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EIGENVALUE CHARACTERIZATION OF SOME STRUCTURED MATRIX PENCILS

UNDER LINEAR PERTURBATION∗

MORAD AHMADNASAB† AND PANAYIOTIS J. PSARRAKOS‡

Abstract. We study the effect of linear perturbations on three families of matrix pencils. The matrix pairs of the first

two families are Hermitian/skew-Hermitian with special 3 × 3 block cases appeared in continuous-time control, and the matrix

pairs of the third family are special 3×3 non-Hermitian block matrices appeared in discrete-time control. For the first family of

matrix pencils and more general cases of the second family of matrix pencils, based on the properties of the involved matrices,

we obtain some upper or lower bounds on the set of eigenvalues of linearly perturbed matrix pencils which are on the imaginary

axis. Studying a special 3 × 3 block matrix pencil, which is associated with continuous-time control, leads us to some linear

perturbation that do not preserve (properly) the structure of the matrices. This, in turn, leads to a numerical technique for

finding the nearest Hermitian/skew-Hermitian matrix pencil which can satisfy conditions such that, for some nonzero real

perturbation parameter, some or all of its eigenvalues lie on the imaginary axis. We also study the linearly perturbed matrix

pencils, associated with discrete-time control, using an one-to-one equivalence between the matrix pencil of continuous-time

problem and the matrix pencil of discrete-time problem.

Key words. Linear perturbation, Hermitian/skew-Hermitian matrix pencil, Continuous-time control, Discrete-time

control.
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1. Introduction and motivation. Linear perturbation theory is a useful tool for investigating the

spectral sensitivity of standard and generalized eigenvalue problems [18, 30, 34]. It is also an effective way

for estimating the distance of many problems from some desirable or undesirable situations. An important

field where linear perturbation has specific applications is control theory [9, 12].

Our main motivation stems from the following two classical problems of optimal and robust control.

(A) The first problem is in continuous-time linear quadratic optimal control, and its objective is to find

a control input u(τ) in linear constant coefficient dynamical system:

M3ẋ = M1x+M2u, x(τ0) = x(0),

such that the closed loop system is asymptotically stable and∫ ∞
τ0

[
x(τ)

u(τ)

]T [
M4 M5

MH
5 M6

] [
x(τ)

u(τ)

]
dτ,

is minimized, where x(τ) ∈ Cn1 is the state, x(0) is an initial vector, M4 = MH
4 ∈ Cn1×n1 , and M6 =

MH
6 ∈ Cn2×n2 . Here, XH stands for the conjugate transpose of the complex matrix X. Using the maximum

principle [25, 28], this problem can be related to the eigenvalue problem of the matrix pencil:
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(1) Ac − λBc =

 0 M1 M2

MH
1 M4 M5

MH
2 MH

5 M6

− λ
 0 M3 0

−MH
3 0 0

0 0 0

 ,

see also [20, 21, 33]. For the complex (resp., the real) matrices Ac and Bc in (1), the finite eigenvalues of

Ac − λBc are symmetric with respect to the imaginary axis (resp., the real axis). If M3 is nonsingular,

then under standard assumptions in control theory [25, 32, 33], such a matrix pencil has exactly n1 (finite)

eigenvalues in the left half-plane, n1 (finite) eigenvalues in the right half-plane, and n2 infinite eigenvalues.

In this case, the pencil has a unique deflating subspace associated with the eigenvalues in the open left

half-plane. The situation is more complicated when M3 or M6 are singular; see [9] and the references therein

for more details. It is worth mentioning that the solution of the continuous-time optimal control problem

becomes ill-conditioned when the eigenvalues are close to the imaginary axis, and it may not exist when the

eigenvalues are on the imaginary axis [7, 13].

When we study the perturbation theory for the eigenvalue problem (1), usually two main types of

perturbations are considered, the perturbations that do not preserve the structure and the perturbations

that preserve the structure [30]. In this paper, first we analyze the structure-preserving linear perturbations

for more general matrix pencils (for brevity, we call them MG matrix pencils) including non-block matrix

pencils and block matrix pencils whose structure are very close to (1) with the difference that their first

diagonal block is not necessarily zero. What we actually do is to provide sufficient conditions under which,

for these kind of matrix pencils and for some z = iγ (γ ∈ R), there exists at least one nonzero real

perturbation parameter t such that the determinant of the perturbed matrix pencil becomes zero. These

sufficient conditions depend on the properties of the involved perturbation matrices and provide us with

lower or upper bounds on γ ∈ R of the catched z = iγ on the imaginary axis. Applying such methods leads

us to the following two achievements:

(a1) We give a solution for the problem: Find a small enough (the smallest if possible) nonzero real

perturbation parameter t such that the structured linear perturbation of an MG matrix pencil has

one or more eigenvalues on the imaginary axis.

(a2) We get very close to a solution of the problem: For any given MG matrix pencil with one or

more eigenvalues on the imaginary axis, find a small real perturbation parameter t for the linearly

perturbed version of this MG matrix pencil that removes all the eigenvalues from the imaginary

axis.

The first problem has an important partner in the sensitivity analysis of the optimal problem [9], and the

second problem has partners which are closely related to structured eigenvalue/eigenvector backward errors

of matrix pencils arising in optimal control [24] and to the problem of computing nearest stable matrix

pairs [15] (we remark that there are also some research works which study backward errors for eigenvalues

and eigenvectors of structured matrix pencils [1], structured nonhomogeneous matrix polynomials [2], and

structured homogeneous matrix polynomials [3, 4]).

It is impossible to answer the question in (a1) for the matrix pencils of type (1). Therefore, we will

suggest a two-phase numerical method to find the closest block MG matrix pencil to a matrix pencil of type

(1) for which there exists the smallest nonzero real number t, which moves at least one of the eigenvalues of

the perturbed matrix to the imaginary axis. This by itself suggests some specific linear perturbations that

do not preserve the structure of the problem (1).
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(B) The second problem our motivation comes from is in discrete-time linear quadratic optimal control

problem, and its objective can be related to the eigenvalue problem of the matrix pencil:

(2) Ad − λBd =

 0 M1 M2

−MH
3 M4 M5

0 MH
5 M6

− λ
 0 M3 0

−MH
1 0 0

−MH
2 0 0

 .
The finite eigenvalues of this problem are in pairs λ,

1

λ
in the case of complex matrices, or in quadruples

λ, λ̄,
1

λ
,

1

λ̄
in the case of real matrices. For the discrete-time case, the important problem that arises is

the study of small perturbations which lead to eigenvalues on the unit circle. These are the perturbations

that may disturb the spectral symmetry and the uniqueness of the deflating subspace associated with the

eigenvalues inside the open unit circle. As we will see, like the continuous-time problem, it is not possible

to find the above answer for the discrete-time problem. For this reason, a three-phase technique will be

proposed to find the answer to the above question for the nearest discrete-time problem. We achieve this

goal by exploiting an equivalence relation between discrete-time problem and continuous-time problem.

One major problem in both continuous-time control and discrete-time control is to provide more cus-

tomized and reliable methods for distinguishing the sensitivity of the problems. Any progress in this re-

gard can be helpful in designing more efficient numerical methods for solving both continuous-time and

discrete-time optimal and robust control problems. Therefore, our main aim in this work is to provide some

easy-to-use reliable methods for quantifying the sensitivity of the both problems.

For the classification of the problems that we study here, let t ∈ C, and suppose that the matrices

A,B ∈ Cn×n of the matrix pencil P (z) = A − zB are perturbed by the matrices t∆A, t∆B ∈ Cn×n

(∆A,∆B ∈ Cn×n), respectively, and consider the perturbed matrix pencil:

(3) P (z, t) = (A+ t∆A)− z(B + t∆B).

The following arrangement of (3)

(4) P (z, t) = A− zB + t(∆A− z∆B) = P (z) + t∆P (z),

is also helpful in what follows.

In this paper, we characterize the eigenvalues of some families of matrix pencils under linear perturbation,

where the involved matrix pencils P (z) = A − zB and perturbation matrix pencils ∆P (z) = ∆A − z∆B
satisfy one of the following conditions:

I. Both the matrix pencil P (z) and the perturbation matrix pencil ∆P (z) are ∗-even (H-even) matrix

pencils [23], i.e., P (−z)∗ = P (z) and ∆P (−z)∗ = ∆P (z). In this case, A and ∆A are Hermitian,

and B and ∆B are skew-Hermitian. Also one of A or ∆A is either positive or negative definite.

II. Both the matrix pencil P (z) and the perturbation matrix pencil ∆P (z) are ∗-even (H-even) matrix

pencils [23]. A special 3 × 3 block structure of the matrix pencil P (z) appears in continuous-time

control [9, 35].

III. All matrices A, B, ∆A, and ∆B are special non-Hermitian 3×3 block matrices where the associated

block non-Hermitian/non-Hermitian matrix pencil occurs in discrete-time control [9, 35].

It is worth mentioning that for each of the problems in the category I and for each of the MG matrix

pencils in the category II, we first introduce different conditions on z = iγ (γ ∈ R) and on the involved
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matrices which make the matrix pencils P (z) and ∆P (z) in (4) Hermitian and at least one of them positive

or negative definite. In particular, we provide conditions on the matrices and on the set of perturbation

parameter (which here is z = iγ, γ ∈ R) such that the perturbed (or deviated) matrix pair (P (z),−∆P (z))

has at least one real and nonzero eigenvalue, t. As the value of z satisfying the sufficient conditions can

belong to a very large subset of the imaginary axis, we may call this homotopic deviation of matrix pair

(A,−∆A) using homotopic deviation pair (B,−∆B) and the deviation parameter z [5].

