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Abstract

Consider two matrices A, B € C"*™ with B # 0, a matrix norm || - ||, and
a real parameter € € [0,1). The Birkhoff-James e-orthogonality set of A with
respect to B, F|f, (4; B) = {peC: [|[A=AB| > V1I—€|B||u— A,V XeC},
is a compact and convex subset of the complex plane that has been recently
introduced by the authors, as a natural generalization of the classical numerical
range of square matrices. In this note, we derive the continuity of F\|6~H(A; B)
with respect to A or e.
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1 Introduction

The numerical range (also known as the field of values) of a square complex matrix
A e C™" is defined as F(A) = {z*Az € C: x € C", z*x =1} [10]. It is a compact
and convex subset of the complex plane that has been studied extensively for many
decades, and it is useful in studying and understanding matrices and operators; see
[3, 4,9, 10, 14] and the references therein.

The numerical range F'(A) is also written in the form [4, 14],
F(A) = {peC: ||A=-AL|,>|p—A,VAeC}

= [{reC: |p—A<|A=AL],},
xeC

where || - ||]2 denotes the spectral matriz norm (i.e., that norm subordinate to the
euclidean vector norm) and I, is the n x n identity matrix. Thus, F(A) is an infi-
nite intersection of closed disks D (A, ||A — AL,|y) ={n € C: |p— A <||A— AL}
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(A € C). Inspired by the above intersection property, Chorianopoulos, Karanasios
and Psarrakos [6] proposed a definition of numerical range for rectangular complex
matrices. In particular, for any A, B € C"*™ with B # 0, and any matrix norm || - ||,
the numerical range of A with respect to B is defined as

F(4;B) = {peC:[[A=AB| = |u—A,VAeC}

= [\ D\IA=-2AB]).
AeC

This set is compact and convex, satisfies basic properties of the standard numerical
range, and is nonempty if and only if [|B]| > 1 [6].

The analysis in [6] is based on the properties of matrix norms and the Birkhoff-
James orthogonality [2, 11]; namely, for two elements x and 9 of a complex normed
linear space (X, ||-]|), x is called Birkhoff-James orthogonal to 1, denoted by x Lps 9,
if ||x + M| > ||x]| for all A € C. This orthogonality is homogeneous, but it is neither
symmetric nor additive [11]. Furthermore, for any € € [0, 1), we say that y is Birkhoff-
James e-orthogonal to 1), denoted by x LG, 9, if ||[x + M| > V1 — € ||x|| for all
A € C. It is straightforward to see that this relation is also homogeneous. In an inner
product space (X, (-, -)), with the standard orthogonality relation L, a y € X is called
e-orthogonal to a1 € X, denoted by x L€, if [(x, ¥)| < €l|x]|| [|#||. Moreover, x L 9

(resp., x L€ %) if and only if x Ly v (resp., x LG, %) [5, 8].
If || B|| > 1, then for eg = /|| BJ|> — 1/ ||B||, we have [7]
F(4B)={peC: B LY (A—uB)}.

As a consequence, the next definition (introduced by the authors in [7]) arises in a
natural way.

Definition 1. For any A, B € C"*™ with B # 0, any matrix norm || - ||, and any
e € [0,1), the Birkhoff-James e-orthogonality set of A with respect to B is defined
and denoted by

Fi (4 B) = {peC: B Lly; (A—uB)}

- {ueC: |]A—>\B||2\/1—52||B|]|M—A\,V)\€C}
= ﬂp( M)
AEC V1—e|B|

The Birkhoff-James e-orthogonality set FHE-II(A; B) is a nonempty, compact and

convex subset of the complex plane that lies in the closed disk D (0, NVi=aTT] BH) and

is quite rich in structure [7]. In this note, we obtain the continuity of iy (A; B) with
respect to the matrix A € C™*™ (see Section 3), or to the real parameter € € [0,1)
(see Section 4). The question of the continuity of F, ”6_”(A; B) with respect to matrix
B € C™™ is still open except the special case where the norm || - || is induced by an
inner product of matrices (see Remark 8).



