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Abstract

In this paper, improvements of the spectrum estimation for matrix polynomials given

by the Gershgorin set, the Brauer set, and the Dashnic-Zusmanovich set are derived by

substracting regions of the complex plane which do not contain eigenvalues. Geometrical

and topological properties of the exclusion sets are obtained, and illustrative examples are

presented.
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1 Introduction

Consider a square complex matrix A ∈ Cn×n, and let σ(A) be its standard spectrum. The cel-
ebrated Gershgorin (Ger²gorin) circle theorem [8, 22] yields n easily computable disks centered
at the diagonal entries of A, whose union (known as the Gershgorin set of A) contains σ(A).
The excessive simplicity and the applications of the Gershgorin circle theorem have motivated
further research on Gershgorin disks and relative sets such as the Brauer set, the Dashnic-
Zusmanovich set, the A-Ostrowski set, the Householder set, and others (see [2, 3, 6, 19, 22]
and the references therein), which are widely used for estimating the location of the eigenvalues
of a matrix. The spectrum estimations given by the Gershgorin set, the Brauer set, and the
Dashnic-Zusmanovich set can be re�ned by subtracting parts (exclusion sets) which do not
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contain eigenvalues; see [16, 21] for the Gershgorin set, [14] for the Brauer set, and [23] for the
Dashnic-Zusmanovich set.

In this paper, we consider n× n matrix polynomials of the form

P (λ) = Amλ
m + Am−1λ

m−1 + · · ·+ A1λ+ A0, (1)

where λ is a complex variable, A0, A1, . . . , Am ∈ Cn×n with Am ̸= 0, and the determinant
detP (λ) is not identically zero. The study of matrix polynomials, and particularly their spec-
trum analysis, has a long history and signi�cant applications in various �elds such as control
theory, vibrating analysis, queuing theory and di�erential equations(see [7, 9, 11, 12, 13, 15, 18]
and their references).

A scalar µ ∈ C is said to be an eigenvalue of P (λ) if the homogeneous linear system
P (µ)x = 0 has a nonzero solution x0 ∈ Cn. Such a solution x0 is known as an eigenvector of
P (λ) corresponding to the eigenvalue µ. The set of all �nite eigenvalues of P (λ),

σ(P (λ)) = {µ ∈ C : detP (µ) = 0} = {µ ∈ C : 0 ∈ σ(P (µ))}

(recalling that σ(P (µ)) denotes the standard spectrum of the constant matrix P (µ)), is the �nite
spectrum of P (λ). The algebraic multiplicity of an eigenvalue µ ∈ σ(P (λ)) is the multiplicity of
µ as a root of the polynomial detP (λ), and it is always greater than or equal to the geometric
multiplicity of µ, that is, the dimension of the null space of matrix P (µ). Moreover, it is said
that µ = ∞ is an eigenvalue of P (λ) if and only if 0 is an eigenvalue of the reverse matrix
polynomial P̂ (λ) = λmP (1/λ) = A0λ

m + A1λ
m−1 + · · · + Am−1λ + Am, or equivalently, if and

only if the leading coe�cient matrix Am is singular. In this case, the algebraic multiplicity
and the geometric multiplicity of the eigenvalue µ = ∞ of P (λ) are de�ned as the algebraic
multiplicity and the geometric multiplicity of the eigenvalue 0 of P̂ (λ), respectively.

In the next three sections, the Gershgorin inclusion-exclusion set, the Brauer inclusion-
exclusion set, and the Dashnic-Zusmanovich inclusion-exclusion set of constant matrices, intro-
duced respectively in [16, 21], [14], and [23], are extended to matrix polynomials. In particu-
lar, the spectrum estimations given by the Gershgorin set, the Brauer set, and the Dashnic-
Zusmanovich set of matrix polynomials, which were studied in [17], are clearly improved by
subtracting parts of the original inclusion sets (exclusion sets) that do not contain eigenvalues.
Geometrical and topological properties of the exclusion sets are investigated, and numerical
examples are provided to illustrate the theoretical results and demonstrate the e�ectiveness
of the approach. Of special interest is the case where the original inclusion set is unbounded
and the inclusion-exclusion set becomes bounded. The numerical examples were performed in
Mathematica 12.1.
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2 The Gershgorin inclusion-exclusion set

2.1 The Gershgorin inclusion-exclusion set of a matrix

Consider a square complex matrix A ∈ Cn×n, de�ne the set N = {1, 2, . . . , n}, and let (A)i,j
denote the (i, j)-th entry of A, i, j ∈ N . In [8], de�ning the nonnegative quantities ri(A) =∑
j∈N\{i}

|(A)i,j| (i ∈ N ), the Gershgorin disks Gi(A) = {µ ∈ C : |µ − (A)i,i| ≤ ri(A)} (i ∈ N )

and the Gershgorin set

G(A) =
⋃
i∈N

Gi(A)

of A were introduced. The latter set contains all the eigenvalues of A, i.e., σ(A) ⊆ G(A).

In [16, 21], the disks ∆i,j(A) = {µ ∈ C : |µ− (A)j,j| < 2|(A)j,i| − rj(A)}, i, j ∈ N with
i ̸= j, and the exclusion set (the set that will be subtracted from the i-th Gershgorin disk)

∆i(A) =
⋃

j∈N\{i}

∆i,j(A)

were de�ned.

Remark 1. If for any i, j ∈ N with i ̸= j, the inequality 2 |(A)j,i| − rj(A) ≤ 0 holds, then
it is obvious that ∆i,j(A) = ∅. As remarked in [16], for any given j ∈ N , the quantity
2 |(A)j,i| − rj(A) may be positive for at most one i ∈ N \ {j}. This implies that, for any given
j ∈ N , out of all the sets ∆i,j(A) (i ∈ N\{j}), at most one can be non-empty.

De�ning the Gershgorin inclusion-exclusion set for the i-th row of a matrix A, Ωi(A) =

Gi(A) \∆i(A), and the Gershgorin inclusion-exclusion set of A

Ω(A) =
⋃
i∈N

Ωi(A),

from Theorem 2 in [16], it follows that σ(A) ⊆ Ω(A) ⊆ G(A).

Remark 2. For any i ∈ N , Gi(A) is a closed disk and ∆i(A) is an open set. Therefore, every
Ωi(A) = Gi(A) \∆i(A) = Gi(A) ∩ (C \∆i(A)) is a closed set. We conclude that the set Ω(A)
is non-empty (since it contains the eigenvalues of A) and closed (as a �nite union of the closed
sets Ωi(A), i ∈ N ).

Example 3. For the 4× 4 matrix

A =


5 4 −1 0

5 2 0 1

1 −1 −4 1

1 1 0 0.2

 ,
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the Gershgorin set is given in Figure 1 and the Gershgorin inclusion-exclusion set is given in
Figure 2. Here, and in all the �gures of the paper, the eigenvalues are marked with dots.

Figure 1: The Gershgorin set of A. Figure 2: The Gershgorin inclusion-exclusion
set of A.

2.2 The Gershgorin inclusion-exclusion set of a matrix polynomial

Consider the matrix polynomial P (λ) de�ned in (1) and the nonnegative functions

ri(P (λ)) =
∑

j∈N\{i}

|(P (λ))i,j|, i ∈ N . (2)

In [17], the Gershgorin set for the i-th row of P (λ) (i ∈ N )

Gi(P (λ)) = {µ ∈ C : 0 ∈ Gi(P (µ))} = {µ ∈ C : |(P (µ))i,i| ≤ ri(P (µ))}

and the (inclusion) Gershgorin set of P (λ)

G(P (λ)) = {µ ∈ C : 0 ∈ G(P (µ))} =
⋃
i∈N

Gi(P (λ))

were studied. It is said that µ = ∞ lies in G(P (λ)) (or Gi(P (λ))) if and only if 0 lies in G(P̂ (λ))

(resp., Gi(P̂ (λ))). The Gershgorin set G(P (λ)) is a closed set that contains all the eigenvalues
of P (λ). Furthermore, if (P (λ))i,i = 0 for some i ∈ N , then Gi(P (λ)) = C.

