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Abstract

For a given q ∈ [0, 1], the q-numerical range of an n × n complex
matrix A is defined by Fq(A) = {x∗Ay ∈ C : x, y ∈ Cn, x∗x = y∗y =
1, x∗y = q}, and it is closely related with the Davis-Wielandt shell of
A, W (A, A∗A) = {(x∗Ax, x∗A∗Ax) ∈ C× R : x ∈ Cn, x∗x = 1}. In this
paper, we investigate systematically the q-numerical range of the 3 × 3
matrix

A(α) =

0
@

0 2 0
0 0 0
0 0 α

1
A ; α > 0,

and obtain the equation of its boundary by taking advantage of the spe-
cial shape of W (A(α), A(α)∗A(α)). Furthermore, a parametric represen-
tation of ∂Fq(A(α)) and the construction of a 4×4 matrix Bq such that
Fq(A(α)) = F1(Bq) are discussed. The q-numerical range of a certain nor-
mal operator on an infinite Hilbert space of complex valued (Lebesgue)
measurable functions is also considered.

AMS classification subject: 14H50; 15A60; 47A12; 65D18

Keywords: q-numerical range; Davis-Wielandt shell; cone; ellipsoid

1 Introduction

Let Mn be the algebra of all n × n complex matrices, and let A ∈ Mn. For
a real q ∈ [0, 1], the q-numerical range of A is denoted and defined by

Fq(A) = {x∗Ay ∈ C : x, y ∈ Cn, x∗x = y∗y = 1, x∗y = q}.
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The q-numerical range of a matrix is known to be a compact and convex subset
of the complex plane [8, 18]. For q = 1, we have the classical numerical range
(also known as field of values) of A, that is,

F (A) ≡ F1(A) = {x∗Ax ∈ C : x ∈ Cn, x∗x = 1}.

In the last decades, the q-numerical range of matrices has attracted attention,
and several results have been obtained (see e.g., [1, 2, 4, 10, 11, 12, 14, 18]).
These results are useful in investigating and understanding matrices and opera-
tors, and some of them have been generalized to matrix polynomials [4, 16, 17].

The spectrum of A, namely, σ(A) = {λ ∈ C : det(λIn − A) = 0}, always
satisfies q σ(A) ⊆ Fq(A), and therefore convex hull{q σ(A)} ⊆ Fq(A). More-
over, the following properties are helpful in understanding the q-numerical range
[8, 9, 11, 12].

(P1) For any a, b ∈ C, Fq(aA + bIn) = aFq(A) + q b.

(P2) If A = A1 ⊕ A2, then F (A) = convex hull{F (A1) ∪ F (A2)}. For q < 1,
the q-numerical range of A does not satisfy this relation.

(P3) For any unitary matrix U ∈ Mn, Fq(U∗AU) = Fq(A), i.e., Fq(A) is
invariant under unitary similarities.

(P4) The corners of F (A) (≡ F1(A)) are eigenvalues of A with special char-
acteristics (see [8] for details). For 0 ≤ q < 1, the boundary ∂Fq(A) is
C1-smooth (i.e., Fq(A) has no corners) and contains no eigenvalues of A.

(P5) If RA = min{‖A − λI‖ : λ ∈ C}, where ‖ · ‖ denotes the spectral norm,
then F0(A) = {z ∈ C : |z| ≤ RA}.

Despite the simplicity of the definition of the q-numerical range, there are
many interesting unanswered questions and fundamental issues. Some are cu-
riosity driven and some are driven by its ubiquitous nature in pure and applied
mathematics. One of the most challenging problems is the characterization of
the boundary ∂Fq(A) and the construction of its equation [2, 3, 4, 8, 9]. Since
Fq(A) is a special C-numerical range (see [15, 18] for definitions and details),
its boundary lies on an algebraic curve in the complex plane. In particular, if
Fq(A) is not a single point, then there exists a nonzero polynomial P ∈ R[u, v],
such that

(a) P(u, v) = 0 for every boundary point u + i v (u, v ∈ R) of Fq(A), and

(b) the polynomial P is the product of real polynomials Pj ’s irreducible in
C[u, v], and Pj(u, v) = 0 for infinitely many boundary points u + i v of
Fq(A).

However, there are no currently known procedures for the construction of the
polynomial P, and the explicit equation of the boundary of Fq(A) is known
only when A is normal or 2× 2 [4, 10, 12, 13, 14].
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Consider now a 3× 3 matrix of the form

A0 =




a1,1 a1,2 0
a2,1 a2,2 0
0 0 a3,3


 . (1)

If A1 =
(

a1,1 a1,2

a2,1 a2,2

)
, then by the first part of Property (P2), F (A0) coincides

with the convex hull of the union F (A1) ∪ {a3,3}, where F (A1) is an elliptical
disk with foci at the eigenvalues of A1 [8]. On the other hand, by the second
part of the same property, it is clear that we cannot have a similar conclusion for
Fq(A0) when 0 ≤ q < 1. Hence, the computation of Fq(A0) and its boundary is
a problem of special interest. Moreover, 3× 3 matrices of the form (1), play an
important role in the study of operator dilations and related numerical range
inclusions [5].

By [8, Lemma 1.3.1], A1 − (1/2)trace(A1)I2 is unitarily similar to a matrix

of the form
(

0 µ
ν 0

)
, where Arg µ = Arg ν. As a consequence, by Properties

(P1) and (P3), without loss of generality, we may assume that A0 is of the form

A(α, β, γ) =




0 1 + γ 0
1− γ 0 0

0 0 α + i β


 (α, β, γ ∈ R, 0 ≤ γ ≤ 1). (2)

This matrix is unitarily similar to its transposed, and if γ = 0, then A(α, β, 0) is
normal and its eigenvalues are 1,−1, α+i β. The range Fq(A(α, β, 0)) is exactly
described in [10], and thus, in the remainder, we assume that γ is positive.

In this article, we study systematically the q-numerical range of A(α, 0, 1)
for α > 0, and obtain the equation of the boundary ∂Fq(A(α, 0, 1)). Our main
result is Theorem 1 in the next section. In Sections 3 and 4, the surface of
the Davis-Wielandt shell of A(α, 0, 1) and the q-numerical range of a normal
bounded linear operator acting on an infinite dimensional Hilbert space are fully
described. A number of lemmas are contained in Section 6, and the proof of
Theorem 1 is completed in Sections 5 and 7.

2 The main result

Consider the matrix A(α, β, γ) in (2) with α > 0, β ∈ R and 0 < γ ≤ 1.
Keeping in mind Property (P2) and [8, Theorem 1.3.6], observe that

F (A(α, β, γ)) = convex hull
{{

u + i v : u, v ∈ R, u2 +
v2

γ2
≤ 1

}
∪ {α + i β}

}
.

If α2 + β2/γ2 ≤ 1, then the q-numerical range of A(α, β, γ) (0 ≤ q ≤ 1) is the
elliptical disk [4, Theorem 6] (see also (12) below)

Fq(A(α, β, γ)) = Fq

((
0 1 + γ

1− γ 0

))
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=

{
u + i v : u, v ∈ R,

u2

(1 + γ
√

1− q2)2
+

v2

(γ +
√

1− q2)2
≤ 1

}
.

Suppose now that α2 + β2/γ2 > 1. If β = 0 and γ = 1, then α > 1. In this
case, we have the main result of the paper.

Theorem 1 Let q ∈ (0, 1] and consider the 3× 3 matrix

A(α) = A(α, 0, 1) =




0 2 0
0 0 0
0 0 α


 ; α > 1. (3)

(I) If 1 < α < 2, and q satisfies

q ≤ α(2− α)
α2 − 2α + 2

,

then the q-numerical range of A(α) is the circular disk

Fq(A(α)) =
{

z ∈ C : |z| ≤ 1 +
√

1− q2
}

,

i.e., it coincides with the q-numerical range of B =
(

0 2
0 0

)
.

(II) If α > 2, and q satisfies

q ≤ α(α− 2)
α2 − 2α + 2

,

then the boundary of Fq(A(α)) is parameterized in the form

∂Fq(A(α)) = {X(ϑ) + i Y (ϑ) : 0 ≤ ϑ ≤ 2π} ,

where

X(ϑ) =
2α cos ϑ(2− α2)q2 + [3α3 + α(α2 − 1) cos(2ϑ)− 3α] q − 2α3 cos ϑ

4(α2 − 1)(1− q cos ϑ)

−α cos ϑ
√

2(1− q2)
√

2α2 − (α2 + 1)q2 − (α2 − 1)q2 cos(2ϑ)
(4)

and

Y (ϑ) =
2α3 sinϑ

√
1− q2 − α(α2 − 1)q

√
1− q2 sin(2ϑ)

4(α2 − 1)(1− q cosϑ)

+
√

2 α sin ϑ
√

2α2 − (α2 + 1)q2 − (α2 − 1)q2 cos(2ϑ)
. (5)

4



Every boundary point u+i v of Fq(A(α)) (u, v ∈ R) satisfies the equation
L(1, u, v) = 0, where

