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Abstract

The numerical range of an n× n matrix polynomial

P (λ) = Amλm + Am−1λ
m−1 + . . . + A1λ + A0

is defined by

W (P ) = {λ ∈ C : x∗P (λ)x = 0, x ∈ Cn, x 6= 0}.
For the linear pencil P (λ) = Iλ− A, the range W (P ) coincides with the
numerical range of matrix A, F (A) = {x∗Ax : x ∈ Cn, x∗x = 1}. In
this paper, we obtain necessary conditions for the origin to be a boundary
point of F (A). As a consequence, an algebraic curve of degree at most
2n(n− 1)m, which contains the boundary of W (P ), is constructed.

Keywords : matrix polynomial, numerical range, boundary, discriminant.
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1 Introduction

Consider a matrix polynomial

P (λ) = Amλm + Am−1λ
m−1 + . . . + A1λ + A0, (1)

where Aj ∈ Cn×n (j = 0, 1, . . . ,m), Am 6= 0, and λ is a complex variable.
Matrix polynomials arise in many applications and their spectral analysis is very
important when studying linear systems of ordinary differential equations with
constant coefficients [4]. If all the coefficients of P (λ) are Hermitian matrices,

1Department of Mathematics, Soochow University, Taipei 11102, TAIWAN (E-mail:
mtchien@math.scu.edu.tw). The work of this author was supported in part by National Sci-
ence Council of the Republic of China.

2Department of Mathematical System Science, Faculty of Science and Technology, Hirosaki
University, Hirosaki 036-8561, JAPAN (E-mail: nakahr@cc.hirosaki-u.ac.jp).

3Department of Mathematics, National Technical University, Zografou Campus, 15780
Athens, GREECE (E-mail: ppsarr@math.ntua.gr).

1



then P (λ) is called selfadjoint. A scalar λ0 ∈ C is said to be an eigenvalue of
P (λ) in (1) if the system P (λ0)x = 0 has a nonzero solution x0 ∈ Cn. This
solution x0 is known as an eigenvector of P (λ) corresponding to λ0, and the set
of all eigenvalues of P (λ) is the spectrum of P (λ), namely,

sp(P ) = {λ ∈ C : detP (λ) = 0}.

The numerical range of P (λ) in (1) is defined by

W (P ) = {λ ∈ C : x∗P (λ)x = 0, for some nonzero x ∈ Cn}. (2)

Clearly, W (P ) is always closed and contains the spectrum sp(P ). If P (λ) =
Iλ−A, then W (P ) coincides with the classical numerical range of matrix A,

F (A) = {x∗Ax : x ∈ Cn, x∗x = 1}.
The last decade, the numerical range of matrix polynomials has attracted

attention, and several results have been obtained (see e.g., [1], [6], [7], [8] and
[10]). The numerical range W (P ) in (2) is not always connected, and it is
bounded if and only if 0 /∈ F (Am) [6]. Furthermore, if µ is a boundary point
of W (P ), then the origin is also a boundary point of F (P (µ)); in general, the
corners of W (P ) are eigenvalues of P (λ) [8].

F. D. Murnaghan [9] and R. Kippenhahn [5] independently showed that the
boundary ∂F (A) is the set of real points of the algebraic curve whose equation
in line coordinates is

det(uI + vAh + wAsh) = 0,

where the matrices

Ah =
A + A∗

2
and Ash =

A−A∗

2i
(3)

are Hermitian and satisfy A = Ah + iAsh. Using this fact, R. Kippenhahn
proved that the non-differentiable points of ∂F (A) are eigenvalues of A. In the
last fifty years, there were no results on the computation of the point equation
of the curves ∂F (A) and ∂W (P ). The only exception has been the work of M.
Fiedler [2] on the the numerical range of complex matrices. Recently, in [1] and
[10], it was proved that the boundary of the numerical range of a 2× 2 matrix
polynomial lies on an algebraic curve of degree at most 4m, where m is the
degree of the polynomial.

