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Introduction and preliminaries

Wilkinson’s problem (1972) concerns computing the spectral norm

distance from a matrix A ∈ C
n×n with n distinct eigenvalues to the

set of n × n matrices having multiple eigenvalues, and has a strong

connection to ill-conditioning of eigenvalue problems.

Malyshev (1999) provided a solution to Wilkinson’s problem by obtaining

inf {‖E‖2 : µ is a multiple eigenvalue of A + E}

= sup
γ>0

s2n−1

([

Iµ − A 0

γI Iµ − A

])

,

where s1(·) ≥ s2(·) ≥ s3(·) ≥ · · · denote the singular values of a matrix.
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Mengi (2011) derived a characterization for the smallest perturbation to

a matrix with an eigenvalue of specified algebraic multiplicity by proving

inf {‖E‖2 : µ is an eigenvalue of A + E of algebraic multiplicity r}

= sup
γi,j ∈C\{0}

srn−r+1
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Iµ − A 0 0 · · · 0

γ2,1I Iµ − A 0 · · · 0

γ3,1I γ3,2I Iµ − A · · · 0

...
...
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...

γr,1I γr,2I γr,3I · · · Iµ − A
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.

In this work, we study the case of polynomial eigenvalue problems, and

estimate a weighted distance from a given n × n matrix polynomial to

the n × n matrix polynomials that have a prescribed multiple eigenvalue.
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Consider a matrix polynomial (m.p.)

P (λ) = Amλm + Am−1λ
m−1 + · · · + A1λ + A0,

where λ is a complex variable, Aj ∈ C
n×n, and det P (λ) 6≡ 0.

A scalar λ0 ∈ C is an eigenvalue of P (λ) if P (λ0)x0 = 0 for some

0 6= x0 ∈ C
n, known as a (right) eigenvector of P (λ) corresponding

to λ0. The set of all eigenvalues of P (λ),

σ(P ) = {λ ∈ C : det P (λ) = 0} ,

is the spectrum of P (λ) and contains at most nm (finite) elements.

For a λ0 ∈ σ(P ), its algebraic multiplicity (a.m.) is the multiplicity

of λ0 as a zero of det P (λ), and its geometric multiplicity (g.m.) is

the dimension of the null space of P (λ0). It holds that a.m.≥ g.m.
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Suppose that for a λ0 ∈ σ(P ), there are x0(6= 0), x1, . . . , xk ∈ C
n, s.t.

ξ
∑

j=0

1

j!
P (j)(λ0) xξ−j = 0 ; ξ = 0, 1, . . . , k.

Then x0 is an eigenvector of λ0, and x1, x2, . . . , xk are known as

generalized eigenvectors. The set {x0, x1, . . . , xk} is said to be

a Jordan chain of P (λ) corresponding to λ0 ∈ σ(P ).

Any eigenvalue of P (λ) of g.m. p has p maximal Jordan chains

associated with p linearly independent eigenvectors, with total number

of vectors equal to its a.m. The largest length of Jordan chains of P (λ)

corresponding to a λ0 ∈ σ(P ) is called the index of λ0, and it is the

size of the largest Jordan blocks of the Jordan canonical form of P (λ)

associated with λ0. The index is equal to 1 iff a.m. = g.m.
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We are interested in the spectra of perturbations of P (λ) of the form

Q(λ) = P (λ) + ∆(λ) =
m
∑

j=0

(Aj + ∆j)λ
j

for arbitrary ∆j ∈ C
n×n. For w = {w0, w1, . . . , wm}, wj ≥ 0 (j > 0),

w0 > 0, and ε > 0, we define the set of perturbations of P (λ),

B(P, ε, w) =

{

Q(λ) =
m
∑

j=0

(Aj + ∆j)λ
j : ‖∆j‖2 ≤ εwj, j = 0, 1, . . . ,m

}

.

The weights wj allow freedom in how perturbations are measured.