Our approaches for studying and treating all of these problems, to the best of our knowledge, are new

and provide us with new insights into the problem of the smallest value of nonzero real t and into the notion

of distance to the boundary of a desired or undesired set [9].

The paper is organized as follows. Section 2 includes general notation, theory, and assumptions which

will be used in the next sections. In Section 3, we study the perturbed matrix pencils P (z, t) of the category

I and obtain the conditions which guarantee that for some nonzero real values t and some z = iγ (γ ∈ R),

it holds that det(P (z, t)) = 0. Then, we specify the case(s) with minimum |t|. In Section 4, we investigate

a perturbed MG matrix pencil P (z, t) of the category II and characterize the purely imaginary z = iγ

(γ ∈ R) which may belong to the spectrum of P (z, t) for some nonzero real t. Having such information,

we can specify the case(s) with minimum |t|. Then, we characterize the eigenvalues of some 3 × 3 block

Hermitian/skew-Hermitian matrix pencils, and explain that a special case of these block matrix pencils

arisen in continuous-time control cannot satisfy necessary conditions under which its eigenvalues, for small

enough real perturbation parameter t, go onto the imaginary axis. Therefore, a practical way of finding

the nearest problem having the necessary conditions will be suggested and implemented. In Section 5,

we consider the perturbed matrix pencils P (z, t) whose matrices are in the category III. We discuss their

lackness of necessary conditions under which their eigenvalues, for nonzero real perturbation parameter t,

go onto the unit circle. For this category of problems, we use an one-to-one relationship between the block

matrix pencils of continuous-time problem and the block matrix pencils of discrete-time problem, to find

the nearest matrix pencil to the matrix pencil of discrete-time problem for which we can characterize the

complex number z ∈ C with |z| = 1 that may belong to the spectrum of P (z, t) for some nonzero real t.

Finally, in Appendix A, we obtain sufficient conditions under which, for a subset of z on the unit circle, all

the eigenvalues of the matrix pair (P (z),−∆P (z)), associated with the discrete-time problem, are real.

2. Some general notation and observations. This section is devoted to the notation and prelimi-

naries to be used in the rest of the paper. The necessary notation and definitions include the following:

• The spectrum of a matrix X ∈ Cn×n is defined and denoted by Λ(X) = {λ ∈ C : det(X − λI) = 0},
where I ∈ Cn×n denotes the identity matrix.

• For X,Y ∈ Cn×n, the spectrum of the matrix pencil P (z) = X − zY is defined and denoted by

Λ(X,Y ) = {λ ∈ C : det(X − λY ) = 0}.
• The spectrum of the perturbed matrix pencil P (z, t) in (3) (for any fixed t), or equivalently, in (4)

(for any fixed z), is denoted by Λ(P (z, t)).

• The negative (resp., positive) definite property of a Hermitian matrix X is denoted by X ≺ 0 (resp.,

X � 0).

• The real (resp., imaginary) part of a complex number z is denoted by Re(z) (resp., Im(z)) .

One interesting question that arises from linear perturbation theory concerns conditions which guarantee

that all the eigenvalues of the perturbed pencils P (z, t), for t ∈ R, remain within a particular open subset

of C. For any z ∈ C, we use the following notation which was introduced by Bora and Mehrmann [9]:
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(5) sepR(z,∆A,∆B) := min{|t| : det(P (z, t)) = 0, t ∈ R}.

A necessary and sufficient condition for the existence of a nonzero real t attaining the minimum in (5) is

given by the next lemma.

Lemma 1. ([9]) For any z ∈ C, sepR(z,∆A,∆B) <∞ if and only if Fz = −∆P (z)P−1(z) has a nonzero

real eigenvalue for P (z) and ∆P (z) of the perturbed pencil P (z, t) in (4). Moreover, if sepR(z,∆A,∆B) <∞,

then

sepR(z,∆A,∆B) =
1

max
µ∈R
{|µ| : µ ∈ Λ(−∆P (z)P−1(z))}

.

A central problem arising from Lemma 1 is to find the conditions under which the matrix Fz =

−∆P (z)P−1(z) has a nonzero real eigenvalue. Under the assumption that Fz has spectral symmetry, that

is, Λ(Fz) = Λ(FHz ), Bora and Mehrmann have identified some sufficient conditions for this central question

[9]. In what follows, we need the next definition.

Definition 2. ([9]) Hermitian Frobenius factors of a matrix X ∈ Cn×n are two Hermitian matrices S

and T , where S is nonsingular and X = TS−1.

The following theorem from [9, Theorem 3.5] is necessary for the remainder.

Theorem 3. ([9]) Suppose P (z) and ∆P (z) are the matrix pencils in (4). Then all the eigenvalues of

Fz := −∆P (z)P−1(z), z ∈ C\σ(P (z)), are real if its Hermitian Frobenius factors T (z) and S(z) exist and

satisfy any of the following conditions:

(i) T (z) and S(z)−1 commute.

(ii) T (z) is positive or negative semidefinite.

(iii) S(z) is positive or negative definite.

It is possible that for some matrix pairs (A,B) and some perturbation matrix pairs (∆A,∆B), there

exists a set Cg such that inf
z∈δCg

sepR(z,∆A,∆B) =∞, where δCg = C\Cg. This means that the eigenvalues

of the perturbed pairs (A+ t∆A,B + t∆B) always remain inside Cg as t varies over the real numbers. This

results in two important points:

• For any z ∈ δCg, there may be no real t 6= 0 for which detP (z, t) = 0.

• We should expect some examples with complex t or infinite |t| for which det(P (z, t)) = 0.

The second point suggests at least one research direction for characterizing the set δCg, and one new

convention, beyond the classical linear perturbation, for the problems arising in control theory or elsewhere

with very large |t|, or |t| → ∞ [5].

3. Eigenvalue characterization of linearly perturbed Hermitian/skew-Hermitian matrix

pencils. In this section, we study some perturbed matrix pencils P (z, t) with ∗-even (H-even) matrix

pencils P (z) = A − zB and ∆P (z) = ∆A − z∆B, where A is Hermitian, ∆A is Hermitian positive or

negative definite, and both B and ∆B are skew-Hermitian matrices.

We provide the conditions under which, for some purely imaginary numbers z and some nonzero real

numbers t, it holds that detP (z, t) = 0. We use the following definition.
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Definition 4. ([19]) The field of values (also known as numerical range) of a matrix X ∈ Cn×n is

defined as:

F(X) =
{
zHXz ∈ C : z ∈ Cn, zHz = 1

}
⊂ C,

where zH denotes the conjugate transpose of z.

Some applications of the field of values in numerical analysis are presented in [8]. We need the following

notation:

• We denote

fXmin = min {Im(f) : f ∈ F(X)} and fXmax = max {Im(f) : f ∈ F(X)} ,

for X ∈ Cn×n.

• When X ∈ Cn×n is Hermitian, then for any f ∈ F(X), λXmin ≤ f ≤ λXmax, where

λXmin = min {λ : λ ∈ Λ(X)} and λXmax = max {λ : λ ∈ Λ(X)} .

• For any Hermitian X ∈ Cn×n and for any Y ∈ Cn×n, we denote

βX,Y11 = −λ
X
min

fYmin
, βX,Y12 = −λ

X
min

fYmax
, βX,Y21 = −λ

X
max

fYmin
, and βX,Y22 = −λ

X
max

fYmax
.

• The open upper half-plane and the open lower half-plane [19, p. 9] of C are denoted by:

UHP = {z ∈ C : Im(z) > 0} and LHP = {z ∈ C : Im(z) < 0} .

Proposition 5. Suppose that we are given two ∗-even (H-even) matrix pencils P (z) = A − zB and

∆P (z) = ∆A− z∆B for Hermitian matrices A,∆A ∈ Cn×n and skew-Hermitian matrices B,∆B ∈ Cn×n.

Then, for any purely imaginary number z = iγ (γ ∈ R), there exist rz = rank(A − zB) nonzero real

numbers t such that det(P (z, t)) = 0 if any of the following conditions holds, where we denote βij = β∆A,∆B
ij

(1 ≤ i, j ≤ 2):

(a) ∆A � 0, F(∆B) ⊂ UHP , and either γ > β12 or γ < β21 when β12 > β21.

(b) ∆A � 0, F(∆B) ⊂ LHP , and either γ < β11 or γ > β22 when β22 > β11.

(c) ∆A ≺ 0, F(∆B) ⊂ UHP , and either γ > β11 or γ < β22 when β11 > β22.

(d) ∆A ≺ 0, F(∆B) ⊂ LHP , and either γ < β12 or γ > β21 when β21 > β12.

Proof. We prove the case (a). The proof for each of the cases (b), (c), and (d) is the same as that for

the case (a) with some appropriate modifications.

We note that when Y is a skew-Hermitian matrix, then iY is Hermitian. This fact simply shows that

for any Hermitian matrix X and any skew-Hermitian matrix Y , both X + iY and X − iY are Hermitian.

Hence, for z = iγ (γ ∈ R), Hermitian matrices A and ∆A and skew-Hermitian matrices B and ∆B, both

P (z) = A− zB and ∆P (z) = ∆A− z∆B in (4) are Hermitian.

