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Abstract

Consider two matrices A,B ∈ C
n×m with B 6= 0, a matrix norm ‖ · ‖, and

a real parameter ǫ ∈ [0, 1). The Birkhoff-James ǫ-orthogonality set of A with
respect to B, F ǫ

‖·‖(A;B) =
{

µ ∈ C : ‖A− λB‖ ≥
√

1 − ǫ2 ‖B‖ |µ− λ|, ∀ λ ∈ C
}

,
is a compact and convex subset of the complex plane that has been recently
introduced by the authors, as a natural generalization of the classical numerical
range of square matrices. In this note, we derive the continuity of F ǫ

‖·‖(A;B)
with respect to A or ǫ.
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1 Introduction

The numerical range (also known as the field of values) of a square complex matrix
A ∈ C

n×n is defined as F (A) = {x∗Ax ∈ C : x ∈ C
n, x∗x = 1} [10]. It is a compact

and convex subset of the complex plane that has been studied extensively for many
decades, and it is useful in studying and understanding matrices and operators; see
[3, 4, 9, 10, 14] and the references therein.

The numerical range F (A) is also written in the form [4, 14],

F (A) = {µ ∈ C : ‖A− λIn‖2
≥ |µ− λ|, ∀ λ ∈ C}

=
⋂

λ∈C

{µ ∈ C : |µ− λ| ≤ ‖A− λIn‖2
} ,

where ‖ · ‖2 denotes the spectral matrix norm (i.e., that norm subordinate to the
euclidean vector norm) and In is the n × n identity matrix. Thus, F (A) is an infi-
nite intersection of closed disks D (λ, ‖A− λIn‖2

) = {µ ∈ C : |µ− λ| ≤ ‖A− λIn‖2
}
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(λ ∈ C). Inspired by the above intersection property, Chorianopoulos, Karanasios
and Psarrakos [6] proposed a definition of numerical range for rectangular complex
matrices. In particular, for any A,B ∈ C

n×m with B 6= 0, and any matrix norm ‖ · ‖,
the numerical range of A with respect to B is defined as

F‖·‖(A;B) = {µ ∈ C : ‖A− λB‖ ≥ |µ− λ|, ∀ λ ∈ C}
=

⋂

λ∈C

D (λ, ‖A− λB‖) .

This set is compact and convex, satisfies basic properties of the standard numerical
range, and is nonempty if and only if ‖B‖ ≥ 1 [6].

The analysis in [6] is based on the properties of matrix norms and the Birkhoff-
James orthogonality [2, 11]; namely, for two elements χ and ψ of a complex normed
linear space (X , ‖·‖), χ is called Birkhoff-James orthogonal to ψ, denoted by χ ⊥BJ ψ,
if ‖χ+ λψ‖ ≥ ‖χ‖ for all λ ∈ C. This orthogonality is homogeneous, but it is neither
symmetric nor additive [11]. Furthermore, for any ǫ ∈ [0, 1), we say that χ is Birkhoff-
James ǫ-orthogonal to ψ, denoted by χ ⊥ǫ

BJ ψ, if ‖χ + λψ‖ ≥
√

1 − ǫ2 ‖χ‖ for all
λ ∈ C. It is straightforward to see that this relation is also homogeneous. In an inner
product space (X , 〈·, ·〉), with the standard orthogonality relation ⊥, a χ ∈ X is called
ǫ-orthogonal to a ψ ∈ X , denoted by χ ⊥ǫ ψ, if |〈χ, ψ〉| ≤ ǫ ‖χ‖ ‖ψ‖. Moreover, χ ⊥ ψ
(resp., χ ⊥ǫ ψ) if and only if χ ⊥BJ ψ (resp., χ ⊥ǫ

BJ ψ) [5, 8].

If ‖B‖ ≥ 1, then for ǫB =
√

‖B‖2 − 1 / ‖B‖, we have [7]

F‖·‖(A;B) =
{

µ ∈ C : B ⊥ǫB

BJ (A− µB)
}

.

As a consequence, the next definition (introduced by the authors in [7]) arises in a
natural way.

Definition 1. For any A,B ∈ C
n×m with B 6= 0, any matrix norm ‖ · ‖, and any

ǫ ∈ [0, 1), the Birkhoff-James ǫ-orthogonality set of A with respect to B is defined
and denoted by

F ǫ
‖·‖(A;B) = {µ ∈ C : B ⊥ǫ

BJ (A− µB)}

=
{

µ ∈ C : ‖A− λB‖ ≥
√

1 − ǫ2 ‖B‖ |µ− λ|, ∀ λ ∈ C

}

=
⋂

λ∈C

D
(

λ,
‖A− λB‖√
1 − ǫ2 ‖B‖

)

.

