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Abstract

In this note, we obtain a lower bound for the distance between the
pseudospectrum of a matrix polynomial and a given point that lies out of
it, generalizing a known result on pseudospectra of matrices.
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1 Introduction and definitions

Let C™*™ be the algebra of all n xn complex matrices, and consider the higher
order linear system A, u(™ (t)+A,,_1u™=D ()4 -+ A (8)+Agu(t) = f(t),
where A; € C"*™ (j =0,1,...,m) with det A,,, # 0, u(t) € C" is the unknown
vector function and f(t) € C™ is piecewise continuous (the indices on w(t)
denote derivatives with respect to the independent variable ¢). Applying the
Laplace transformation yields the matriz polynomial

P(A) = ApA™ 4 A A oo AJX + Ag, (1)

where A is a complex variable. The study of matrix polynomials has a long
history, especially with regard to their spectral analysis, which leads to the
solutions of the corresponding systems of differential equations [1].

A scalar A\ € C is said to be an eigenvalue of the matrix polynomial P()\) in
(1) if the system P(Ag)x = 0 has a nonzero solution xy € C™. This solution x is
known as an eigenvector of P(\) corresponding to Ag. The set of all eigenvalues
of P()) is the spectrum of P()), namely, o(P) = {\ € C:det P(A\) =0}, and
since det A,, # 0, it contains no more than nm distinct (finite) elements.
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We are interested in the spectra of perturbations of the matrix polynomial
P(A) in (1) of the form

Pa(N) = (A + A0 )N ™ + (Ap1 + D DN b (AL F AN+ Ag + Ay,

where the matrices Ag, Aq,..., A, € C**" are arbitrary. For a given ¢ > 0
and a given set of nonnegative weights w = {wp, wy, ..., w,,} with at least one
nonzero element, the (weighted) e-pseudospectrum of P()\) is defined by

Oew(P) = {A € C:det PA(N) =0, ||Ajll2 <ewj, j=0,1,...,m},

where ||-]|2 denotes the spectral norm, i.e., the matrix norm subordinate to the
Euclidean vector norm. The parameters wg, wy, ..., w, > 0 allow freedom in
how perturbations are measured; for example, in an absolute sense when wy =
wy =--- =W, =1, or in a relative sense when w; = ||4;]l2 ( =0,1,...,m).

If P(A) = IXN— A for some A € C"*", then o(P) coincides with the
standard spectrum of A, o(A). If in addition, we set w = {wop, w1} = {1,0},
then o, w(P) coincides with the e-pseudospectrum of the matrix A [2, 3, 4, 5],
that is,

0e(A) = {AeC:Aeo(A+E), ||E|2<e}.

Denote by smin(-) and spax(-) the minimum and the maximum singular
values of a complex matrix, respectively. If we consider the scalar polynomial

Gw(A) = W A™ + W AT 4w A+ wo, (2)
then by [6, Lemma 2.1],
Oew(P) = {A € C i smin(P(N) < eqw(|AD}-

As the parameter £ > 0 increases, the e-pseudospectrum of P(A) enlarges, and
for e large enough, o, w (P) is no longer bounded. On the other hand, since the
leading coefficient A,, is nonsingular, for sufficiently small €, o, w(P) consists
of no more than nm bounded connected components, each one containing a
single (possibly multiple) eigenvalue of P(\). Moreover, by Theorems 2.2 and
2.3 of [7], we know that the pseudospectrum o, w(P) is bounded if and only
if ewn < Smin(Am), and in this case, it has no more than nm connected
components.

Pseudospectra provide important insights into the sensitivity of eigenvalues
under perturbations and have several applications (see [2, 3, 4, 5, 6, 7] and
the references therein). In this article, we continue the investigation of the
e-pseudospectrum of the matrix polynomial P(X) in (1), constructing a lower
bound for the distance between o, v (P) and a given point A\g ¢ o w(P).

2 The distance lower bound

A simple inclusion-exclusion algorithm for the estimation of pseudospectra of
complex matrices was recently proposed by Koutis and Gallopoulos [8] (this
work can be downloaded from [4]). Their methodology is based on the following
result (see also [2, 3]).



Theorem 1 [8, Theorem 2.4] Let A € C"*™, ¢ >0 and Ao ¢ 0-(A). Then the
distance dist(Ng, 0 (A)) from the point Ny to the e-pseudospectrum of A satisfies

diSt()\(),O'E(A)) Z Smin(IAO - A) —E&.