In this paper, we investigate the point equation of the boundary ∂W (P )
continuing the work in [1] and [10]. In Section 2, a necessary condition for
the origin to be a boundary point of the numerical range of a fixed matrix is
obtained. This result provides, in Section 3, a necessary condition for points
in the complex plane to lie on the boundary of W (P ) in (2), and an algebraic
curve of degree at most 2n(n− 1)m, which contains ∂W (P ) is formulated. The
suggested reference on algebraic curves is [12]. Finally, we present examples to
illustrate our results, and an open problem is stated.
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2 Matrix Case

Suppose that A is an n × n (n ≥ 2) complex matrix with numerical range
F (A). In this section, we prove that if the origin is a boundary point of F (A),
then the polynomial f(t) = det(A + tA∗) has a multiple root of modulus one.
The next lemma is necessary.

Lemma 1 For any pair of n× n complex matrices A and B,

lim
s→0

1
s

(det(2A + sA + sB)− det(2A + sB)) = 2n−1 n detA.

Proof Let A = (aj,k) and B = (bj,k) (j, k = 1, 2, . . . , n) and denote

K(s) = det(2A + sA + sB)− det(2A + sB).

By the definition of the determinant, we have

K(s) =
∑

σ∈Sn

sign(σ)
n∏

j=1

(2 aj,σ(j) + s aj,σ(j) + s bj,σ(j))

−
∑

σ∈Sn

sign(σ)
n∏

j=1

(2 aj,σ(j) + s bj,σ(j)).

Straightforward computations yield

lim
s→0

1
s

K(s) =
∑

σ∈Sn

sign(σ) a1,σ(1) 2 a2,σ(2) . . . 2 an,σ(n)

+
∑

σ∈Sn

sign(σ) 2 a1,σ(1) a2,σ(2) . . . 2 an,σ(n) + . . .

+
∑

σ∈Sn

sign(σ) 2 a1,σ(1) 2 a2,σ(2) . . . an,σ(n)

= 2n−1 ndetA

completing the proof. ¤

Our criterion, and main result of this section, is the following.

Theorem 2 Let A be an n × n complex matrix with numerical range F (A),
and let 0 ∈ ∂F (A). Then the polynomial

f(t) = det(A + tA∗)

satisfies one of the following:

(i) The polynomial f(t) is identically zero, i.e., f(t) = 0 for every t ∈ C.
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(ii) f(t) is a nonzero polynomial of degree at most n, it has a multiple root
t0 = eiθ0 , θ0 ∈ [0, 2π], and the boundary ∂F (A) has a unique tangent at
the origin,

ε0 =
{

u + iv : (u, v) ∈ R2, u cos
(

θ0

2

)
+ v sin

(
θ0

2

)
= 0

}
.

Proof If 0 ∈ ∂F (A) ∩ sp(A), then by Lemma 3.3 in [7], there is a unit vector
y ∈ Cn such that Ay = A∗y = 0. Then the matrix A + tA∗ is singular for
all complex t, and thus the polynomial f(t) = det(A + tA∗) is identically zero.
Hence, we assume that the matrix A is nonsingular and we consider two cases.

First we consider the case where F (A) has no interior points. Since 0 ∈ F (A),
it is clear that there exists an angle φ0 ∈ [0, π] such that A = i eiφ0H, where H
is Hermitian. In this case, we can assume that

A = i eiφ0 diag{a1, a2, . . . , an},

aj ∈ R (j = 1, 2, . . . , n), and hence the polynomial f(t) is written

f(t) =
n∏

j=1

(i eiφ0 aj − i t e−iφ0 aj) = (−i e−iφ0)n




n∏

j=1

aj


 (t− ei2φ0)n.

