sqrt{1 - \epsilon^2 \| B \|}} \leq \frac{\| A_0 + E - \lambda_i B \|}{\sqrt{1 - \epsilon^2 \| B \|}} + \frac{\| E \|}{\sqrt{1 - \epsilon^2 \| B \|}}
\]

for \(i = 1, 2, \ldots, k \). As a consequence, the set

\[
\Omega(A_0, E) = \bigcap_{i=1}^{k} D \left(\lambda_i, \frac{\| A_0 + E - \lambda_i B \|}{\sqrt{1 - \epsilon^2 \| B \|}} + \frac{\| E \|}{\sqrt{1 - \epsilon^2 \| B \|}} \right),
\]

contains

\[
F^\epsilon_{\| \cdot \|} (A_0 + E; B) = \bigcap_{\lambda \in \mathbb{C}} D \left(\lambda, \frac{\| A_0 + E - \lambda B \|}{\sqrt{1 - \epsilon^2 \| B \|}} \right).
\]

By [13, Theorem 1.7.3], there exists a \(\gamma > 0 \) such that for every \(E \in \mathbb{C}^{n \times m} \) with \(\| E \| \leq \gamma \), \(d_H(G(A_0), \Omega(A_0, E)) \leq \delta/2 \). Hence, for every \(E \in \mathbb{C}^{n \times m} \) with \(\| E \| \leq \gamma \),

\[
d_H(F^\epsilon_{\| \cdot \|} (A_0; B), \Omega(A_0, E)) \leq d_H(F^\epsilon_{\| \cdot \|} (A_0; B), G(A_0)) + d_H(G(A_0), \Omega(A_0, E)) \leq \delta.
\]
This implies that
\[\Omega(A_0, E) \subseteq F^\epsilon_{\|\cdot\|}(A_0; B) + D(0, \delta), \]
and thus,
\[F^\epsilon_{\|\cdot\|}(A_0 + E; B) \subseteq F^\epsilon_{\|\cdot\|}(A_0; B) + D(0, \delta). \]
So, the mapping \(A \mapsto F^\epsilon_{\|\cdot\|}(A; B) \) is \(\delta \)-upper semi-continuous at \(A_0 \), and by Lemma 3, it is also upper semi-continuous at \(A_0 \).

Next we derive the lower semi-continuity of the mapping. First we consider the case where \(\epsilon > 0 \). Since \(A_0 \) is not a scalar multiple of \(B \), Lemma 4 implies that \(\text{Int}[F^\epsilon_{\|\cdot\|}(A_0; B)] \neq \emptyset \) (see also Corollary 3 in [7]). Keeping in mind the convexity of \(F^\epsilon_{\|\cdot\|}(A; B) \), we have that for any \(\mu \in F^\epsilon_{\|\cdot\|}(A_0; B) \) and \(\delta > 0 \), the disc \(D(\mu, \delta) \) has a nonempty intersection with \(\text{Int}[F^\epsilon_{\|\cdot\|}(A_0; B)] \). Moreover, for any \(\mu_0 \in D(\mu, \delta) \cap \text{Int}[F^\epsilon_{\|\cdot\|}(A_0; B)] \), it holds that (see Proposition 16 in [7])
\[\inf_{\lambda \in \mathbb{C}} \left\{ \|A_0 - \lambda B\| - |\lambda - \mu_0| \|B\| \sqrt{1 - \epsilon^2} \right\} = \xi > 0. \]
Thus, for every \(E \in \mathbb{C}^{n \times m} \) with \(\|E\| \leq \xi \), we have
\[\|A_0 - \lambda B\| - \|E\| > |\lambda - \mu_0| \|B\| \sqrt{1 - \epsilon^2}, \quad \forall \lambda \in \mathbb{C}, \]
or
\[\|A_0 + E - \lambda B\| > |\lambda - \mu_0| \|B\| \sqrt{1 - \epsilon^2}, \quad \forall \lambda \in \mathbb{C}. \]
As a consequence, \(\mu_0 \in F^\epsilon_{\|\cdot\|}(A_0 + E; B) \) for every \(E \in \mathbb{C}^{n \times m} \) with \(\|E\| \leq \xi \), and thus, \(D(\mu, \delta) \cap F^\epsilon_{\|\cdot\|}(A_0 + E; B) \neq \emptyset \). Hence, for \(\epsilon > 0 \), the mapping \(A \mapsto F^\epsilon_{\|\cdot\|}(A; B) \) is lower semi-continuous at \(A_0 \).