Clearly, for any nonzero vector x ∈ Cn, xH∆Bx = ibx is a purely imaginary number. So, for any purely

imaginary number z = iγ (γ ∈ R) and any nonzero x ∈ Cn, it holds that

xH∆P (z)x = xH∆Ax− iγxH∆Bx = xH∆Ax + γbx.
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When ∆A � 0, we have xH∆P (z)x = xH∆Ax + γbx ≥ λ∆A
min + γbx with λ∆A

min > 0. In this case, for

F(∆B) ⊂ UHP and γ > −λ
∆A
min

bx
, we get xH∆P (z)x > 0. Thus, by introducing a fixed lower bound

for γ, which is valid for all bx (0 6= x ∈ Cn), we can state that when ∆A � 0, F(∆B) ⊂ UHP , and

γ > −λ
∆A
min

f∆B
max

= β12, then the Hermitian matrix ∆P (z) is positive definite. This proves the first part of (a).

We now provide another condition on γ, where for positive definite matrix ∆A and when F(∆B) ⊂ UHP ,

the Hermitian matrix ∆P (z) becomes negative definite. To this end, we see that

xH∆P (z)x = xH∆Ax + γbx ≤ λ∆A
max + γbx.

This can be negative if γ < −λ
∆A
max

bx
. Therefore, it follows that the Hermitian matrix ∆P (z) becomes negative

definite if γ < −λ
∆A
max

f∆B
min

= β21.

As the intersection of the two set of γ’s obtained above is the empty set, it is true that in this case,

β12 > β21.

We have shown that for the considered matrices and any z = iγ (γ ∈ R) satisfying the first (resp., the

second) inequality in case (a), P (z) is Hermitian and ∆P (z) is Hermitian positive (resp., negative) definite.

Hence, for any z = iγ (γ ∈ R) with γ satisfying either the first or the second inequality in case (a), there

exist rz = rank(A− zB) real and nonzero numbers t such that det(P (z, t)) = 0.

Under the conditions of Proposition 5, we expect n nonzero real numbers t in the spectrum

Λ(P (z),−∆P (z)) = {t : det(P (z) + t∆P (z)) = 0} when z 6∈ Λ(A,B).

Corollary 6. Suppose that we are given two ∗-even (H-even) matrix pencils P (z) = A − zB and

∆P (z) = ∆A− z∆B for A,∆A,B,∆B ∈ Cn×n. Then, for ∆A, ∆B, and γ ∈ R of z = iγ 6∈ Λ(A,B) satis-

fying any of the conditions (a), (b), (c), or (d) in Proposition 5, all the eigenvalues of Fz = −∆P (z)P−1(z)

are real and nonzero, and Λ(Fz) = Λ(FHz ).

Proof. We have seen that for the considered matrices and any z = iγ 6∈ Λ(A,B) (γ ∈ R) satisfying any

of the cases (a), (b), (c), or (d) in Proposition 5, all the eigenvalues, t, of the matrix pair (P (z),−∆P (z))

are real and nonzero. From Lemma 1, we know that, for 0 6= t ∈ Λ(P (z),−∆P (z)), we have
1

t
∈ Λ(Fz) =

Λ(−∆P (z)P−1(z)). As z = iγ 6∈ Λ(A,B), P (z) is Hermitian and nonsingular. This implies that all the

eigenvalues of Fz are real and nonzero, and Fz has Hermitian Frobenius factors T = −∆P (z) and S = P (z).

The spectral symmetry property, Λ(Fz) = Λ(FHz ), of Fz is straightforward via Corollary 2.3 of [9], where

it is shown that the existence of Hermitian Frobenius factors for a matrix is necessary and sufficient for its

spectral symmetry.

4. Linearly perturbed Hermitian indefinite/skew-Hermitian matrix pencils. In this section,

we start by discussing more general problems than in Section 3, and we gradually move on to the closest type

of problems related to continuous-time control problems. For MG matrix pencil problems, we characterize

the purely imaginary z = iγ (γ ∈ R) which may belong to the spectrum of P (z, t) for some nonzero real t. For

any 3×3 block Hermitian/skew-Hermitian matrix pencil in continuous-time control problems, we explain that

it cannot satisfy conditions under which its eigenvalues for nonzero real perturbation parameter t, go onto the

imaginary axis. Moreover, by explaining the difference and the distance between the structure of continuous-

time control problems and the MG matrix pencil problems, we provide some numerical approaches for finding
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the nearest problem which, for some nonzero real perturbation parameter t, has at least one eigenvalue z on

the imaginary axis.

The main difference between the problems discussed in Section 3 and the problems of this section is

that, here, none of the involved matrices is necessarily definite.

Let us start with the next proposition which considers the case where F(∆B) ⊂ UHP or F(∆B) ⊂
LHP . In the following, we denote βij = β∆A,∆B

ij (1 ≤ i, j ≤ 2) for β∆A,∆B
ij defined in Section 3.

Proposition 7. Suppose that we are given two ∗-even (H-even) matrix pencils P (z) = A − zB and

∆P (z) = ∆A− z∆B for A,∆A,B,∆B ∈ Cn×n. Let z = iγ (γ ∈ R) be any purely imaginary number. Then

there exist rz = rank(A − zB) nonzero real numbers t such that det(P (z, t)) = 0 if any of the following six

conditions holds:

(a) F(∆B) ⊂ UHP , λ∆A
min < 0, and γ > β11.

(b) F(∆B) ⊂ UHP , λ∆A
max > 0, and γ < β21.

(c) F(∆B) ⊂ UHP , γ > 0 if λ∆A
min = 0, and γ < 0 if λ∆A

max = 0.

(d) F(∆B) ⊂ LHP , γ < 0 if λ∆A
min = 0, and γ > 0 if λ∆A

max = 0.

(e) F(∆B) ⊂ LHP , λ∆A
max > 0, and γ > β22.

(f) F(∆B) ⊂ LHP , λ∆A
min < 0, and γ < β12.

Proof. We prove the cases (a), (b), and (c). The cases (d), (e), and (f) can be proven analogously with

some appropriate modifications.

For Hermitian matricesA and ∆A, skew-Hermitian matricesB and ∆B, and z = iγ (γ ∈ R), we have seen

in Proposition 5 that both P (z) and ∆P (z) are Hermitian. We show that in case (a), ∆P (z) = ∆A− z∆B,

for z = iγ (γ ∈ R), is positive definite. To do so, observe that

xH∆P (z)x = xH∆Ax + γbx ≥ λ∆A
min + γbx,

where ibx = xH∆Bx. As bx is supposed to be positive and λ∆A
min < 0, so xH∆P (z)x is positive for any

nonzero vector x ∈ Cn when γ > −λ
∆A
min

bx
. For giving a fixed lower bound on γ, which is valid for any bx

(0 6= x ∈ Cn), we use γ > −λ
∆A
min

f∆B
min

= β11.

Under the conditions of the case (b), we have

xH∆P (z)x = xH∆Ax + γbx ≤ λ∆A
max + γbx,

where bx > 0 for every nonzero x ∈ Cn. When λ∆A
max > 0, we have xH∆P (z)x < 0 for any nonzero x ∈ Cn

if γ < −λ
∆A
max

bx
. A fixed upper bound for γ is γ < −λ

∆A
max

f∆B
min

= β21.

For the case (c), we have xH∆P (z)x ≥ λ∆A
min + γbx. When λ∆A

min = 0 and bx > 0, then ∆P (z) is positive

definite if γ > 0. On the other hand, we have xH∆P (z)x ≤ λ∆A
max + γbx. Therefore, when λ∆A

max = 0, ∆P (z)

is negative definite if γ < 0.

The next proposition does not involve any inclusion of the field of values F(∆B).

Proposition 8. Suppose that we are given two ∗-even (H-even) matrix pencils P (z) = A − zB and

∆P (z) = ∆A− z∆B for A,∆A,B,∆B ∈ Cn×n. Let z = iγ (γ ∈ R) be any purely imaginary number. Then
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there exist rz = rank(A− zB) nonzero real numbers t such that det(P (z, t)) = 0 if, for every nonzero vector

x ∈ Cn and ibx = xH∆Bx, either of the following conditions holds:

(a) λ∆A
min < 0 and bxγ > −λ∆A

min.

(b) λ∆A
max > 0 and bxγ < −λ∆A

max.

Proof. For the given matrices and z = iγ (γ ∈ R), it is obtained in the proof of Proposition 5 that both

P (z) = A− zB and ∆P (z) = ∆A− z∆B in (4) are Hermitian. When λ∆A
min < 0, we see that for any nonzero

x ∈ Cn,

xH∆P (z)x = xH∆Ax + bxγ ≥ λ∆A
min + bxγ.

In this case, we look for any possible bx and γ for which xH∆P (z)x > 0, that is,

(6) λ∆A
min + bxγ > 0.

As we have no restriction on the set F(∆B), we should expect the cases where, at the same time, f∆B
min < 0

and f∆B
max > 0. For such problems, the possible ordered pairs (bx, γ) satisfying (6) are the ones which localize

some region above the right branch or below the left branch of the hyperbola xy = c for c = −λ∆A
min > 0,

when bx belongs to the closed interval [f∆B
min, f

∆B
max].

A sufficient condition for γ to satisfy (6) is bxγ > −λ∆A
min, and this happens when for any fixed ε > 0,

we take γ = γx =
−λ∆A

min + ε

bx
.

