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Abstract

In this paper, we study a compression of normal matrices and ma-
trix polynomials with respect to a given vector and its orthogonal
complement. The numerical range of this compression satisfies special
boundary properties, which are investigated in detail. The character-
istic polynomial of the compression is also considered.
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1 Introduction and preliminaries

Let Mn be the algebra of all n× n complex matrices, and let

L(λ) = Amλm + Am−1λ
m−1 + · · ·+ A1λ + A0 (1)

be a matrix polynomial, where Aj ∈ Mn (j = 0, 1, . . . ,m) and λ is a
complex variable. The matrix polynomial L(λ) is called selfadjoint if all its
coefficients are Hermitian, and it is said to be normal if for every µ ∈ C,
the matrix L(µ) is normal. The study of matrix polynomials has a long
history, especially in the context of their spectral analysis, which leads to
the solutions of the corresponding linear systems of differential (or difference)
equations [3, 6, 12].

A scalar λ0 ∈ C is said to be an eigenvalue of the matrix polynomial
L(λ) in (1) if the system L(λ0)x = 0 has a nonzero solution x0 ∈ Cn. This
solution x0 is known as an eigenvector of L(λ) corresponding to λ0, and the
set of all eigenvalues of L(λ) is the spectrum of L(λ), namely, σ(L(λ)) =
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{λ ∈ C : detL(λ) = 0}. The polynomial detL(λ) is called the characteristic
polynomial of L(λ) and its degree is no greater than nm. The numerical
range of L(λ) is defined by

W (L(λ)) = {λ ∈ C : x∗L(λ)x = 0, x ∈ Cn, x∗x = 1},

and it is always closed and contains σ(L(λ)). If we consider the linear pencil
Iλ− A for some A ∈ Mn, then σ(Iλ− A) coincides with the spectrum of
A, σ(A), and W (Iλ−A) coincides with the classical numerical range (field
of values) of A, F (A) = {x∗Ax : x ∈ Cn, x∗x = 1}, which is always
compact and convex [7]. To facilitate the presentation, some properties
of F (A), W (L(λ)) and normal matrix polynomials that are necessary for
understanding these notions follow [7, 10, 11, 13, 16].

(A) If A = B1 ⊕ B2 for some B1 ∈ Mk and B2 ∈ Mn−k (1 ≤ k < n),
then F (A) = convex hull {F (B1) ∪ F (B2)}.

(B) F (A) contains the convex hull of the eigenvalues of A. If A is normal,
then F (A) = convex hull {σ(A)} (the converse is not true for n > 4).

(C) If µ is a corner of W (L(λ)) and there is a unit xµ ∈ Cn such that µ is
a simple zero of the scalar polynomial x∗µL(λ)xµ, then µ ∈ σ(L(λ)).

(D) If 1 ≤ k ≤ n and Y is an n × k complex matrix of rank k, then
W (Y ∗L(λ)Y ) ⊆ W (L(λ)). The equality holds if k = n.

(E) The numerical range of L(λ) is bounded if and only if 0 /∈ F (Am), and
in this case, it has no more than m connected components.

(F) If L(λ) is normal and there is a µ ∈ C such that the matrix L(µ) has
n distinct eigenvalues, then there exists a unitary U ∈Mn such that
U∗L(λ)U is diagonal, i.e., the coefficients of L(λ) are simultaneously
diagonalizable by unitary similarity.

Given two matrices A ∈ Mn and B ∈ Mk with 1 ≤ k < n, B is
said to be a compression of A if there exists an n × k matrix P satisfying
P ∗P = Ik and B = P ∗AP . Extending this definition, we say that a k × k
matrix polynomial R(λ) (1 ≤ k < n) is a compression of L(λ) in (1) if there
exists an n × k matrix P such that P ∗P = Ik and R(λ) = P ∗L(λ)P for
all λ ∈ C. Then by Property (D), W (R(λ)) ⊆ W (L(λ)).

Recently, compressions of normal matrices have attracted attention and
several results have been obtained [1, 4, 5, 15]. In the remainder of this
section, some of these results are briefly presented, and in Section 2, their
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generalizations to normal matrix polynomials are obtained. Moreover, one
of the main results in [5] on the characteristic polynomial of the compression
is extended and an illustrative example is given. In Section 3, the special
case of normal selfadjoint quadratic matrix polynomials is discussed.