Consider now an n x n matrix polynomial P(\) as in (1), an & > 0,
some weights wg, w1, ..., w, > 0 and the corresponding polynomial gy ()
in (2). For a given A\g ¢ 0. w(P), we obtain a lower bound for the distance
dist(Xo, 0e,w(P)), generalizing Theorem 1. The following two lemmas are nec-
essary for our discussion. The first lemma can be found in [9], and the second
one is a simple exercise in polynomials.

Lemma 2 For any A,B € C"™™, |spin(A+ B) — $min(A)| < Smax(B).

Lemma 3 Let p(\) = apA\™ + @y 1 AL+ - + a1\ — ag be a scalar poly-
nomial with ag > 0, ai,as3,...,a.,, > 0 and at least one of the coefficients
a1,az2, ..., 4y positive. Then p(\) has exactly one positive zero.

Theorem 4 For any Ao ¢ 0.w(P), we have the following two cases:

(1) Suppose that at least one of the given weights wy,wa, ..., wy, s positive,
and ry is the positive root of

(m) (1) ,
gw ([ Aol) P gw (| Aol) N — Smin (P(Xo))
m! 1! €

~ (o)) = 0.
For any v € (0,1), let vy be the positive root of the equation

PO () PM(X
P20z oy IO 5 (PO — 2 gl +972)) = 0

Then dist(Ag, 0e,w(P)) > min{yry,r,}.

(i) If wy =we =---=wy =0 and rq is the positive root of
Pm)(\ P
PO oy IPOE L oy ) o,

then dist(Xo, oe,w(P)) > 0.
Proof Suppose that Ay ¢ 0. w(P), or equivalently, smin(P(Xo)) > € gw(|No])-

Then for any nonzero u € C, we have
P A p(m) A
(0)M++ (C')M’m7
1! m!
where the matrix P("™()\g)/(m!) = A,, is nonsingular. By Lemma 2 and norm
properties, it follows

P(ho + 1) = P(ho) +

A

mpG) .
|Smin(P()‘0 + N)) - Smin(P()\O))| S Smax Z ]D.]E)\O) Mj
j=1 '

Z ||P(7) /\0 2 uff



Hence,
PG (N )
S IO s < (PO + 12)) = min(PO)),
=1 J:
or equivalently,
= ||PY( )\ )
Smm Z H 0 ||2 | ‘] S Smin(P()\O +M))

Thus, for

1 ||P(” )\0 Hz :
e ——~ Smln |] )
Gw (| Ao + 1] Z

or equivalently, for

[P (M) l2
m!

1P (o)l

m
L

1] = (smin (P(X0)) — € qw (| Ao + ])) < 0

(3)
we have Spin(P(Ao + 1)) > eaqw(|Xo + pl), ie., Ao+ p ¢ 0cw(P). Further-
more, observe that the difference $umin(P(Mo)) — € ¢w(JAo + 1£|) (in the constant
coefficient of the scalar polynomial in the left-hand part of (3)) is positive when
Smin(P (o)) — € gqw(|Xo| + |1]) > 0, or equivalently, when

(m) (1 .
Gw ng!AOD gw’ (] °>Iu|—< mm(IS(Ao))

i 4 2 “av(o) <0 (@

Next we consider the two cases of the theorem:

(i) Assume that at least one of the weights wi,ws,...,w,, is positive. Since
Smin(P(X0)) — € gw(]Ao]) > 0, by Lemma 3, the polynomial

(m) (1)
(Rl 1o (DD | { 5min(PO0))
o ol) g 2ol (el

awllo)

has exactly one positive zero, 1. Then for every nonzero p € C with |u| < rq,
(4) holds and Smin(P(Xo)) > € gw(|Ao| + |¢|). Hence, for any v € (0, 1),

Smin(P()\O)) > EQWO)‘O| +7T1)a
and consequently, the scalar polynomial

p(m) p)
1P Oy, 1PV o)l

m! 1 (8min(P(Mo)) — € gw (| Ao +771))



satisfies the conditions of Lemma 3 and has exactly one positive zero, r,. Fur-
thermore, for every nonzero p € C such that |p| < min{yr,r,}, we have

P (Xo)|2 PM(Xo)ll2

%W - +M| | = (Smin (P(X0)) — € qw (X0 + 1))
PO 2, P(l) A0l

= w“” T +Ml | = (Smin(P(X0)) — € qw(|Xo] + |1]))
P2, im PO (X)|l2

< %'M +'“+M“il_(Smin(P(/\O))—€qw(|/\()|+’yr1))

< 0.