For the case (b) where λ∆A
max > 0, we have

xH∆P (z)x = xH∆Ax + bxγ ≤ λ∆A
max + bxγ.

We should look for the possible bx and γ which yield λ∆A
max + bxγ < 0 or, equivalently,

(7) bxγ < −λ∆A
max.

The possible ordered pairs (bx, γ) which satisfy (7) localize some region above the left branch or below the

right branch of the hyperbola xy = c for c = −λ∆A
max < 0, when bx belongs to the closed interval [f∆B

min, f
∆B
max].

If we take γ = γx =
−λ∆A

max − ε
bx

, for any fixed ε > 0, then (7) holds.

As an advantage of applying Proposition 8, we observe that the borders derived by the branches of the

hyperbolas xy = c for c = −λ∆A
min and c = −λ∆A

max allow us to visualize information which is helpful in finding

and describing the smallest possible value of nonzero real t which results in det(P (z, t)) = 0 for the specified

values of z = iγ (γ ∈ R).

Example 4.1. The matrices A, B, ∆A, and ∆B are 6× 6 symmetric matrices randomly generated by

using MATLAB’s command X=rand(n,n) and then symmetrized using MATLAB’s command X=(X+X’)/2.

In this example, we verify the sufficient conditions (a) and (b) of Proposition 8 for the related linearly

perturbed matrix pencil P (z, t).

Figure 1(a) displays the hyperbola xy = c, where c = −λ∆A
min for λ∆A

min = −1.97 < 0. We have F(∆B) =

[−i, i], and therefore, f∆B
min = −1 and f∆B

max = 1. Based on Proposition 8 (a), we should look for γ ∈ R that

satisfies bxγ > −λ∆A
min for any bx (0 6= x ∈ Cn). The y-coordinates of the down triangle symbols under the

left branch of hyperbola xy = c yields some values of γ such that bxγ = (−1)γ > −λ∆A
min, i.e., it is valid

only for negative values of bx. Also, the y-coordinates of the upper triangle symbols above the right branch
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of the same hyperbola show some values of γ such that bxγ = (+1)γ > −λ∆A
min, that is, it is valid only

for positive values of bx. Altogether mean that, for bx = −1 and z1 = iγ1 with γ1 < −1.97, there exist

rz1 = rank(A − z1B) nonzero real numbers t1 such that det(P (z1, t1)) = 0. Also for bx = +1 and z2 = iγ2

with γ2 > 1.97, there exist rz2 = rank(A− z2B) nonzero real numbers t2 such that det(P (z2, t2)) = 0.

Figure 1(b) displays the hyperbola xy = c, where c = −λ∆A
max for λ∆A

max = 3.99 > 0. The y-coordinates

of the upper triangle symbols above the left branch of hyperbola xy = c yield some values of γ such that

for the negative value bx = −1, bxγ = (−1)γ < −λ∆A
max. Moreover, the y-coordinates of the down triangle

symbols under the right branch of that hyperbola show some values of γ such that for the positive value

bx = +1, bxγ = γ < −λ∆A
max. The conclusion is that, for bx = −1 and z1 = iγ1 with γ1 > 3.99, there exist

rz1 = rank(A − z1B) nonzero real numbers t1 such that det(P (z1, t1)) = 0. Also for bx = +1 and z2 = iγ2

with γ2 < −3.99, there exist rz2 = rank(A− z2B) nonzero real numbers t2 such that det(P (z2, t2)) = 0.
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(a) xy = −λ∆A
min and γ’s which satisfy (6).
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(b) xy = −λ∆A
max and γ’s which satisfy (7).

Fig. 1: The values of γ which satisfy (6) or (7).

We continue with some more general results which do not need conditions like the inclusions F(∆B) ⊂
UHP or F(∆B) ⊂ LHP . Then we revisit the problems with the same conditions as those in Proposition 8

(i.e., λ∆A
min < 0 or λ∆A

max > 0) and provide some fixed bounds for γ. The next definition will be used in this

regard.

Definition 9. ([19]) The numerical radius of a matrix X ∈ Cn×n is defined and denoted by:

r(X) = sup{|z| : z ∈ F(X)} = sup{|zHXz| : z ∈ Cn, zHz = 1}.

For the matrix 2-norm of X ∈ Cn×n, it is known (see [19]) that
‖X‖2

2
≤ r(X) ≤ ‖X‖2. For more

information on the ways of computing numerical radius of matrices, we refer to [16, 27, 31].

The next proposition is a partner of Proposition 7 with the difference that here we use numerical radius

of matrix ∆B.

Proposition 10. Suppose we are given two ∗-even (H-even) matrix pencils P (z) = A−zB and ∆P (z) =

∆A − z∆B for A,∆A,B,∆B ∈ Cn×n. Let z = iγ (γ ∈ R) be any purely imaginary number. Then there
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exist rz = rank(A− zB) nonzero real numbers t such that det(P (z, t)) = 0 if any of the following conditions

holds:

(a) λ∆A
min > 0 and 0 < γ <

λ∆A
min

r(∆B) .

(b) λ∆A
min > 0 and

−λ∆A
min

r(DB) < γ < 0.

(c) λ∆A
max < 0 and 0 < γ <

−λ∆A
max

r(∆B) .

(d) λ∆A
max < 0 and

λ∆A
max

r(DB) < γ < 0.

Proof. We only prove the cases (a) and (c). The proofs for the cases (b) and (d) are almost the same.

For every n× n matrix ∆B and every nonzero vector x ∈ Cn, we have

|ibx| = |xH∆Bx| ≤ r(∆B).

This means that −r(∆B) ≤ bx ≤ r(∆B), which in turn yields

−γr(∆B) ≤ γbx ≤ γr(∆B) when γ > 0,

and

γr(∆B) ≤ γbx ≤ −γr(∆B) when γ < 0.

Now the proof of the case (a) is clear because for every nonzero x ∈ Cn and γ > 0, it holds that

xH∆P (z)x = xH∆Ax + bxγ ≥ λ∆A
min − γr(∆B).

So, ∆P (z) is positive definite if 0 < γ <
λ∆A
min

r(∆B) .

The proof of the case (c) follows from the fact that ∆P (z) is negative definite if for γ > 0 and every

nonzero x ∈ Cn, xH∆P (z)x = xH∆Ax + bxγ ≤ λ∆A
max + γr(∆B).

Example 4.2. In this example, we consider the following matrices:

A =

[
1 2

2 2

]
, B =

[
i 0

0 −i

]
, ∆A =

[
15 1

1 26

]
, and ∆B =

[
0 i

i 0

]
,

to illustrate the values of γ which satisfy the cases (a) and (b) of Proposition 10. Since ∆A � 0, we have

λ∆A
min > 0. Based on the cases (a) and (b) of Proposition 10, for

γ ∈ (−λ∆A
min/r(∆B), 0) ∪ (0, λ∆A

min/r(∆B)) = (−14.91, 0) ∪ (0, 14.91),

we also have ∆P (iγ) � 0, that is, both eigenvalues of ∆P (iγ) are positive for any γ in this set. Figure

2 shows that both eigenvalues of ∆P (iγ) (blue and red) are positive for any γ in (−20.75, 18.75). This

confirms the validity of the interval found by the cases (a) and (b) of Proposition 10.

It is worth noting that Λ(A,B) = {−1.32 + 0.50i, 1.32 + 0.50i}, which means that the spectrum is

symmetric with respect to the imaginary axis. A close verification shows that, in finite precision, for z = iγ

and t = t(z) ∈ Λ(P (z),−∆P (z)), min{|t(z)|} is a continuous descending (resp., ascending) function of γ

for
−λ∆A

min

r(DB) < γ < 0.55 (resp., for 0.55 < γ <
λ∆A
min

r(∆B) ). This means that the minimum positive value of t

which brings at least one (in this example both) of the finite eigenvalues z of P (z, t) on the imaginary axis

is t = 0.0265. For this value of t, we have Λ(A+ t∆A,B + t∆B) = {0.55i, 0.63i}.
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Fig. 2: Eigenvalues of ∆P (iγ) versus γ in Example 4.2.

The next proposition provides some fixed bounds for γ when λ∆A
min < 0 or λ∆A

max > 0.

Proposition 11. Suppose we are given two ∗-even (H-even) matrix pencils P (z) = A−zB and ∆P (z) =

∆A − z∆B for A,∆A,B,∆B ∈ Cn×n. Let z = iγ (γ ∈ R) be any purely imaginary number. Then there

exist rz = rank(A− zB) nonzero real numbers t such that det(P (z, t)) = 0 if any of the following conditions

holds:

(a) λ∆A
min < 0 and − λ∆A

min

r(∆B)
< γ.

(b) λ∆A
max > 0 and γ < − λ∆A

max

r(∆B)
.

Proof. The details of the proof are the same as those of the proof of Proposition 10, so we omit them.