The ε-pseudospectrum of P (λ) [Tisseur-Higham, 2001] is defined as

σε(P ) = {µ ∈ σ(Q) : Q(λ) ∈ B(P, ε, w)} ,

and allows a “visualization” of the sensitivity of eigenvalues.
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For the m.p. P (λ) and a given µ ∈ C, we define the distance from

P (λ) to µ as an eigenvalue of g.m. at least r,

Gr(µ) = inf {ε ≥ 0 : ∃ Q(λ) ∈ B(P, ε, w) with µ ∈ σ(Q) of g.m.≥ r} ,

the distance from P (λ) to µ as an eigenvalue of a.m. at least r,

Er(µ) = inf {ε ≥ 0 : ∃ Q(λ) ∈ B(P, ε, w) with µ ∈ σ(Q) of a.m.≥ r} ,

and the distance from P (λ) to µ as an eigenvalue of a.m. at

least r and index (exactly) k,

Er,k(µ) = inf {ε ≥ 0 : ∃ Q(λ) ∈ B(P, ε, w) with µ ∈ σ(Q)

of a.m.≥ r and index k} .
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Computation of Gr(µ)

(generalizing [Schmidt, 1907] & [Eckart-Young, 1936])

For a given µ ∈ C, consider the SVD of the (constant) matrix P (µ)

P (µ) = U diag {s1(P (µ)), s2(P (µ)), . . . , sn(P (µ))} V ∗,

where U = [u1 u2 · · · un] , V = [v1 v2 · · · vn] ∈ C
n×n are unitary.

Then define the n × n matrices

E = −U diag{0, . . . , 0, sn−r+1(P (µ)), . . . , sn(P (µ))}V ∗

and
∆j =

wj

w(|µ|)

(

µ

|µ|

)j

E ; j = 0, 1, . . . ,m,

assuming that µ/|µ| = 0 whenever µ = 0.
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The m.p. ∆(λ) =
m
∑

j=0

∆jλ
j satisfies ∆(µ) = E, and the perturbation

Q(λ) = P (λ) + ∆(λ) =
m
∑

j=0

(Aj + ∆j)λ
j

lies on ∂ B
(

P, sn−r+1(P (µ))
w(|µ|)

, w
)

. Moreover, for every j = n − r + 1,

. . . , n − 1, n, we have Q(µ)vj = 0 and u∗
jQ(µ) = 0.

Theorem 1 The distance from P (λ) to µ as an eigenvalue of

geometric multiplicity r is

Gr(µ) =
sn−r+1(P (µ))

w(|µ|)
,

and Q(λ) above is an optimal perturbation.
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A lower bound for Er,k(µ) (generalizing [Malyshev, 1999])

By our definitions and the previous theorem,

E1(µ) =
sn(P (µ))

w(|µ|)
≤ Er(µ) ≤

sn−r+1(P (µ))

w(|µ|)
= Gr(µ) ≤ Er,1(µ).

For 0 6= γ ∈ C, we define

Fk[P (λ); γ] =





















P (λ) 0 · · · 0

γ P (1)(λ) P (λ) · · · 0
γ2

2!
P (2)(λ) γ P (1)(λ) · · · 0

...
...

. . .
...

γk−1

(k−1)!
P (k−1)(λ) γk−2

(k−2)!
P (k−2)(λ) · · · P (λ)





















.
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Lemma 2 Suppose λ0 ∈ C is an eigenvalue of P (λ) of a.m. at least

r and index k. Then for any scalar γ 6= 0,

skn−r+1(Fk[P (λ0); γ]) = 0.

Theorem 3 For any γ > 0,

Er,k(µ) ≥
skn−r+1(Fk[P (µ); γ])

‖Fk[w(|µ|); γ]‖
; k = 1, 2, . . . , r

and

Er(µ) ≥ min
k=1,2,...,nm

skn−r+1(Fk[P (µ); γ])

‖Fk[w(|µ|); γ]‖
.
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An upper bound for Er(µ) (generalizing [Malyshev, 1999])

Without loss of generality, we may assume that γ > 0.

For r ∈ {2, 3, . . . , n}, let















u1(γ)

u2(γ)
...

ur(γ)















,















v1(γ)

v2(γ)
...

vr(γ)















∈ C
rn, with

uj(γ), vj(γ) ∈ C
n (j = 1, 2, . . . , r), be left and right singular vectors

of srn−r+1(Fr[P (µ); γ]), respectively. We define the n × r matrices

U(γ) = [ u1(γ) u2(γ) · · · ur(γ) ] and V (γ) = [ v1(γ) v2(γ) · · · vr(γ) ].

If rank(V (γ)) = r, then we can construct a m.p. ∆γ(λ) s.t.

Qγ(λ) = P (λ) + ∆γ(λ) has µ as an eigenvalue of a.m. at least r.
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We define the quantities φi = w(i)(|µ|)
(i!) w(|µ|)

(

µ

|µ|

)i

, i = 1, 2, . . . , r, setting

µ/|µ| = 0 whenever µ = 0. Then we define the r × r upper triangular

Toeplitz matrix

Θγ = [θi,j] =





















1 −γφ1 γ2(φ2
1 − φ2) γ3(2φ1φ2 − φ3 − φ3

1) · · ·

0 1 −γφ1 γ2(φ2
1 − φ2) · · ·

0 0 1 −γφ1 · · ·

0 0 0 1 · · ·
...