Consider now a normal matrix A ∈ Mn and let λ1, λ2, . . . , λk ∈ σ(A)
(2 ≤ k ≤ n) such that for every i = 1, 2, . . . , k, the eigenvalue λi does not
belong to the interior of the convex hull of λ1, . . . , λi−1, λi+1, . . . , λk. Assume
that the points λ1, λ2, . . . , λk, in this particular order, define a closed convex
polygon in C, denoted by 〈λ1, λ2, . . . , λk〉, where successive λi’s are allowed
to be equal or co-linear, i.e., 〈λ1, λ2, . . . , λk〉 may have less than k vertices
and can be degenerated to a line segment or a point. Suppose also that
{x1, x2, . . . , xk} is an orthonormal system of eigenvectors of A corresponding
to λ1, λ2, . . . , λk, respectively, and let W = span{x1, x2, . . . , xk}. For any
vector

v =
k∑

i=1

ci xi ∈ W ; ci ∈ C \ {0} (i = 1, 2, . . . , k),

let E⊥
W (v) be the orthogonal complement of span{v} with respect to W .

Then

yi =
ci+1√

|ci|2 + |ci+1|2
xi − ci√

|ci|2 + |ci+1|2
xi+1 ; i = 1, 2, . . . , k (2)

(where xk+1 = x1 and ck+1 = c1) are unit vectors and belong to E⊥
W (v),

and for every i = 1, 2, . . . , k,

y∗i Ayi =
|ci+1|2λi + |ci|2λi+1

|ci|2 + |ci+1|2 .

Since x1, x2, . . . , xk ∈ Cn are linearly independent and the coefficients
c1, c2, . . . , ck are nonzero, one can easily see that y1, y2, . . . , yk−1 are also
linearly independent and form a basis of E⊥

W (v). If {w1, w2, . . . , wk−1} is
an orthonormal basis of E⊥

W (v) and we define the n× (k − 1) matrix

P =
[

w1 w2 · · · wk−1

]
, (3)

then the matrix B = P ∗AP is a (k− 1)× (k− 1) compression of A and its
numerical range is given by

F (B) = {(Pz)∗A (Pz) : z ∈ Ck−1, z∗z = 1}
= {x∗Ax : x ∈ E⊥

W (v), x∗x = 1}
⊆ {x∗Ax : x ∈ W, x∗x = 1}
= 〈λ1, λ2, . . . , λk〉.
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Since y1, y2, . . . , yk ∈ E⊥
W (v), it is clear that denoting λk+1 = λ1 and

ck+1 = c1, the points

τi = y∗i Ayi =
|ci+1|2λi + |ci|2λi+1

|ci|2 + |ci+1|2 ; i = 1, 2, . . . , k (4)

lie on the boundary of F (B). As a consequence, we have the following known
result [1, 4, 5, 15].

Theorem 1 Suppose A ∈ Mn is normal and λ1, λ2, . . . , λk ∈ σ(A) such
that the convex polygon 〈λ1, λ2, . . . , λk〉 is well defined. Let x1, x2, . . . , xk

be the corresponding unit eigenvectors of A, and let P be the n × (k − 1)
matrix in (3). Then the numerical range of the (k−1)×(k−1) compression
B = P ∗AP lies in 〈λ1, λ2, . . . , λk〉, and for every i = 1, 2, . . . , k, ∂F (B)
has a common point τi with the line segment 〈λi, λi+1〉 given by (4) .

It is worth noting that for any 1 ≤ i < j ≤ k, the unit vector

yi,j =
cj√|ci|2 + |cj |2

xi − ci√|ci|2 + |cj |2
xj

also belongs to E⊥
W (v) and the point

y∗i,jAyi,j =
|cj |2λi + |ci|2λj

|ci|2 + |cj |2

lies on F (B) ∩ 〈λi, λj〉. Furthermore, the methodology discussed above
allows the investigation of the case where some λi’s in 〈λ1, λ2, . . . , λk〉 are
equal or co-linear. For convenience, we say that a λi (i ∈ {1, 2, . . . , k}) is
c-independent if it is a vertex of the polygon 〈λ1, λ2, . . . , λk〉 different from
λi−1 and λi+1 (where λ0 = λk and λk+1 = λ1). The first statement of the
next theorem was proved recently by Gau and Wu [5, Theorem 3], and the
other two statements follow readily from the continuity of the numerical
range of matrices with respect to the Hausdorff metric.

Theorem 2 Let A ∈ Mn be normal, and let λ1, λ2, . . . , λk be eigenval-
ues of A such that the polygon 〈λ1, λ2, . . . , λk〉 is well defined. Under the
hypotheses of Theorem 1, we have the following cases:

(a) For every i ∈ {1, 2, . . . , k} such that λi and λi+1 (where λk+1 = λ1)
are c-independent vertices of 〈λ1, λ2, . . . , λk〉, the point τi in (4) is
the only common point of ∂F (B) and 〈λi, λi+1〉.
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(b) If there exist i ∈ {1, 2, . . . , k} and s ∈ {2, 3, . . . , k − 1} such that
λi, λi+1, . . . , λi+s are co-linear, then 〈τi, τi+s−1〉 ⊆ ∂F (B)∩〈λi, λi+s〉,
where λk+j = λj and τk+j = τj (j = 1, 2, . . .). If, in addition, λi and
λi+s are c-independent, then 〈τi, τi+s−1〉 = ∂F (B) ∩ 〈λi, λi+s〉.