In the following proposition, for clarity and reader's convenience, some of the basic properties
of the Gershgorin set G(P (λ)) are summarized [17].

Proposition 4. Let i ∈ N .

(i) For any scalar b ∈ C \ {0}, it holds that Gi(P (bλ)) = b−1Gi(P (λ)), Gi(bP (λ)) = Gi(P (λ)),
and Gi(P (λ+ b)) = Gi(P (λ))− b.
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(ii) If all the coe�cient matrices A0, A1, . . . , Am of P (λ) have their i-th row real, then Gi(P (λ))

is symmetric with respect to the real axis.

(iii) The set {µ ∈ C : |(P (µ))i,i| < ri(P (µ))} lies in the interior of Gi(P (λ)). Consequently,
∂Gi(P (λ)) ⊆ {µ ∈ C : |(P (µ))i,i| = ri(P (µ))} = {µ ∈ C : 0 ∈ ∂Gi(P (µ))}.

(iv) If a scalar µ0 ∈ C is an isolated point of Gi(P (λ)), then µ0 is a common root of all
polynomials (P (λ))i,j, j ∈ N , and thus, it is also an eigenvalue of P (λ).

(v) Suppose that the i-th row of Am is non-zero. If (Am)i,i ̸= 0, then Gi(P (λ)) is unbounded
if and only if 0 ∈ Gi(Am). If (Am)i,i = 0, then Gi(P (λ)) is unbounded and 0 ∈ Gi(Am).

(vi) If Am does not have a zero row and G(P (λ)) is bounded, then the number of connected
components of G(P (λ)) is less than or equal to nm.

Next, we extend the concepts of the Gershgorin exclusion set and the Gershgorin inclusion-
exclusion set to matrix polynomials.

De�nition 5. For i, j ∈ N with i ̸= j, de�ne the sets

∆i,j(P (λ)) = {µ ∈ C : 0 ∈ ∆i,j(P (µ))}
= {µ ∈ C : |(P (µ))j,j| < 2|(P (µ))j,i| − rj(P (µ))} ,

and the Gershgorin exclusion set for the i-th row of the matrix polynomial P (λ)

∆i(P (λ)) =
⋃

j∈N\{i}

∆i,j(P (λ)).

From this de�nition, it follows immediately that for any i ∈ N ,

∆i(P̂ (λ))\{0} =
{
µ ∈ C\{0} : 0 ∈ ∆i(P̂ (λ))

}
=

{
µ ∈ C\{0} : 0 ∈ ∆i(µ

mP (µ−1))
}

=
{
µ ∈ C\{0} : 0 ∈ ∆i(P (µ−1))

}
=

{
µ ∈ C\{0} : µ−1 ∈ ∆i(P (λ))

}
.

Moreover, we say that µ = ∞ lies in ∆i(P (λ)) (or ∆i,j(P (λ))) if and only if 0 lies in ∆i(P̂ (λ))

(resp., ∆i,j(P̂ (λ))).

Remark 6. The set ∆i,j(P (λ)) is not necessarily non-empty. For example, it is empty (in a
trivial way) if 2|(P (λ))j,i| ≤ rj(P (λ)) for every λ ∈ C.
Remark 7. Unlike the case of constant matrices studied in Remark 1, for an n × n matrix
polynomial P (λ) and a given j ∈ N , we may have more than one non-empty exclusion sets
∆i,j(P (λ)) (i ∈ N\{j}). By Remark 1, it follows that these non-empty exclusion sets have no
common points. For example, if we consider the matrix polynomial

P (λ) =

 8 λ3 λ3 + 11

λ3 0 27

λ3 − 1 9 −3

 ,
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then ∆1,2(P (λ)) = {µ ∈ C : |µ| > 3} and ∆3,2(P (λ)) = {µ ∈ C : |µ| < 3} are non-empty and
have no common points.

Remark 8. It is clear that if |(P (λ))j,j| < 2|(P (λ))j,i| − rj(P (λ)) for every λ ∈ C, then
∆i,j(P (λ)) = C. Thus, in the special case where (P (λ))j,j = 0 and 2|(P (λ))j,i| > rj(P (λ))

for every λ ∈ C, ∆i,j(P (λ)) coincides with the complex plane.

De�nition 9. The Gershgorin inclusion-exclusion set of the matrix polynomial P (λ) is de�ned
as

Ω(P (λ)) =
⋃
i∈N

Ωi(P (λ)),

where
Ωi(P (λ)) = Gi(P (λ)) \∆i(P (λ)), i ∈ N .

Theorem 10. All the eigenvalues of the matrix polynomial P (λ) lie in the Gershgorin inclusion-
exclusion set Ω(P (λ)).

Proof. For every �nite eigenvalue µ ∈ σ(P (λ)), we have that 0 ∈ σ(P (µ)). We know from [17]
that there exists some i such that 0 ∈ Gi(P (µ)). Moreover, by [16], it holds that 0 /∈ ∆i(P (µ)),
or equivalently, µ /∈ ∆i(P (λ)). Therefore,

µ ∈ Ωi(P (λ)) ⊆ Ω(P (λ)).

If µ = ∞ is an eigenvalue of P (λ), then 0 ∈ σ(P̂ (µ)) ⊆ Ω(P̂ (µ)), and hence, µ ∈ Ω(P (λ)).

We continue with the study of geometrical and topological properties of the exclusion set
∆i,j(P (λ)).

Proposition 11. Let i, j ∈ N with i ̸= j. Then the following hold:

(i) The set ∆i,j(P (λ)) is open (consequently, the set ∆i(P (λ)) is also open).

(ii) For any scalar b ∈ C\{0}, it holds that ∆i,j(P (bλ)) = b−1∆i,j(P (λ)), ∆i,j(bP (λ)) =

∆i,j(P (λ)), and ∆i,j(P (λ + b)) = ∆i,j(P (λ)) − b (consequently, ∆i(P (λ)) satis�es these
properties as well).

(iii) If all the coe�cient matricesA0, A1, . . . , Am of P (λ) have their j-th row real, then∆i,j(P (λ))

is symmetric with respect to the real axis (consequently, if A0, A1, . . . , Am are real, then
Ω(P (λ)) is symmetric with respect to the real axis).

Proof. (i) For any point µ ∈ ∆i,j(P (λ)), it holds that |(P (µ))j,j| < 2|(P (µ))j,i| − rj(P (µ)). By
continuity, it is clear that, for any µ̂ ∈ C close enough to µ, |(P (µ̂))j,j| < 2|(P (µ̂))j,i|−rj(P (µ̂)),
which means that µ̂ ∈ ∆i,j(P (λ)). Therefore, the set ∆i,j(P (λ)) is open.
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(ii) We observe that

µ ∈ ∆i,j(P (bλ)) ⇔ |(P (bµ))j,j| < 2|(P (bµ))j,i| − rj(P (bµ)) ⇔ µ

b
∈ ∆i,j(P (λ)),

µ ∈ ∆i,j(bP (λ)) ⇔ |b(P (µ))j,j| < 2|b(P (µ))j,i| − rj(bP (µ)) ⇔ µ ∈ ∆i,j(P (λ))

and

µ ∈ ∆i,j(P (λ+ b)) ⇔ |(P (µ+ b))j,j| < 2|(P (µ+ b))j,i| − rj(P (µ+ b)) ⇔ µ− b ∈ ∆i,j(P (λ)).