...
...

...
. . .





















,

whose entries above the diagonal are given by the recursive formulae

θi,j = − θi,iγ
j−iφj−i − θi,i+1γ

j−(i+1)φj−(i+1) − · · · − θi,j−1γφ1 ; 1 ≤ i < j ≤ r.
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Denoting by V (γ)† the Moore-Penrose pseudoinverse of V (γ), we

consider the n × n matrix

∆γ = −srn−r+1(Fr[P (µ); γ]) U(γ) ΘγV (γ)†,

and we define the matrices

∆γ,j =
wj

w(|µ|)

(

µ

|µ|

)j

∆γ ; j = 0, 1, . . . ,m

and the matrix polynomial

∆γ(λ) =
m
∑

j=0

∆γ,jλ
j.
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Then, the scalar µ is a multiple eigenvalue of the m.p.

Qγ(λ) = P (λ) + ∆γ(λ) =
m
∑

j=0

(Aj + ∆γ,j)λ
j

with
{

v1(γ), γ−1v2(γ), γ−2v3(γ), . . . , γ−(r−1)vr(γ)
}

as an associated

Jordan chain of length r.

Theorem 4 For any real γ > 0 s.t. rank(V (γ)) = r ≤ n, it holds that

Er(µ) ≤
srn−r+1(Fr[P (µ); γ])

w(|µ|)

∥

∥U(γ) ΘγV (γ)†
∥

∥ ,

and Qγ(λ) ∈ ∂B
(

P, srn−r+1(Fr[P (µ);γ])
w(|µ|)

∥

∥U(γ) ΘγV (γ)†
∥

∥ , w
)

above

has µ as an eigenvalue with a Jordan chain of length at least r.
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A numerical example

Let P (λ)=
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and

w = {10, 6.11, 3}. The ε-pseudospectra of P (λ) for ε = 0.05, 0.1002,

0.16, are:
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For the scalar µ = 3 + i, we get

G2(3 + i) =
s2(P (3 + i))

w(|3 + i|)
=

32.1524

59.3240
= 0.5420,

with an optimal perturbation

Q̂(λ) =









0.4134 + i 0.0607 −0.1918 + i 0.0808 −0.0090 − i 0.0002

0.0403 − i 0.0302 0.4100 + i 0.2467 −0.0611 − i 0.0173

−0.0037 + i 0.0010 0.0599 + i 0.0176 3.0019 + i 0.0016









λ
2

+









−1.1726 − i 0.2606 0.5773 + i 0.0325 −0.0172 − i 0.0062

0.0974 − i 0.0325 −0.2315 − i 0.5476 0.8931 − i 0.0727

−0.0077 − i 0.0004 −0.8955 + i 0.0727 6.0025 + i 0.0043









λ

+









0.3144 − i 1.0114 0.3269 − i 0.1683 −0.0235 − i 0.0185

−0.8319 + i 0.0000 −1.7334 − i 2.5223 −0.1283 − i 0.1682

−0.0118 − i 0.0046 0.1245 + i 0.1669 10.0017 + i 0.0080









that has µ = 3 + i, as an eigenvalue with a.m. = g.m. = 2.

PANAYIOTIS PSARRAKOS – DEPARTMENT OF MATHEMATICS, NATIONAL TECHNICAL UNIVERSITY OF ATHENS 17



“Linear Algebra and its Applications to Financial Engineering”

Department of Mathematical Sciences, University of Liverpool

in honour of Prof. Peter Lancaster – January 2012

The graphs of the lower bound for E2,2(3 + i) and the upper bound for

E2(3 + i) are illustrated below, and for γ = 1.9,

0.2149 ≤ E2,2(3 + i) = E2(3 + i) ≤ 0.4901 < 0.5420 = G2(3 + i).
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For µ = −1.1105, a pseudospectra approach [Boulton-Lancaster-Ps.,

2008] implies that

E2(−1.1105) = E2,2(−1.1105) = E1(−1.1105) = 0.1002.

The graphs of the lower bound for E3,3(−1.1105) and the upper bound

for E3(−1.1105) are given below. For γ = 0.5530 and γ = 0.6518, we

get, respectively,

E3,3(−1.1105) ≥ 0.1048 and E3(−1.1105) ≤ 0.3177.
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