2 Preliminaries

We recall that for two compact subsets Q; and s of a metric space (X,p), the
Hausdorff distance between €2 and 25 is defined by

dr(21,€2) = max{ max min p(x1,x2), max min p(ry,z2) ¢ .
1€ 22€Q2 x2€02 T1€Q

For any z9 € X and 0 > 0, we define the closed ball B(zg,d) = {z € X : p(zo,x) < d}.

Definition 2. [1] Suppose (X, px) is a metric space and (), py) is a complete metric
space. Consider a multi-valued mapping F': X — ), and let zg € X.

(i) F is called d-upper semi-continuous at xg if for every § > 0, there is a neighborhood
N (xp) C X of zg such that

F(z) C F(xo) + B(0,8), Ve N(x).

ii) F is called §-lower semi-continuous at xg if for every § > 0, there is a neighborhood
N (xg) C X of zg such that

F(zo) C F(x) + B(0,8), Yz € N(x).

(iii) F is said to be J-continuous at xg if it is d-upper and d-lower semi-continuous.

(i") F is called upper semi-continuous at xg if for every neighborhood N (F(zg)) C Y
of the set F(z9), there is a neighborhood N (z¢) C X of xy such that

F(z) CN(F(x)), VxeN(x).
(i) F is called lower semi-continuous at xq if for every yo € F(zp) and every neigh-

borhood N (yg) C Y of yo, there exists a neighborhood N (zg) C X of 2y such that

F(z) N N(yo) #0, Vz € N(zo).
(iii") F is said to be continuous at xg if it is upper and lower semi-continuous.

The following three lemmas are crucial in our analysis.
Lemma 3. [1, Lemma 2.1] Suppose (X, px) is a metric space and (Y, py) is a com-

plete metric space. Consider a multi-valued mapping F : X — Y, and let xg € X.

(1) If F is upper semi-continuous at xo, then it is d-upper semi-continuous at x.
The converse is true when the set F(xg) is compact.

(i) If F is 0-lower semi-continuous at g, then it is lower semi-continuous at xg.
The converse is true when the set F(xg) is compact.



Lemma 4. [7, Proposition 2] Let A,B € C"*™ and 0 < ¢; < e2 < 1. If the matriz
A is not a scalar multiple of B, then F”fl”(A; B) lies in the interior of F”E?H(A; B),

Int[Fﬁ' (A; B)].

Lemma 5. [12] Let A,B € C"™™ and ¢ € [0,1), and suppose A is not a scalar
multiple of B. Then for every 6 > 0, there exist scalars Ay, Ao, ..., A\ € C such that

k
|A— \DB| >
d | DlN,—— ), F(A;B < 4.
" (1:1 ( V1— e | Bl | ”( )

3 Continuity in A

In this section, we derive the continuity of the Birkhoff-James e-orthogonality set
FHG.”(A; B) with respect to matrix A.

Theorem 6. Let Ag, B € C"*™ (with B # 0) and € € [0,1), and suppose that Ao is
not a scalar multiple of B. Then, the mapping A — FHG,”(A; B) is continuous at Ag.

Proof. We will first prove the upper semi-continuity of the mapping. Suppose that
Ag € C™™ is not a scalar multiple of B, and let 6 > 0. By Lemma 5, there are
A1, A2, ..., A\ € C such that

i (G(40). Ff (An: B)) < 5

I

where .
IIAo—A¢B||>
G(Ap) = D ()\i,— .
(o) ﬂ vV1—ée| B

Moreover, for any E € C™"*™, we have

140 = XiB|| _ |lAo+ E - \iB — E|| _ || Ao+ E — \iB| 1]
vV1-¢€|B| vi-e|B|  — V1i-€|B| vV1—¢€|B|
fori=1,2,...,k. As a consequence, the set