Since A is nonsingular, all the scalars a1, a2, . . . , an are nonzero. Then f(t) has
a multiple root t0 = ei2φ0 . Note also that the origin is not an endpoint of the
line segment F (A), and F (A) lies on the line

ε0 =
{
u + iv ∈ C : (u, v) ∈ R2, u cos φ0 + v sin φ0 = 0

}
.

Second we consider the case where F (A) has a nonempty interior. Since
A is nonsingular, the origin is not a corner of F (A) [3], i.e., the boundary
∂F (A) is differentiable sufficiently close to the origin. Thus, the supporting
line of F (A) at 0 is unique and coincides with the unique tangent of ∂F (A)
at 0. Moreover, there exists an angle φ1 ∈ [0, 2π] such that the numerical
range F (eiφ1A) = eiφ1F (A) lies in the right closed half plane. Equivalently, the
Hermitian matrix

eiφ1A + e−iφ1A∗

2
= cos φ1 Ah + sin φ1 Ash,

where the matrices Ah and Ash are defined in (3), is positive semidefinite.
Consider the polynomial

f̃(t) = det(e−iφ1A + t eiφ1A∗) = e−inφ1f(ei2φ1t).

Then f(t) has a multiple root t0 = ei2φ1 if and only if f̃(t) has a multiple root
t1 = 1. Hence, without loss of generality, we assume that the Hermitian matrix
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Ah is singular and positive semidefinite, and it is enough to prove that t0 = 1
is a multiple root of f(t). Under our assumptions, it is clear that

f(1) = 2ndet(Ah) = 0.

For the derivative, we have

f ′(1) = lim
t→0

1
t

(f(1 + t)− f(1))

= lim
t→0

1
t

(det(2Ah + t Ah − i t Ash)− det(2Ah − i t Ash))

+ lim
t→0

1
t

(det(2Ah − i t Ash)− det(2Ah)).

Hence by Lemma 1,

f ′(1) = 2n−1 n det(Ah) + lim
t→0

1
t

(det(2Ah − i t Ash)− det(2Ah))

= lim
t→0

1
t

(det(2Ah − i t Ash)− det(2Ah)).

As the limit limt→0 (1/t) (det(2Ah−i t Ash)−det(2Ah)) exists, we may evaluate
it by restricting t pure imaginary. Consequently,

f ′(1) = − i lim
s→0

1
s

(det(2Ah + sAsh)− det(2Ah)) (s ∈ R). (4)

For the real variable s, consider the polynomial g(s) = det(Ah + sAsh). Then
g(0) = 0 (recalling that detAh = 0), and by (4), it follows that f ′(1) = 0 if
and only if g′(0) = 0. By [11], sufficiently close to the origin, the polynomial
g(s) can be written in the form g(s) =

∏n
j=1 λj(s), where the eigenvalues of

the Hermitian matrix Ah + sAsh, λ1(s), λ2(s), . . . , λn(s) depend analytically
in s ∈ R. Since g(0) = 0, we may assume that λ1(0) = 0. Furthermore,
for the sake of contradiction, assume that for every j ∈ {2, 3, . . . , n}, λj(0) 6=
0. Since the Hermitian matrix Ah is positive semidefinite, all the eigenvalues
λ2(0), λ3(0), . . . , λn(0) are positive. If λ′1(0) < 0 (resp. λ′1(0) > 0), then there
exists a real δ > 0 such that for −δ ≤ s < 0 (resp. 0 < s ≤ δ),

λ1(s) > 0 and λj(s) > 0 (j = 2, 3, . . . , n).

Thus, the Hermitian matrix Ah − δAsh (resp. Ah + δAsh) is positive definite.
This means that for every unit vector x0 ∈ Cn such that x∗0Ahx0 = 0, we have
x∗0Ashx0 6= 0, which is a contradiction since 0 ∈ F (A). Hence λ′1(0) = 0, and
consequently, g′(0) = 0 and f ′(1) = 0. The proof is complete. ¤

The converse of the above theorem is not true. For example, if 0 is a normal
eigenvalue of A (even in the interior of F (A)), then the polynomial f(t) is always
identically zero. Furthermore, for every complex diagonal matrix A with at least
two nonzero real diagonal elements, the polynomial f(t) = det(A + t A∗) has a
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multiple root t0 = −1, but the origin may be either an interior or an exterior
point of F (A).