4.1. Special 3 × 3 block Hermitian/skew-Hermitian matrix pencils. We are now in a position

to consider structured linear perturbation for a special family of 3× 3 block ∗-even (H-even) matrix pencils

P (z) = A− zB for which the continuous-time control is a particular case of it. The matrix pencils and their

perturbation matrix pencils we consider here have the following structure:

A =

 M0 M1 M2

MH
1 M4 M5

MH
2 MH

5 M6

 , B =

 0 M3 0

−MH
3 0 0

0 0 0

 ,
∆A =

 ∆M0 ∆M1 ∆M2

∆MH
1 ∆M4 ∆M5

∆MH
2 ∆MH

5 ∆M6

 , ∆B =

 0 ∆M3 0

−∆MH
3 0 0

0 0 0

 ,
(8)

where M0,M1,M3,M4,∆M0,∆M1,∆M3,∆M4 ∈ Cn1×n1 , M2,M5,∆M2,∆M5 ∈ Cn1×n2 , and M6,∆M6 ∈
Cn2×n2 , with n = 2n1 + n2. In addition, it is assumed that M4, M6, ∆M4, and ∆M6 are Hermitian, M3 is

invertible, and M3 + ∆M3 remains invertible.

We provide the conditions under which, for this special family of matrix pencils, there exist some sets

of purely imaginary z = iγ (γ ∈ R) which imply the existence of some nonzero real eigenvalues, t, for the

matrix pair (P (z),−∆P (z)), where P (z) = A− zB and ∆P (z) = ∆A− z∆B.
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For any matrix X ∈ Cm×n, the set

(9) W(X) =
{
yHXz : y ∈ Cm, z ∈ Cn, yHy = zHz = 1

}
= {z ∈ C : |z| ≤ ‖X‖2} ,

was studied in [6], and it will be used in what follows. It is apparent that for any z = Re(z)+iIm(z) ∈ W(X),

the real part Re(z) and the imaginary part Im(z) satisfy

(10) Re(z), Im(z) ∈ [−‖X‖2, ‖X‖2] = [−σmax(X), σmax(X)] ,

where σmax(X) denotes the largest singular value of X.

Theorem 12. Suppose we are given two ∗-even (H-even) matrix pencils P (z) = A− zB and ∆P (z) =

∆A − z∆B where each of A,∆A,B,∆B ∈ Cn×n have their corresponding block structure presented in (8).

Let z = iγ (γ ∈ R) be any purely imaginary number. Denote

δmk = xHi ∆Mkxj , k = 1, 2, 3, 5,

and

s1 =
∑

k=0,4,6

λ∆Mk
min , s2 = 2

 min
xH

1 x1=1
(Re(δm1))−

∑
k=2,5

σmax(∆Mk)

 ,

s3 =
∑

k=0,4,6

λ∆Mk
max , and s4 = 2

 max
xH

1 x1=1
(Re(δm1)) +

∑
k=2,5

σmax(∆Mk)

 .

Then there exist rz = rank(A− zB) nonzero real numbers t such that det(P (z, t)) = 0 if any of the following

conditions holds:

(a) s1 + s2 > 0 and γ ∈ (−c, c) for c =
s1 + s2

2σmax(∆M3)
.

(b) s3 + s4 < 0 and γ ∈ (−d, d) for d = − s3 + s4

2σmax(∆M3)
.

Proof. For the given matrices and any purely imaginary number z = iγ (γ ∈ R), it is already known

that both P (z) = A− zB and ∆P (z) = ∆A− z∆B are Hermitian. We show that, for any z = iγ satisfying

the condition (a), ∆P (z) is positive definite. This proves that there exist rz = rank(A − zB) nonzero real

numbers t such that det(P (z, t)) = 0. We do not give the details of the proof of the case (b), since it can be

done in the same way.

To proceed, we partition an arbitrary vector x ∈ Cn as x =

 x1

x2

x3

 where x1,x2 ∈ Cn1 and x3 ∈ Cn2

for n1 and n2 defined as in (8). Without loss of generality, we assume that xHi xi = 1, i = 1, 2, 3. Then

xH∆P (iγ)x takes the form:

[
xH1 xH2 xH3

]  ∆M0 ∆M1 − iγ∆M3 ∆M2

(∆M1 − iγ∆M3)H ∆M4 ∆M5

∆MH
2 ∆MH

5 ∆M6

 x1

x2

x3



= xH1 ∆M0x1 +

δm1︷ ︸︸ ︷
xH1 ∆M1x2−

iγδm3︷ ︸︸ ︷
iγxH1 ∆M3x2 +

δm2︷ ︸︸ ︷
xH1 ∆M2x3 +

δm1︷ ︸︸ ︷
xH2 ∆MH

1 x1−

iγδm3︷ ︸︸ ︷
iγxH2 ∆MH

3 x1

+ xH2 ∆M4x2 +

δm5︷ ︸︸ ︷
xH2 ∆M5x3 +

δm2︷ ︸︸ ︷
xH3 ∆MH

2 x1 +

δm5︷ ︸︸ ︷
xH3 ∆MH

5 x2 + xH3 ∆M6x3.
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We use δmk + δmk = 2Re(δmk), k = 1, 2, 5, and −iγδm3 − iγδm3 = 2Im(δm3)γ to summarize:

(11) xH∆P (iγ)x = 2
∑

k=1,2,5

Re(δmk) + 2Im(δm3)γ + xH1 ∆M0x1 + xH2 ∆M4x2 + xH3 ∆M6x3.

Here, ∆M0, ∆M4 and ∆M6 are Hermitian, so δmk ≥ λ∆Mk
min for k = 0, 4, 6. We know that both Re(δmk)

and Im(δmk) ≥ −σmax(∆Mk) for any k = 2, 5. Hence, for the assumed s1 and s2 and positive γ, it follows

xH∆P (iγ)x ≥ s1 + s2 − 2σmax(∆M3)γ.

This shows that when s1 + s2 > 0 and 0 < γ < c =
s1 + s2

2σmax(∆M3)
, we have ∆P (iγ) � 0.

Now, recalling (11), we can assert that when γ ≤ 0,

xH∆P (iγ)x ≥ s1 + s2 + 2Im(δm3)γ ≥ s1 + s2 + 2σmax(∆M3)γ.

Therefore, when γ ∈ (−c, 0], we have ∆P (iγ) � 0.

Example 4.3. This is an example with block matrices A,B,∆A,∆B ∈ C5×5, as in (8), with M1,M3,

M4,∆M1,∆M3,∆M4 ∈ C2×2, M2,M5,∆M2,∆M5 ∈ C2×1, and M6,∆M6 ∈ C1×1. Here, M1,M2, M3,M5,

∆M1,∆M2,∆M3,∆M5 are randomly generated by MATLAB’s command randn. The diagonal blocks in

∆A are the diagonal matrices ∆M0 = diag(6, 5.5), ∆M4 = diag(4.2, 7.1) and ∆M6 = 4.2. M0 is the 2 × 2

zero matrix, and M4 and M6 are symmetric positive definite matrices randomly generated by MATLAB’s

command gallery(’randsvd’,k,-1e1) for k = 2, 1, respectively. Here, we report a representative example with

the specification as follows. In this example, we have s1 + s2 = 8.075 > 0, σmax(∆M3) = 1.36, and c = 2.96.

So, according to the sufficient conditions (a) of Theorem 12, there exist rz = rank(A − zB) nonzero real

numbers t such that det(P (z, t)) = 0 if γ ∈ (−c, c) = (−2.96, 2.96). Figure 3(a) shows the values of the

eigenvalues of ∆P (iγ) when γ varies in the open interval [−20, 20]. Figure 3(b) shows the zoomed case where

we can see that, for γ ∈ (−3.99, 3.99), all the five eigenvalues of ∆P (iγ) are positive. Our investigation by

MATLAB’s function isspd [29] for checking the symmetric positive definiteness of ∆P (iγ), when γ varies in

the open interval [−20, 20], supports the same interval (−3.99, 3.99).

The finite eigenvalues of P (z) are Λ(A,B) = {−1.67 + 0.65i,−1.67 − 0.65i, 1.67 + 0.65i, 1.67 − 0.65i}
which means that two eigenvalues are located on the open left half-plane and the two other eigenvalues are

located on the open right half-plane, that is, the spectrum is symmetric with respect to origin. Verifying,

in finite precision, min{|t(z)|} for z = iγ, t = t(z) ∈ Λ(P (z),−∆P (z)), and −2.96 = −c < γ < c = 2.96,

we found that the minimum positive value of t which brings at least one (in this example all) of the finite

eigenvalues z of P (z, t) on the imaginary axis is t = 0.0136. For this value of t, Λ(A + t∆A,B + t∆B) =

{−0.93i, 0.93i,−0.54i, 0.54i}.

Let us denote

c1 = −λ
∆M4
min + λ∆M6

min

2
− min

xH
1 x1=1

(Re(δm1)) +
∑
k=2,5

σmax(∆Mk),

c2 = −λ
∆M4
max + λ∆M6

max

2
− min

xH
1 x1=1

(Re(δm1))−
∑
k=2,5

σmax(∆Mk).

(12)

The next corollary considers the case where F(∆M3) ⊂ R, that is, F(∆M3) includes only real numbers

and Im(δm3) in Theorem 12 is zero for all nonzero vectors x ∈ Cn.
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(a) Global illustration
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(b) Zoomed illustration

Fig. 3: Eigenvalues of ∆P (iγ) as γ varies in [−20, 20].

Corollary 13. Suppose we are given two ∗-even (H-even) matrix pencils P (z) = A−zB and ∆P (z) =

∆A − z∆B where each of A,∆A,B,∆B ∈ Cn×n have their corresponding block structure presented in (8).

Let z = iγ (γ ∈ R) be any purely imaginary number, and let c1, c2 be the constants defined in (12). Then

there exist rz = rank(A − zB) nonzero real numbers t such that det(P (z, t)) = 0 if any of the following

conditions holds:

(a) c1 < 0, F(∆M3) ⊂ R, and γ is an arbitrary real number.