k
4o+ E - \B| 12| )
Q(Ag, E) = (D ( N, + :
Ao F) Q< Vi—e || Vi-e|B|

contains

HA0+E—)\BH>
Fi(Ao+E;B)= (DA .
ot B8 =1 ] < Vi-ée|p|

By [13, Theorem 1.7.3], there exists a v > 0 such that for every E € C"*™ with
IEI <7, dua(G(Ap), (Ao, E)) < /2. Hence, for every E € C"*™ with || E| < v,

di(Ff (Ag; B), (Ao, E)) < dp(Ff, (Aog; B), G(Ao)) + i (G(Ao), (Ao, E)) < 4.
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This implies that
Q(Ao, E) C Fjf,(Ao; B) + D(0,6),
and thus,
Fii (Ao + E; B) € Fii (Ao; B) +D(0,6).

So, the mapping A — F||E~H (A; B) is é-upper semi-continuous at Ay, and by Lemma 3,
it is also upper semi-continuous at Ag.

Next we derive the lower semi-continuity of the mapping. First we consider the
case where € > 0. Since Ag is not a scalar multiple of B, Lemma 4 implies that
Int[F‘T'”(AO; B)] # 0 (see also Corollary 3 in [7]). Keeping in mind the convexity of
FIT'II(A; B), we have that for any p € F”?”(AO;B) and § > 0, the disc D(u,d) has
a nonempty intersection with Int[F”?”(AO;B)]. Moreover, for any pug € D(p,d) N
Int[FHe_”(AO; B)], it holds that (see Proposition 16 in [7])

inf {1140 = ABJl = ] = ol | BIVT =2} = ¢ > 0.

AeC

Thus, for every E € C"*™ with || E| < &, we have

|40 ABI| — |1E] > A — ol [BIVI— &, VAecC,
or
|40 + E = AB|| > [A = pol [ B V1€, VAeC.
As a consequence, p € FH?”(AO + E; B) for every E € C"*™ with ||E|| <&, and thus,

D(u,0) ﬂFHe.”(AO + E; B) # (). Hence, for € > 0, the mapping A — FHE.”(A; B) is lower

semi-continuous at Ayg.

Let now € = 0, and assume that the mapping A — F, |?||(A; B) is not lower semi-
continuous at Ag. Then there exist a py € ﬂ?“(A; B) and a 6 > 0 such that for any
€ >0, there is an E € C™" with ||E| < &, which satisfies

Then, for every p € D(uo,6), there is a A\, € C (with A, # p) such that
[ Ao + E = A\uBl| < | = Aul 1B

Since this inequality is strict, the quantity | — A\,|||B]| is positive. Thus, for every
p € D(po, 6), the number

N e YT R I R W
w=3 ST “\.IB
[ — Aul 1B I = Aul 1Bl

is positive and satisfies

[ Ao+ E = AuB < (/1 =€ = Aul 1B



Hence, if we define é = min {¢, : 1 € D(po,0)} > 0, then it follows

[0+ E = A\uBll < V1 —€2|u— Al B,

and consequently, )

This means that the mapping A — Fﬁ (A; B) is not lower semi-continuous at Ay,
which contradicts the result already proved for € > 0. O

4 Continuity in ¢

In this section, we obtain the continuity of the Birkhoff-James e-orthogonality set
Ey ”(A B) with respect to the real parameter € € [0, 1).

Theorem 7. Let A,B € C""™ (with B # 0) and €y € [0,1), and suppose that A is
not a scalar multiple of B. Then, the mapping € — F”E.”(A; B) is continuous at €.

Proof. To obtain the upper semi-continuity of the mapping, it is enough to prove that
for every 0 > 0, there is a neighborhood of €y, say N (eg), such that

Fjiy (4 B) €

For € < ep, Lemma 4 implies that FHEA,H(A; B) C FIIOII (A; B), and the desired inclusion
apparently holds.

(A; B) +D(0,58), VeéeN(e).