(c) Suppose that there is an index i ∈ {1, 2, . . . , k} such that λi is a vertex
of 〈λ1, λ2, . . . , λk〉 and appears exactly t times in {λ1, λ2, . . . , λk},
and let λi = λi+1 = · · · = λi+t−1. If t = 1, then ∂F (B)∩ 〈τi−1, λi〉 =
{τi−1} (where τ0 = τk) and ∂F (B) ∩ 〈λi, τi〉 = {τi}. If t > 1, then
〈τi−1, λi〉 ⊆ ∂F (B) ∩ 〈λi−1, λi〉 (where λ0 = λk and τ0 = τk) and
〈λi, τi+t−1〉 ⊆ ∂F (B) ∩ 〈λi, λi+t〉 (where λk+j = λj and τk+j = τj for
j = 1, 2, . . .). In this case, λi is a corner of F (B) and an eigenvalue
of the compression B.

Corollary 3 Any vertex of the convex polygon 〈λ1, λ2, . . . , λk〉 that ap-
pears more than once in the set {λ1, λ2, . . . , λk} is also a corner of F (B)
and a common eigenvalue of A and B. Furthermore, if every vertex of
〈λ1, λ2, . . . , λk〉 appears more than once in {λ1, λ2, . . . , λk}, then F (B) co-
incides with 〈λ1, λ2, . . . , λk〉.

If all the eigenvalues λ1, λ2, . . . , λk are real (this is the case when A
is Hermitian), then by Theorems 1 and 2 (b), the numerical range of the
compression B coincides with the interval [min{τ1, τk}, max{τk−1, τk}].

It is worth mentioning that all the results on the numerical range of
the described compression (here and in the literature) are essentially based
on the existence of mutually orthogonal subspaces of the eigenspaces of
A. Suppose that a (general) matrix A ∈ Mn is written in the form
A = U∗ (D1 ⊕D2 ⊕ · · · ⊕Dξ ⊕ T ) U for some unitary U ∈ Mn, some
diagonal Di = diag{λi,1, λi,2, . . . , λi,ki} (i = 1, 2, . . . , ξ) and an upper tri-
angular T ∈ Mn−(k1+···+kξ), and assume that the closed convex polygons
〈λ1,1, λ1,2, . . . , λ1,k1〉, 〈λ2,1, λ2,2, . . . , λ2,k2〉, . . . , 〈λξ,1, λξ,2, . . . , λξ,kξ

〉 are well
defined and mutually disjoint. Then by applying the above method, keeping
in mind D1, D2, . . . , Dξ, we can construct ξ matrices P1, P2, . . . , Pξ such
that for every 1 ≤ i, j ≤ ξ with i 6= j, P ∗

i Pi = Iki−1, P ∗
i APj = 0 and

F (P ∗
i APi) lies in 〈λi,1, λi,2, . . . , λi,ki〉. Moreover, ∂F (P ∗

i APi) ∩ ∂〈λi,1, λi,2,
. . . , λi,ki〉 is fully described by Theorem 2. For the n×(k1+k2+· · ·+kξ−ξ)
matrix P =

[
P1 P2 · · · Pξ

]
, Property (A) implies that

F (P ∗AP ) = F
(
(P ∗

1 AP1)⊕ (P ∗
2 AP2)⊕ · · · ⊕ (P ∗

ξ APξ)
)

= convex hull

{
ξ⋃

i=1

F (P ∗
i APi)

}
.
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2 Normal matrix polynomials

Let L(λ) = Amλm + · · ·+ A1λ + A0 be an n× n matrix polynomial with
detAm 6= 0, and let G be a bounded connected component of its numerical
range. Then for any unit vector x ∈ Cn, the number of zeros of the scalar
polynomial x∗L(λ)x in G, counting multiplicities, does not depend on x
[12, Lemma 26.8], i.e., it is constant. If we denote this constant number
by indL(G), then L(λ) has exactly n indL(G) eigenvalues in G (counting
multiplicities) [14, Theorem 2.1]. For an unbounded connected component
G of W (L(λ)), we say that indL(G) = κ if for every unit x ∈ Cn such that
x∗Am x 6= 0, the number of zeros of x∗L(λ)x in G is equal to κ.