Remark 1 One may ask if for every matrix A such that the polynomial f(t) =
det(A + tA∗) is identically zero, 0 is necessarily a normal eigenvalue of A.
This is not true as is illustrated in the following example. Consider the matrix
A = Ah + iAsh with

Ah =




0 0 0
0 −4 0
0 0 1


 and Ash =




0 2 1
2 4 2
1 2 1


 .

Then the polynomial f(t) = det(A + tA∗) is identically zero, or equivalently,
for every t ∈ C, the matrix

Ah + tAsh =




0 2t t
2t 4t− 4 2t
t 2t t + 1




is singular. It is easy to see that the eigenvector of Ah + tAsh corresponding
to 0 is y(t) = [−2, −t, 2t ]T . The Hermitian matrices Ah and Ash have no
common eigenvector corresponding to 0. Consequently, the matrices A and A∗

have also no common eigenvector corresponding to 0, and 0 is not a normal
eigenvalue of A (see also Lemma 3.3 in [7]).

3 Matrix Polynomial Case

For the remainder of the paper, it is necessary to recall an algebraic criterion
for a scalar polynomial to have a multiple root. Consider a polynomial of the
form

g(t) = αlt
l + αl−1t

l−1 + . . . + α1t + α0

and its derivative

g′(t) = lαlt
l−1 + (l − 1)αl−1t

l−2 + . . . + α1,

where α0, α1, . . . αl ∈ C and t is a complex variable. We define D̃g the re-
sultant (Sylvester determinant) of g(t) and g′(t), that is, D̃g = det∆g, where
∆g is the (2l − 1)× (2l − 1) matrix

∆g =




lαl (l − 1)αl−1 . . . α1 0 0 . . . 0
0 lαl (l − 1)αl−1 . . . α1 0 . . . 0
...

...
...

. . . . . . . . . . . .
...

0 . . . . . . lαl (l − 1)αl−1 . . . . . . α1

αl αl−1 . . . . . . α0 0 . . . 0
0 αl αl−1 . . . . . . α0 . . . 0
...

...
...

. . . . . . . . . . . .
...

0 . . . αl αl−1 . . . . . . . . . α0




.
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The polynomial D̃g = det∆g is homogeneous in variables α0, α1, . . . αl, of de-
gree at most 2l − 1, and contains a factor αl. If αl 6= 0, then the quantity
Dg = D̃g/αl is said to be the discriminant of the polynomial g(t), and it is a
homogeneous polynomial in α0, α1, . . . αl of degree at most 2l − 2. Further-
more, Dg = 0 if and only if g(t) has a multiple root [12]. If αl = 0, then Dg is
assumed to be zero.

For an n× n matrix A = (aj,k), consider the polynomial

f(t) = det(A + tA∗) = αntn + αn−1t
n−1 + . . . + α1t + α0,

where αn is allowed to be zero. Then every coefficient αq (q = 0, 1, . . . , n) is a
homogeneous polynomial in aj,k and aj,k (j, k = 1, 2, . . . , n) of degree at most
n. Hence, the discriminant Df of the polynomial f(t) = det(A + tA∗) can
be viewed as a homogeneous polynomial in aj,k and aj,k (j, k = 1, 2, . . . , n) of
degree at most 2n(n− 1).

Let P (λ) = Amλm + . . . + A1λ + A0 be an n × n matrix polynomial as
in (1) with numerical range W (P ) as in (2). In the following, we estimate the
point equation of the curve ∂W (P ) generalizing somehow results in [1], [5], [9]
and [10].