The Birkhoff-James ǫ-orthogonality set F ǫ
‖·‖(A;B) is a nonempty, compact and

convex subset of the complex plane that lies in the closed disk D
(

0, ‖A‖√
1−ǫ2 ‖B‖

)

and

is quite rich in structure [7]. In this note, we obtain the continuity of F ǫ
‖·‖(A;B) with

respect to the matrix A ∈ C
n×m (see Section 3), or to the real parameter ǫ ∈ [0, 1)

(see Section 4). The question of the continuity of F ǫ
‖·‖(A;B) with respect to matrix

B ∈ C
n×m is still open except the special case where the norm ‖ · ‖ is induced by an

inner product of matrices (see Remark 8).
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2 Preliminaries

We recall that for two compact subsets Ω1 and Ω2 of a metric space (X ,ρ), the
Hausdorff distance between Ω1 and Ω2 is defined by

dH(Ω1,Ω2) = max

{

max
x1∈Ω1

min
x2∈Ω2

ρ(x1, x2), max
x2∈Ω2

min
x1∈Ω1

ρ(x1, x2)

}

.

For any x0 ∈ X and δ > 0, we define the closed ball B(x0, δ) = {x ∈ X : ρ(x0, x) ≤ δ}.

Definition 2. [1] Suppose (X , ρX ) is a metric space and (Y, ρY) is a complete metric
space. Consider a multi-valued mapping F : X 7→ Y, and let x0 ∈ X .

(i) F is called δ-upper semi-continuous at x0 if for every δ > 0, there is a neighborhood
N (x0) ⊂ X of x0 such that

F (x) ⊆ F (x0) + B(0, δ), ∀ x ∈ N (x0).

(ii) F is called δ-lower semi-continuous at x0 if for every δ > 0, there is a neighborhood
N (x0) ⊂ X of x0 such that

F (x0) ⊆ F (x) + B(0, δ), ∀ x ∈ N (x0).

(iii) F is said to be δ-continuous at x0 if it is δ-upper and δ-lower semi-continuous.

(i′) F is called upper semi-continuous at x0 if for every neighborhood N (F (x0)) ⊂ Y
of the set F (x0), there is a neighborhood N (x0) ⊂ X of x0 such that

F (x) ⊆ N (F (x0)), ∀ x ∈ N (x0).

(ii′) F is called lower semi-continuous at x0 if for every y0 ∈ F (x0) and every neigh-
borhood N (y0) ⊂ Y of y0, there exists a neighborhood N (x0) ⊂ X of x0 such that

F (x) ∩N (y0) 6= ∅, ∀ x ∈ N (x0).

(iii′) F is said to be continuous at x0 if it is upper and lower semi-continuous.

The following three lemmas are crucial in our analysis.

Lemma 3. [1, Lemma 2.1] Suppose (X , ρX ) is a metric space and (Y, ρY) is a com-
plete metric space. Consider a multi-valued mapping F : X 7→ Y, and let x0 ∈ X .

(i) If F is upper semi-continuous at x0, then it is δ-upper semi-continuous at x0.
The converse is true when the set F (x0) is compact.

(ii) If F is δ-lower semi-continuous at x0, then it is lower semi-continuous at x0.
The converse is true when the set F (x0) is compact.
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Lemma 4. [7, Proposition 2] Let A,B ∈ C
n×m and 0 ≤ ǫ1 < ǫ2 < 1. If the matrix

A is not a scalar multiple of B, then F ǫ1
‖·‖(A;B) lies in the interior of F ǫ2

‖·‖(A;B),

Int[F ǫ2
‖·‖(A;B)].

Lemma 5. [12] Let A,B ∈ C
n×m and ǫ ∈ [0, 1), and suppose A is not a scalar

multiple of B. Then for every δ > 0, there exist scalars λ1, λ2, . . . , λk ∈ C such that

dH

(

k
⋂

i=1

D
(

λi,
‖A− λiB‖√
1 − ǫ2 ‖B‖

)

, F ǫ
‖·‖(A;B)

)

≤ δ.