Suppose now that L(λ) is normal, and that for a µ ∈ C, the matrix
L(µ) has n distinct eigenvalues. Then by Property (F), there is a unitary
matrix U ∈Mn such that

U∗L(λ)U = diag{d1(λ), d2(λ), . . . , dn(λ)} (5)

(see [8] for related definitions and results). Since the leading coefficient of
L(λ) is nonsingular, for every i = 1, 2, . . . , n, the polynomial di(λ) is of de-
gree m and the ith column of U is a unit eigenvector of L(λ) corresponding
to the zeros of di(λ) (in particular, it is a common eigenvector of all the co-
efficients of L(λ)). Consequently, if G is a connected component of W (L(λ))
with indL(G) = 1, then L(λ) has exactly n eigenvalues in G (one zero of
each di(λ)) and the corresponding unit eigenvectors form an orthonormal
basis of Cn.

By [16, Proposition 13], the numerical range of a 2× 2 diagonal matrix
polynomial has no interior, i.e., it is a union of continuous curves. Moreover,
by [16, Proposition 14], the boundary of the numerical range of a diagonal
matrix polynomial diag{g1(λ), g2(λ), . . . , gn(λ)} lies on

⋃

1≤i<j≤n

W (diag{gi(λ), gj(λ)}) .

Theorem 4 Let L(λ) be an n × n normal matrix polynomial with a non-
singular leading coefficient, satisfying (5), and let G be a connected compo-
nent of W (L(λ)) with indL(G) = 1. Suppose that for every i = 1, 2, . . . , k
(2 ≤ k ≤ n), λi is the zero of di(λ) in G (i.e., λ1, λ2, . . . , λk ∈ σ(L(λ))∩G)
and xi is the corresponding unit eigenvector of L(λ). If P is the n× (k−1)
matrix in (3), then the numerical range of the (k−1)× (k−1) compression
R(λ) = P ∗L(λ)P lies in W (diag{d1(λ), d2(λ), . . . , dk(λ)}), and for every
1 ≤ i < j ≤ k such that W (diag{di(λ), dj(λ)}) ∩ G is bounded, W (R(λ))
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has a common point with the continuous curve W (diag{di(λ), dj(λ)}) ∩G,
that is, the zero of the scalar polynomial |cj |2di(λ) + |ci|2dj(λ) in G.

Proof Let 1 ≤ i < j ≤ k, and as in the matrix case, consider the unit
vector

yi,j =
cj√|ci|2 + |cj |2

xi − ci√|ci|2 + |cj |2
xj ∈ E⊥

W (v).

Then

y∗i,jL(λ)yi,j =
|cj |2di(λ) + |ci|2dj(λ)

|ci|2 + |cj |2
has exactly one zero in G, which lies on the (bounded) continuous curve

W (diag{di(λ), dj(λ)}) ∩G = {λ ∈ G : t di(λ) + (1− t)dj(λ), 0 ≤ t ≤ 1}

(see also the proof of [11, Theorem 2.2]). Hence, the zero of the polynomial
|cj |2di(λ) + |ci|2dj(λ) in G is a common point of the numerical range

W (R(λ)) = {λ ∈ C : (Pz)∗L(λ)(Pz) = 0, z ∈ Ck−1, z∗z = 1}
= {λ ∈ C : x∗L(λ)x = 0, x ∈ E⊥

W (v), x∗x = 1}

and the curve W (diag{di(λ), dj(λ)}) ∩G. ¤

Notice that in the above theorem, if some λi’s appear more than once
in the set {λ1, λ2, . . . , λk}, then they also lie in the numerical range of the
compression R(λ).

For the (k − 1)× (k − 1) compression

R(λ) = Bmλm + Bm−1λ
m−1 + · · ·+ B1λ + B0,

we consider the matrix polynomial

ΠR(u, v) = Bm(um−1 + um−2v + · · ·+ vm−1) + Bm−1(um−2

+um−3v + · · ·+ vm−2) + · · ·+ B2(u + v) + B1

in two complex variables u and v, and next we obtain a sufficient condition
for the uniqueness of the intersection points.