L(t, u, v) = c6,0 u6 + c4,2 u4v2 + c2,4 u2v4 + c0,6 v6 + c5,0 t u5

+ c3,2 t u3v2 + c1,4 t u v4 + c4,0 t2u4 + c2,2 t2u2v2

+ c0,4 t2v4 + c3,0 t3u3 + c1,2 t3u v2 + c2,0 t4u2 (6)
+ c0,2 t4v2 + c1,0 t5u + c0,0 t6

with

c6,0 = 16(α2 − 1)2(α2 + q2 − α2q2)2,
c4,2 = 16(α2 − 1)2(3α4 + 2α2q2 − 4α4q2 + 3q4 − 4α2q4 + α4q4),
c2,4 = 16(α2 − 1)2(3α4 − 2α2q2 − 2α4q2 + 3q4 − 2α2q4),
c0,6 = 16(α2 − 1)2(α2 − q2)2,
c5,0 = 32α(α2 − 1) q (α2 + q2 − α2q2)(2α2 − α4 + 3q2 − 4α2q2 + α4q2),
c3,2 = 32α(α2 − 1) q (4α4 − 2α6 + 2α2q2 − 7α4q2 + 3α6q2 + 6q4

−10α2q4 + 5α4q4 − α6q4),
c1,4 = 32α(α2 − 1) q (2α4 − α6 − 3α2q2 + α6q2 + 3q4 − 3α2q4 + α4q4),
c4,0 = 8α2(−α6 − α8 + 10α4q2 − 13α6q2 + 5α8q2 + 39α2q4 − 73α4q4

+41α6q4 − 7α8q4 + 30q6 − 81α2q6 + 75α4q6 − 27α6q6 + 3α8q6),
c2,2 = 8α2(−2α6 − 2α8 + 16α4q2 − 15α6q2 + 7α8q2 − 2α2q4 − 27α4q4

+33α6q4 − 8α8q4 + 36q6 − 74α2q6 + 55α4q6 − 20α6q6 + 3α8q6),
c0,4 = 8α2(−α6 − α8 + 6α4q2 − 2α6q2 + 2α8q2 − 9α2q4 + 6α4q4

−2α6q4 − α8q4 + 6q6 − 9α2q6 + 6α4q6 − α6q6),
c3,0 = 8α3q(2α6 + α8 − 2α4q2 + 6α6q2 − 3α8q2 − 36α2q4 + 51α4q4

−22α6q4 + 3α8q4 − 40q6 + 84α2q6 − 57α4q6 + 14α6q6 − α8q6),
c1,2 = 8α3q(2α6 + α8 − 10α4q2 + 3α6q2 − 3α8q2 + 12α2q4 + 9α4q4

−13α6q4 + 3α8q4 − 24q6 + 36α2q6 − 23α4q6 + 8α6q6 − α8q6),
c2,0 = α4(α8 − 6α6q2 − 4α8q2 − 31α4q4 − 14α6q4 + 6α8q4 + 112α2q6

−122α4q6 + 46α6q6 − 4α8q6 + 240q8 − 368α2q8 + 169α4q4

−26α6q8 + α8q8),
c0,2 = α4(α8 − 10α6q2 − 4α8q2 + 33α4q4 + 10α6q4 + 6α8q4 − 48α2q6

−18α4q6 + 10α6q6 − 4α8q6 + 48q8 − 48α2q8 + 33α4q8

−10α6q8 + α8q8),
c1,0 = 2α5q3(−α6 + 7α4q2 + 3α6q2 + 6α4q4 − 3α6q4 − 48q6 + 48α2q6

−13α4q6 + α6q6),
c0,0 = α6q6(α + 2q + α q)(α + 2q − α q)(α− 2q + α q)(α− 2q − α q).

Moreover, Fq(A(α)) coincides with the (classical) numerical range of the
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4× 4 matrix

Bq =




b1,1 0 0 b1,4

0 b2,2 b2,3 b2,4

0 −b2,3 b3,3 b3,4

−b1,4 −b2,4 −b3,4 b4,4


 , (7)

where

b1,1 =
α2 − 2α q + α2q

2α− 2
, b1,4 =

α2
√

1− q
√

α− q + α q

2(α− 1)
√

α + 1
,

b2,2 =
α2 + 2α q + α2q

2α + 2
, b2,3 =

α2
√

1− q (1 + q)
2
√

α + 1
√

α− q + α q
,

b2,4 =
α2

√
(1− q)(1 + 2q)

2(α + 1)
√

α2 + α2q − q2 + α q2
, b3,3 =

−α2 − 2α q + α2q

2α− 2
,

b3,4 =
α2
√

2α− 1 (1 + q)
2(α− 1)

√
(α + 1)(α + q)(α− q + α q)

, b4,4 =
−α2 + 2α q + α2q

2α + 2
.

(III) Suppose that

0 <
α |α− 2|

α2 − 2α + 2
< q < 1,

or equivalently, if q = cos φ for some φ ∈ (0, π/2), then the quantity
τ = tan(φ/2) satisfies 0 < τ < min{α − 1, 1/(α − 1)}. Then the q-
numerical range Fq(A(α)) is the union of the convex sets,

∆1 =
{

u + i v : u, v ∈ R, u2 + v2 ≤ (τ + 1)4

(τ2 + 1)2
, u ≤ (τ + 1)[(τ + 1)2 − α2τ ]

α(1− τ)(τ2 + 1)

}

(8)
and

∆2 = F (Bq) ∩
{

u + i v : u, v ∈ R, u ≥ (τ + 1)[(τ + 1)2 − α2τ ]
α(1− τ)(τ2 + 1)

}
, (9)

where Bq is the 4× 4 matrix in (7).

We remark that in the last statement of this theorem, the convex sets ∆1

and ∆2 are not disjoint and their intersection is the line segment
{

u + i v : u, v ∈ R, u2 + v2 ≤ (τ + 1)4

(τ2 + 1)2
, u =

(τ + 1)[(τ + 1)2 − α2τ ]
α(1− τ)(τ2 + 1)

}

= F (Bq) ∩
{

u + i v : u, v ∈ R, u =
(τ + 1)[(τ + 1)2 − α2τ ]

α(1− τ)(τ2 + 1)

}
.

Hence, the claim that Fq(A(α)) is the union of ∆1 and ∆2 correlates with the
convexity of Fq(A(α)) itself. Moreover, by straightforward computations one
can see that in (8) and (9),

(τ + 1)4

(τ2 + 1)2
=

(
1 +

√
1− q2

)2
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and

(τ + 1)[(τ + 1)2 − α2τ ]
α(1− τ)(τ2 + 1)

=
(4− α2)(1 +

√
1− q2) + (α2 − 2)q2

2 α q
.

The above theorem is illustrated in the following example.

Example 1 Let α = 3 and q = 0.5. The conditions of Theorem 1 (II) hold, and
the 0.5-numerical range of the matrix A(3) is sketched in the left part of Figure
1 by using (4) and (5). The spectrum of A(3) is obviously σ(A(3)) = {0, 3},
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Figure 1: The ranges F0.5(A(3)) and F (B0.5).

and the numbers 0 q = 0 and 3 q = 1.5 are marked with o’s. In the right part
of the figure, the numerical range of the matrix

B0.5 =




2.6250 0 0 1.5910
0 2.0625 1.1932 0.3007
0 −1.1932 −1.8750 1.0085

−1.5910 −0.3007 −1.0085 −0.1875




(see (7)) is drawn by an algorithm of Horn and Johnson [8, pp. 33-39], and its
eigenvalues −0.1875 and 1.5 are marked with +’s. Comparing F0.5(A(3)) and
F (B0.5), we see that they are exactly the same, confirming the second part of
Theorem 1.

3 Some geometry

It is known [10, 12] that the q-numerical range of a general matrix A ∈Mn is
strongly connected with the Davis-Wielandt shell of A, namely,

W (A,A∗A) = {(x∗Ax, x∗A∗Ax) ∈ C× R : x ∈ Cn, x∗x = 1} . (10)

For n ≥ 3, the shell W (A,A∗A) is always convex. If n = 2 and the affine hull
of W (A,A∗A) is (real) 3-dimensional, then it is the surface of an ellipsoid [1]
(for more properties, see [6, 7]).
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The Davis-Wielandt shell of A leads to a numerical approximation of Fq(A)
[12]. For each point u + i v ( u, v ∈ R) of the numerical range F (A) (≡ F1(A)),
we define

h(u + i v) = max{w ∈ R : (u + i v, w) ∈ W (A, A∗A)}. (11)

This function and the function

Φ(u + i v) =
√

h(u + i v)− u2 − v2

are concave and upper semi-continuous on the convex set F (A). Furthermore,
h and Φ are continuous in the interior of F (A) when IntF (A) 6= ∅, and they
are continuous on F (A) when F (A) has no interior. The set

{(u + i v, h(u + i v)) : u, v ∈ R, u + i v ∈ F (A)}

is said to be the upper surface of the shell W (A,A∗A), and by [12, 18],

Fq(A) = { q (u+i v)+
√

1− q2 z Φ(u+i v) : u+i v ∈ F (A), z ∈ C, |z| ≤ 1}. (12)

Consider now the 3× 3 matrix A(α) in (3) for α > 1, and let q ∈ [0, 1]. The
Davis-Wielandt shell W (A(α), A(α)∗A(α)) (see (10)) is the convex hull of the

point (α + i 0, α2) and the Davis-Wielandt shell of B =
(

0 2
0 0

)
, that is,

W (B, B∗B) =
{

(u + i v, w) : u, v, w ∈ R, u2 + v2 +
(w − 2)2

4
= 1

}
. (13)

As a consequence, the boundary of W (A(α), A(α)∗A(α)) consists of two parts.
The first part lies on the ellipsoid (13) and the second one lies on the cone

{(u + i v, w) : u, v, w ∈ R, Q(u, v, w) = 0} , (14)

where

Q(u, v, w) = (α2−1)w2+(−2α3+4α)uw+(α4−4α2)u2+α4v2+4α3u−2α2w−α4.