3 Continuity in A

In this section, we derive the continuity of the Birkhoff-James ǫ-orthogonality set
F ǫ
‖·‖(A;B) with respect to matrix A.

Theorem 6. Let A0, B ∈ C
n×m (with B 6= 0) and ǫ ∈ [0, 1), and suppose that A0 is

not a scalar multiple of B. Then, the mapping A 7→ F ǫ
‖·‖(A;B) is continuous at A0.

Proof. We will first prove the upper semi-continuity of the mapping. Suppose that
A0 ∈ C

n×m is not a scalar multiple of B, and let δ > 0. By Lemma 5, there are
λ1, λ2, . . . , λk ∈ C such that

dH

(

G(A0), F
ǫ
‖·‖(A0;B)

)

≤ δ

2
,

where

G(A0) =
k
⋂

i=1

D
(

λi,
‖A0 − λiB‖√

1 − ǫ2 ‖B‖

)

.

Moreover, for any E ∈ C
n×m, we have

‖A0 − λiB‖√
1 − ǫ2 ‖B‖

=
‖A0 + E − λiB − E‖√

1 − ǫ2 ‖B‖
≤ ‖A0 + E − λiB‖√

1 − ǫ2 ‖B‖
+

‖E‖√
1 − ǫ2 ‖B‖

for i = 1, 2, . . . , k. As a consequence, the set

Ω(A0, E) =
k
⋂

i=1

D
(

λi,
‖A0 + E − λiB‖√

1 − ǫ2 ‖B‖
+

‖E‖√
1 − ǫ2 ‖B‖

)

,

contains

F ǫ
‖·‖(A0 + E;B) =

⋂

λ∈C

D
(

λ,
‖A0 + E − λB‖√

1 − ǫ2 ‖B‖

)

.

By [13, Theorem 1.7.3], there exists a γ > 0 such that for every E ∈ C
n×m with

‖E‖ ≤ γ, dH(G(A0),Ω(A0, E)) ≤ δ/2. Hence, for every E ∈ C
n×m with ‖E‖ ≤ γ,

dH(F ǫ
‖·‖(A0;B),Ω(A0, E)) ≤ dH(F ǫ

‖·‖(A0;B), G(A0)) + dH(G(A0),Ω(A0, E)) ≤ δ.
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This implies that
Ω(A0, E) ⊆ F ǫ

‖·‖(A0;B) + D(0, δ),

and thus,
F ǫ
‖·‖(A0 + E;B) ⊆ F ǫ

‖·‖(A0;B) + D(0, δ).

So, the mapping A 7→ F ǫ
‖·‖(A;B) is δ-upper semi-continuous at A0, and by Lemma 3,

it is also upper semi-continuous at A0.

Next we derive the lower semi-continuity of the mapping. First we consider the
case where ǫ > 0. Since A0 is not a scalar multiple of B, Lemma 4 implies that
Int[F ǫ

‖·‖(A0;B)] 6= ∅ (see also Corollary 3 in [7]). Keeping in mind the convexity of

F ǫ
‖·‖(A;B), we have that for any µ ∈ F ǫ

‖·‖(A0;B) and δ > 0, the disc D(µ, δ) has

a nonempty intersection with Int[F ǫ
‖·‖(A0;B)]. Moreover, for any µ0 ∈ D(µ, δ) ∩

Int[F ǫ
‖·‖(A0;B)], it holds that (see Proposition 16 in [7])

inf
λ∈C

{

‖A0 − λB‖ − |λ− µ0| ‖B‖
√

1 − ǫ2
}

= ξ > 0.

Thus, for every E ∈ C
n×m with ‖E‖ ≤ ξ, we have

‖A0 − λB‖ − ‖E‖ > |λ− µ0| ‖B‖
√

1 − ǫ2, ∀ λ ∈ C,

or
‖A0 + E − λB‖ > |λ− µ0| ‖B‖

√

1 − ǫ2, ∀ λ ∈ C.

As a consequence, µ0 ∈ F ǫ
‖·‖(A0 +E;B) for every E ∈ C

n×m with ‖E‖ ≤ ξ, and thus,

D(µ, δ)∩F ǫ
‖·‖(A0 +E;B) 6= ∅. Hence, for ǫ > 0, the mapping A 7→ F ǫ

‖·‖(A;B) is lower
semi-continuous at A0.