Theorem 5 Suppose that the hypotheses of Theorem 4 hold, and that for
some indices 1 ≤ ζ1 < ζ2 ≤ k, the curve W (diag{dζ1(λ), dζ2(λ)}) ∩ G is
bounded, lies on ∂G and its common points with the rest of the curves in
the union

⋃
1≤i<j≤k (W (diag{di(λ), dj(λ)}) ∩G) are exactly its endpoints.
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Let also τζ1,ζ2 be the zero of |cζ2 |2dζ1(λ) + |cζ1 |2dζ2(λ) in G, and assume
that the points dζ1(τζ1,ζ2) and dζ2(τζ1,ζ2) are successive vertices of the con-
vex polygon F (diag{d1(τζ1,ζ2), d2(τζ1,ζ2), . . . , dk(τζ1,ζ2)}) that satisfy the con-
ditions of Theorem 2 (a). If for every ω ∈ W (diag{dζ1(λ), dζ2(λ)}) ∩ G
different from τζ1,ζ2 and for every unit x ∈ Cn such that x∗R(ω)x = 0,
x∗ΠR(τζ1,ζ2 , ω)x 6= 0, then τζ1,ζ2 is the only common point of ∂W (R(λ))
and the continuous curve W (diag{dζ1(λ), dζ2(λ)}) ∩G.

Proof Without loss of generality, assume that ζ1 = 1 and ζ2 = 2, and that
the points d1(τ1,2) and d2(τ1,2) are successive vertices of F (diag{d1(τ1,2),
d2(τ1,2), . . . , dk(τ1,2)}) and satisfy the conditions of Theorem 2 (a). Consider
a point

ω1 ∈ ∂W (R(λ)) ∩ (W (diag{d1(λ), d2(λ)}) ∩G) .

Keeping in mind (5), one can see that there exist two unit vectors y, ŷ ∈
Ck−1 such that

P y = U




t

eiθ
√

1− t2

0
...
0




and P ŷ = U




t̂

eiθ̂
√

1− t̂2

0
...
0




for some t, t̂ ∈ [0, 1] and θ, θ̂ ∈ [0, 2π), which satisfy

y∗R(τ1,2)y = (P y)∗L(τ1,2)(P y) = 0

and
ŷ∗R(ω1)ŷ = (P ŷ)∗L(ω1)(P ŷ) = 0.

Hence, the numerical range of the compression R(τ1,2) = P ∗L(τ1,2)P of the
matrix L(τ1,2) ∈Mn contains the origin and the point

ŷ∗R(τ1,2)ŷ = ŷ∗ΠR(τ1,2, ω1)ŷ (τ1,2 − ω1).

Since the conditions of Theorem 2 (a) hold, 〈d1(τ1,2), d2(τ1,2)〉 is an edge of
the numerical range of the matrix diag{d1(τ1,2), d2(τ1,2), . . . , dk(τ1,2)} and
contains the origin [13, Theorem 1.1]. By Theorem 2 (a), the origin is the
only common point of 〈d1(τ1,2), d2(τ1,2)〉 and ∂F (R(τ1,2)). Furthermore,
the point

ŷ∗R(τ1,2)ŷ = ŷ∗ΠR(τ1,2, ω1)ŷ (τ1,2 − ω1)

=
[

t̂ e−iθ̂
√

1− t̂2
] [

d1(τ1,2) 0
0 d2(τ1,2)

] [
t̂

eiθ̂
√

1− t̂2

]
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also lies on 〈d1(τ1,2), d2(τ1,2)〉. Thus, it is clear that ŷ∗ΠR(τ1,2, ω1)ŷ = 0 or
ω1 = τ1,2. The proof is complete. ¤

Next we obtain the characteristic polynomial of the compression R(λ),
generalizing [5, Theorem 1].

Theorem 6 Let L(λ) be an n × n normal matrix polynomial, satisfying
(5). If x1, x2, . . . , xn are the corresponding unit eigenvectors of L(λ), v =∑k

i=1 ci xi (2 ≤ k ≤ n, c1, c2, . . . , ck 6= 0) and P is the n× (k−1) matrix in
(3), then the characteristic polynomial of the (k− 1)× (k− 1) compression
R(λ) = P ∗L(λ)P is given by

detR(λ) =
k∑

j=1

|cj |2
|c1|2 + |c2|2 + · · ·+ |ck|2 d1(λ) · · · dj−1(λ) dj+1(λ) · · · dk(λ).

Proof Consider the subspace W0 =
{[

x
0

]
∈ Cn : x ∈ Ck, 0 ∈ Cn−k

}
of

Cn. Then recalling (5), observe that

P ∗L(λ)P = (U∗P )∗diag{d1(λ), d2(λ), . . . , dn(λ)} (U∗P ),

where the columns of the matrix U∗P form an orthogonal basis of E⊥
W0

(U∗v)
≡ E⊥

W0

(
[ c1, . . . , ck, 0, . . . , 0]T

)
. Moreover, if L(λ) is diagonal and k < n,

then the last n−k rows of P are zero. Hence, without loss of generality, we
may assume that k = n, and that the matrix polynomial L(λ) is diagonal,
i.e., L(λ) = diag{d1(λ), d2(λ), . . . , dn(λ)} and {x1 = e1, x2 = e2, . . . , xn =
en} is the standard basis of Cn.