We consider now the case where é > ¢p. As in the proof of Theorem 6, by Lemma
5, there exist scalars Ay, Ao, ..., A\x € C such that the Hausdorff distance between the

set
A—-\B
ﬂ 5 < | [ )
Vi-¢ Bl
and F| (A; B) is less than or equal to 6/2. By [13, Theorem 1.7.3], there is an ¢ suffi-

I
ciently close to €y such that dg(G(ep), G(€)) < §/2, where G(¢é) = (k} D ()\- M)

y 0 H 0/ = ’ L ) vi-é&|B| /)"
Hence,

Ay (G(é), FfY (A; B)) < d(G(8), Gleo)) + dn (Gleo), F(4; B)) < 6.

As a consequence,

G(e) C Fo

(4 B) + D(0,5).

Since F¢

i ”(A; B) C G(é), it follows

Fijy(4;B) € K

I ||(A§ B) + D(O, 5)7

which means that the mapping € — FIIE-H(A; B) is d-upper semi-continuous at €y, and
by Lemma 3, it is upper semi-continuous at €.



Next we prove the lower semi-continuity of the mapping. If ¢ = 0, then the result
follows readily from Lemma 4. Let ¢g > 0 and p € F”€_0|| (A; B). We will see that for
any ¢ > 0, there exists an open interval N'(ey) = (€9 — 7, €0 + ), v > 0, such that

Fi (A B)ND(p,8) # 0, Vée (eg—7,e0+7).

By Lemma 4, for any € € [ep, €9 + 77), we have that pu € F”?”(A; B). Thus, it suffices
to examine the case € € (g — 7, €9). Moreover, if there is an € less than ¢y such that
Fﬁ.”(A; B)ND(u,d) # 0, then by Lemma 4, we can set v = ¢y — é. Thus, for the sake
of contradiction, and without loss of generality, we may assume that there exists a
0, > 0 such that Fﬁ”(A; B)ND(u,d,) = 0 for all nonnegative é < ¢y. Then, choosing
4, sufficiently small, there is a 6 € [0, 27] such that

4 0,6 € Int[F9 (A; B)]

I
and . )
40, ¢ Fj (4 B), Vée€[0,e).

Consider now a sequence {¢x }zem 03 C [0, €0) that converges to eg. Then for every
k=1,2,..., there exists a scalar A\g(u,0) such that

. A— (1, 0)B
it 5,6 — Ny, 0)] > A Arli OB]L 1)
1—&|B]
or 1
4 5, + (1 0)] > ———— 1Al = A, )] 1B
1—&|B]

If |(Ai(w, 0)] || Bl < ||All, then we have [Ag(u,8)] < [|A]/||B]|- If not, then
(s O IBI = Al < /1 = IBI ([ + 6u€™] + [Ar(p, 0)]),

and since € > 0, it follows

1Al + /1 = € 1Bl |t + 6,

IBI (1= /1 =€)

Thus, the sequence \;(u,0) (k=1,2,...) is bounded, and hence, it has a converging
subsequence Ag, (i, 6) (t=1,2,...). If Ay = klim Ak, (1, 0), then (1) yields
t— 00

. A— B
khm ’u + 611619 - )\kt (H)9)| > khm H )\kt(’u’a) H
+—00 £ —00 1— eit HBH
or
A= XoB]|

i0
w+0,e” —N| > ————.
o = iam
This contradicts to Property (Pj) and Proposition 16 in [7], because u + 6,e is
an interior point of Fﬁ"h(A; B)]. Consequently, the mapping € +— F”E.H(A; B) is lower
semi-continuous at €y, and the proof is complete. O



Remark 8. Let A, B € C"*™ (with B # 0) and € € [0,1), and suppose that A is
not a scalar multiple of B. Suppose also that the matrix norm || - || is induced by an
inner product of matrices, say (-,-). Then the Birkhoff-James e-orthogonality set of
A with respect to B is a closed disk [6, 7], namely,

(4, B)

Fj(4;B)=D (W’

5 ﬁuBH) |

By the continuity of the inner product and the norm, the continuity of F”E.”(A; B)
with respect to A, B or € is readily verified. In general, it is not known to the authors
whether the mapping B +— F”fH (A; B) is always continuous (i.e., for all matrix norms)
or not.
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