This cone is a ruled surface and consists of a family of lines
{(

α− sα2(α− cos θ)
α2 − 1

+ i
sα2 sin θ

α2 − 1
, α2 − sα3(α3 − 3α + 2 cos θ)

(α2 − 1)2

)
: s ∈ R

}
(15)

(0 ≤ θ ≤ 2π), where each of them is a tangent line of the ellipsoid in (13).
This observation on the cone (14) helps us below to compute the boundary of
Fq(A(α)) (for α > 1). Setting s = 1 implies that the lines in (15) pass through
the (space) curve

Γ =
{(−α + α2 cos θ

α2 − 1
+ i

α2 sin θ

α2 − 1
,

α2(1 + α2 − 2α cos θ)
(α2 − 1)2

)
: 0 ≤ θ ≤ 2π

}
, (16)
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which lies on the intersection of the plane

w = −
(

2α2

α3 − α

)
u +

α2

α2 − 1

and the parabolic surface w = u2 + v2. Moreover, Γ is an ellipse and its
projection on the (u, v)-plane coincides with the circle

(
u +

α

α2 − 1

)2

+ v2 =
α4

(α2 − 1)2
. (17)

The ellipsoid and the cone part of ∂W (A(α), A(α)∗A(α)) mentioned above
meet on the plane

{(u + i v, w) : (u, v, w) ∈ R3, 4α u + (α2 − 2)w − 2α2 = 0}, (18)

and their intersection is the (space) curve

C = {(u(t) + i v(t), w(t)) ∈ C× R : 0 ≤ t ≤ 2π}, (19)

where

u(t) =
4α− α2(α2 − 2) cos t

α4 + 4
,

v(t) =
α2 sin t√
α4 + 4

,

w(t) =
4α2 + 2α4 + 4α3 cos t

α4 + 4
.

The projection Cup of the upper part of the curve C onto the (u, v)-plane is
given by

Cup =

{
u + i v : u =

4α + (2− α2)
√

α4 − (α4 + 4) v2

α4 + 4
, −

√
α2 − 1

α
≤ v ≤

√
α2 − 1

α

}

=
{

u + i v : (α4 + 4) u2 − 8α u + (α2 − 2)2 v2 − α4 + 4α2 = 0, u ≥ 1
α

}
(20)

when 1 < α <
√

2, by

Cup =

{√
2

2
+ i v : −

√
2

2
≤ v ≤

√
2

2

}
(21)

when α =
√

2, and by

Cup =

{
u + i v : u =

4α− (α2 − 2)
√

α4 − (α4 + 4) v2

α4 + 4
, − α2

√
α4 + 4

≤ v ≤ α2

√
α4 + 4

}
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∪
{

u + i v : u =
4α− (α2 − 2)

√
α4 − (α4 + 4) v2

α4 + 4
,

√
α2 − 1

α
≤ |v| ≤ α2

√
α4 + 4

}

=
{

u + i v : (α4 + 4) u2 − 8α u + (α2 − 2)2v2 − α4 + 4α2 = 0, u ≤ 1
α

}
(22)

when α >
√

2. The endpoints of the arc Cup are (1± i
√

α2 − 1) / α. Further-
more, if α 6= √

2, then the ellipse

{u + i v : u, v ∈ R, (α4 + 4) u2 − 8α u + (α2 − 2)2v2 − α4 + 4α2 = 0}

is inscribed in the unit circle {u + i v : u, v ∈ R, u2 + v2 = 1} and the common
points of these two curves are (1 ± i

√
α2 − 1) / α. At these points, the two

curves have common tangents, which pass through α.
Note that the cone part of W (A(α), A(α)∗A(α)) is the convex hull of the

curve C in (19) and the point (α + i 0, α2). Hence, since the ellipsoid part of
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Figure 2: The shells W (A(1.7), A(1.7)∗A(1.7)) and W (A(3), A(3)∗A(3)).

∂W (A(α), A(α)∗A(α)) lies on the ellipsoid (13), the boundary of the Davis-
Wielandt shell of A(α) can be easily drawn. Using this observation, the surface
of W (A(α), A(α)∗A(α)) is sketched in Figure 2 for α = 1.7, 3. Notice the
ellipsoid and the cone parts of the two surfaces, and observe the corner (1.7 +
i 0, 2.89) of W (A(1.7), A(1.7)∗A(1.7)) in the left part of the figure and the corner
(3 + i 0, 9) of W (A(3), A(3)∗A(3)) in the right part.

The projection of the shell W (A(α), A(α)∗A(α)) onto the (u, v)-plane is the
convex set

D = F (A(α)) = convex hull
{{u + i v : u, v ∈ R, u2 + v2 = 1} ∩ {α}} . (23)
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With respect to the arc Cup, we separate the interior of D as in the following:

Dc = {u + i v : u, v ∈ R, 1/α < u < α, |v| < (α− u)/
√

α2 − 1,

(α4 + 4)u2 − 8α u + (α2 − 2)2v2 − α4 + 4α2 > 0},

De = {u + i v : u, v ∈ R, u ≤ 1/α, u2 + v2 < 1}
∪ {u + i v : u, v ∈ R, u > 1/α,

(α4 + 4)u2 − 8α u + (α2 − 2)2v2 − α4 + 4α2 < 0}

when 1 < α <
√

2,

Dc = {u + i v : u, v ∈ R, 1/
√

2 < u <
√

2, |v| <
√

2− u},

De = {u + i v : u, v ∈ R, u < 1/
√

2, u2 + v2 < 1}
when α =

√
2, and

Dc = {u + i v : u, v ∈ R, 1/α < u < α, |v| < (α− u)/
√

α2 − 1}
∪{u + i v : u, v ∈ R, u < 1/α,

(α4 + 4)u2 − 8α u + (α2 − 2)2v2 − α4 + 4α2 < 0},

De = {u + i v : u, v ∈ R, u < 1/α, u2 + v2 < 1,

(α4 + 4)u2 − 8α u + (α2 − 2)2v2 − α4 + 4α2 > 0}

when α >
√

2. We call Dc the cone part of D, and De the ellipsoid part of D.
For any θ ∈ [0, 2π], the line segment with one endpoint (u(θ) + i v(θ), w(θ))

on the curve Γ in (16) and the other endpoint at (α + i 0, α2) is given by

Eθ = {(ξ(s) + i η(s), ζ(s)) ∈ C× R : 0 ≤ s ≤ 1} , (24)

where

ξ(s) = α− sα2(α− cos θ)
α2 − 1

, (25)

η(s) =
sα2 sin θ

α2 − 1
, (26)

ζ(s) = α2 − sα3(α3 − 3α + 2 cos θ)
(α2 − 1)2

. (27)

The line segment Eθ in (24) intersects the plane (18) if and only if 4α ξ(s) +
(α2 − 2) ζ(s)− 2α2 = 0. Hence, it is straightforward to see that for

sθ =
(α2 − 1)2

α4 − α2 − 2α cos θ + 2
,
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the point (ξ(sθ) + i η(sθ), ζ(sθ)) ∈ Eθ lies on the curve C in (19). Moreover,
a point (ξ(s) + i η(s), ζ(s))) ∈ Eθ (0 ≤ θ ≤ 2π) lies on the upper surface of
W (A(α), A(α)∗A(α)) if and only if

0 ≤ s ≤ sθ and arctan(
√

α2 − 1) ≤ θ ≤ 2 π − arctan(
√

α2 − 1)

or equivalently, if and only if

0 ≤ s ≤ sθ and − 1 ≤ cos θ ≤ 1
α

(where 0 < arctan(
√

α2 − 1) < π/2). Using now (12), and the ellipsoid part
and the cone part of the surface of W (A(α), A(α)∗A(α)), the q-numerical range
of A(α) can be written in the form

Fq(A(α)) = { q (u + i v) +
√

1− q2 z
√

w − (u2 + v2) : u, v, w ∈ R,

z ∈ C, |z| ≤ 1, u2 + v2 ≤ 1,

u ≤ (4α− (α2 − 2)
√

α4 − (α4 + 4) v2) / (α4 + 4)

w = 2 + 2
√

1− u2 − v2}
∪ { q (ξ(s) + i η(s)) +

√
1− q2 z

√
ζ(s)− (ξ(s)2 + η(s)2) :

z ∈ C, |z| ≤ 1, −1 ≤ cos θ ≤ 1/α,

0 ≤ s ≤ (α4 − 2α2 + 1) / (α4 − α2 − 2α cos θ + 2)}, (28)

where ξ(s), η(s) and ζ(s) are given by (25), (26) and (27), respectively.

4 A normal operator

Let T be a bounded linear operator on an infinite Hilbert space H with inner
product 〈·, ·〉. For a real q ∈ [0, 1], the q-numerical range of T is defined by

Fq(T ) = { 〈Ty, x〉 ∈ C : x, y ∈ H, 〈x, x〉 = 〈y, y〉 = 1, 〈y, x〉 = q} .