Theorem 3 Consider a matrix polynomial P (λ) as above. Then the boundary
of the numerical range W (P ) lies on the algebraic curve

{u + iv ∈ C : (u, v) ∈ R2, DP (u, v) = 0},
where DP (u, v) is the discriminant of the polynomial

GP (t; u, v) = det(P (u + iv) + t [P (u + iv)]∗), (5)

with respect to variable t. This discriminant is a polynomial (not necessarily
with real coefficients) in u, v ∈ R of total degree at most 2n(n− 1)m.

Proof By Theorem 1.1 in [8], every boundary point µ of W (P ) satisfies the
condition 0 ∈ ∂F (P (µ)). Thus, by Theorem 2, the discriminant DP (u, v) of the
polynomial (with respect to t ),

GP (t; u, v) = det(P (u + iv) + t [P (u + iv)]∗),

where (u, v) ∈ R2 and t ∈ C, satisfies DP (u, v) = 0 when u + iv ∈ ∂W (P ). The
matrix polynomial P (λ) can also be written in the form

P (λ) =




p1,1(λ) p1,2(λ) . . . p1,n(λ)
p2,1(λ) p2,2(λ) . . . p2,n(λ)

...
...

. . .
...

pn,1(λ) pn,2(λ) . . . pn,n(λ)


 ,

where the entries pj,k(λ) = pj,k(u + iv) (j, k = 1, 2, . . . , n) are polynomials in
u, v ∈ R of degree at most m. Therefore, the discriminant DP (u, v) of the
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polynomial GP (t;u, v) in (5) is a polynomial in u, v ∈ R of total degree at most
2n(n− 1)m. ¤

It is worth noting that for the polynomial GP (t;u, v) in (5), we have

tn GP (t−1; u, v) = det(t [P (u + iv)]∗ + P (u + iv)) = GP (t; u, v).

Hence, t0 is a nonzero root of GP (t;u, v) with multiplicity k if and only if
t
−1
0 is a root of GP (t; u, v) with the same multiplicity. Moreover, if the poly-

nomial GP (t; u, v) is quadratic with respect to t, and for some (u0, v0) ∈ R2,
GP (t; u0, v0) has a double root t0, then clearly |t0| = 1 (see Examples 1 and 3
below).

Remark 2 If u0 + iv0 (u0, v0 ∈ R) is an isolated point of W (P ), then by
Theorem 2.1 in [8], P (u0 + iv0) = 0 and consequently, GP (t; u0, v0) ≡ 0.

Our method is applicable to a “generic” matrix A or matrix polynomial
P (λ) to compute the point equation of the boundary ∂F (A) or ∂W (P ) as it is
illustrated in the following three examples. Notice that in the first example we
consider a known special case of matrices verifying Theorem 3.

Example 1 Let A be a 2 × 2 complex matrix. By Properties 1.2.3 and 1.2.4
in [3], we may assume that

A =
[

a b
0 −a

]
,

where a ∈ R and b ∈ C. Then for the linear pencil L(λ) = Iλ−A, we have

GL(t;u, v) = det(L(u + iv) + t [L(u + iv)]∗)
= ((u− iv)2 − a2) t2 + (2u2 + 2v2 − 2a2 − |b|2) t

+(u + iv)2 − a2.

The discriminant of GL(t; u, v) is

DL(u, v) = 4|b|2u2 + (16a2 + 4|b|2)v2 − |b|4 − 4a2|b|2,

and for b 6= 0, the algebraic curve DL(u, v) = 0 is the ellipsis

∂F (A) =
{

u + iv ∈ C : (u, v) ∈ R2,
4u2

4a2 + |b|2 +
4v2

|b|2 = 1
}

as in Theorem 1.3.6 in [3].