(iii) Suppose that all the coe�cient matrices A0, A1, . . . , Am have their j-th row real. If
µ ∈ ∆i,j(P (λ)), then∣∣∣∣∣

m∑
k=0

(Ak)j,jµ
k

∣∣∣∣∣ ≤ 2

∣∣∣∣∣
m∑
k=0

(Ak)j,iµ
k

∣∣∣∣∣− ∑
p∈N\{j}

∣∣∣∣∣
m∑
k=0

(Ak)j,pµ
k

∣∣∣∣∣ ,
or ∣∣∣∣∣

m∑
k=0

(Ak)j,jµk

∣∣∣∣∣ ≤ 2

∣∣∣∣∣
m∑
k=0

(Ak)j,iµk

∣∣∣∣∣− ∑
p∈N\{j}

∣∣∣∣∣
m∑
k=0

(Ak)j,pµk

∣∣∣∣∣ ,
or ∣∣∣∣∣

m∑
k=0

(Ak)j,jµ
k

∣∣∣∣∣ ≤ 2

∣∣∣∣∣
m∑
k=0

(Ak)j,iµ
k

∣∣∣∣∣− ∑
p∈N\{j}

∣∣∣∣∣
m∑
k=0

(Ak)j,pµ
k

∣∣∣∣∣ .
This means that µ ∈ ∆i,j(P (λ)).

Remark 12. The Gershgorin set Gi(P (λ)) for the i-th row of a matrix polynomial P (λ) (i ∈ N )

is closed and the corresponding exclusion set ∆i(P (λ)) is open. Therefore, the set Ωi(P (λ)) =

Gi(P (λ)) \∆i(P (λ)) = Gi(P (λ)) ∩ (C \∆i(P (λ))) is closed. Clearly, the Gershgorin inclusion-
exclusion set Ω(P (λ)) is closed as a �nite union of closed sets.

In the next three propositions, we study the unboundedness of the Gershgorin exclusion
sets. In Proposition 13, we consider the case of zero diagonal entries of the leading coe�cient
matrix, while in Propositions 14 and 15, we consider the case of non-zero diagonal entries of
the leading coe�cient matrix.

Proposition 13. Suppose that for some j ∈ N , it holds that (Am)j,j = 0. If there exists an
i ∈ N\{j} such that ∆i,j(Am) is non-empty (or equivalently, 2 |(Am)j,i| > rj(Am)), then this i
is unique, 0 ∈ ∆i,j(Am) (⊆ ∆i(Am)) and the sets ∆i,j(P (λ)) and ∆i(P (λ)) are unbounded.

Proof. Let j ∈ N with (Am)j,j = 0. Then, for any i ∈ N\{j},

∆i,j(Am) = {µ ∈ C : |µ| < 2 |(Am)j,i| − rj(Am)} .
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If for some i ∈ N\{j}, the relation 2 |(Am)j,i| − rj(Am) > 0 holds, then by Remark 1, this
i is unique (always referring to this particular j). Moreover, 0 ∈ ∆i,j(Am) (by de�nition),
2 |(Am)j,i| > rj(Am) ≥ 0 (i.e., the j-th row of the matrix Am is not zero), and

∆i,j(P (λ))\{0} = {µ ∈ C\{0} : |(P (µ))j,j| < 2 |(P (µ))j,i| − rj(P (µ))}

(Am)j,j=0
=

µ ∈ C\{0} :

∣∣∣∣∣
m−1∑
k=0

(Ak)j,jµ
k

∣∣∣∣∣ < 2

∣∣∣∣∣
m∑
k=0

(Ak)j,iµ
k

∣∣∣∣∣− ∑
p∈N\{j}

∣∣∣∣∣
m∑
k=0

(Ak)j,pµ
k

∣∣∣∣∣


=

µ ∈ C\{0} :

∣∣∣∣∣
m−1∑
k=0

(Ak)j,j
µk

µm

∣∣∣∣∣ < 2

∣∣∣∣∣
m∑
k=0

(Ak)j,i
µk

µm

∣∣∣∣∣− ∑
p∈N\{j}

∣∣∣∣∣
m∑
k=0

(Ak)j,p
µk

µm

∣∣∣∣∣
 .

By the assumption 0 < 2 |(Am)j,i| − rj(Am), it follows that for su�ciently large |µ|, µ ∈
∆i,j(P (λ)). Furthermore, there exists a real number M > 0 such that for any µ ∈ C with
|µ| ≥ M , µ ∈ ∆i,j (P (λ)). Thus, {µ ∈ C : |µ| ≥ M} ⊆ ∆i,j(P (λ)) ⊆ ∆i(P (λ)).

Proposition 14. Suppose that for some j ∈ N , it holds that (Am)j,j ̸= 0. If there exists an
i ∈ N\{j} such that 0 ∈ ∆i,j(Am), then the sets ∆i,j(P (λ)) and ∆i(P (λ)) are unbounded.

Proof. Suppose that (Am)j,j ̸= 0 and 0 ∈ ∆i,j(Am) for some i ∈ N\{j}. Then, we have

|(Am)j,j| < 2 |(Am)j,i| − rj(Am).

However, Am = P̂ (0) (for the reverse matrix polynomial P̂ (λ) = A0λ
m + A1λ

m−1 + · · ·+ Am),
and consequently, ∣∣∣P̂ (0)j,j

∣∣∣ < 2
∣∣∣P̂ (0)j,i

∣∣∣− rj(P̂ (0)).

By continuity, there is a real number r > 0 such that∣∣∣P̂ (µ)j,j

∣∣∣ < 2
∣∣∣P̂ (µ)j,i

∣∣∣− rj(P̂ (µ))

for every µ ∈ C with |µ| ≤ r (i.e., 0 cannot be an isolated point of the open set ∆i,j(P̂ (λ))).
This in turn implies

|P (µ)j,j| < 2 |P (µ)j,i| − rj(P (µ))

for every µ ∈ C with |µ| ≥ r−1. Consequently, {µ ∈ C : |µ| ≥ r−1} ⊆ ∆i,j(P (λ)) ⊆ ∆i(P (λ)),
and the sets ∆i,j(P (λ)) and ∆i(P (λ)) are unbounded.

Proposition 15. Suppose that for some j ∈ N , it holds that (Am)j,j ̸= 0. If there exists an
i ∈ N\{j} such that the set ∆i,j (P (λ)) is unbounded, then 0 lies in the closure of ∆i,j(Am)

and (Am)j,i ̸= 0.

Proof. Suppose that (Am)j,j ̸= 0 and ∆i,j (P (λ)) is unbounded for some i ∈ N\{j}. Clearly, 0
lies in ∆i,j(P̂ (λ)). Thus, since 0 cannot be an isolated point of the open set ∆i,j(P̂ (λ)) (see the
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proof of Proposition 14), there is a sequence {µℓ}ℓ=1,2,... in ∆i,j(P (λ))\{0} such that |µℓ| → ∞.
Then, for every positive integer ℓ, we have

|(P (µℓ))j,j| < 2 |(P (µℓ))j,i| − rj(P (µℓ)),

or ∣∣∣∣∣
m∑
k=0

(Ak)j,jµ
k
ℓ

∣∣∣∣∣ < 2

∣∣∣∣∣
m∑
k=0

(Ak)j,iµ
k
ℓ

∣∣∣∣∣− ∑
p∈N\{j}

∣∣∣∣∣
m∑
k=0

(Ak)j,pµ
k
ℓ

∣∣∣∣∣ ,
or ∣∣∣∣∣

m∑
k=0

(Ak)j,j
1

µm−k
ℓ

∣∣∣∣∣ < 2

∣∣∣∣∣
m∑
k=0

(Ak)j,i
1

µm−k
ℓ

∣∣∣∣∣− ∑
p∈N\{j}

∣∣∣∣∣
m∑
k=0

(Ak)j,p
1

µm−k
ℓ

∣∣∣∣∣ .
As a consequence, for ℓ → ∞, it holds that

|(Am)j,j| ≤ 2 |(Am)j,i| − rj(Am),

implying that 0 lies in the closure of ∆i,j(Am) and (Am)j,i ̸= 0.

It is worth noting that if (Am)j,j = 0, then∆i,j(Am) is non-empty if and only if 0 ∈ ∆i,j(Am).
By Proposition 4 (v) and the proofs of Propositions 13 and 14, the next result follows readily.