This subset of the complex plane is always bounded and convex, but it is not
necessarily closed. The investigation of the q-numerical rage of the 3 × 3 re-
ducible matrix A(α) in (3) leads to the construction of the q-numerical range
of a normal bounded linear operator acting on an infinite dimensional Hilbert
space. In particular, we consider the domain

∆q = { q (u + i v) +
√

1− q2 z
√

w − (u2 + v2) : u, v, w ∈ R, z ∈ C, |z| ≤ 1,

u = α− s α2(α− cos θ) / (α2 − 1), v = sα2 sin θ / (α2 − 1),
w = α2 − sα3(−3α + α3 + 2 cos θ) / (α2 − 1)2,

0 ≤ s ≤ 1, arctan(
√

α2 − 1) ≤ θ ≤ 2π − arctan(
√

α2 − 1)}. (29)

The unit disk {u + i v : u, v ∈ R, u2 + v2 ≤ 1} is contained in the region
{

u + i v : (u + i v, w) ∈ Eθ, arctan(
√

α2 − 1) ≤ θ ≤ 2π − arctan(
√

α2 − 1)
}

,
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and the function w = 2 + 2
√

1− u2 − v2 on the unit disk is dominated by the
function defined by

(u + i v) 7→ w if and only if (u + i v, w) ∈ Eθ. (30)

As a consequence, by (28), the q-numerical range Fq(A(α)) is contained in the
set ∆q. Moreover, the projection of the line Eθ onto the (u, v)-plane for

θ ∈
[
− arctan

(√
α2 − 1

)
, arctan

(√
α2 − 1

)]

is contained in the projection of Eθ̂ for some

θ̂ ∈
[
arctan

(√
α2 − 1

)
, 2π − arctan

(√
α2 − 1

)]
,

and the function (30) for θ is dominated by the same function for θ̂. Hence,
we have

∆q = { q (u + i v) +
√

1− q2 z
√

w − (u2 + v2) : u, v, w ∈ R,

z ∈ C, |z| ≤ 1, (u + i v, w) ∈ Eθ, 0 ≤ θ ≤ 2π}. (31)

At this point, we introduce the separable infinite dimensional Hilbert space
L2([0, 1]×T1 : ds dθ), which consists of the complex valued (Lebesgue) measur-
able functions f(s, eiθ) that are square integrable with respect to the measure
ds dθ. The inner product of this space is defined by

〈f, g〉 =
∫ 2π

0

∫ 1

0

f(s, eiθ) g(s, eiθ) ds dθ .

Let T be the normal bounded linear operator on L2([0, 1]×T1 : ds dθ) defined
by

(T f)(s, eiθ) =
(

α− s
α3

α2 − 1
+ s

α2

α2 − 1
eiθ

)
f(s, eiθ) (32)

(0 ≤ s ≤ 1, 0 ≤ θ ≤ 2π).

Proposition 2 The domain ∆q in (29) is the closure of the q-numerical range
of the operator T in (32).

Proof For any two compact subsets Ω1,Ω2 of the complex plane define the
distance (standard Hausdorff metric)

ρ(Ω1,Ω2) = max
{

max
z1∈Ω1

min
z2∈Ω2

|z1 − z2|, max
z2∈Ω2

min
z1∈Ω1

|z1 − z2|
}

.

If S and S′ are bounded linear operators on a Hilbert space H, satisfying the
inequality ‖S − S′‖ ≤ ε, then it follows that ρ (Fq(S), Fq(S′)) ≤ ε.

13



For any positive integer number N , consider now the mutually disjoint sets

Rµ,ν =
(

µ− 1
N

,
µ

N

]
×

{
eiθ :

2(ν − 1) π

N
< θ ≤ 2ν π

N

}
; µ, ν = 1, 2, . . . , N

and define the linear bounded operator TN acting on L2([0, 1] × T1 : ds dθ)
such that

(TN f)(s, eiθ) =
(

α− µ

N

α3

α2 − 1
+

µ

N

α2

α2 − 1
ei

2νπ
N

)
f(s, eiθ) ; (s, eiθ) ∈ Rµ,ν .

Then the q-numerical range of TN is given by

Fq(TN ) = Fq

(
diag

{
α− µ

N

α3

α2 − 1
+

µ

N

α2

α2 − 1
ei

2νπ
N : µ, ν = 1, 2, . . . , N

})
,

and we have that

lim
N→∞

ρ (closure{Fq(T )}, Fq(TN )) = 0 and lim
N→∞

ρ (Fq(TN ), ∆q) = 0.

Hence, ∆q coincides with the closure of Fq(T ). ¤

By the above proposition, it is clear that the set ∆q is compact and convex.
Furthermore, the equation

∆q =
⋃ {

Fq(diag{α, u + i v}) : u, v ∈ R,

(
u +

α

α2 − 1

)2

+ v2 =
α4

(α2 − 1)2

}
(33)

follows from the fact that the cone in (14) is a ruled surface and that the
endpoint (u + i v, w) ∈ Γ of any line segment Eθ (0 ≤ θ ≤ 2π) satisfies the
equation u2 + v2 = w. Now we can prove the following theorem.

Theorem 3 Let T be the normal operator on L2([0, 1] × T1 : ds dθ) defined
by (32), and let 0 < q < 1. Then the closure ∆q of the q-numerical range of
T coincides with the numerical range F (Bq) of the 4 × 4 matrix Bq in (7).
Moreover, we have:

(I) The boundary of ∆q is

∂∆q = ∂Fq(T ) = {(X(ϑ) + i Y (ϑ)) : 0 ≤ ϑ ≤ 2π} , (34)

where X(ϑ) and Y (ϑ) are given by (4) and (5). An irreducible sextic form
L(t, u, v) satisfying L(1, X(ϑ), Y (ϑ)) = 0 (0 ≤ ϑ ≤ 2π) is given by (6).

(II) The dual curve of the complex projective curve { [(t, u, v)] ∈ CP2 : L(t, u, v) =
0} is the quartic elliptic curve { [(t, u, v)] ∈ CP2 : K(t, u, v) = 0}, where

K(t, u, v) = d4,0 u4 + d2,2 u2v2 + d0,4 v4 + d3,0 t u3 + d1,2 t u v2

+ d2,0 t2u2 + d0,2 t2v2 + d1,0 t3u + d0,0 t4 (35)
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with

d4,0 = α4(α + 2q + α q)(α + 2q − α q)(α− 2q + α q)(α− 2q − α q),
d2,2 = 2α6(α2 − 4q2 − 2α2q2 − 4q4 + α2 q4),
d0,4 = α8(1− q2)2,
d3,0 = 8α3q(−2α2 − α4 + 8q2 − 6α2q2 + α4q2),
d1,2 = 8α5q(−2− α2 − 2q2 + α2q2),
d2,0 = 8α2(−α2 − α4 + 12q2 − 13α2q2 + 3α4q2),
d0,2 = 8α4(−1− α2 − q2 + α2q2),
d1,0 = 32α(α2 − 1)(α2 − 2)q,
d0,0 = 16(α2 − 1)2.

Furthermore, the matrix Bq in (7) satisfies the equation

16(α2−1)2 det(tI4+(u/2)(Bq+B∗
q )−i (v/2)(Bq−B∗

q )) = K(t, u, v), (36)

i.e., the form K(t, u, v) is hyperbolic with respect to (1, 0, 0).

Proof (I) Recall that the q-numerical range of a 2×2 diagonal matrix diag{a, b}
(a, b ∈ C) is the elliptical disk with foci at q a and q b, and with eccentricity q
[10, 13, 14], i.e., the boundary ∂Fq(diag{a, b}) coincides with the ellipse

{
q(a + b)

2
+

a− b

2
cos θ +

(−i)
√

1− q2(a− b)
2

sin θ : 0 ≤ θ ≤ 2π

}
. (37)

By the equations (33) and (37), it follows that ∆q is the convex hull of the set

Dq = {u(θ, φ) + i v(θ, φ) : θ, φ ∈ [0, 2π]} , (38)

where

u(θ, φ) = − α

2(α2 − 1)
(2q − α2q + α2 cosφ− α q cos θ

−α cos θ cosφ− α
√

1− q2 sin θ sin φ),

v(θ, φ) =
α2

2(α2 − 1)
(q sin θ + α

√
1− q2 sinφ

−
√

1− q2 cos θ sin φ + sin θ cos φ).

Notice also that ∂∆q is contained in Dq, and that for every φ ∈ [0, 2π], we have

u(θ, φ) + i v(θ, φ) =
−α (2q − α2q + α2 cos φ)

2(α2 − 1)
+ i

α3
√

1− q2 sin φ

2(α2 − 1)

+
α2(q + cos φ)− i α2

√
1− q2 sinφ)

2(α2 − 1)
eiθ
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and
|α2(q + cos φ)− iα2

√
1− q2 sin φ| = α2(1 + q cos φ).

As a consequence, the set Dq is represented as the union of a family of circles

Dq = {X(t, φ) + i Y (t, φ) : t, φ ∈ [0, 2π]} ,

where

X(t, φ) =
α2(1 + q cos φ)

2(α2 − 1)
cos t +

α (−2q + α2q − α2 cosφ)
2(α2 − 1)

,

Y (t, φ) =
α2(1 + q cos φ)

2(α2 − 1)
sin t +

α3
√

1− q2 sinφ

2(α2 − 1)
.

We remark that the centers of these circles lie on the ellipse
{

X0(φ) + i Y0(φ) =
α3(q − cosφ)− 2q α

2(α2 − 1)
+ i

α3
√

1− q2 sin φ

2(α2 − 1)
: 0 ≤ φ ≤ 2π

}
.