Let now ǫ = 0, and assume that the mapping A 7→ F 0

‖·‖(A;B) is not lower semi-

continuous at A0. Then there exist a µ0 ∈ F 0

‖·‖(A;B) and a δ > 0 such that for any

ξ > 0, there is an E ∈ C
n×n with ‖E‖ ≤ ξ, which satisfies

F 0

‖·‖(A0 + E;B) ∩ D(µ0, δ) = ∅.

Then, for every µ ∈ D(µ0, δ), there is a λµ ∈ C (with λµ 6= µ) such that

‖A0 + E − λµB‖ < |µ− λµ| ‖B‖.

Since this inequality is strict, the quantity |µ − λµ| ‖B‖ is positive. Thus, for every
µ ∈ D(µ0, δ), the number

ǫµ =
1

2

√

1 − ‖A0 + E − λµB‖
|µ− λµ| ‖B‖ <

√

1 − ‖A0 + E − λµB‖
|µ− λµ| ‖B‖

is positive and satisfies

‖A0 + E − λµB‖ <
√

1 − ǫ2µ |µ− λµ| ‖B‖.
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Hence, if we define ǫ̂ = min {ǫµ : µ ∈ D(µ0, δ)} > 0, then it follows

‖A0 + E − λµB‖ <
√

1 − ǫ̂ 2 |µ− λµ| ‖B‖,

and consequently,
F ǫ̂
‖·‖(A0 + E;B) ∩ D(µ0, δ) = ∅.

This means that the mapping A 7→ F ǫ̂
‖·‖(A;B) is not lower semi-continuous at A0,

which contradicts the result already proved for ǫ > 0.

4 Continuity in ǫ

In this section, we obtain the continuity of the Birkhoff-James ǫ-orthogonality set
F ǫ
‖·‖(A;B) with respect to the real parameter ǫ ∈ [0, 1).

Theorem 7. Let A,B ∈ C
n×m (with B 6= 0) and ǫ0 ∈ [0, 1), and suppose that A is

not a scalar multiple of B. Then, the mapping ǫ 7→ F ǫ
‖·‖(A;B) is continuous at ǫ0.

Proof. To obtain the upper semi-continuity of the mapping, it is enough to prove that
for every δ > 0, there is a neighborhood of ǫ0, say N (ǫ0), such that

F ǫ̂
‖·‖(A;B) ⊆ F ǫ0

‖·‖(A;B) + D(0, δ), ∀ ǫ̂ ∈ N (ǫ0).

For ǫ̂ < ǫ0, Lemma 4 implies that F ǫ̂
‖·‖(A;B) ⊆ F ǫ0

‖·‖(A;B), and the desired inclusion
apparently holds.

We consider now the case where ǫ̂ > ǫ0. As in the proof of Theorem 6, by Lemma
5, there exist scalars λ1, λ2, . . . , λk ∈ C such that the Hausdorff distance between the
set

G(ǫ0) =
k
⋂

i=1

D
(

λi,
‖A− λiB‖
√

1 − ǫ2
0
‖B‖

)

and F ǫ0
‖·‖(A;B) is less than or equal to δ/2. By [13, Theorem 1.7.3], there is an ǫ̂ suffi-

ciently close to ǫ0 such that dH(G(ǫ0), G(ǫ̂)) ≤ δ/2, whereG(ǫ̂) =
k
⋂

i=1

D
(

λi,
‖A−λiB‖√
1−ǫ̂2 ‖B‖

)

.

Hence,

dH(G(ǫ̂), F ǫ0
‖·‖(A;B)) ≤ dH(G(ǫ̂), G(ǫ0)) + dH(G(ǫ0), F

ǫ0
‖·‖(A;B)) ≤ δ.

As a consequence,
G(ǫ̂) ⊆ F ǫ0

‖·‖(A;B) + D(0, δ).

Since F ǫ̂
‖·‖(A;B) ⊆ G(ǫ̂), it follows

F ǫ̂
‖·‖(A;B) ⊆ F ǫ0

‖·‖(A;B) + D(0, δ),

which means that the mapping ǫ 7→ F ǫ
‖·‖(A;B) is δ-upper semi-continuous at ǫ0, and

by Lemma 3, it is upper semi-continuous at ǫ0.
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Next we prove the lower semi-continuity of the mapping. If ǫ0 = 0, then the result
follows readily from Lemma 4. Let ǫ0 > 0 and µ ∈ F ǫ0

‖·‖(A;B). We will see that for

any δ > 0, there exists an open interval N (ǫ0) = (ǫ0 − γ, ǫ0 + γ), γ > 0, such that

F ǫ̂
‖·‖(A;B) ∩ D(µ, δ) 6= ∅, ∀ ǫ̂ ∈ (ǫ0 − γ, ǫ0 + γ).