Corollary 16. Suppose that for some i, j ∈ N with i ̸= j, the i-th row of Am is non-zero and
one of the following holds:

(i) (Am)i,i = 0 and 0 ∈ ∆i,j(Am).

(ii) (Am)i,i ̸= 0, 0 ∈ Gi(Am), and 0 ∈ ∆i,j(Am).

Then Gi(P (λ)) is unbounded and Ωi(P (λ)) is bounded.

Theorem 17. If µ0 ∈ C is an isolated point of C\∆i,j(P (λ)) for some i, j ∈ N with i ̸= j, then
µ0 is a common root of all polynomials (P (λ))j,s, s ∈ N , and consequently, µ0 is an eigenvalue
of P (λ).

Proof. Suppose that (P (µ0))j,s ̸= 0 for some s ∈ N . Since µ0 is an isolated point of C \
∆i,j(P (λ)), it follows that µ0 lies on the boundary of C \ ∆i,j(P (λ)), and there is an ε > 0

such that the closed disk D(µ0, ε) = {λ ∈ C : |λ− µ0| ≤ ε} does not contain any other point
of C \∆i,j(P (λ)). The set C \∆i,j(P (λ)) can be described as follows:

C \∆i,j(P (λ)) = {µ ∈ C : |P (µ)j,j| ≥ 2|P (µ)j,i| − rj(P (µ))}

=

{
µ ∈ C :

rj(P (µ)) + |P (µ)j,j| − |P (µ)j,i|
|(P (µ))j,i|

≥ 1

}
=

{
µ ∈ C : log

rj(P (µ)) + |P (µ)j,j| − |P (µ)j,i|
|(P (µ))j,i|

≥ 0

}
.
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Consider the function

φ(λ) = log
rj(P (λ)) + |P (λ)j,j| − |P (λ)j,i|

|(P (λ))j,i|

= log

∥∥∥∥[(P (λ))j,1
(P (λ))j,i

, . . . ,
(P (λ))j,i−1

(P (λ))j,i
,
(P (λ))j,i+1

(P (λ))j,i
, . . . ,

(P (λ))j,n
(P (λ))j,i

]∥∥∥∥
1

,

with λ ∈ D(µ0, ε). This function is subharmonic and satis�es the Maximum Principle [1, 4].
By de�nition, φ(λ) is zero on the boundary of C \ ∆i,j(P (λ)), nonnegative in the interior of
C \∆i,j(P (λ)), and negative in the set ∆i,j(P (λ)). Since µ0 ∈ ∂ (C \∆i,j(P (λ))), we have

|(P (µ0))j,i| = rj(P (µ0)) + |(P (µ0))j,j| − |(P (µ0))j,i| =
∑

p∈N\{i}

|(P (µ0))j,p|.

Thus, the function φ(λ) is zero at the center µ0 of D(µ0, ε) and negative in the rest of the disk.
Since φ(λ) satis�es the Maximum Principle, it attains its maximum value on the boundary of
the disk, which is a contradiction. Therefore,

0 = (P (µ0))j,i =
∑

p∈N\{i}

|(P (µ0))j,p|,

and µ0 is a common root of all polynomials (P (λ))j,s, s ∈ N .

Example 18. (i) Consider the 3× 3 matrix polynomial

P (λ) =

 λ2 4 1

3 λ2 + 2λ− 2 0

0.5i 0 λ2 + 2

 .

The Gershgorin set G(P (λ)) in Figure 3 and the Gershgorin inclusion-exclusion set Ω(P (λ))

in Figure 4 are both bounded and contain the eigenvalues of P (λ). The improvement of the
original estimation of the spectrum is clear. In Figure 3, the curves shown in blue, orange and
purple correspond to the boundaries of the sets G1(P (λ)), G2(P (λ)) and G3(P (λ)), respectively.
Analogous boundary curves for the corresponding inclusion sets are presented in Figures 5, 7,
and 9.
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Figure 3: The Gershgorin set of P (λ).
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Figure 4: The Gershgorin inclusion-exclusion
set of P (λ).

(ii) Consider the 3× 3 matrix polynomial

Q(λ) =

 −2iλ+ 2 4iλ2 + iλ+ 1 + 2i 2iλ2 + λ+ 2

−12iλ2 + 5iλ+ 1 + i −6iλ2 + 3iλ+ 4i (2− 2i)λ2 − 4λ− 5i
9iλ2 + iλ+ 1− i 2iλ2 − iλ 12iλ2 + 2i

 .

The Gershgorin set G(Q(λ)) in Figure 5 is unbounded (in particular, G(Q(λ)) = G2(Q(λ)) = C)
and the Gershgorin inclusion-exclusion set Ω(Q(λ)) in Figure 6 is bounded, i.e., the original
estimation of the spectrum is signi�cantly improved. It is worth mentioning that if Q2 is the
leading coe�cient matrix of Q(λ), then (Q2)2,2 = −6i ̸= 0, 0 ∈ G2(Q2), and ∆2,1(Q2) is non-
empty and contains the origin; this means that the (su�cient) conditions of Corollary 16 (ii)
hold for i = 2 and j = 1.

Figure 5: The Gershgorin set of Q(λ). Figure 6: The Gershgorin inclusion-exclusion
set of Q(λ).
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(iii) For the 3× 3 matrix polynomial

R(λ) =

 −2λ λ3 + 4iλ2 + λ 2iλ3 + 2iλ2 + λ

−λ2 + i λ3 + λ+ 2 2iλ3 + 3iλ2 − 2λ

iλ3 + iλ2 + iλ+ 1− i −λ 0.6iλ2 + 2

 ,

both the Gershgorin set G(R(λ)) in Figure 7 and the Gershgorin inclusion-exclusion set Ω(R(λ))

in Figure 8 are unbounded. In the Gershgorin inclusion-exclusion set, we observe two subtracted
regions. It is worth mentioning that if R3 is the leading coe�cient matrix of R(λ), then 0 lies
in G1(R3), G2(R3) and G3(R3), and the sets ∆1,2(R3), ∆2,1(R3) and ∆2,3(R3) are empty; i.e., the
conditions of Corollary 16 do not hold for i = 1 and j = 2, and for i = 2 and j = 1 or j = 3.

-4 -3 -2 -1 0 1 2
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-1

0

1

2

3

4

Figure 7: Gershgorin set of R(λ).
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Figure 8: Gershgorin inclusion-exclusion set of
R(λ).

Example 19. To verify Theorem 17, consider the 3× 3 matrix polynomial

P (λ) =

 0 λ+ 1 0

i λ −i
λ λ− 5 λ+ 10

 .

The eigenvalues of P (λ) are −5 and −1. The exclusion set ∆2,1(P (λ)) coincides with C\{−1},
so the set C \∆2,1(P (λ)) is the singleton {−1}, which is a common root of the entries of the
�rst row of P (λ) and an eigenvalue of P (λ). Therefore, the set Ω2(P (λ)) is the singleton {−1}.

2.3 The weighted Gershgorin inclusion-exclusion set of a matrix poly-

nomial

Gershgorin himself recognized in [8] that by using similarity transformations X−1AX, where
X = diag {x1, x2, . . . , xn}, with xi > 0 (i ∈ N ), the disks Gi(A) can be improved. Cameron
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and Psarrakos in [3] generalized the notion of weighted Gershgorin sets for matrix polynomi-
als through a suitable matrix norm. Here, we introduce the weighted Gershgorin inclusion-
exclusion sets for a matrix polynomial P (λ) as in (1).

De�nition 20. If X ∈ Rn×n is a diagonal matrix with positive entries, then we de�ne the
weighted Gershgorin set of P (λ) with respect to X as GX(P (λ)) = G(X−1 P (λ)X).