Let now \(\epsilon = 0 \), and assume that the mapping \(A \mapsto F^0_{\|\cdot\|}(A; B) \) is not lower semi-continuous at \(A_0 \). Then there exist a \(\mu_0 \in F^0_{\|\cdot\|}(A; B) \) and a \(\delta > 0 \) such that for any \(\xi > 0 \), there is an \(E \in \mathbb{C}^{n \times n} \) with \(\|E\| \leq \xi \), which satisfies
\[F^0_{\|\cdot\|}(A_0 + E; B) \cap D(\mu_0, \delta) = \emptyset. \]
Then, for every \(\mu \in D(\mu_0, \delta) \), there is a \(\lambda_\mu \in \mathbb{C} \) (with \(\lambda_\mu \neq \mu \)) such that
\[\|A_0 + E - \lambda_\mu B\| < |\mu - \lambda_\mu| \|B\|. \]
Since this inequality is strict, the quantity \(|\mu - \lambda_\mu| \|B\| \) is positive. Thus, for every \(\mu \in D(\mu_0, \delta) \), the number
\[\epsilon_\mu = \frac{1}{2} \sqrt{1 - \frac{\|A_0 + E - \lambda_\mu B\|}{|\mu - \lambda_\mu| \|B\|}} < \sqrt{1 - \frac{\|A_0 + E - \lambda_\mu B\|}{|\mu - \lambda_\mu| \|B\|}} \]
is positive and satisfies
\[\|A_0 + E - \lambda_\mu B\| < \sqrt{1 - \epsilon_\mu^2} |\mu - \lambda_\mu| \|B\|. \]
Hence, if we define \(\hat{\epsilon} = \min \{ \epsilon_\mu : \mu \in \mathcal{D}(\mu_0, \delta) \} > 0 \), then it follows
\[
\| A_0 + E - \lambda_\mu B \| < \sqrt{1 - \hat{\epsilon}^2} |\mu - \lambda_\mu| \| B \|,
\]
and consequently,
\[
F^\hat{\epsilon}_{\| \cdot \|}(A_0 + E; B) \cap \mathcal{D}(\mu_0, \delta) = \emptyset.
\]
This means that the mapping \(A \mapsto F^\hat{\epsilon}_{\| \cdot \|}(A; B) \) is not lower semi-continuous at \(A_0 \), which contradicts the result already proved for \(\epsilon > 0 \). \(\square \)

4 Continuity in \(\epsilon \)

In this section, we obtain the continuity of the Birkhoff-James \(\epsilon \)-orthogonality set \(F^\epsilon_{\| \cdot \|}(A; B) \) with respect to the real parameter \(\epsilon \in [0, 1] \).

Theorem 7. Let \(A, B \in \mathbb{C}^{n \times m} \) (with \(B \neq 0 \)) and \(\epsilon_0 \in [0, 1] \), and suppose that \(A \) is not a scalar multiple of \(B \). Then, the mapping \(\epsilon \mapsto F^\epsilon_{\| \cdot \|}(A; B) \) is continuous at \(\epsilon_0 \).

Proof. To obtain the upper semi-continuity of the mapping, it is enough to prove that for every \(\delta > 0 \), there is a neighborhood of \(\epsilon_0 \), say \(\mathcal{N}(\epsilon_0) \), such that
\[
F^\hat{\epsilon}_{\| \cdot \|}(A; B) \subseteq F^{\epsilon_0}_{\| \cdot \|}(A; B) + \mathcal{D}(0, \delta), \quad \forall \hat{\epsilon} \in \mathcal{N}(\epsilon_0).
\]
For \(\hat{\epsilon} < \epsilon_0 \), Lemma 4 implies that \(F^\hat{\epsilon}_{\| \cdot \|}(A; B) \subseteq F^{\epsilon_0}_{\| \cdot \|}(A; B) \), and the desired inclusion apparently holds.