(b) c2 > 0, F(∆M3) ⊂ R, and γ is an arbitrary real number.

4.2. Problems arising in continuous-time control. For the continuous-time control problems stud-

ied in [9, Subsection 4.1], using our notation, the matrices A, ∆A, B, and ∆B have the same structure and

properties as those in (8) with a special restriction that for the continuous-time control problems the diag-

onal blocks M0 and ∆M0 are zero matrices. More precisely, we have the following matrix pencils and their

perturbation matrix pencils

A =

 0 M1 M2

MH
1 M4 M5

MH
2 MH

5 M6

 , B =

 0 M3 0

−MH
3 0 0

0 0 0

 ,
∆A =

 0 ∆M1 ∆M2

∆MH
1 ∆M4 ∆M5

∆MH
2 ∆MH

5 ∆M6

 , ∆B =

 0 ∆M3 0

−∆MH
3 0 0

0 0 0

 ,
(13)

where all the assumptions are identical with the problem in (8) except that here M0 = 0 and ∆M0 = 0.

Evidently, this difference makes it impossible (for this kind of problems) to find some conditions under which

∆P (z) = ∆A− z∆B becomes positive or negative definite for some z = iγ (with γ ∈ R), since at least one

diagonal entry of ∆P (z) is always zero; see [10, Theorem 6.23]. One may also apply a generalization of [14,

Proposition 16.1] to complex matrices on 2× 2 block representation of ∆P (z), that is, on
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∆P (z) =

 0 ∆M1 − z∆M3 ∆M2

∆MH
1 + z∆MH

3 ∆M4 ∆M5

∆MH
2 ∆MH

5 ∆M6

 .
to show that ∆P (z) cannot be positive definite.

Nevertheless, for any purely imaginary number z = iγ (γ ∈ R), both P (z) and ∆P (z) are still Hermitian.

Therefore, the most natural aim is to look for the nearest linear perturbed block structured matrix pencil

(i.e., both modified A and ∆A remain Hermitian and both modified B and ∆B remain skew-Hermitian) that

can satisfy necessary and/or sufficient conditions for the existence of nonzero real t such that det(P (z, t)) = 0

becomes available.

A way to get around this issue can be applying on ∆A a complex extension of the method provided in

[17], where it has been proved that for an arbitrary real matrix X, the matrix X̄ =
Y +H

2
, with H the

symmetric polar factor of Y =
X +XT

2
, is the nearest symmetric positive semidefinite matrix to X, with

respect to the Frobenius norm. Another alternative can be an adaptation of [11] where for a Hermitian matrix

pair (X,Y ), one wishes to find the distance to the nearest definite matrix pair. This means that we should

find, for instance, the distance to the nearest definite matrix pair (∆A,−∆B) = (∆A+ ∆Ã,−(∆B + ∆B̃))

such that there exists some real γ with ∆A− (iγ)∆B � 0.

Because of the special block structure of the continuous-time control problems, we may suggest either

of the following numerical approaches:

(1) Looking for the minimum change in the diagonal block ∆M0 of ∆A such that ∆P (iγ) can satisfy

conditions which ensure that det(P (iγ, t)) = 0 for some nonzero real t.

(2) Looking for the minimum change in the diagonal blocks ∆M0, ∆M4 and ∆M6 of ∆A such that the

existence of the conditions mentioned in the numerical approach 1 above is guaranteed.

It should be noted that by using any of the above methods, we use a linear perturbation that does not

preserve the block structure of the existing matrices (at least in terms of keeping ∆M0 as a zero matrix).

However, the matrices A and ∆A remain Hermitian, and the matrices B and ∆B remain skew-Hermitian.

In the following example, we use the approach (2) to impose changes on ∆M0, ∆M4, and ∆M6.

Example 4.4. We use the same fixed matrices and the randomly generated matrices as those in Example

4.3. The difference between these two examples is that here, in addition to M0 = 0, we have ∆M0 = 0.

To follow the approach (2) above, we may look for the minimum nonnegative real number α such that, for

∆M0 = 0 replaced by αI2×2, for ∆M4 replaced by ∆M4 +αI2×2, and for ∆M6 replaced by ∆M6 +α, there

exists a real number γ such that the modified ∆P (iγ) is Hermitian positive definite. Based on our numerical

experiments in MATLAB, where we let α varying in [0, 2), we estimate the minimum possible value α = 0.95,

for which ∆P (iγ) � 0. Indeed, for this value of α, we have (−c, c) = (−0.32, 0.32) by the formula given

in the case (a) of Theorem 12. This is a subset of what we found in practice, that is, (−0.7, 0.7). Figure

4 illustrates the applicable values of γ versus α. To check the positive definiteness of ∆P (iγ), we used

MATLAB’s function isspd [29]. We can use the same idea as in Example 4.3 to compute and use min{|t(z)|}
of the nearest matrix pair (Pα(z),−∆Pα(z)) with α = 0.95, z = iγ, and γ ∈ (−c, c) = (−0.32, 0.32).

5. Special 3 × 3 block non-Hermitian perturbed matrix pairs. In this section, we consider the

matrix pencils arising in discrete-time control (item III in Section 1) and address the question of finding
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the smallest nonzero real value t such that the perturbed matrix pencil has one or more eigenvalues on the

unit circle. For such problems, the n× n matrices A and B of the matrix pencil related to the discrete-time

control and the n× n matrices ∆A and ∆B of the perturbation matrix pencil are as follows:

A =

 0 M1 M2

−MH
3 M4 M5

0 MH
5 M6

 , B =

 0 M3 0

−MH
1 0 0

−MH
2 0 0

 ,
∆A =

 0 ∆M1 ∆M2

−∆MH
3 ∆M4 ∆M5

0 ∆MH
5 ∆M6

 , and ∆B =

 0 ∆M3 0

−∆MH
1 0 0

−∆MH
2 0 0

 ,
(14)

where M1,M3,M4,∆M1,∆M3,∆M4 ∈ Cn1×n1 , M6,∆M6 ∈ Cn2×n2 , and M2,M5,∆M2,∆M5 ∈ Cn1×n2 ,

with n = 2n1 + n2. In addition, it is assumed that M4, M6, ∆M4, and ∆M6 are Hermitian.

As in Section 4.2, here, it is not possible for ∆P (z) = ∆A − z∆B to be positive or negative definite,

because at least one diagonal entry of ∆P (z) is always zero; see [10, Theorem 6.23]. Therefore, we use the

following three phases to apply the results and the treatment suggested in Section 4:

(P1) We use the approach introduced and analyzed in [35] to transform the matrix pairs (A,B) and

(∆A,∆B) in (14) to the matrix pairs in the form (13).

(P2) Then, using the same arguments as those in Section 4.2, we look for the nearest matrix pencil

related to the obtained continuous-time matrix pencil for which we can find the smallest nonzero

real number t that brings some eigenvalues of the perturbed matrix pencil on the imaginary axis.

(P3) Since the transformation we use in phase (P1) is one-to-one and invertible [35], we can use the results

obtained in phase (P2) to find the smallest nonzero real number t which brings some eigenvalues of

the perturbed (nearest) matrix pencil related to the discrete-time problem on the unit circle.

In the continuation of this section, we first review the Cayley transformation and its generalization to

matrix pairs. Then, we will discuss in detail the (safer) way of implementing the above three phases.
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5.1. The Cayley transformation and its generalization to matrix pairs. Let’s start with the

Cayley transformation and its generalization to matrix pairs. The Cayley transformation c : C ∪ {∞} →
C ∪ {∞}, is defined by µ = c(λ) = (λ − 1)(λ + 1)−1. This transformation can be generalized to the space

of matrix pairs by C(A,B) = (A− B,A+ B) [20, 25] (where we use C instead of c). If we apply it on the

discrete-time matrix pair (Ad, Bd) = (A,B) in (14), then we get (Ã, B̃), where each eigenvalue pair (λ, λ̄−1)

of Ad − λBd is transformed to the eigenvalue pair (µ,−µ̄) of Ã − µB̃, with µ = c(λ) and −µ̄ = c(λ̄−1).

That is, the eigenvalues of (Ã, B̃) have the same symmetric pattern as the eigenvalues of (Ac, Bc) in (1).

As Ã− µB̃ does not have the same block structure as Ac − λBc, it cannot be put into the continuous-time

control setting. There exist some suggestions ([20, 22, 25, 26]) to remedy this lackness, but still their proper

applicability requires the nonsingularity of certain matrices associated with the blocks in Ad and Bd, which

may not always hold [25]. Even if the nonsingularity of the submatrices in the block matrices Ad and Bd
holds, with the presence of matrix inversions, the resulting Hamiltonian matrix may be still hard to interpret.

Therefore, we use an one-to-one transformation, reviewed in next section, to connect the discrete-time matrix

pair and the continuous-time matrix pair directly.

5.2. One-to-one transformation to continuous-time matrix pencil. What we actually do here

is to apply the same idea as in the one-to-one transformation in [35] on the matrix pairs of (14) to get the

following:

(Ac, Bc) = T(Ad, Bd),

(∆Ac,∆Bc) = T(∆Ad,∆Bd).
(15)

More precisely, for the matrices Mi, i = 1, 2, . . . , 6, in (14), and for

F =
[
M3 0

]
, G =

[
M1 M2

]
and D =

[
M4 M5

MH
5 M6

]
,

the transformation can be described by the following two steps (recalling that µ = c(λ)):

Step 1: [
0 G

−FH D

]
− λ

[
0 F

−GH 0

]
−→ Ãd − λB̃d,

where Ãd − λB̃d =

[
0 G− F

(G− F )H D

]
− µ

[
0 G+ F

−(G+ F )H D

]
.