By De�nition 2.1 in [17] and De�nition 20, the weighted Gershgorin set of the matrix
polynomial P (λ) can be written as

GX(P (λ)) =
⋃
i∈N

GX
i (P (λ)),

where

GX
i (P (λ)) = Gi(X

−1 P (λ)X) =

µ ∈ C : |P (µ)i,i| ≤
∑

j∈N\{i}

|P (µ)i,j|xjx
−1
i

 , i ∈ N .

As noted in [3], all the eigenvalues of P (λ) lie in the Gershgorin set GX(P (λ)).

De�nition 21. The weighted Gershgorin inclusion-exclusion set of P (λ) is de�ned as

ΩX(P (λ)) =
⋃
i∈N

ΩX
i (P (λ)),

where
ΩX

i (P (λ)) = GX
i (P (λ)) \∆i(X

−1P (λ)X), i ∈ N .

It is apparent that the matrix polynomials X−1 P (λ)X and P (λ) have the same eigenvalues
with the same algebraic and geometric multiplicities. Moreover, since X−1 P (λ)X is generated
by multiplying each entry (P (λ))i,j of P (λ) with xjx

−1
i , the diagonal entries of X−1 P (λ)X

are the same as the diagonal entries of P (λ), while the non-diagonal entries of X−1 P (λ)X are
scalar (positive) multiples of the corresponding non-diagonal entries of P (λ). As a consequence,
it is easy to verify that the weighted Gershgorin inclusion-exclusion set ΩX(P (λ)) (⊆ GX(P (λ)))

contains all the eigenvalues of the matrix polynomial P (λ) and satis�es the properties obtained
in the previous subsection. For example, by Theorem 17, if µ0 ∈ C is an isolated point of
C\∆i,j(X

−1 P (λ)X) for some i, j ∈ N with i ̸= j, then µ0 is a common root of all polynomials
xsx

−1
j (P (λ))j,s (s ∈ N ), or equivalently, µ0 is a common root of all polynomials (P (λ))j,s

(s ∈ N ) (and hence, µ0 is an eigenvalue of P (λ)).

Furthermore, it is clear that constructing the intersection
⋂
X

ΩX(P (λ)) for an appropriate

selection of diagonal matricesX with positive diagonal entries may yield an improved estimation
of the spectrum σ(P (λ)).
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Example 22. Consider the 3× 3 matrix polynomial

P (λ) =

 2iλ2 − 2iλ+ 2 4iλ2 + iλ+ 1 + 2i λ+ 2

−0.6λ2 + 5iλ+ 1 + i (2− 2i)λ2 + 3iλ+ 4i 0.1λ2 − 4λ− 5i
iλ2 + iλ+ 1− i 2iλ2 − iλ 6iλ2 + 2i

 ,

and the diagonal matrices X1 = I, X2 = diag {4, 1, 1}, X3 = diag {4, 1, 2}, X4 = diag {4, 1.5, 3},
X5 = diag {4, 2, 3}, and X6 = diag {4, 1.5, 1.4}. In Figures 9�12, we illustrate the Gershgorin
set G(P (λ)), the intersection of weighted Gershgorin sets

⋂
k=1,2,...,6

GXk(P (λ)), the Gershgorin

inclusion-exclusion set Ω(P (λ)), and the intersection of weighted Gershgorin inclusion-exclusion
sets

⋂
k=1,2,...,6

ΩXk(P (λ)), respectively. It is worth noting that G(P (λ)) and Ω(P (λ)) are un-

bounded, while
⋂

k=1,2,...,6

GXk(P (λ)) and
⋂

k=1,2,...,6

ΩXk(P (λ)) are bounded.

-20 -10 0 10 20

-20

-10

0
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20

Figure 9: The Gershgorin set of P (λ).
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Figure 10: The intersection of weighted Gersh-
gorin sets of P (λ).

Figure 11: The Gershgorin inclusion-exclusion
set of P (λ).

Figure 12: The intersection of weighted Gersh-
gorin inclusion-exclusion sets of P (λ).
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Example 23. Consider the 3× 3 matrix polynomial

Q(λ) =

 λ+ 6 −λ2 + λ+ 1 0

−λ2 + 5 + i 2λ+ 3 + i 0

2λ 7 + i 6λ

 ,

and the diagonal matrices X1 = I, X2 = diag {1, 0.5, 1}, and X3 = diag {0.2, 0.5, 5}. In Fig-
ures 13�16, we illustrate the Gershgorin set G(Q(λ)), the intersection of weighted Gershgorin
sets

⋂
k=1,2,3

GXk(Q(λ)), the Gershgorin inclusion-exclusion set Ω(Q(λ)), and the intersection of

weighted Gershgorin inclusion-exclusion sets
⋂

k=1,2,3

ΩXk(Q(λ)), respectively. It is worth men-

tioning that G(Q(λ)) and
⋂

k=1,2,3

GXk(Q(λ)) are unbounded, while Ω(Q(λ)) and
⋂

k=1,2,3

ΩXk(Q(λ))

are bounded.

Figure 13: The Gershgorin set of Q(λ). Figure 14: The intersection of weighted Gersh-
gorin sets of Q(λ).

Figure 15: The Gershgorin inclusion-exclusion
set of Q(λ).

Figure 16: The intersection of weighted Gersh-
gorin inclusion-exclusion sets of Q(λ).
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3 The Brauer inclusion-exclusion set

3.1 The Brauer inclusion-exclusion set of a matrix

The Brauer set of a square complex matrix A ∈ Cn×n is de�ned as [2, 22]

B(A) =
⋃

i,j∈N
i ̸=j

Bi,j(A) =
⋃

i,j∈N
i>j

Bi,j(A),

where

Bi,j(A) = Bj,i(A) = {µ ∈ C : |µ− (A)i,i| |µ− (A)j,j| ≤ ri(A)rj(A)} , i, j ∈ N , i ̸= j.

The Brauer set is the union of (n− 1) + (n− 2) + · · ·+ 2+ 1 =
n(n− 1)

2
Cassini ovals Bi,j(A),

i > j. Moreover, it contains all the eigenvalues of the matrix A and it is a subset of the
Gershgorin set G(A), i.e. σ(A) ⊆ B(A) ⊆ G(A).

In [14], the set

Ls,i(A) =
{
µ ∈ C : |µ− (A)s,s| (|µ− (A)i,i|+ rsi (A)) <

(
|(A)s,i| − ris(A)

)
|(A)i,s|

}
, (3)

where rkt (A) = rt(A)− |(A)t,k| with k ̸= t, and the exclusion set

Li(A) =
⋃

s∈N\{i}

Ls,i(A)

were introduced. It is worth noting that the set Li(A) may be empty. De�ning the Brauer

inclusion-exclusion set for the i-th row and the j-th row of A

Φi,j(A) = Bi,j(A) \ Li(A), i, j ∈ N , i ̸= j,

and the Brauer inclusion-exclusion set of A

Φ(A) =
⋃

i,j∈N
i ̸=j

Φi,j(A), (4)

it is known that σ(A) ⊆ Φ(A) ⊆ B(A) [14, Theorem 4].

Remark 24. For any i, s ∈ N with i ̸= s, it follows that Li,s(A) and Ls,i(A) are not necessarily
equal. Thus, Φi,j(A) and Φj,i(A) are not necessarily equal, unlike the Brauer sets Bi,j(A) and
Bj,i(A) (which coincide). For this reason, we consider the formula (4).

Remark 25. For any i, j ∈ N with i ̸= j, the Brauer set Bi,j(A) is closed and the Brauer
exclusion set Li(A) is open. Therefore, any Φi,j(A) = Bi,j(A) \ Li(A) = Bi,j(A) ∩ (C \ Li(A))

(i ̸= j) is a closed set. We conclude that the set Φ(A) is non-empty (since it contains the
eigenvalues of the matrix A) and closed as a �nite union of the closed sets Φi,j(A).
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Example 26. For the 4× 4 matrix A of Example 3, the Brauer set and the Brauer inclusion-
exclusion set of A are illustrated in Figures 17 and 18, respectively.