Denote by P (j) the (n−1)×(n−1) submatrix of P obtained by striking
out the jth row (j = 1, 2, . . . , n). Then by the Binet-Cauchy formula for the
determinant of the product of three matrices [2, p. 86],

detR(λ) = det


P ∗




d1(λ) 0 · · · 0
0 d2(λ) · · · 0
...

...
. . .

...
0 0 · · · dn(λ)


P




=
n∑

j=1

|detP (j)|2d1(λ) · · · dj−1(λ) dj+1(λ) · · · dn(λ).

For the unit vector v̂ = v/‖v‖2 = 1√
|c1|2+|c2|2+···+|cn|2

[ c1, c2, . . . , cn ]T ,

the set {w1, w2, . . . , wn−1, v̂} is an orthonormal basis of Cn and
∣∣det

[
w1 w2 · · · wn−1 v̂

]∣∣ = 1.
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For any j = 1, 2, . . . , n, {w1, w2, . . . , wn−1, ej} is a basis of Cn, and thus,

det
[

w1 w2 · · · wn−1 v̂
]

= det
[

w1 w2 · · · wn−1 χj ej

]

= χj detP (j)

for some nonzero χj ∈ C. As a consequence, |detP (j)| = |χj |−1. Moreover,
the vectors y1, y2, . . . , yn−1 in (2) and ej also form a basis of Cn, and

v̂ =
n∑

i=1

ci√
|c1|2 + |c2|2 + · · ·+ |cn|2

ei =
n−1∑

i=1

ψi yi + χj ej (6)

for some ψ1, ψ2, . . . , ψn−1 ∈ C. Straightforward computations imply

ψ1 =
c1

√
|c1|2 + |c2|2

c2

√
|c1|2 + |c2|2 + · · ·+ |cn|2

when j ≥ 2,

ψi =
(|c1|2 + · · ·+ |ci|2)

√
|ci|2 + |ci+1|2

ci ci+1

√
|c1|2 + |c2|2 + · · ·+ |cn|2

; i = 2, 3, . . . , j − 1

when j ≥ 3,

ψn−1 = − cn

√
|cn−1|2 + |cn|2

cn−1

√
|c1|2 + |c2|2 + · · ·+ |cn|2

when j ≤ n− 1, and

ψi = − (|ci+1|2 + · · ·+ |cn|2)
√
|ci|2 + |ci+1|2

ci ci+1

√
|c1|2 + |c2|2 + · · ·+ |cn|2

; i = n− 2, n− 3, . . . , j

when j ≤ n− 2. Then by substituting to the jth equation of the system (6)
(i.e., the one that corresponds to the jth entry of v̂), we obtain that

χj =

√
|c1|2 + |c2|2 + · · ·+ |cn|2

cj
,

and the proof is complete. ¤

Let now A1λ + A0 (detA1 6= 0) be an n× n normal linear pencil with
(finite) spectrum

σ(A1λ + A0) =
{

λ1 = −µ1

ν1
, λ2 = −µ2

ν2
, . . . , λn = −µn

νn

}
,
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and suppose that there is a unitary matrix U ∈Mn such that

U∗(A1λ + A0)U = diag{ν1λ + µ1, ν2λ + µ2, . . . , νnλ + µn}.
By [16, Proposition 13 and Corollary 15], the numerical range of a 2 × 2
diagonal linear pencil diag{νλ + µ, ν̂λ + µ̂} lies either on a straight line or
on a circle. Thus, if W (diag{νλ + µ, ν̂λ + µ̂}) is bounded (i.e., 0 /∈ 〈ν, ν̂〉),
then it is a line segment or a circular arc. A set of scalars

{
λ̂1 = − µ̂1

ν̂1
, λ̂2 = − µ̂2

ν̂2
, . . . , λ̂k = − µ̂k

ν̂k

}

is said to satisfy the boundary order property if the boundary of W (diag{ν̂1λ̂+
µ̂1, ν̂2λ̂ + µ̂2, . . . , ν̂kλ̂ + µ̂k}) is bounded and coincides with the union