The boundary of ∆q is the envelope of this 1-parameter family of circles and
next we obtain a parametric representation of this boundary by a geometric
method. The radii

r(φ) =
α2(1 + q cos φ)

2(α2 − 1)
; 0 ≤ φ ≤ 2π

of the above circles with centers at X0(φ) + i Y0(φ) (φ ∈ [0, 2π]) satisfy

|r(φ1)− r(φ2)| =
q α2

2(α2 − 1)
| cos φ1 − cos φ2|

<
α3

2(α2 − 1)
| cos φ1 − cos φ2| = |X0(φ1)−X0(φ2)|

≤ |(X0(φ1) + i Y0(φ1))− (X0(φ2) + i Y0(φ2))|

for 0 ≤ φ1 < φ2 ≤ π or π ≤ φ1 < φ2 ≤ 2π.
For a moment, identify the Gaussian plane C with the Euclidean plane R2,

denote r1 = r(φ1) and r2 = r(φ2), and assume that the two circles

(u− u1)2 + (v − v1)2 = r2
1 and (u− u2)2 + (v − v2)2 = r2

2

have an intersection with a nonempty interior, i.e.,

|r1 − r2| <
√

(u1 − u2)2 + (v1 − v2)2 < r1 + r2.

Then they meet at two distinct (real) points (u0, v0) and (u′0, v
′
0), which lie on

the straight line

2 (u2 − u1) u + (v2 − v1) v + (u2
1 − u2

2 − r2
1 + v2

1 − v2
2 + r2

2) = 0.
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The (real) coordinates u0 and u′0 are roots of the quadratic equation (with
respect to u)

0 = 4[(u1 − u2)2 + (v1 − v2)2] u2 + 4 [−u3
1 − u3

2 + u2
1u2 + u1u

2
2

−(u1 + u2)(v1 − v1)2 + (r2
1 − r2

2)(u1 − u2)] u + (u2
1 − u2

2)
2

+2(u2
1 + u2

2)(v
2
1 + v2

2)− 4(u2
1 + u2

2 + v2
1 + v2

2) v1 v2 + v4
1 + 6v2

1v2
2

+v4
2 + 2(r2

2 − r2
1)(u

2
1 − u2

2)− 2(r2
1 + r2

2)(v1 − v2)2 + (r2
1 − r2

2)
2.

The coordinates v0, v′0 also satisfy a similar equation. By using these equations,
one can determine the two points

X(φ1, φ2) + i Y (φ1, φ2) and X̃(φ1, φ2) + i Ỹ (φ1, φ2),

where the two circles
{
X + i Y : X, Y ∈ R, (X −X0(φ1))2 + (Y − Y0(φ1))2 = r(φ1)2

}

and
{
X + i Y : X, Y ∈ R, (X −X0(φ2))2 + (Y − Y0(φ2))2 = r(φ2)2

}

(φ1 6= φ2) meet. Consider now the limits of these two points for φ1 → ϑ and
φ2 → ϑ,

X(ϑ) + i Y (ϑ) and X̃(ϑ) + i Ỹ (ϑ).

One can see that X(ϑ) and Y (ϑ) are given by (4) and (5), respectively, and that
X̃(ϑ) and Ỹ (ϑ) are given by

X̃(ϑ) =
2α (2− α2) q2 cosϑ + [3α3 + α (α2 − 1) cos(2ϑ)− 3α] q − 2α3 cosϑ

4(α2 − 1)(1− q cos ϑ)

+
√

2 α cosϑ
√

1− q2
√

2α2 − (α2 + 1) q2 − (α2 − 1) q2 cos(2ϑ)

and

Ỹ (ϑ) =
2α3 sin ϑ

√
1− q2 − α (α2 − 1) q

√
1− q2 sin(2ϑ)

4 (α2 − 1)(1− q cos ϑ)

−√2 α sin ϑ
√

2α2 − (α2 + 1) q2 − (α2 − 1) q2 cos(2ϑ)
.

We take the outer envelope X(ϑ) + iY (ϑ) of the 1-parameter family of the
circles. Thus, the boundary of the q-numerical range Fq(T ) is parameterized
by (34). For the polynomial L(t, u, v) in (6), the equation L(1, u, v) = 0 for
u = X(ϑ) and v = Y (ϑ) can be obtained by the elimination of the variable ϑ,
but there is also an alternative method for the construction of L(t, u, v). Indeed,
for every θ, the variables u = u(θ, φ) and v = v(θ, φ) in (38) are roots of the
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polynomial

M(u, v; θ) =
α2(α2 + 4α4 + α6)− (4 + 6α2 + 2α6)q2 + (2 + 9α2 − 6α4 + α6)q4

+4α(α2 − 1) q (−2− 2α2 + α4 + q2 + 3α2q2 − α4q2)u
+2(α2 − 1)2(−2− 2α2 + q2 + 2α2q2)u2 + 2(α2 − 1)2(−2− 2α2 + q2)v2

+4α[α2(1− q2)(−α2 − α4 + 3q2 − α2q2)− α(α2 − 1)(α2 − 5)(1− q2)q u

+2(α2 − 1)2(1− q2)u2 + 2(α2 − 1)2v2] cos θ

+4α(α2 − 1) q [α(1 + α2 − 3q2 + α2q2)v + 2q(1− α2)u v] sin θ

+ [2α2(α2 − q2)2 − 4α(α2 − 1)(α2 − q2) q u + 2q2(α2 − 1)2(u2 − v2)] cos(2θ)
+ 4(α2 − 1) q [−α(α2 − q2)v + q(α2 − 1)u v] sin(2θ).

If we let µ = tan(θ/2), then

cos θ =
1− µ2

1 + µ2
and sin θ =

2µ

1 + µ2
,

and the polynomial
(1 + µ2)2 M(u, v; θ)

is a quartic polynomial in µ. To obtain the equation of the envelope of the
1-parameter family of ellipses {M(u, v; θ) = 0 : 0 ≤ θ ≤ 2π}, we take the
discriminant of the polynomial (1+µ2)2M(u, v; θ) in µ [3, 19]. Then it follows
that this discriminant is a constant multiple of the polynomial

(α2 − 1)12(1− q2)2[(u− α q)2 + v2]3L(1, u, v),

where the point α q ∈ C is a focus of the ellipses.
(II) The equation K(t, u, v) = 0 of the dual curve of the curve L(t, u, v) = 0

is obtained by considering the dual curve G(u, v; θ) = 0 of the curve M(u, v; θ) =
0. The 1-parameter family of the polynomials G(u, v; θ) is given by

G(u, v; θ) = 4(α2 − 1)2 + 4q α(α2 − 1)(α2 − 2)u + α2[−α2 − α4

+(4− 3α2 + α4)q2]u2 − (α4 + α6)(1− q2)v2

+2α2[2q(α2 − 1)u + α(α2 − 2q2 + α2q2)u2

+α3(1− q2)v2] cos θ + 4α2(α2 − 1) q (v + α q u v) sin θ.

As above, let µ = tan(θ/2). Then the polynomial (1+µ2)G(u, v; θ) is quadratic
in µ, and its discriminant (with respect to µ) is −4(α2 − 1)2K(1, u, v), where
K(t, u, v) is given by (35). A straightforward computation implies equation (36)
for the matrix Bq in (7). By this equation and [9], it follows that ∆q = F (Bq),
completing the proof of the theorem. ¤

We remark that the polynomial K(t, u, v) in (35) is irreducible in C[t, u, v].
The complex projective curve K(t, u, v) = 0 has a pair of simple cusps

(
1, − 1

α q
, ± i

α q

)
,
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and has no singular points other than these two points. Hence, K(t, u, v) = 0
is a quartic elliptic curve.

5 The proof of Theorem 1 (II)

In this section, we present a proof of the second part of Theorem 1. Suppose
that

α > 2 and 0 < q ≤ α(α− 2)
α2 − 2α + 2

.

First consider the q-numerical range of a 2× 2 diagonal matrix,

Fq(diag{a, b}) = { q (u + i v) +
√

1− q2 z
√

w − u2 − v2 :
(u + i v, w) ∈ W (diag{a, b}, diag{|a|2, |b|2}), z ∈ C, |z| ≤ 1}

= { q [(1− s) a + s b]

+
√

1− q2 z
√

(1− s) |a|2 + s |b|2 − |(1− s) a + s b|2 :
z ∈ C, |z| ≤ 1, 0 ≤ s ≤ 1}.

This set is the union of a family of (circular) disks Cs (s ∈ [0, 1]) whose centers
q [(1− s) a + s b] lie on the line segment [a, b]. The boundary of Fq(diag{a, b})
is an ellipse with foci at q a and q b, and with eccentricity q [10, 13, 14]. If
(1 + q)/2 ≤ s ≤ 1 or 0 ≤ s ≤ (1 − q)/2, then the disk Cs does not intersect
∂Fq(diag{a, b}). As a consequence,

Fq(diag{a, b}) = { q [(1− s) a + s b]

+
√

1− q2 z
√

(1− s) |a|2 + s |b|2 − |(1− s) a + s b|2 :
z ∈ C, |z| ≤ 1, (1− q)/2 ≤ s ≤ (1 + q)/2}.

Thus, for every real s1 and s2 such that

0 ≤ s1 ≤ 1− q

2
and

1 + q

2
≤ s2 ≤ 1,

it is clear that

Fq(diag{a, b}) = { q [(1− s)a + s b]

+
√

1− q2 z
√

(1− s)|a|2 + s |b|2 − |(1− s) a + s b|2 :
z ∈ C, |z| ≤ 1, s1 ≤ s ≤ s2}.