Step 2:

Ãd − λB̃d −→
[

0 G− F
(G− F )H D

]
− µ

[
0 G+ F

−(G+ F )H 0

]
.

Similarly, for the matrices ∆Mi, i = 1, 2, . . . , 6, in (14), and for

∆F =
[

∆M3 0
]
, ∆G =

[
∆M1 ∆M2

]
and ∆D =

[
∆M4 ∆M5

∆MH
5 ∆M6

]
,

the transformation can be described by the following two steps (recalling that µ = c(λ)):

Step 1: [
0 ∆G

−∆FH ∆D

]
− λ

[
0 ∆F

−∆GH 0

]
−→ ∆̃Ad − λ∆̃Bd,
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where ∆̃Ad − λ∆̃Bd =

[
0 ∆G−∆F

(∆G−∆F )H ∆D

]
− µ

[
0 ∆G+ ∆F

−(∆G+ ∆F )H ∆D

]
.

Step 2:

∆̃Ad − λ∆̃Bd −→
[

0 ∆G−∆F

(∆G−∆F )H ∆D

]
− µ

[
0 ∆G+ ∆F

−(∆G+ ∆F )H 0

]
.

This means that the transformation T is just the Cayley transformation C followed by a droping transfor-

mation which drops matrix D (resp., ∆D) from the second block matrix of the matrix pair (Ãd, B̃d) (resp.,

(∆̃Ad, ∆̃Bd)) to get the matrix pair (Ac, Bc) (resp., (∆Ac,∆Bc)). Also its inverse is an adding transfor-

mation, which adds matrix D (resp., ∆D) to the second block matrix of the matrix pair (Ac, Bc) (resp.,

(∆Ac,∆Bc)), followed by the inverse of the Cayley transformation to get (Ad, Bd) (resp., (∆Ad,∆Bd)).

This transformation establishes an equivalence relation between the eigenstructures of the matrix pencils

Ad − λBd (resp., ∆Ad − λ∆Bd) and Ac − µBc (resp., ∆Ac − µ∆Bc); in particular, λ ∈ Λ(Ad, Bd)\{−1,∞}
if and only if µ ∈ Λ(Ac, Bc)\{∞, 1} [35, Theorem 16]. It is interesting that λ and µ have the same partial,

algebraic and geometric multiplicities. More properties in this regard can be found in [35, Section 4].

In the following example, we use the one-to-one transformation T in (15) to transform the discrete-time

matrix pencil to the continuous-time matrix pencil. Then, we look for the minimum change in the diagonal

blocks ∆M0, ∆M4 and ∆M6 of ∆Ac such that ∆Pc(iγ) = ∆Ac−iγ∆Bc has conditions which ensure that for

some nonzero real t, and some γ ∈ R, det(P (iγ, t)) = 0. For the estimated minimum change, α, we let γ vary

in (−c, c) (for c computed via Theorem 12) and check the positive definiteness of ∆Pc(iγ). Finally, using

the equivalence relation between the eigenvalues of both discrete-time matrix pencil and the continuous-time

matrix pencil, we recover and illustrate the complex numbers z on the unit circle which ensure that the

matrix pencil ∆Pd(z) = ∆Ad − z∆Bd become positive definite. We remark that here the matrix pencil

∆Pd(z) is the one that has one-to-one equivalence relation with the nearest matrix pencil obtained for the

continuous-time problem.

Example 5.1. For the discrete-time matrix pencil examined here, we use the same fixed matrices and

the randomly generated matrices as those in Example 4.3. The difference is that, in addition to M0 = 0 in

Example 4.3, here we have ∆M0 = 0. We look for the minimum nonnegative real number α such that for

∆M0 = 0 replaced by αI2×2, for ∆M4 replaced by ∆M4 +αI2×2, and for ∆M6 replaced by ∆M6 +α, there

exists a real interval (−c, c) such that for any γ ∈ (−c, c), the matrix ∆Pc(iγ) associated with the obtained

equivalence continuous-time matrix pencil becomes Hermitian positive definite. Then, we use λ = 1+µ
1−µ to

recover the corresponding values z = λ on the unit circle for which ∆Pd(z) (associated with the nearest

matrix pencil obtained for the continuous-time problem) becomes positive definite. One of our numerical

experiments in MATLAB shows that the minimum possible value of α for which ∆Pc(iγ) � 0 is α = 0.9. For

the modified problem obtained with this value of α, Theorem 12 (a) provides us with (−c, c) = (−1.23, 1.23).

In practice, all the values of γ ∈ (−c, c) satisfy ∆Pc(iγ) � 0. Figure 5(a) shows these values of γ’s versus

α = 0.9 for the nearest matrix pencil obtained for the continuous-time problem. The small red circles in

Figure 5(b) show the values of z = λ on the unit circle such that ∆Pd(z) � 0. We checked the positive

definiteness of the mentioned matrices, using MATLAB’s function isspd [29].

6. Conclusions. We have characterized the eigenvalues of the perturbed matrix pencil P (z, t) when

the perturbation parameter t is real and nonzero. In our study, the first two families of matrix pencils and

their perturbation matrix pencils have general or block Hermitian/skew-Hermitian matrix pairs. A specific

block structure of the second family of the considered matrix pencils appears in continuous-time control. The
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Fig. 5: The values of γ (resp., z with |z| = 1) which make ∆Pc(iγ) � 0 (resp., ∆Pd(z) � 0) for α = 0.9.

third family of matrix pencils and their perturbation matrix pencils is a special block non-Hermitian/non-

Hermitian matrix pairs which arise in discrete-time control.

Our approach of dealing with the above problems is different than those in the literature, in the sense

that it provides some practical techniques which result in some bounds on the set of specified z, such that

for some nonzero real t, det(P (z, t)) = 0. What we have achieved for more general matrix pairs, in all

the three families, is to apply an idea of inverse eigenvalue problem for introducing some subsets of z on

the imaginary axis or on the unit circle (depend on the family of the problem) for which the matrix pair

(P (z),−∆P (z)) has at least one nonzero real eigenvalue. We arrived to distinguish that for continuous-time

control problems (resp., discrete-time control problems), with z on the imaginary axis (resp., on the unit

circle), it is not guaranteed that the matrix pair (P (z),−∆P (z)) has at least one nonzero real eigenvalue.

Therefore, for each of the control problems, we have suggested to look for the nearest block problem with

the same structure (except for the matrix ∆M0) which at least the existence of one nonzero real eigenvalue

of the matrix pair (P (z),−∆P (z)) can be guaranteed.

There are several interesting questions which should be considered in future works. One of them is to

strengthen the proposed upper and lower bounds for the set of z on the imaginary axis (resp., the unit circle)

when we study the two first families (resp., the third family) of the problems. Another research direction is

the study of problems arising in control theory or elsewhere with very large |t|, or |t| → ∞.

Appendix A. Direct eigenvalue characterization of discrete-time matrix pencil.

For the block matrices in (14), each one of the conditions (i), (ii), and (iii) of Theorem 3 proved in [9,

Theorem 3.5] guarantees that all the eigenvalues of (∆A− z∆B)(A− zB)−1 are real. These conditions can

also be used as sufficient conditions for (A + t∆A,B + t∆B), t ∈ R, to have a complex eigenvalue z with

|z| = 1. However, Bora and Mehrmann preferred to introduce some other necessary and sufficient conditions

for this problem (see Theorem 5.2 in [9]).

Due to the existence of the zero diagonal blocks M0 and ∆M0 in the matrices A and ∆A, respectively,

there is no guarantee that the pair (P (z),−∆P (z)) has a nonzero real eigenvalue t; see Sections 4.2 and
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5. This deficiency also prevents the matrix S(z) from being positive or negative definite. For the same

reason, the matrix T (z) cannot be positive or negative semidefinite. One reasonable and reliable suggestion

is applying similar numerical approaches as those suggested in Section 5. Nevertheless, let us use Theorem

3 and derive some sufficient conditions under which, for a subset of z on the unit circle, all the eigenvalues

of (P (z),−∆P (z)) are real.

Under the assumption that Λ(Fz) = Λ(FHz ), for Fz = −∆P (z)P−1(z), it has been proved in [9, Theorem

5.1] that the matrices:

(16)

T (z) =

 0 ∆M1 − z∆M3 ∆M2

(∆M1 − z∆M3)H ∆M4 ∆M5

∆MH
2 ∆MH

5 ∆M6

 and S(z) =

 0 M1 − zM3 M2

(M1 − zM3)H M4 M5

MH
2 MH

5 M6


are Hermitian Frobenius factors (see Definition 2) of Fz when z ∈ C and |z| = 1. In what follows, we provide

some new sufficient conditions for which (see (4)) all the eigenvalues of the pair (P (z),−∆P (z)) are real and

nonzero when |z| = 1. The sufficient conditions we obtain are equivalent to the sufficient conditions (ii) and

(iii) of Theorem 3.