⋃

i=1,2,...,k

W (diag{ν̂iλ̂ + µ̂i, ν̂i+1λ̂ + µ̂i+1}),

where ν̂k+1 = ν̂1, µ̂k+1 = µ̂1, and the curves W (diag{ν̂1λ̂ + µ̂1, ν̂2λ̂ +
µ̂2}), W (diag{ν̂2λ̂ + µ̂2, ν̂3λ̂ + µ̂3}), . . . , W (diag{ν̂kλ̂ + µ̂k, ν̂1λ̂ + µ̂1}) are
successive parts of ∂W (diag{ν̂1λ̂ + µ̂1, ν̂2λ̂ + µ̂2, . . . , ν̂kλ̂ + µ̂k}). Since
∂W (diag{ν̂1λ̂+ µ̂1, ν̂2λ̂+ µ̂2, . . . , ν̂kλ̂+ µ̂k}) is bounded, the numerical range
W (diag{ν̂1λ̂+µ̂1, ν̂2λ̂+µ̂2, . . . , ν̂kλ̂+µ̂k}) is connected. Hence, by Theorems
4 and 5, and observing that for R(λ) = B1λ + B0, the matrix polynomial
ΠR(u, v) coincides with the matrix B1, we have the following corollaries.

Corollary 7 Suppose λ1 = −µ1

ν1
, λ2 = −µ2

ν2
, . . . , λk = −µk

νk
∈ σ(A1λ + A0)

(2 ≤ k ≤ n) satisfy the boundary order property and x1, x2, . . . , xk are the
corresponding unit eigenvectors of A1λ + A0. For any vector

v =
k∑

i=1

ci xi ; ci ∈ C \ {0} (i = 1, 2, . . . , k)

with |ci|2νi+1 + |ci+1|2νi 6= 0 (i = 1, 2, . . . , k − 1) and |ck|2ν1 + |c1|2νk 6= 0,
consider the n × (k − 1) matrix P in (3). Then the numerical range of
the (k − 1) × (k − 1) linear pencil B1λ + B0 = P ∗(A1λ + A0)P lies in
W (diag{ν1λ+µ1, ν2λ+µ2, . . . , νkλ+µk}), and for every i = 1, 2, . . . , k, the
boundary of W (B1λ+B0) has at least a common point with the continuous
curve W (diag{νiλ + µi, νi+1λ + µi+1}), that is, the point

τi =
|ci+1|2νiλi + |ci|2νi+1λi+1

|ci|2νi+1 + |ci+1|2νi
= −|ci|2µi+1 + |ci+1|2µi

|ci|2νi+1 + |ci+1|2νi
, (7)

where it is assumed that νk+1 = ν1, µk+1 = µ1, λk+1 = λ1 and ck+1 = c1.
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Corollary 8 Suppose that the hypotheses of Corollary 7 hold, and let τi

(i = 1, 2, . . . , k) be the intersection points defined by (7). Then for every i ∈
{1, 2, . . . , k} such that the points νiτi+µi and νi+1τi+µi+1 of F (diag{ν1τi+
µ1, ν2τi+µ2, . . . , νkτi+µk}) satisfy the conditions of Theorem 2 (a), τi is the
only common point of ∂W (B1λ+B0) and W (diag{νiλ+µi, νi+1λ+µi+1}).

For the n×n linear pencil Iλ−A, σ(Iλ−A) ≡ σ(A) and W (Iλ−A) ≡
F (A), and for every µ ∈ C, F (Iµ − A) = µ − F (A). As a consequence,
Corollaries 7 and 8 are direct generalizations of Theorems 1 and 2 (a), re-
spectively. Note also that the above corollaries hold even when the numerical
range of A1λ+A0 is unbounded, as it is illustrated in the following example.

Example 2 Consider the 3× 3 diagonal linear pencil

A1λ + A0 =




1 0 0
0 i 0
0 0 −1− i


λ +




1 0 0
0 1 0
0 0 1


 .

The numerical range W (A1λ+A0) is unbounded, does not contain the origin
and its boundary is sketched in both parts of Figure 1. The eigenvalues of
the pencil are marked with o’s and satisfy the boundary order property. For
the vector v = [ 1, 1, 1 ]T , we construct the 3× 2 matrix

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

Real  Axis

Im
ag

in
ar

y 
 A

xi
s

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

Real  Axis

Im
a

g
in

a
ry

  
A

xi
s

Figure 1: The numerical ranges W (A1λ + A0) and W (B1λ + B0).

P ∼=



0.4082 −0.7071
−0.8165 0
0.4082 0.7071


 ,

and observe that P ∗P = I2. The numerical range of the linear pencil
B1λ + B0 = P ∗(A1λ + A0)P is drawn in the right part of Figure 1 (in
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particular, a few thousand points of it), and W (B1λ+B0) ⊂ W (A1λ+A0).
Since

W (B1λ + B0) =
{
λ−1 ∈ C : λ ∈ F (−B1), λ 6= 0

}

and
W (A1λ + A0) =

{
λ−1 ∈ C : λ ∈ F (−A1), λ 6= 0

}
,

one can see that

F (B1λ + B0) ∩ W (diag{λ + 1, i λ + 1}) = −1 + i,
F (B1λ + B0) ∩ W (diag{λ + 1, (−1− i)λ + 1}) = −i 2,

F (B1λ + B0) ∩ W (diag{iλ + 1, (−1− i)λ + 1}) = 2,

confirming Corollaries 7 and 8. Furthermore, the characteristic polynomial
of the compression is det(B1λ + B0) = (−i/3)λ2 + 1, verifying Theorem 6.