By Lemma 4, for any ǫ̂ ∈ [ǫ0, ǫ0 + γ), we have that µ ∈ F ǫ̂
‖·‖(A;B). Thus, it suffices

to examine the case ǫ̂ ∈ (ǫ0 − γ, ǫ0). Moreover, if there is an ǫ̂ less than ǫ0 such that
F ǫ̂
‖·‖(A;B)∩D(µ, δ) 6= ∅, then by Lemma 4, we can set γ = ǫ0 − ǫ̂. Thus, for the sake

of contradiction, and without loss of generality, we may assume that there exists a
δµ > 0 such that F ǫ̂

‖·‖(A;B)∩D(µ, δµ) = ∅ for all nonnegative ǫ̂ < ǫ0. Then, choosing

δµ sufficiently small, there is a θ ∈ [0, 2π] such that

µ+ δµe
iθ ∈ Int[F ǫ0

‖·‖(A;B)]

and
µ+ δµe

iθ /∈ F ǫ̂
‖·‖(A;B), ∀ ǫ̂ ∈ [0, ǫ0).

Consider now a sequence {ǫk}k∈N\{0} ⊂ [0, ǫ0) that converges to ǫ0. Then for every
k = 1, 2, . . . , there exists a scalar λk(µ, θ) such that

|µ+ δµe
iθ − λk(µ, θ)| >

‖A− λk(µ, θ)B‖
√

1 − ǫ2k ‖B‖
, (1)

or

|µ+ δµe
iθ| + |λk(µ, θ)| >

1
√

1 − ǫ2k ‖B‖
| ‖A‖ − |λk(µ, θ)| ‖B‖ | .

If |λk(µ, θ)| ‖B‖ < ‖A‖, then we have |λk(µ, θ)| < ‖A‖ / ‖B‖. If not, then

|λk(µ, θ)| ‖B‖ − ‖A‖ <
√

1 − ǫ2k ‖B‖ (|µ+ δµe
iθ| + |λk(µ, θ)|),

and since ǫk > 0, it follows

|λk(µ, θ)| <
‖A‖ +

√

1 − ǫ2k ‖B‖ |µ+ δµe
iθ|

‖B‖ (1 −
√

1 − ǫ2k)
.

Thus, the sequence λk(µ, θ) (k = 1, 2, . . . ) is bounded, and hence, it has a converging
subsequence λkt

(µ, θ) (t = 1, 2, . . . ). If λ0 = lim
kt→∞

λkt
(µ, θ), then (1) yields

lim
kt→∞

|µ+ δµe
iθ − λkt

(µ, θ)| ≥ lim
kt→∞

‖A− λkt
(µ, θ)B‖

√

1 − ǫ2kt
‖B‖

,

or

|µ+ δµe
iθ − λ0| ≥

‖A− λ0B‖
√

1 − ǫ2
0
‖B‖

.

This contradicts to Property (P5) and Proposition 16 in [7], because µ + δµe
iθ is

an interior point of F ǫ0
‖·‖(A;B)]. Consequently, the mapping ǫ 7→ F ǫ

‖·‖(A;B) is lower
semi-continuous at ǫ0, and the proof is complete.
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Remark 8. Let A,B ∈ C
n×m (with B 6= 0) and ǫ ∈ [0, 1), and suppose that A is

not a scalar multiple of B. Suppose also that the matrix norm ‖ · ‖ is induced by an
inner product of matrices, say 〈·, ·〉. Then the Birkhoff-James ǫ-orthogonality set of
A with respect to B is a closed disk [6, 7], namely,

F ǫ
‖·‖(A;B) = D

(〈A,B〉
‖B‖2

,

∥

∥

∥

∥

A− 〈A,B〉
‖B‖2

B

∥

∥

∥

∥

ǫ√
1 − ǫ2 ‖B‖

)

.

By the continuity of the inner product and the norm, the continuity of F ǫ
‖·‖(A;B)

with respect to A, B or ǫ is readily verified. In general, it is not known to the authors
whether the mapping B 7→ F ǫ

‖·‖(A;B) is always continuous (i.e., for all matrix norms)
or not.
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