As it is already mentioned in Section 3, any point (ξ(s) + i η(s), ζ(s)) of a
line segment Eθ (0 ≤ θ ≤ 2π) defined by (24)-(27) lies on the cone part of the
upper surface of the Davis-Wielandt shell W (A(α), A(α)∗A(α)) if and only if

0 ≤ s ≤ (α2 − 1)2

α4 − α2 − 2α cos θ + 2
(= sθ)
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and θ ∈ [arctan(
√

α2 − 1), 2π − arctan(
√

α2 − 1)]. For θ = π, the quantity sθ

attains its minimum

sπ =
α2 − 2α + 1
α2 − 2α + 2

=
(α− 1)2

(α− 1)2 + 1
>

1
2

.

By the assumption

0 < q ≤ α(α− 2)
α2 − 2α + 2

= 2sπ − 1,

it follows that sπ ≥ (1 + q)/2. Hence, for any θ ∈ [arctan(
√

α2 − 1), 2π −
arctan(

√
α2 − 1)], all the points

(ξ(s) + i η(s), ζ(s)) ; 0 ≤ s ≤ 1 + q

2
lie on the cone part of the upper surface of the Davis-Wielandt shell of A(α).
The ellipsoid part of the upper surface of W (A(α), A(α)∗A(α)) is dominated
by the cone part, and keeping in mind the above discussion on the q-numerical
range of a 2× 2 diagonal matrix (see also (33)), we can relax the condition

0 ≤ s ≤ α4 − 2α2 + 1
α4 − α2 − 2α cos θ + 2

in (28) by the condition
0 ≤ s ≤ 1.

Hence, Fq(A(α)) coincides with the domain ∆q in (29). By the first part of
Theorem 3, the proof of Theorem 1 (II) is complete. ¤

Note that if q = cos φ for some φ ∈ (0, π/2), and if τ = tan(φ/2), then
0 < τ < 1 and the condition

0 < q ≤ α(α− 2)
α2 − 2α + 2

can be written as
τ ≥ 1

α− 1
.

6 Some lemmas

Let A(α) (α > 1) be the 3 × 3 reducible matrix in (3), and let 0 < q < 1.
Next we obtain five somewhat technical lemmas, which are necessary for the
proof of Theorem 1 (I),(III). These results describe the function h in (11) and
the function Φ(u + i v) =

√
h(u + i v)− u2 − v2.

Lemma 4 Consider the function h in (11) defined by h(u + i v) = w, where
(u+i v, w) is a point of the upper surface of W (A(α), A(α)∗A(α)). This function
is continuously differentiable on the interior of F (A(α)), and the cone part and
the ellipsoid part of the function w = h(u+i v) have common partial derivatives
on the arc Cup in (20)-(22).
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Proof The intersection of the ellipsoid and the cone part of the surface of the
Davis-Wielandt shell W (A(α), A(α)∗A(α)) is the curve C in (19). The projection
Cup of the upper part of this curve onto the (u, v)-plane is given by (20)-(22).
By the discussion in Section 3, this arc has a parameter representation

u = ξ(s; θ) and v = η(s; θ)

given by (25) and (26), respectively, when the real s takes values sufficiently
close to

sθ =
(α2 − 1)2

α4 − α2 − 2α cos θ + 2
.

Let θ take values in the interval (θ0, 2π − θ0), where 0 < θ0 < π/2 and
cos θ0 = 1/α. Its Jacobian ∂(u, v) / ∂(s, θ) on the arc Cup is given by

∂(u, v)
∂(s, θ)

=
α4 (1− α cos θ) s

(α2 − 1)2

=
α4(1− α cos θ)

α4 − α2 − 2α cos θ + 2
> 0.

On the ellipsoid part of the upper surface of W (A(α), A(α)∗A(α)), the function
h coincides with

g(s, θ) = 2 + 2
√

1− u2 − v2

= 2 +
2
√

α2(1− s)− 1
(α2 − 1)

√
−α4(1− s)− 2α3s cos θ + α2(2 + s)− 1 ,

and its partial derivatives are given by

∂g

∂s
= − 2α3

α2 − 1
−α3(1− s) + α2(1− 2s) cos θ + α(1 + s)− cos θ√

α2(1− s)− 1
√
−α4(1− s)− 2α3s cos θ + α2(2 + s)− 1

,

and
∂g

∂θ
=

2α3s sin θ

α2 − 1

√
α2(1− s)− 1√

−α4(1− s)− 2α3s cos θ + α2(2 + s)− 1
.

On the cone part, the function h is written

f(s, θ) = α2 − α3s (α3 − 3α + 2 cos θ)
(α2 − 1)2

.

Its partial derivatives are given by

∂f

∂s
= − α3

(α2 − 1)2
(α3 − 3α + 2 cos θ) and

∂f

∂θ
=

2α3s sin θ

(α2 − 1)2
.

Under the condition s = sθ, we have ∂f / ∂s = ∂g / ∂s and ∂f / ∂θ = ∂g / ∂θ.
These equations are deduced from the relations

2(α2 − 1)
α3 − 3α + 2 cos θ

[−α3(1− s) + α2(1− 2s) cos θ + α(1 + s)− cos θ]
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=
2(α2 − 1)2(1− α cos θ)
α4 − α2 − 2α cos θ + 2

> 0,

[α2(1− s)− 1] [−α4(1− s)− 2α3s cos θ + α2(2 + s)− 1]

= 4
(α2 − 1)2(1− α cos θ)2

(α4 − α2 − 2α cos θ + 2)2
> 0

and
α2(1− s)− 1

−α4(1− s)− 2α3s cos θ + α2(2 + s)− 1
=

1
(α2 − 1)2

> 0

(always under the assumption that s = sθ).
Notice that the ellipsoid part

w = 2 + 2
√

1− u2 − v2 ; u2 + v2 ≤ 1

of the upper surface of W (A(α), A(α)∗A(α)) is continuously differentiable on
the interior of the unit disk. It is also clear that the cone part of the upper
surface of the shell defines a continuously differentiable function on the domain
surrounded by the curve Cup and the two lines

{
u + i v :

1
α
≤ u ≤ α, v = ± u− α√

α2 − 1

}
.

The proof is complete. ¤

Lemma 5 Consider the family of line segments
{
Eθ : arctan(

√
α2 − 1) ≤ θ ≤ 2π − arctan(

√
α2 − 1)

}

defined by (24)-(27), and let Ω be the convex hull of the circle (17) and the point
α. Suppose that h1 is the concave function on Ω defined by h1(ξ + i η) = ζ,
where (ξ + i η, ζ) ∈ Eθ for some 0 < θ < 2π satisfying −1 ≤ cos θ ≤ 1/α. Let
also Φ1 be the concave function defined by

Φ1(ξ + i η) =
√

h1(ξ + i η)− ξ2 − η2.

(i) The function Φ1 is continuously differentiable in the interior of Ω, and the
norm of its gradient is given by

‖gradΦ1(ξ(s; θ) + i η(s; θ))‖2 = (Φ2
ξ + Φ2

η)(ξ(s; θ) + i η(s; θ))

=
[1− 4s(1− s)](1− α cos θ)2 + α2 sin2 θ

4s(1− s)(1− α cos θ)2
. (39)

If we denote by Ψ(s; cos θ) the right-hand part of (39), then

∂Ψ(s;ψ)
∂s

=
(2s− 1)(α2 − 2α ψ + 1)
4s2(1− s)2(1− α ψ)2

> 0 (40)
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when 1/2 < s < 1 and −1 ≤ ψ < 1/α, and

∂Ψ(s; ψ)
∂ψ

=
α2(α− ψ)

2s (1− s) (1− α ψ)3
> 0 (41)

when 0 < s < 1 and −1 ≤ ψ < 1/α.

(ii) Any point ξ(s; θ)+i η(s; θ) ∈ IntΩ satisfying ‖gradΦ1(ξ(s; θ)+i η(s; θ))‖2 =
q2/ (1− q2) is characterized by the equation

Mq(s; θ) = 4α2s(1− s) cos2 θ + [2α (1− q2)− 8α s(1− s)] cos θ

−(α2 + 1)(1− q2) + 4s (1− s) = 0, (42)

which has a solution

cos θ =
q2 − 1 + 4s(1− s)−

√
1− q2

√
1− q2 + 4(α2 − 1) s (1− s)

4α s(1− s)
(43)

for (1−q)/2 ≤ s ≤ (1+q)/2. Moreover, if Cq is the curve consisting of the
points ξ(s; θ)+i η(s; θ), which satisfy (42), then for any 0 < q1 < q2 < 1,
Cq1 is contained in the open set surrounded by Cq2 .

(iii) If ξ0 + i η0 is a boundary point of the domain Ω, then there exists an
interior point ξ1 + i η1 of Ω such that

Φ1(ξ1 + i η1)− Φ1(ξ0 + i η0) >
1√

1− q2
|(ξ1 + i η1)− (ξ0 + i η0)|. (44)

Proof (i),(ii) We substitute w = u2+v2+z2 into the equation G(u, v, w) = 0 of
the cone (14). Then we get an implicit expression of the function z = Φ1(u, v),

G0(u, v, z) = (α2 − 1) z4 + 2[(u− α)((α2 − 1)u + α) + (α2 − 1)v2]z2

+[(u− α)2 + v2] [(α2 − 1)(u2 + v2) + 2α u− α2] = 0.