3 The selfadjoint quadratic case

Selfadjoint quadratic matrix polynomials of the form S(λ) = Iλ2+A1λ+A0

arise in many applications [6], and their numerical range is symmetric with
respect to the real axis and strongly connected with the numerical range of
their coefficients [9].

Theorem 9 [9, Theorem 3] Let S(λ) = Iλ2 + A1λ + A0 be an n × n
selfadjoint matrix polynomial. Then ∂W (S(λ))\R coincides with

{
λ ∈ C\R : λ2 + a1λ + a0 = 0, a0 + i a1 ∈ ∂F (A0 + i A1), a0, a1 ∈ R

}
=

{
−a1

2
± i

√
4a0 − a2

1

2
: a0 + i a1 ∈ ∂F (A0 + i A1), a0, a1 ∈ R, 4a0 > a2

1

}
.

It is clear that the nonreal part of the boundary of W (S(λ)) is the
union of the images of the part of ∂F (A0 + iA1) “inside” the parabola
D = {u + i v ∈ C : u, v ∈ R, v2 = 4u} under the mappings

a0 + i a1 7→ −a1

2
+ i

√
4a0 − a2

1

2
and a0 + i a1 7→ −a1

2
− i

√
4a0 − a2

1

2
.

Suppose now that the matrix polynomial S(λ) is normal. This means
that the Hermitian matrices A0 and A1 have all their eigenspaces in common
and there exists a unitary matrix V ∈Mn such that

V ∗S(λ)V = Iλ2 + (V ∗A1V )λ + V ∗A0V

13



= Iλ2 +




a1,1 0 · · · 0
0 a1,2 · · · 0
...

...
. . .

...
0 0 · · · a1,n


λ +




a0,1 0 · · · 0
0 a0,2 · · · 0
...

...
. . .

...
0 0 · · · a0,n


 (8)

is a real diagonal matrix polynomial. Then the matrix A0 + iA1 is normal,
V ∗(A0 + i A1)V = diag{a0,1 + i a1,1, a0,2 + i a1,2, . . . , a0,n + i a1,n} and

σ(S(λ)) =
{
λ ∈ C : λ2 + a1,iλ + a0,i = 0, i = 1, 2, . . . , n

}
.

By the above discussion and Theorems 1 and 2 (a), we have the following.

Theorem 10 Suppose S(λ) = Iλ2 + A1λ + A0 is a normal selfadjoint
quadratic matrix polynomial, satisfying (8), and

a0,1 + i a1,1, a0,2 + i a1,2, . . . , a0,k + i a1,k ∈ σ(A0 + iA1) (2 ≤ k ≤ n).

Let x1, x2, . . . , xk be the corresponding unit eigenvectors of A0 + i A1, and
let P be the n × (k − 1) matrix in (3). Then the numerical range of the
(k − 1) × (k − 1) compression Q(λ) = P ∗S(λ)P lies in W (S(λ)), and for
every 1 ≤ i < j ≤ k such that 〈a0,i + i a1,i, a0,j + i a1,j〉 is an edge of
F (diag{a0,1 + i a1,1, a0,2 + i a1,2, . . . , a0,k + i a1,k}) “inside” the parabola D,
∂W (Q(λ)) has a common point with the curve Ci,j = {λ ∈ C : λ2 + (t a1,i +
(1− t)a1,j)λ + t a0,i + (1− t)a0,j = 0, Imλ > 0, t ∈ [0, 1]} ⊂ ∂W (S(λ)) \ R
(resp., with Ci,j), that is,

ξi,j =
1
2


−|cj |2a1,i + |ci|2a1,j

|ci|2 + |cj |2 + i

√
4(|cj |2a0,i + |ci|2a0,j)

|ci|2 + |cj |2 −
( |cj |2a1,i + |ci|2a1,j

|ci|2 + |cj |2
)2




(resp., ξi,j). If, in addition, a0,i + i a1,i and a0,j + i a1,j are c-independent
vertices of F (diag{a0,1+i a1,1, a0,2+i a1,2, . . . , a0,k +i a1,k}), then ξi,j (resp.,
ξi,j) is the only common point of ∂W (Q(λ)) and Ci,j (resp., and Ci,j).
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