Example 2 For the 3× 3 matrix

A =




0 0 1
0 0 0
0 0 0


 ,
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consider the linear pencil L(λ) = Aλ + I. Then the numerical range of L(λ) is

W (L) = {λ−1 ∈ C : λ ∈ F (−A), λ 6= 0}
= C \ {λ ∈ C : |λ| < 2}.

The polynomial

GL(t;u, v) = det(L(u + iv) + t [L(u + iv)]∗)
= (t + 1)3 − (t + 1) |u + iv|2t
= (t + 1)(t2 + (2− u2 − v2) t + 1)

has a multiple root (which always has modulus equal to one) if and only if

u2 + v2 = 4 or u2 + v2 = 0.

Hence, if DL(u, v) is the disciminant of GL(t; u, v), then the algebraic curve
DL(u, v) = 0 is the union of the origin and the circle

∂W (L) = {u + iv ∈ C : (u, v) ∈ R2, u2 + v2 = 4}.

Example 3 Consider the quadratic matrix polynomial

P (λ) =
[

1 0
0 0

]
λ2 −

[
1 1
0 1

]
.

The numerical range W (P ) consists of two unbounded connected components,
and a few thousands of (mostly interior) points of W (P ) are sketched in Figure
1. It is obvious that we cannot have a clear picture of W (P ) and its boundary,
yet. The polynomial GP (t; u, v) is given by

GP (t; u, v) = det(P (u + iv) + t [P (u + iv)]∗)

= det
([

(u2 − v2 − 1 + i2uv) + (u2 − v2 − 1− i2uv) t −1
−t −1− t

])

= − (u2 − v2 − 1− i2uv) t2 − (2u2 − 2v2 − 1) t

− (u2 − v2 − 1 + i2uv).

The discriminant of GP (t; u, v) is

DP (u, v) = −16u2v2 + 4u2 − 4v2 − 3,

and the real algebraic curve DP (u, v) = 0 coincides with the boundary of W (P )
and has two branches,

{
u + iv ∈ C : (u, v) ∈ R2, u ≥

√
3

2
, v = ±

√
4u2 − 3
4 + 16u2

}
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and {
u + iv ∈ C : (u, v) ∈ R2, u ≤ −

√
3

2
, v = ±

√
4u2 − 3
4 + 16u2

}

(see Figure 1). Notice that for every point (u0, v0) ∈ R2 such that DP (u0, v0) =
0, the polynomial GP (t; u0, v0) has a double root

t0 = − 2u2
0 − 2v2

0 − 1
2u2

0 − 2v2
0 − 2− i4u0v0

with |t0| = 1 . This explains why the curve DP (u, v) = 0 is exactly the same
with the boundary ∂W (P ).
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Figure 1: An unbounded numerical range and its boundary.

Remark 3 The disciminant DP (u, v) in Theorem 3 is a polynomial in real
variables u, v (of total degree at most 2n(n− 1)m) but its coefficients may be
non-real. Then we can write

DP (u, v) = ReDP (u, v) + i ImDP (u, v),

where ReDP (u, v) and ImDP (u, v) are real polynomials. As a consequence,
if Γ(u, v) is the greatest common divisor of the polynomials ReDP (u, v) and
ImDP (u, v), then the non-isolated part of the algebraic curve

{(u, v) ∈ R2 : DP (u, v) = 0}

coincides with the non-isolated part of the real algebraic curve of total degree
at most 2n(n− 1)m,

{(u, v) ∈ R2 : Γ(u, v) = 0}.
(By the non-isolated part of an algebraic curve we mean the curve without its
isolated points).
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4 An Open Problem

Let P (λ) = Amλm+Am−1λ
m−1+. . .+A1λ+A0 be an n×n matrix polynomial

with numerical range W (P ) 6= C. Suppose now that the polynomial GP (t; u, v)
in (5) is not identically zero and has the following irreducible form:

GP (t; u, v) =
ρ1∏

j=1

[G1,j(u, v)]nj

ρ2∏

j=1

[G2,j(t, u, v)]mj , (6)

where G1,j(u, v)’s and G2,j(t, u, v)’s are mutually distinct (up to constant mul-
tiple) irreducible polynomials in the polynomial ring C[t, u, v] with at least one
nonzero power of t in every G2,j(t, u, v) (j = 1, 2, . . . , ρ2), and nj ’s and mj ’s are
positive integers. If mj ≥ 2 for some j ∈ {1, 2, . . . , ρ2}, then the discriminant
DP (u, v) of the polynomial GP (t;u, v) (with respect to t ) is identically zero
providing no information.

Suppose that there is a factor [G2,j(t, u, v)]mj in (6) with mj ≥ 2. If for
every (u, v) ∈ R2, G2,j(t, u, v) has no root on the unit circle of the complex
plane, then by the second part of Theorem 2, we can just take away this factor
and compute the disciminant of GP (t; u, v)/[G2,j(t, u, v)]mj . Otherwise, we
consider the polynomial

G#
P (t;u, v) =

ρ1∏

j=1

[G1,j(u, v)]nj

ρ2∏

j=1

[G2,j(t, u, v)].

The discriminant D#
P (u, v) of G#

P (t; u, v) (with respect to t ) is a nonzero poly-
nomial in u, v ∈ R, and it seems that the boundary of W (P ) lies on the
algebraic curve D#

P (u, v) = 0, as in the Examples 4 and 5 bellow. Until now,
there is no proof known to the authors.

Example 4 For an n×n matrix polynomial of the form P (λ) = p(λ)In, where
p(λ) is a scalar polynomial of degree m, it is easy to see that W (P ) coincides
with the set of the roots of p(λ) (with at most m elements). The polynomial
GP (t; u, v) = det(P (u + iv) + t [P (u + iv)]∗) is of the form

GP (t; u, v) = (p(u + iv) + t p(u + iv))n.

Hence, the square free polynomial, with respect to t,

G#
P (t; u, v) = p(u + iv) + t p(u + iv)

is identically zero when p(u + iv) = 0, and it has a single root

t1(u, v) = − p(u + iv)
p(u + iv)

when p(u + iv) 6= 0.
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Example 5 Consider the linear pencil L(λ) = Iλ−A, where

A =




0 1 0 0
0 0 1 1
0 0 0 0
0 0 0 0


 .

Then the polynomial GL(t; u, v) = det(L(u + iv) + t [L(u + iv)]∗) is given by

GL(t;u, v) = (u− iv)4t4 + (u− iv)2(4u2 + 4v2 − 3) t3

+6(u2 + v2)(u2 + v2 − 1) t2

+(u + iv)2(4u2 + 4v2 − 3) t + (u + iv)4

= [u + iv + (u− iv) t ]2 [(u− iv)2t2

+(2u2 + 2v2 − 3) t + (u + iv)2],

and its discriminant DL(u, v) (with respect to t ) is identically zero. Note also
that for every (u, v) ∈ R2 \ (0, 0), GL(t; u, v) has a multiple root

t(u, v) = − u + iv

u− iv

with |t(u, v)| = 1. By the above discussion, we consider again the square free
polynomial

G#
L (t; u, v) = [u + iv + (u− iv) t ] [(u− iv)2t2 + (2u2 + 2v2 − 3) t + (u + iv)2].

The discriminant of G#
L (t; u, v) (with respect to t ) is

D#
L (u, v) = 27(u2 + v2)(4u2 + 4v2 − 3),

and the algebraic curve D#
L (u, v) = 0 coincides with the union of the origin and

the circle {u + iv ∈ C : (u, v) ∈ R2, u2 + v2 = 3/4}. One can verify that the
numerical range W (L) ≡ F (A) is the circular disk

{u + iv ∈ C : (u, v) ∈ R2, u2 + v2 ≤ 3/4}.
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