This equation has 2 positive roots in the domain D in (23). The function
Φ1(u + i v) is the greatest root, and hence,

Φ1(u+i v) =

√
α2 + α (α2 − 2) u− (α2 − 1)(u2 + v2) + α2

√
(u− α)2 − (α2 − 1) v2

α2 − 1
.

(45)
Straightforward computations imply that ‖gradΦ1(u + i v)‖2 equals

Ψ0(u, v)
4(α2 − 1)(α2 + α (α2 − 2)u− (α2 − 1)(u2 + v2) + α2

√
(u− α)2 − (α2 − 1) v2)

,

where

Ψ0(u, v) = v2

[
−2(α2 − 1)− α2(α2 − 1)√

(u− α)2 − (α2 − 1)v2

]2
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+

[
2α− α3 + 2(α2 − 1) u +

α2(α− u)√
(u− α)2 − (α2 − 1) v2

]2

.

Substituting now (see (25) and (26))

u = ξ(s; θ) = α− sα2(α− cos θ)
α2 − 1

and v = η(s; θ) =
s α2(sin θ)

α2 − 1
,

we obtain (39), and multiplying ‖gradΦ1(ξ(s; θ) + i η(s; θ))‖2 − q2/(1− q2) by
−4(1− q2) s (1− s) (1− α cos θ)2, we obtain (42). The relations (40) and (41)
are also obtained by straightforward computations. Furthermore, the solution
χ = cos θ of the equation (42) is given by (43) and attains its maximum at
s = 1/2. Since −1 ≤ cos θ, the solution of the equation (42) exists if and only
if (1 − q)/2 ≤ s ≤ (1 + q)/2. Finally, by (40) and (41), it follows that for any
0 < q1 < q2 < 1, the curve Cq1 is contained in the open set surrounded by the
curve Cq2 .

(iii) Assume that ξ0 + i η0 = ξ(s0; θ0) + i η(s0; θ0) ∈ ∂Ω, where 0 < s0 < 1
and sin θ0 =

√
α2 − 1 /α. Then 0 < ξ0 < α and η0 = (α − ξ0) /

√
α2 − 1. We

choose ξ1 = ξ0 and η1 = (1 − ε)(α − ξ0) /
√

α2 − 1 for some ε > 0. Then by
(45), we have

Φ1(ξ0 + i η0) =

√
α2ξ0 (α− ξ0)

α2 − 1
.

The function

k(ξ, η) = α2 + α (α2 − 2) ξ − (α2 − 1)(ξ2 + η2) + α2
√

(ξ − α)2 − (α2 − 1) η2

satisfies

k(ξ0, η1)− k(ξ0, η0) = α2
√

2 ε (α− ξ0) + {higher order terms of ε},
and the equation

√
α2ξ0 (α− ξ0) + δ =

√
α2ξ0 (α− ξ0) +

δ

2
√

α2ξ0 (α− ξ0)
+ {higher order terms of δ}

holds for δ > 0. Moreover, the distance between the points ξ0+i η0 and ξ0+i η1

is ε (α − ξ0) /
√

α2 − 1, and thus, (44) holds for sufficiently small ε > 0. The
case sin θ0 = −√α2 − 1 /α can be treated similarly.

Finally, suppose that ξ0 + i η0 = ξ(1, θ) + i η(1, θ) ∈ ∂Ω (0 ≤ θ ≤ 2π). In
this case, Φ1(ξ0 + i η0) = 0, and we choose

ξ1 = ξ(1− ε; θ) and η1 = η(1− ε; θ)

for some ε > 0. Then the distance between the points ξ0 + i η0 and ξ1 + i η1 is

|(ξ0 + i η0)− (ξ1 + i η1)| =
ε α2

α2 − 1

√
(α− cos θ)2 + sin2 θ .
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Note also that for s = 1− ε, the last square root of the function (see (45))

Φ1(ξ + i η) =
α2

α2 − 1

√
α2 − 2α cos θ + 1

√
s(1− s)

satisfies
√

(1− ε)(1− (1− ε)) =
√

ε + {higher order terms of ε}.

Hence, the relation (44) holds for sufficiently small ε > 0. The case s = 0 can
be treated similarly. The proof is complete. ¤

Corollary 6 Suppose that Ω is the convex hull of the circle (17) and the point
α, and consider the (connected and closed) curve

Cq =
{

ξ(s; θ) + i η(s; θ) :
1− q

2
≤ s ≤ 1 + q

2
, cos θ in (43)

}
.

Then the compact convex set ∆q defined by (29) satisfies the relation

∂∆q ⊂ { q (u + i v) +
√

1− q2 z Φ1(u + i v) : u + i v ∈ Cq, z ∈ C, |z| = 1}. (46)

Proof By (iii) of Lemma 5, it follows that for every boundary point u0 + i v0

of Ω, we can choose an interior point u1 + i v1 of Ω such the circular disk
{

q(u0 + i v0) +
√

1− q2 z Φ1(u0 + i v0) : z ∈ C, |z| ≤ 1
}

is a subset of the disk
{

q(u1 + i v1) +
√

1− q2 z Φ1(u1 + i v1) : z ∈ C, |z| ≤ 1
}

.

Thus, the corollary follows from Lemma 5 (i), (ii) and [2, Theorem 2]. ¤

Lemma 7 Let B =
(

0 2
0 0

)
, and let hB be the function on the unit disk

F (B) = {u+i v : u, v ∈ R, u2 +v2 ≤ 1} defined by the relation hB(u+i v) = w,
where (u + i v, w) is a point of the upper part of the shell W (B, B∗B), i.e.,
hB(u + i v) = 2 + 2

√
1− u2 − v2. Then the function

ΦB(u + i v) =
√

hB(u + i v)− u2 − v2

satisfies

‖gradΦB(u + i v)‖2 =
u2 + v2

1− u2 − v2
(47)

for every u + i v ∈ IntF (B). If C̃q (0 < q < 1) is the curve consisting of the
points u+ i v ∈ IntF (B), which satisfy ‖gradΦB(u+ i v)‖2 = q2/ (1− q2), then

C̃q = {u + i v : u, v ∈ R, u2 + v2 = q2}.
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Furthermore, for every boundary point u0 + i v0 of F (B), we have ΦB(u0 +
i v0) = 1, and the inequality

ΦB((1− ε)(u0 + i v0))− ΦB(u0 + i v0) >
ε√

1− q2
(48)

holds for any q ∈ (0, 1) and for sufficiently small positive ε.

Proof The function ΦB is given by

ΦB(u + i v) =
√

2 + 2
√

1− u2 − v2 − u2 − v2,

and its partial derivatives satisfy
(

∂ΦB(u + i v)
∂u

)2

=
u2

1− u2 − v2
and

(
∂ΦB(u + i v)

∂v

)2

=
v2

1− u2 − v2
.

In this way, we obtain the equation (47), which implies that C̃q coincides with
the circle {u + i v : u, v ∈ R, u2 + v2 = q2}. Furthermore, it is easy to see that
for every boundary point u0 + i v0 of the unit disk F (B),

ΦB(u0 + i v0) = 1 and ΦB((1− ε)(u0 + i v0) = 1 +
√

2ε− ε2

(0 < ε < 1). Hence, (48) holds for sufficiently small ε > 0. ¤

Lemma 8 Let Dc and De be the cone part and the ellipsoid part of the domain
D in (23), respectively, and let Cup be the projection of the upper part of the
curve C in (19) onto the (u, v)-plane.

(i) Suppose that α > 1 and α 6= √
2, and let

Ĉ =
{
u + i v : (α4 + 4) u2 − 8α u + (α2 − 2)2v2 − α4 + 4α2 = 0

}

=
{

4α + α2(2− α2) cos θ

α4 + 4
+ i

α2 sin θ√
α4 + 4

: 0 ≤ θ ≤ 2π

}

be the ellipse, which contains the arc Cup (in (20) or (22)). On this ellipse,
define the function

Θ(θ) = Θ̂(u, v) = u2 + v2 =
(

4α + α2(2− α2) cos θ

α4 + 4

)2

+
(

α2 sin θ√
α4 + 4

)2

.

Then the stationary points and the stationary values of Θ are given by

Θ̂

(
1
α

, ±
√

α2 − 1
α

)
= 1 , Θ̂

(
α(2− α)

α2 − 2α + 2
, 0

)
=

α2(2− α)2

(α2 − 2α + 2)2
< 1

and Θ̂
(

α(2 + α)
α2 + 2α + 2

, 0
)

=
α2(2 + α)2

(α2 + 2α + 2)2
< 1.
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(ii) If 1 < α < 2, then the minimum of the function |u + i v| =
√

u2 + v2 on
the closure of Dc is attained at the point u0 = α(2−α) / (α2− 2α + 2) of
Cup, and if α > 2, then the minimum of the function |u+i v| = √

u2 + v2

on the closure of De is attained at the point u0 = α(2−α) / (α2− 2α+2)
of Cup.

Proof (i) The function Θ is written

Θ(θ) =
α2[−4α4 cos2 θ + (−8α3 + 16α) cos θ + α6 + 4α2 + 16]

(α4 + 4)2
,

and thus, its derivative is

Θ′(θ) =
8α3(α3 cos θ + α2 − 2) sin θ

(α4 + 4)2
.