Figure 17: The Brauer set of A. Figure 18: The Brauer inclusion-exclusion set
of A.

3.2 The Brauer inclusion-exclusion set of a matrix polynomial

Consider a matrix polynomial P (λ) as in (1) and the nonnegative functions ri(P (λ)) (i ∈ N )

de�ned in (2). In [17], the sets

Bi,j(P (λ)) = {µ ∈ C : 0 ∈ Bi,j(P (µ))} = {µ ∈ C : |(P (µ))i,i| |(P (µ))j,j| ≤ ri(P (µ))rj(P (µ))}

(i, j ∈ N , i ̸= j) and the (inclusion) Brauer set of P (λ)

B(P (λ)) = {µ ∈ C : 0 ∈ B(P (µ))} =
⋃

i,j∈N
i ̸=j

Bi,j(P (λ)) =
⋃

i,j∈N
i>j

Bi,j(P (λ))

were studied. It is said that µ = ∞ lies in B(P (λ)) (or Bi,j(P (λ))) if and only if 0 lies in B(P̂ (λ))

(resp., Bi,j(P̂ (λ))). As noted in [17], B(P (λ)) is a closed subset of G(P (λ)) that contains all
the eigenvalues of P (λ). Furthermore, if (P (λ))i,i = 0 or (P (λ))j,j = 0, then Bi,j(P (λ)) = C.

For clarity and reader's convenience, the following proposition summarizes some of the basic
properties of the Brauer set B(P (λ)) [17].

Proposition 27. Let i, j ∈ N with i ̸= j.

(i) For any scalar b ∈ C\{0}, it holds that Bi,j(P (bλ)) = b−1Bi,j(P (λ)), Bi,j(bP (λ)) =

Bi,j(P (λ)), and Bi,j(P (λ+ b)) = Bi,j(P (λ))− b.

(ii) If all the coe�cient matrices A0, A1, . . . , Am of P (λ) have their i-th row and j-th row real,
then Bi,j(P (λ)) is symmetric with respect to the real axis.
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(iii) The set {µ ∈ C : |(P (µ))i,i| |(P (µ))j,j| < ri(P (µ))rj(P (µ))} lies in the interior of Bi,j(P (λ)).
Consequently, ∂Bi,j(P (λ)) ⊆ {µ ∈ C : |(P (µ))i,i| |(P (µ))j,j| = ri(P (µ))rj(P (µ))} = {µ ∈
C : 0 ∈ ∂Bi,j(P (µ))}.

(iv) If a scalar µ0 ∈ C is an isolated point of Bi,j(P (λ)), then µ0 is a root of either (P (λ))i,i or
(P (λ))j,j, and µ0 is a common root of all polynomials (P (λ))i,p, p ∈ N\{i}, or a common
root of all polynomials (P (λ))j,p, p ∈ N\{j}.

(v) Suppose that the i-th row and the j-th row of Am are non-zero. If (Am)i,i ̸= 0 and
(Am)j,j ̸= 0, then Bi,j(P (λ)) is unbounded if and only if 0 ∈ Bi,j(Am). If (Am)i,i =

(Am)j,j = 0, then Bi,j(P (λ)) is unbounded and 0 ∈ Bi,j(Am).

(vi) If all the diagonal entries of Am are non-zero and B(P (λ)) is bounded, then the number
of connected components of B(P (λ)) is less than or equal to nm.

Remark 28. By Theorem 4.6 in [17], its proof and the relative discussion therein, it follows that
the condition �(Am)i,i = (Am)j,j = 0� in Proposition 27 (v) can be replaced by the condition
�(Am)i,i = 0 and a non-diagonal entry of the j-th row of Am is non-zero�. These two conditions
make sure that the origin is not an isolated point of Bi,j(P̂ (λ)).

We now extend the concepts of the Brauer exclusion set and the Brauer inclusion-exclusion
set to matrix polynomials.

De�nition 29. For i, s ∈ N with i ̸= s, de�ne the sets

Ls,i(P (λ)) = {µ ∈ C : 0 ∈ Ls,i(P (µ))}
=

{
µ ∈ C : |(P (µ))s,s| (|(P (µ))i,i|+ rsi (P (µ))) <

(
|(P (µ))s,i| − ris(P (µ))

)
|(P (µ))i,s|

}
,

and the i-th Brauer exclusion set

Li(P (λ)) =
⋃

s∈N\{i}

Ls,i(P (λ)).

From the above de�nition, it follows immediately that for any i ∈ N ,

Li(P̂ (λ))\{0} =
{
µ ∈ C\{0} : 0 ∈ Li(P̂ (λ))

}
=

{
µ ∈ C\{0} : 0 ∈ Li(µ

mP (µ−1))
}

=
{
µ ∈ C\{0} : 0 ∈ Li(P (µ−1))

}
=

{
µ ∈ C\{0} : µ−1 ∈ Li(P (λ))

}
.

Moreover, µ = ∞ lies in Li(P (λ)) (or Ls,i(P (λ))) if and only if 0 lies in Li(P̂ (λ)) (resp.,
Ls,i(P̂ (λ))).

Remark 30. As in the case of the Gershgorin exclusion sets, Ls,i(P (λ)) is not necessarily non-
empty. For example, it is empty (in a trivial way) if for every λ ∈ C, |(P (λ))s,i| ≤ ris(P (λ)) or
(P (λ))i,s = 0.
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De�nition 31. The Brauer inclusion-exclusion set of the matrix polynomial P (λ) is de�ned
as

Φ(P (λ)) =
⋃

i,j∈N
i ̸=j

Φi,j(P (λ)),

where
Φi,j(P (λ)) = Bi,j(P (λ)) \ Li(P (λ)), i, j ∈ N , i ̸= j.

Remark 32. Just as with constant matrices, while it holds that Bi,j(P (λ)) = Bj,i(P (λ)) for each
i ̸= j, we have that Φi,j(P (λ)) ̸= Φj,i(P (λ)).

Theorem 33. All the eigenvalues of the matrix polynomial P (λ) lie in the Brauer inclusion-
exclusion set Φ(P (λ)).

Proof. For any �nite eigenvalue µ ∈ σ(P (λ)), we have that 0 ∈ σ(P (µ)). By [17], there exist
i, j ∈ N with i ̸= j such that 0 ∈ Bi,j(P (µ)). Additionally, by Theorem 4 of [14], we have that
0 /∈ Li(P (µ)), and therefore, µ /∈ Li(P (λ)). Thus,

µ ∈ Φi,j(P (λ)) ⊆ Φ(P (λ)).

If µ = ∞, then 0 ∈ σ(P̂ (µ)) ⊆ Φ(P̂ (λ)), and consequently, µ ∈ Φ(P (λ)).

We continue with the study of geometrical and topological properties of the Brauer exclusion
set. The next proposition can be obtained similarly to Proposition 11.

Proposition 34. Let i, j ∈ N with i ̸= j. Then, the following hold:

(i) The set Li,j(P (λ)) is open (consequently, the set Li(P (λ)) is also open).

(ii) For any scalar b ∈ C \ {0}, it holds that Li,j(P (bλ)) = b−1Li,j(P (λ)), Li,j(bP (λ)) =

Li,j(P (λ)), and Li,j(P (λ + b)) = Li,j(P (λ)) − b (consequently, Li(P (λ)) satis�es these
properties as well).

(iii) If all the coe�cient matrices A0, A1, . . . , Am of P (λ) have their i-th row and j-th row real,
then Li,j(P (λ)) is symmetric with respect to the real axis (consequently, if A0, A1, . . . , Am

are real, then Φ(P (λ)) is symmetric with respect to the real axis).