To proceed, let us rewrite the matrix S(z) in (16) as:

(17) S(z) = S1 − zS2 − z̄S3,

where

S1 =

 0 M1 M2

MH
1 M4 M5

MH
2 MH

5 M6

 , S2 =

 0 M3 0

0 0 0

0 0 0

 , and S3 =

 0 0 0

MH
3 0 0

0 0 0

 .
Clearly, S3 = SH2 , and thus, using the notation s2x = xHS2x and s3x = xHS3x, the quadratic form of S(z)

(for any x ∈ Cn) becomes

(18) xHS(z)x = xHS1x− zxHS2x− z̄xHSH2 x = xHS1x− zs2x − z̄s̄2x.

We use the notation
−→
Op as geometric representation of the complex number p, that is, the vector from the

origin to p. We also use 〈
−−→
Op1,

−−→
Op2〉 for the standard inner product of two (geometric) vectors

−−→
Op1 and

−−→
Op2

(p1, p2 ∈ C).

Since T (z) and S(z) have the same structure, the details given for S(z) imply that

(19) T (z) = T1 − zT2 − z̄T3,

where T1, T2, and T3 have the same structure as S1, S2, and S3, respectively, but all the block matrices Xi

are to be replaced by ∆Xi. Therefore, for any nonzero vector x ∈ Cn, we have

xHT (z)x = xHT1x− zxHT2x− z̄xHTH2 x = xHT1x− zt2x − z̄t̄2x.

Our first list of sufficient conditions which ensure the existence of nonzero real eigenvalues for (P (z),−∆P (z))

is as follows. Here, we use the notion of numerical radius r(X) defined in Definition 9 for any X ∈ Cn×n.

Proposition 14. Suppose that we are given a matrix pencil (A,B) and an associated perturbation matrix

pencil (∆A,∆B) with A, B, ∆A, and ∆B as in (14). Let z be a complex number such that |z| = 1. Suppose

also that S(z), S1, and S2 are the matrices defined in (17), and T (z), T1, and T2 are those of (19). Then

all the eigenvalues of (P (z),−∆P (z)) are nonzero and real under any of the following conditions:
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(a) S1 � 0 and λS1
min > 2r(S2).

(b) S1 ≺ 0 and λS1
max < −2r(S2).

(c) T1 � 0 and λT1
min ≥ 2r(T2).

(d) T1 ≺ 0 and λT1
max ≤ −2r(T2).

Proof. We prove the cases (a) and (b). The proof for the cases (c) and (d) are simple modifications of

the proofs of (a) and (b), respectively.

For any such z, the matrix S(z) is Hermitian. So, based on the sufficient condition (iii) in Theorem

3, we only need to find the conditions that for any complex number z on the unit circle, the matrix S(z)

becomes positive or negative definite. We represent the complex number z on the unit circle and s2x in (18)

as z = z1 + iz2 and s2x = s21x + is22x.

For the case (a), we notice that the quadratic form (18) of S(z) satisfies

xHS(z)x = xHS1x−zs2x− z̄s2x = xHS1x−2(z1s21x−z2s22x) = xHS1x−2〈
−→
Oz,
−−−→
Os2x〉 ≥ λS1

min−2〈
−→
Oz,
−−−→
Os2x〉

for 〈
−→
Oz,
−−−→
Os2x〉 = |

−→
Oz| |

−−−→
Os2x| cos(θ), where θ is the angle between

−→
Oz and

−−−→
Os2x. As |

−→
Oz| = 1, and for any

nonzero x ∈ Cn, it holds that |
−−−→
Os2x| ≤ r(S2) = r(S2), and hence, S(z) is positive definite if λS1

min > 2r(S2).

For the case (b), with the same arguments as in the case (a), we have

xHS(z)x = xHS1x− 2〈
−→
Oz,
−−−→
Os2x〉 ≤ λS1

max + 2〈
−→
Oz,
−−−→
Os2x〉.

So, S(z) is negative definite if λS1
max < −2|

−→
Oz| |

−−−→
Os2x| or λS1

max < −2r(S2).

The following notes concerning Proposition 14 are useful:

• Neither of S1 and T1 can be positive or negative definite, because their first diagonal block matrices

are zero matrices.

• For applying (a) and (b) of Proposition 14, we need to assess positive or negative definiteness of S1

and depending on that property of S1, we should compute either λS1
min or λS1

max. We also need to

compute r(S2). The same assessments on T1 and the same computations for λT1
min or λT1

max, and for

r(T2), should be done when we want to apply (c) and (d) of Proposition 14.

• The relation r(X) ≤ ‖X‖2 (for X ∈ Cn×n) implies that any of the cases (a), (b), (c), and (d) of

Proposition 14 holds if we replace r(·) by ‖ · ‖2. This yields bounds on λS1
min, λS1

max, λT1
min, or λT1

max

that may not necessarily be sharp [31]. Anyway, in cases where computational performance is the

main preference, we should use the norm ‖ · ‖2 instead of r(·).

The next proposition uses the block structure of S(z) and T (z) to provide some sufficient conditions for

which all the eigenvalues of the pair (P (z),−∆P (z)), for A, B, ∆A, and ∆B as in (14), are nonzero and

real. The proposition does not involve positive or negative definiteness of either of S1 or T1, but instead it

provides the sufficient conditions under which S(z) (resp., T (z)) is either positive or negative definite (resp.,

semidefinite). Here, the set W(X) defined by (9) is required.

Proposition 15. Suppose that we are given a matrix pencil (A,B) and an associated perturbation matrix

pencil (∆A,∆B) with A, B, ∆A, and ∆B as in (14). Let z be a complex number such that |z| = 1. Suppose

also that S(z) and T (z) are the matrices defined in (16). Then all the eigenvalues of the pair (P (z),−∆P (z))

are nonzero and real under any of the following conditions:

(a) λM4
min + λM6

min > 2
∑

j=1,2,3,5

σmax(Mj).
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(b) λM4
max + λM6

max +2
∑

j=1,2,5

σmax(Mj) < −2σmax(M3).

(c) λ∆M4
min + λ∆M6

min ≥ 2
∑

j=1,2,3,5

σmax(∆Mj).

(d) λ∆M4
max + λ∆M6

max +2
∑

j=1,2,5

σmax(∆Mj) ≤ −2σmax(∆M3).

Proof. To prove the case (a) (resp., the case (b)), we use Theorem 3 and obtain the conditions under

which S(z) becomes positive (resp., negative) definite. The cases (c) and (d) can be proved in the same way,

using the block structure of T (z), but the conditions for positive or negative semidefiniteness of T (z) should

be sought for.

For an arbitrary nonzero vector x ∈ Cn, let x =

 x1

x2

x3

, where x1,x2 ∈ Cn1 and x3 ∈ Cn2 for n1 and

n2 defined in (14). Then for

mk = xHi Mkxj , k = 1, 2, 3, 5,

we have

xHS(z)x =
[

xH1 xH2 xH3
]  0 M1 − zM3 M2

(M1 − zM3)H M4 M5

MH
2 MH

5 M6

 x1

x2

x3



=

m1︷ ︸︸ ︷
xH1 M1x2−

zm3︷ ︸︸ ︷
zxH1 M3x2 +

m2︷ ︸︸ ︷
xH1 M2x3 +

m1︷ ︸︸ ︷
xH2 M

H
1 x1−

z̄m3︷ ︸︸ ︷
z̄xH2 M

H
3 x1

+ xH2 M4x2 +

m5︷ ︸︸ ︷
xH2 M5x3 +

m2︷ ︸︸ ︷
xH3 M

H
2 x1 +

m5︷ ︸︸ ︷
xH3 M

H
5 x2 + xH3 M6x3.

Using mk+mk = 2Re(mk) for k = 1, 2, 5, and zm3 + z̄m3 = 2|
−→
Oz| |

−−−→
Om3| cos(θ), where θ is the angle between−→

Oz and
−−−→
Om3, it follows

(20) xHS(z)x = 2
∑

j=1,2,5

Re(mj)− 2|
−→
Oz| |

−−−→
Om3| cos(θ) + xH2 M4x2 + xH3 M6x3.

Now the inclusion (10), the relation (20), the Hermitian property of M4 and M6, and the assumption

|
−→
Oz| = 1, together with the definition of m3 = xH1 M3x2 can be used to show that xHS(z)x > 0 for any

nonzero x ∈ Cn provided that∑
j=4,6

λ
Mj

min > 2σmax(M1) + 2σmax(M2) + 2σmax(M5) + 2σmax(M3).

This proves the case (a).

For the case (b), the inclusion (10) and the expression (20) can be used to show that, for any nonzero

x ∈ Cn,

xHS(z)x ≤ 2σmax(M1) + 2σmax(M2) + 2σmax(M5)− 2|
−→
Oz| |

−−−→
Om3| cos(θ) + λM4

max + λM6
max.

The most challenging case for the right-hand side of the latter relation to be negative is when

|
−−−→
Om3| = max{|w| : w ∈ W(M3)} = σmax(M3) = ‖M3‖2,
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and cos(θ) = −1. This means that, for any z ∈ C such that |z| = 1, S(z) is negative definite if, for any

nonzero x ∈ Cn,

2σmax(M1) + 2σmax(M2) + 2σmax(M5) + λM4
max + λM6

max < −2σmax(M3).

This proves the case (b).

Although in practice the sufficient conditions provided by Proposition 15 are not possible to be fulfilled,

it seems that maybe they can provide a way to estimate the distance of S(z) (resp., T (z)) to a positive or

negative definite (resp., semidefinite) matrix.
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