Hence, the stationary points satisfy

cos θ =
2− α2

α3
, or θ = 0, or θ = π,

and the proof of (i) follows readily.
(ii) The quantity |u + i v| is the distance between the point u + i v and the

origin. If 1 < α < 2, then the origin does not belong to the closure of Dc. Thus,
for every point u + i v ∈ Dc, the line segment [0, u + i v] meets the arc Cup.
Consequently, the minimum of the function |u + i v| = √

u2 + v2 on the closure
of Dc is attained at a point of Cup. If α > 2, then we can similarly see that the
minimum of the function |u+i v| = √

u2 + v2 on the closure of De is attained at
a point of Cup. Moreover, in both cases, the point u0 = α(2−α) / (α2−2α+2)
lies on Cup, and using (i), we obtain that u0 is the closest to origin point of
the arc Cup (even for α =

√
2). ¤

In Lemmas 5 and 7, we considered the cone part and the ellipsoid part of
the surface of W (A(α), A(α)∗A(α)), respectively. The combination of these two
results yields the last lemma of the section.

Lemma 9 Let h be the function in (11) defined by the relation h(u + i v) = w,
where (u + i v, w) is a point of the upper surface of the Davis-Wielandt shell of
A(α), and suppose C∧q is the curve consisting of points u + i v ∈ IntF (A(α))
satisfying

‖gradΦ(u + i v)‖2 =
q2

1− q2
,

where
Φ(u + i v) =

√
h(u + i v)− u2 − v2.

(i) The curve C∧q is connected, and it is a simply closed curve in IntF (A(α)).
Moreover, the boundary ∂Fq(A(α)) lies in the set

{ q (u + i v) +
√

1− q2 z Φ(u + i v) : u + i v ∈ C∧q , z ∈ C, |z| = 1}. (49)

(This means that ∂Fq(A(α)) is the outer envelope of the circles in (49).)
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(ii) The curve C∧q meets the (u, v)-projection Cup of the upper part of the curve
C (see (19)-(22)) if and only if

α |α− 2|
α2 − 2α + 2

≤ q < 1.

Proof (i) First observe that the unique zero point of the function ‖gradΦ1‖2
in Lemma 5 is given by

u + i v = ξ(1/2;π) + i η(1/2;π) =
α(α− 2)
2(α− 1)

.

We compare this point with the real point u0 = α(2−α) / (α2− 2α + 2) of the
curve Cup, and we have

ξ(1/2; π) < u0 if 1 < α < 2,

ξ(1/2; π) = u0 if α = 2,

ξ(1/2; π) > u0 if α > 2.

The unique zero point of the function ‖gradΦB‖2 in Lemma 7 is the origin, and

0 > u0 if 1 < α < 2,

u0 = 0 if α = 2,

u0 < 0 if α > 2.

Thus, the unique zero point of the function ‖gradΦ‖2 is equal to ξ(1/2; π)
when α ≥ 2, and it is equal to 0 when 1 < α ≤ 2.

By the definition of C∧q , it follows that

C∧q = {u+i v : u, v ∈ R, u+i v ∈ Cq∩Dc} ∪ {u+i v : u, v ∈ R, u+i v ∈ C̃q∩De},

where Dc and De are the cone part and the ellipsoid part of the convex set
D in (23), respectively. By Lemma 5, the curve Cq is connected, closed and
symmetric with respect to the real axis. Moreover, by (43), we verify that the
real point ξ((1+ q)/2, π) = α[(1− q)α− 2] / (2α− 2) belongs to Cq. By Lemma
7, the curve C̃q coincides with the circle {u + i v : u, v ∈ R, u2 + v2 = q2}. If C∧q
has a point on Cup, then the connectedness of C∧q follows readily from Lemmas
5 and 7. Therefore, for the proof of the connectedness of C∧q , it is enough to
prove that if C∧q ⊂ Dc ∪ De, then C∧q lies either in Dc, or in De. In particular,
we have the following two cases.
Case (a) Suppose that C∧q has a point in Dc and that Cq does not meet Cup.
Since Cq ∩ Cup = ∅, the inequality

u0 =
α(2− α)

α2 − 2α + 2
< ξ((1 + q)/2), π) < ξ(1/2, π)
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holds (recall that sθ attains its minimum at θ = π, and that (43) holds for
(1−q)/2 ≤ s ≤ (1+q)/2 ), and thus, α > 2. Furthermore, the positive quantity
ξ((1 + q)/2), π)− u0 equals to

α2[α(α− 2)− (α2 − 2α + 2) q]
2(α− 1)(α2 − 2α + 2)

,

and hence, q < α(α − 2) / (α2 − 2α + 2). Since α > 2, by Lemma 8, the
minimum of u2 + v2 for u + i v ∈ De is attained at the point

u + i v = u0 =
α(2− α)

α2 − 2α + 2
∈ Cup.

Thus, for every u + i v ∈ De,

u2 + v2 ≥ α2(α− 2)2

(α2 − 2α + 2)2
> q2

and consequently, C∧q = {u + i v : u, v ∈ R, u + i v ∈ Cq ∩ Dc}.
Case (b) Assume that C∧q has a point in De and that C̃q does not meet Cup.
Then the origin lies in De and u0 > 0. Hence, the inequalities

1 < α < 2 and u0 =
α(2− α)

α2 − 2α + 2
> q

hold. Moreover one can see that the set {u + i v : u, v ∈ R, u + i v ∈ Cq ∩ Dc}
is empty, and thus, C∧q = {u + i v : u, v ∈ R, u + i v ∈ C̃q ∩ De}.

By [2, Theorem 2], the boundary of Fq(A(α)) lies in the set

{ q (u + i v) +
√

1− q2 z Φ(u + i v) : u + i v ∈ C∧q , z ∈ C, |z| = 1},

and the proof of (i) is complete.
(ii) Consider the cone part Dc and the ellipsoid part De of D, and suppose

that

α > 2 and 0 < q <
α(α− 2)

α2 − 2α + 2
.

Then every point u + i v ∈ F (A(α)) of the closure of De satisfies

|u + i v| ≥ α(α− 2)
α2 − 2α + 2

(= −u0) > q.

Thus, C∧q coincides with the curve Cq in Lemma 5, and is contained in Dc. As
a consequence, C∧q does not meet Cup.

Let us now assume that

1 < α < 2 and 0 < q <
α(2− α)

α2 − 2α + 2
.
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Then for every point u + i v of Dc, we have

|u + i v| ≥ α(2− α)
α2 − 2α + 2

(= u0) > q.

Hence, the curve C∧q is the same as C̃q in Lemma 7, and lies in De. Thus, C∧q
does not meet Cup.

Suppose that

1 < α < 2 and q =
α(2− α)

α2 − 2α + 2
,

or

α > 2 and q =
α(α− 2)

α2 − 2α + 2
.

Then C∧q lies in the closure of De and meets Cup at the point α(2−α)/(α2−2α+
2), or lies in the closure of Dc and meets Cup at the point α(α−2)/(α2−2α+2),
respectively.

Finally, suppose that

1 < α < ∞ and
α |α− 2|

α2 − 2α + 2
< q < 1.

Then the intersection of Cup and the circle {u + i v : u, v ∈ R, u2 + v2 = q2}
consists of two points uc ± i vc, where

uc =
1
α

+
(2− α2)

√
1− q2

2α

and

vc =

√
−8 + 4α2 − α4 + (α4 + 4)q + 4(α2 − 2)

√
1− q2

2α
.

In this case, both C∧q ∩ Dc and C∧q ∩ De have infinitely many points. ¤

7 The proof of Theorem 1 (I),(III)

In this section, we complete the proof of the main result of the paper.
First, we consider the case (III). In other words, we assume that q = cos φ

(0 < φ < π/2) and α > 1 satisfy the inequality

α |α− 2|
α2 − 2α + 2

< q < 1,

or equivalently, the quantity τ = tan(φ/2) satisfies

0 < τ < min
{

α− 1,
1

α− 1

}
.
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By Lemma 9, the arc Cup meets the circle {u + i v : u, v ∈ R, u2 + v2 = q2} at
two points uc ± i vc. Moreover, the part of the curve C∧q in De is the circular
arc {u + i v : u, v ∈ R, u2 + v2 = q2, u ≤ uc}, and the corresponding envelope
of the family of circles in (49) is the circular arc

{
u + i v : u, v ∈ R, u2 + v2 = (1 +

√
1− q2)2, u ≤ uc (1 +

√
1− q2)

q

}
.

The quantity uc (1 +
√

1− q2) / q is equal to

(τ + 1)[(τ + 1)2 − α2τ ]
α(1− τ)(τ2 + 1)

=
(4− α2)(1 +

√
1− q2) + (α2 − 2) q2

2α q
.

Furthermore, the envelope of the family of circles in (49) with centers in the
cone part lies on the boundary of F (Bq) (see Theorem 1 (II), Theorem 3 and
their proofs). The proof of (III) is complete.

Finally, we treat the first part of the theorem, that is, we assume that

1 < α < 2 and 0 < q ≤ α2(2− α)
(α2 − 2α + 2)

.

Then, as it has been already mentioned in the proof of Lemma 9, the curve
C∧q coincides with the circle {u + i v : u, v ∈ R, u2 + v2 = q2} . Hence, the
corresponding envelope of the family of circles in (49) is the circle

{
u + i v : u, v ∈ R, u2 + v2 = (1 +

√
1− q2)2

}
.

The proof of Theorem 1 is now complete. ¤
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