Remark 35. For any i, j ∈ N with i ̸= j, the set Bi,j(P (λ)) is closed [17, Proposition 4.2] and
the set Li(P (λ)) is open. Therefore, the set Φi,j(P (λ)) = Bi,j(P (λ)) \ Li(P (λ)) = Bi,j(P (λ)) ∩
(C \ Li(P (λ))) is closed. Hence, the Brauer inclusion-exclusion set Φ(P (λ)) is also closed as a
�nite union of closed sets.

In the next three propositions, we study the unboundedness of the Brauer exclusion sets. In
Proposition 36, we consider the case of zero diagonal entries of the leading coe�cient matrix,
while in Propositions 37 and 38, we consider the case of non-zero diagonal entries of the leading
coe�cient matrix.
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Proposition 36. Suppose that for some s ∈ N , it holds that (Am)s,s = 0. If there exists an
i ∈ N \ {s} such that 2 |(Am)s,i| − rs(Am) > 0 and (Am)i,s ̸= 0, then i is unique, 0 ∈ Ls,i(Am)

(⊆ Li(P (λ))) and the sets Ls,i(P (λ)) and Li(P (λ)) are unbounded.

Proof. Let s ∈ N with (Am)s,s = 0. Then, for any i ∈ N \ {s}, we have

Ls,i(Am) =
{
µ ∈ C : |µ| (|µ− (Am)i,i|+ rsi (Am)) <

(
|(Am)s,i| − ris(Am)

)
|(Am)i,s|

}
= {µ ∈ C : |µ| (|µ− (Am)i,i|+ rsi (Am)) < (2|(Am)s,i| − rs(Am)) |(Am)i,s|} .

As in the proof of Proposition 13, if the quantity 2|(Am)s,i| − rs(Am) is positive for some
i ∈ N \ {s}, then this i is unique (referring to this particular s).

Suppose that there exists an i ∈ N \{s} such that 2|(Am)s,i| − ri(Am) > 0 and (Am)i,s ̸= 0,
or equivalently, Ls,i(Am) is non-empty. Then, it follows that 0 ∈ Ls,i(Am) and (by de�nition)
2 |(Am)s,i| > rs(Am) > 0, i.e., the s-th row of the matrix Am is nonzero. Moreover,

Ls,i(P (λ)) \ {0} =
{
µ ∈ C \ {0} : |(P (µ))s,s| (|(P (µ))i,i|+ rsi (P (µ))) <

(
|(P (µ))s,i| − ris(P (µ))

)
|(P (µ))i,s|

}
(Am)s,s=0

=

µ ∈ C \ {0} :

∣∣∣∣∣
m−1∑
k=0

(Ak)s,sµ
k

∣∣∣∣∣
∣∣∣∣∣

m∑
k=0

(Ak)i,iµ
k

∣∣∣∣∣+ ∑
p∈N\{i,s}

∣∣∣∣∣
m∑
k=0

(Ak)i,pµ
k

∣∣∣∣∣


<

2

∣∣∣∣∣
m∑
k=0

(Ak)s,iµ
k

∣∣∣∣∣− ∑
p∈N\{s}

∣∣∣∣∣
m∑
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µ ∈ C \ {0} :
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µm
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 .

From the assumption 0 < (2|(Am)s,i| − rs(Am)) |(Am)i,s|, it follows that for su�ciently large
|µ|, µ lies in Ls,i(P (λ)). Furthermore, there exists a positive real number M > 0 such that
for any µ ∈ C with |µ| ≥ M , it holds that µ ∈ Ls,i(P (λ)). Hence, {µ ∈ C : |µ| ≥ M} ⊆
Ls,i(P (λ)) ⊆ Li(P (λ)).

Proposition 37. Suppose that for some s ∈ N , it holds that (Am)s,s ̸= 0. If there exists an
i ∈ N\{s} such that 0 ∈ Ls,i(Am), then the sets Ls,i(P (λ)) and Li(P (λ)) are unbounded.

Proof. Let (Am)s,s ̸= 0, and suppose that there exists an i ∈ N \ {s} such that 0 ∈ Ls,i(Am).
Recalling that Am = P̂ (0) and following the steps in the proof of Proposition 14, we can verify
that the sets Ls,i(P (λ)) and Li(P (λ)) are unbounded.

Proposition 38. Suppose that for some s ∈ N , it holds that (Am)s,s ̸= 0. If there exists an
i ∈ N\{s} such that the set Ls,i (P (λ)) is unbounded, then 0 lies in the closure of Ls,i(Am).
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Proof. Suppose that (Am)s,s ̸= 0 and Ls,i (P (λ)) is unbounded for some i ∈ N\{s}. Clearly, 0
lies in Ls,i(P̂ (λ)). Thus, since 0 cannot be an isolated point of Ls,i(P̂ (λ)), there is a sequence
{µℓ}ℓ=1,2,... in Ls,i(P (λ)) \ {0} such that |µℓ| → ∞. This implies that for every positive integer
ℓ,

|(P (µℓ))s,s| (|(P (µℓ))i,i|+ rsi (P (µℓ))) < (2 |(P (µℓ))s,i| − rs(P (µℓ))) |(P (µℓ))i,s| ,

or ∣∣∣∣∣
m∑
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(Ak)s,sµ
k
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∣∣∣∣∣
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∣∣∣∣∣
m∑
k=0
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k
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∣∣∣∣∣
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∣∣∣∣∣
m∑
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p∈N\{s}

∣∣∣∣∣
m∑
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∣∣∣∣∣
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∣∣∣∣∣ .
As ℓ → ∞,

|(Am)s,s|

|(Am)i,i|+
∑

p∈N\{i,s}

|(Am)i,p|

 ≤

2 |(Am)s,i| −
∑

p∈N\{s}

|(Am)s,p|

 |(Am)i,s| .

Therefore, 0 lies in the closure of Ls,i(Am).

It is worth noting that if (Am)s,s = 0, then Ls,i(Am) is non-empty if and only if 0 ∈ Ls,i(Am).
By Proposition 27 (v), Remark 28, and the proofs of Propositions 36 and 37, the next result
follows readily.

Corollary 39. Suppose that for some i, j, s ∈ N with i ̸= j, s, the i-th row and the j-th row
of Am are non-zero, and one of the following holds:

(i) (Am)i,i = 0, a non-diagonal entry of the j-th row of Am is non-zero, and 0 ∈ Ls,i(Am).

(ii) (Am)i,i ̸= 0, (Am)j,j ̸= 0, 0 ∈ Bi,j(Am), and 0 ∈ Ls,i(Am).

Then Bi,j(P (λ)) is unbounded and Φi,j(P (λ)) is bounded.

Remark 40. In the case where the matrix polynomial P (λ) is 2× 2, it follows that

B(P (λ)) = B1,2(P (λ)) = {µ ∈ C : |(P (µ))1,1| |(P (µ))2,2| ≤ r1(P (µ))r2(P (µ))}
= {µ ∈ C : |(P (µ))1,1| |(P (µ))2,2| ≤ |(P (µ))1,2| |(P (µ))2,1|} ,
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L1,2(P (λ)) =
{
µ ∈ C : |(P (µ))1,1|

(
|(P (µ))2,2|+ r12 (P (µ))

)
<

(
|(P (µ))1,2| − r21(P (µ))

)
|(P (µ))2,1|

}
= {µ ∈ C : |(P (µ))1,1| |(P (µ))2,2| < |(P (µ))1,2| |(P (µ))2,1|} = L2,1(P (λ)),

and
L2(P (λ)) = L1(P (λ)).

As a consequence, the Brauer inclusion-exclusion set is

Φ(P (λ)) = {µ ∈ C : |(P (µ))1,1| |(P (µ))2,2| = |(P (µ))1,2| |(P (µ))2,1|}

and coincides with the boundary of the Brauer set B(P (λ)).

Example 41. (i) Consider the 3× 3 matrix polynomial P (λ) in Example 18 (i). The Brauer
set B(P (λ)) in Figure 19 and the Brauer inclusion-exclusion set Φ(P (λ)) in Figure 20 are
bounded, and the improvement of the original estimation of the spectrum is clear.
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Figure 19: The Brauer set of P (λ).
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Figure 20: The Brauer inclusion-exclusion set
of P (λ).