We consider now the case where \(\hat{\epsilon} > \epsilon_0 \). As in the proof of Theorem 6, by Lemma 5, there exist scalars \(\lambda_1, \lambda_2, \ldots, \lambda_k \in \mathbb{C} \) such that the Hausdorff distance between the set
\[
G(\epsilon_0) = \bigcap_{i=1}^k \mathcal{D} \left(\lambda_i, \frac{\| A - \lambda_i B \|}{\sqrt{1 - \epsilon_0^2} \| B \|} \right)
\]
and \(F^{\epsilon_0}_{\| \cdot \|}(A; B) \) is less than or equal to \(\delta/2 \). By [13, Theorem 1.7.3], there is an \(\hat{\epsilon} \) sufficiently close to \(\epsilon_0 \) such that \(d_H(G(\epsilon_0), G(\hat{\epsilon})) \leq \delta/2 \), where \(G(\hat{\epsilon}) = \bigcap_{i=1}^k \mathcal{D} \left(\lambda_i, \frac{\| A - \lambda_i B \|}{\sqrt{1 - \hat{\epsilon}^2} \| B \|} \right) \).

Hence,
\[
d_H(G(\hat{\epsilon}), F^{\epsilon_0}_{\| \cdot \|}(A; B)) \leq d_H(G(\hat{\epsilon}), G(\epsilon_0)) + d_H(G(\epsilon_0), F^{\epsilon_0}_{\| \cdot \|}(A; B)) \leq \delta.
\]
As a consequence,
\[
G(\hat{\epsilon}) \subseteq F^{\epsilon_0}_{\| \cdot \|}(A; B) + \mathcal{D}(0, \delta).
\]
Since \(F^\hat{\epsilon}_{\| \cdot \|}(A; B) \subseteq G(\hat{\epsilon}) \), it follows
\[
F^\hat{\epsilon}_{\| \cdot \|}(A; B) \subseteq F^{\epsilon_0}_{\| \cdot \|}(A; B) + \mathcal{D}(0, \delta),
\]
which means that the mapping \(\epsilon \mapsto F^\epsilon_{\| \cdot \|}(A; B) \) is \(\delta \)-upper semi-continuous at \(\epsilon_0 \), and by Lemma 3, it is upper semi-continuous at \(\epsilon_0 \).
Next we prove the lower semi-continuity of the mapping. If \(\epsilon_0 = 0 \), then the result follows readily from Lemma 4. Let \(\epsilon_0 > 0 \) and \(\mu \in F^c_{\|\cdot\|}(A; B) \). We will see that for any \(\delta > 0 \), there exists an open interval \(\mathcal{N}(\epsilon_0) = (\epsilon_0 - \gamma, \epsilon_0 + \gamma) \), \(\gamma > 0 \), such that

\[
F^c_{\|\cdot\|}(A; B) \cap \mathcal{D}(\mu, \delta) \neq \emptyset, \quad \forall \, \epsilon \in (\epsilon_0 - \gamma, \epsilon_0 + \gamma).
\]

By Lemma 4, for any \(\hat{\epsilon} \) and \(\epsilon \) of contradiction, and without loss of generality, we may assume that there exists a scalar \(\delta \) such that

\[
F^c_{\|\cdot\|}(A; B) \cap \mathcal{D}(\mu, \delta) = \emptyset, \quad \forall \, \epsilon \in (\epsilon_0 - \gamma, \epsilon_0 + \gamma).
\]

Thus, the sequence \(\mu^k \) follows readily from Lemma 4. Let \(\mu^k \rightarrow \mu \) and since \(\|\cdot\| \in \mathcal{D}(\mu, \delta) \neq \emptyset \), then by Lemma 4, we can set \(\gamma = \epsilon_0 - \hat{\epsilon} \). Thus, for the sake of contradiction, and without loss of generality, we may assume that there exists a \(\delta \) such that \(F^c_{\|\cdot\|}(A; B) \cap \mathcal{D}(\mu, \delta) = \emptyset \) for all nonnegative \(\hat{\epsilon} < \epsilon_0 \). Then, choosing \(\delta \) sufficiently small, there is a \(\theta \in [0, 2\pi] \) such that

\[
\mu + \delta e^{i\theta} \in \text{Int}[F^c_{\|\cdot\|}(A; B)]
\]

and

\[
\mu + \delta e^{i\theta} \notin F^c_{\|\cdot\|}(A; B), \quad \forall \, \hat{\epsilon} \in [0, \epsilon_0).
\]