Thus, for every nonzero u € C such that |u| < min{yry,r,}, both (3) and (4)
hold, and as a consequence, Ao + i ¢ 0 w(P).

(i) Assume that w; = wg =+ = w,;, =0 and wg > 0. Then gw () = wq for
every A € C. Hence, for every p € C, the difference smin(P(Mo)) — € qw(| Ao +
1)) = $min(P(Xg)) — e wp is positive. The scalar polynomial

P\ PM (X
| (' Ollz ym . 1P Qo)ll2 A= (5min(POMo)) — € 00)
m! 1
satisfies the conditions of Lemma 3 and has exactly one positive zero, ry. As in
case (i), for every nonzero p € C such that |u| < ro,

P () PM()
I ( o)lleermJr | ( 0)ll2

m! ‘ | (smln( (AO)) —Swo) < 0,

i.e., (3) holds. Thus, smin(P(Ao+ 1)) > €wp, or equivalently, the point Ao+ i
does not belong to oe w(P). O

Note that r., in part (i) of this theorem is a continuous decreasing function
of the variable v € (0,1) with lim, ;- r, = 0. As a consequence, the curve
{(,7y) + v € (0,1)} has exactly one common point with the line segment
{(v,yr1) : v € (0,1)}, which is the only maximum of the function min {yry,r,}
(see Figure 2 below). If this common point is (y0,7+,) = (70,771) (for a
v € (0,1)), then r,, = ~ory is the best lower bound that Theorem 4 can give,
as it is illustrated in the following example.

Example The spectrum of the matrix polynomial

1 0 0 0 0 0 -2 8 0
PAN=|-11 1 [X+]|-200|A+|10 6 0
0 0 -1 0 0 1 8§ -8 10

is o(P) = {—3.9698,—1.9194,1.6868,4.6209,0.2908 +13.9250}. For ¢ = 04
and w = {1, 1,1}, the pseudospectrum o, w(P) is bounded and its boundary is
drawn in Figure 1, where the eigenvalues of P()) are plotted as ‘+” and the point
0 ¢ 0cw(P) is marked with an asterisk. For the distance dist(0, oz w(P)), we
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Figure 1: The pseudospectrum g 4w (P) with five connected components.
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Figure 2: The function min {yry,7,} for v € (0,1).



verify that r; = 2.8113 and, as one can see in Figure 2, the best lower bound
that Theorem 4 (i) can imply is 0.9355 (which corresponds to v = 0.3328).
This bound is satisfactory, keeping in mind that the closest to the origin real
boundary point of o, w(P) is 1.3686. O

Theorem 4, the relative discussion and straightforward calculations yield the
following result.

Corollary 5 Let Q(N\) = A1\ + Ay be a linear pencil with det A; # 0. Then
for any Ao ¢ 0-w(Q), we have

(A1Xo + Ag) — € (wi|Xo| + wo)
|A1ll2 + e wr

dist(No, 0o (Q)) > i

We remark that for A3 A+ Ag = IA—A and w = {1,0}, the above corollary
implies directly Theorem 1.
Suppose now that w,, > 0. If the magnitude of )y is sufficiently large,

then the quantity q‘(,g)(|)\0|)/(j!) can be approximated by < Zn ) Wyn | Ao|™ 7

for every 5 = 0,1,...,m. Furthermore, spmin(P(N\g)) can be estimated by
Smin(Am)|Ao|™ (which is positive since det A,, # 0). As a consequence, (4)
is approximated by the inequality

m m m m— Smin(Am) m
(7 Yo (7 Yt - (2 Y <o

where Smin(Am)/e — wm, > 0 if and only if 0. w(P) is bounded [7, Theorem
2.2]. Dividing by |X\g|™, it follows

m W, m Wi Smin(Am) >
" moo 4 — — | — —w,y, < 0’
() gl () = (=

where all the positive coeflicients of the (positive) powers of |u| are relatively
small. Hence, we conclude that if one of the weights wq,ws, ..., w,, is positive,
0e,w(P) is bounded and || is sufficiently large, then r1 in Theorem 4 becomes
relatively large. In particular, it becomes proportional to |Ag].
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