(ii) The 3× 3 matrix polynomial

Q(λ) =

 λ2 + 1 5λ2 + λ λ

−5λ2 + λ 2λ λ

0 0 λ2


has zero as an eigenvalue of algebraic multiplicity 3 and three (�nite) simple nonzero eigenvalues.
The Brauer set B(Q(λ)) in Figure 21 is unbounded (in fact, it coincides with B1,2(P (λ))), while
the Brauer inclusion-exclusion set Φ(Q(λ)) in Figure 22 is bounded. The original estimation of
the spectrum is signi�cantly improved, and the symmetry of Proposition 34 (iii) is con�rmed.
It is worth mentioning that if Q2 is the leading coe�cient matrix of Q(λ), then (Q2)2,2 = 0,
(Q2)1,2 = 5 ̸= 0, and L1,2(Q2) = {µ ∈ C : |µ− 1| |µ| < 25} is non-empty; this means that the
(su�cient) conditions of Corollary 39 (i) hold for i = 2 and j = s = 1.
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Figure 21: The Brauer set of Q(λ). Figure 22: The Brauer inclusion-exclusion set
of Q(λ).

Remark 42. It is known that the Brauer set provides a more accurate approximation of the
spectrum of a matrix polynomial than the Gershgorin set. A question that arises in a natural
way is whether the Brauer inclusion-exclusion set is a better approximation compared to the
Gershgorin inclusion-exclusion set as well. Our experiments indicate that the Brauer inclusion-
exclusion set of a matrix polynomial is not necessarily better than the Gershgorin inclusion-
exclusion set.

4 The Dashnic-Zusmanovich set

For a square complex matrix A ∈ Cn×n, the Dashnic-Zusmanovich set is de�ned as [6]

D(A) =
⋂
i∈N

⋃
j∈N\{i}

Di,j(A),

where
Di,j(A) = {µ ∈ C : |µ− (A)i,i|

(
|µ− (A)j,j| − rij(A)

)
≤ ri(A)|(A)j,i|},

and it contains all the eigenvalues of A, i.e., σ(A) ⊆ D(A). Additionally, by [5], we know
that D(A) ⊆ B(A) ⊆ G(A), i.e., the Dashnic-Zusmanovich set is a better approximation of the
spectrum of A compared to the Gershgorin and Brauer sets.

In [23], the Dashnic-Zusmanovich inclusion-exclusion set of A was introduced as

Θ(A) =
⋂
i∈N

⋃
j∈N\{i}

(Di,j(A) \ Li,j(A)) ,

where Li,j(A) is given by (3). According to Theorem 5 in [23], it holds that σ(A) ⊆ Θ(A).
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Consider a matrix polynomial P (λ) as in (1) and the nonnegative functions ri(P (λ)) (i ∈ N )

de�ned in (2). The (inclusion) Dashnic-Zusmanovich set of P (λ) is de�ned as [17]

D(P (λ)) = {µ ∈ C : 0 ∈ D(P (µ))} =
⋂
i∈N

⋃
j∈N\{i}

Di,j(P (λ)),

where

Di,j(P (λ)) = {µ ∈ C : 0 ∈ Di,j(P (µ))}
= {µ ∈ C : |(P (µ))i,i| (|(P (µ))j,j| − rj(P (µ)) + |(P (µ))j,i|) ≤ ri(P (µ))|(P (µ))j,i|} .

De�nition 43. The Dashnic-Zusmanovich inclusion-exclusion set of P (λ) is de�ned as

Θ(P (λ)) =
⋂
i∈N

⋃
j∈N\{i}

(Di,j(P (λ)) \ Li,j(P (λ))) ,

where (see De�nition 29)

Li,j(P (λ)) = {µ ∈ C : 0 ∈ Li,j(P (µ))}
=

{
µ ∈ C : |(P (µ))i,i|

(
|(P (µ))j,j|+ rij (P (µ))

)
<

(
|(P (µ))i,j| − rji (P (µ))

)
|(P (µ))j,i|

}
.

Remark 44. Basic properties of the Dashnic-Zusmanovich set D(P (λ)) can be found in Section
5.2 of [17], while geometric and topological properties of the exclusion sets Li,j(P (λ)) are
discussed in Section 3.2.

Example 45. (i) Consider the 3× 3 matrix polynomial

P (λ) =

 λ2 9 1

5 λ2 + 2λ 0

i 0 λ2

 .

The Dashnic-Zusmanovich set D(P (λ)) in Figure 23 and the Dashnic-Zusmanovich inclusion-
exclusion set Θ(P (λ)) in Figure 24 are bounded, and the improvement of the original estimation
of the spectrum is obvious.
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Figure 23: The Dashnic-Zusmanovich set
of P (λ).
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Figure 24: The Dashnic-Zusmanovich inclusion-
exclusion set of P (λ).
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(ii) Consider the 3× 3 matrix polynomial

Q(λ) =

 2λ2 + 13λ− 23i −8λ+ 6− i λ− 1

−7λ2 + 2λ −4iλ+ 9− 2i λ+ 4

λ2 −λ− 0.3− 2i λ2 + 3λ+ 25

 ,

which has �ve �nite eigenvalues and one in�nite eigenvalue, all of them of algebraic multiplicity
one. The Dashnic-Zusmanovich set D(Q(λ)) in Figure 25 is unbounded, while the Dashnic-
Zusmanovich inclusion-exclusion set Θ(Q(λ)) in Figure 26 is the union of a bounded set (which
has two connected components and contains all the �nite eigenvalues of Q(λ)) and ∞. Appar-
ently, the original estimation of the spectrum is signi�cantly improved.

Figure 25: The Dashnic-Zusmanovich set
of Q(λ).

Figure 26: The Dashnic-Zusmanovich inclusion-
exclusion set of Q(λ).

Remark 46. Several spectrum localizations are obtained for matrix polynomials in [10] and for
quadratic matrix polynomials in [20], by considering linearizations. For the 3 × 3 quadratic
matrix polynomials

P (λ) =

 λ2 − 0.0532λ+ 0.0663 0.1306λ− 0.2776 0.0533 − 0.078λ

0.0516λ− 0.1538 λ2 − 0.1687λ− 0.0166 0.0523 − 0.2835λ

0.2792 − 0.1381λ −0.1572λ− 0.0392 λ2 + 0.1385λ− 0.1444


and

Q(λ) =

 0.1827λ2 + 0.0533λ+ 1 −0.4997λ2 − 0.1386λ −0.1792λ

−0.4997λ2 − 0.1386λ 0.1506λ2 + 0.1723λ+ 1 −0.1637λ

−0.1792λ −0.1637λ 0.1578λ+ 1


in Examples 5 and 6 of [20], respectively, the Gershgorin, Brauer and Dashnic-Zusmanovich
inclusion-exclusion sets in Figures 27a�27c and 28a�28c imply that our estimations are compa-
rable to, and can be more precise than, the bounds in [10, 20].
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(a) The Gershgorin inclusion-

exclusion set of P (λ).
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(b) The Brauer inclusion-

exclusion set of P (λ).
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(c) The Dashnic-Zusmanovich

inclusion-exclusion set of P (λ).

Figure 27: The Gershgorin, Brauer and Dashnic-Zusmanovich inclusion-exclusion sets of P (λ).

-6 -4 -2 0 2 4 6

-6

-4

-2

0

2

4

6

(a) The Gershgorin inclusion-

exclusion set of Q(λ).

-6 -4 -2 0 2 4 6

-6

-4

-2

0

2

4

6

(b) The Brauer inclusion-

exclusion set of Q(λ).
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(c) The Dashnic-Zusmanovich

inclusion-exclusion set of Q(λ).

Figure 28: The Gershgorin, Brauer and Dashnic-Zusmanovich inclusion-exclusion sets of Q(λ).
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