Consider now a sequence \(\{\epsilon_k\}_{k \in \mathbb{N} \setminus \{0\}} \subset [0, \epsilon_0) \) that converges to \(\epsilon_0 \). Then for every \(k = 1, 2, \ldots \), there exists a scalar \(\lambda_k(\mu, \theta) \) such that

\[
|\mu + \delta e^{i\theta} - \lambda_k(\mu, \theta)| > \frac{\|A - \lambda_k(\mu, \theta)B\|}{\sqrt{1 - \epsilon_k^2 \|B\|}}, \quad (1)
\]

or

\[
|\mu + \delta e^{i\theta}| + |\lambda_k(\mu, \theta)| > \frac{1}{\sqrt{1 - \epsilon_k^2 \|B\|}} \left(\|A\| - |\lambda_k(\mu, \theta)| \|B\| \right).
\]

If \(|\lambda_k(\mu, \theta)| \|B\| < \|A\| \), then we have \(|\lambda_k(\mu, \theta)| < \|A\| / \|B\| \). If not, then

\[
|\lambda_k(\mu, \theta)| \|B\| - \|A\| < \sqrt{1 - \epsilon_k^2 \|B\|} \left(|\mu + \delta e^{i\theta}| + |\lambda_k(\mu, \theta)| \right),
\]

and since \(\epsilon_k > 0 \), it follows

\[
|\lambda_k(\mu, \theta)| < \frac{\|A\| + \sqrt{1 - \epsilon_k^2 \|B\|} \|\mu + \delta e^{i\theta}\|}{\|B\| \left(1 - \sqrt{1 - \epsilon_k^2} \right)}.
\]

Thus, the sequence \(\lambda_k(\mu, \theta) \) \((k = 1, 2, \ldots)\) is bounded, and hence, it has a converging subsequence \(\lambda_{k_t}(\mu, \theta) \) \((t = 1, 2, \ldots)\). If \(\lambda_0 = \lim_{k_t \to \infty} \lambda_{k_t}(\mu, \theta) \), then \((1) \) yields

\[
\lim_{k_t \to \infty} |\mu + \delta e^{i\theta} - \lambda_{k_t}(\mu, \theta)| \geq \lim_{k_t \to \infty} \frac{\|A - \lambda_{k_t}(\mu, \theta)B\|}{\sqrt{1 - \epsilon_{k_t}^2 \|B\|}},
\]

or

\[
|\mu + \delta e^{i\theta} - \lambda_0| \geq \frac{\|A - \lambda_0 B\|}{\sqrt{1 - \epsilon_0^2 \|B\|}}.
\]

This contradicts to Property \((P_3)\) and Proposition 16 in [7], because \(\mu + \delta e^{i\theta} \) is an interior point of \(F^c_{\|\cdot\|}(A; B) \). Consequently, the mapping \(\epsilon \mapsto F^c_{\|\cdot\|}(A; B) \) is lower semi-continuous at \(\epsilon_0 \), and the proof is complete. \(\square \)
Remark 8. Let \(A, B \in \mathbb{C}^{n \times m} \) (with \(B \neq 0 \)) and \(\epsilon \in [0,1) \), and suppose that \(A \) is not a scalar multiple of \(B \). Suppose also that the matrix norm \(\| \cdot \| \) is induced by an inner product of matrices, say \(\langle \cdot, \cdot \rangle \). Then the Birkhoff-James \(\epsilon \)-orthogonality set of \(A \) with respect to \(B \) is a closed disk \([6, 7] \), namely,
\[
F_{\| \cdot \|}^\epsilon (A; B) = \mathcal{D} \left(\frac{\langle A, B \rangle}{\| B \|^2}, \frac{A - \langle A, B \rangle \| B \|^2}{\| B \|^2} B \frac{\epsilon}{\sqrt{1 - \epsilon^2 \| B \|^2}} \right).
\]
By the continuity of the inner product and the norm, the continuity of \(F_{\| \cdot \|}^\epsilon (A; B) \) with respect to \(A, B \) or \(\epsilon \) is readily verified. In general, it is not known to the authors whether the mapping \(B \mapsto F_{\| \cdot \|}^\epsilon (A; B) \) is always continuous (i.e., for all matrix norms) or not.

Acknowledgment. We wish to thank M.V. Balashov for valuable feedback and for bringing references [1] and [13] to our attention.

References

