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Abstra
t

Consider an n× n matrix polynomial P (λ) and a set Σ 
onsisting of k ≤ n 
om-

plex numbers. Re
ently, Kokabifar, Loghmani, Psarrakos and Karbassi studied a

(weighted) spe
tral norm distan
e from P (λ) to the n× n matrix polynomials whose

spe
tra 
ontain the spe
i�ed set Σ, under the assumption that all the entries of Σ are

distin
t. In this paper, the 
ase in whi
h some or all of the desired eigenvalues 
an

be multiple is dis
ussed. Lower and upper bounds for the distan
e are 
omputed, and

a perturbation of P (λ) asso
iated to the upper bound is 
onstru
ted. A detailed nu-

meri
al example illustrates the e�
ien
y and validity of the proposed 
omputational

method.
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1 Introdu
tion

Assume that all the eigenvalues of a matrix A ∈ C
n×n

are simple. Computing the distan
e

from A to the set of n × n (
omplex) matri
es having multiple eigenvalues is known as

Wilkinson's problem. Wilkinson introdu
ed this problem in [22℄ and 
omputed bounds for

this distan
e, known as Wilkinson's distan
e, in [23�26℄. Demmel [2℄ and Ruhe [19℄ also


al
ulated alternative bounds for Wilkinson's distan
e. In 1999, Malyshev [14℄ obtained a

singular value optimization 
hara
terization for the spe
tral norm distan
e from A to the

set of all n × n 
omplex matri
es that have a �xed multiple eigenvalue; his work 
an be


onstrued as a solution to Wilkinson's problem.

Expanding and improving the methodology used in [14℄, Gra
ia [4℄ and Lippert [13℄

studied a spe
tral norm distan
e from A to n × n 
omplex matri
es with two pres
ribed
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eigenvalues. Moreover, a spe
tral norm distan
e from A ∈ C
n×n

to the set of n×n matri
es

with k ≤ n �xed eigenvalues is studied, geometri
ally by Lippert [12℄, and 
omputationally

by Kokabifar, Loghmani and Karbassi [8℄. Papathanasiou and Psarrakos [17℄, Kokabifar,

Loghmani, Nazari and Karbassi [7℄, and Psarrakos [18℄ studied a (weighted) spe
tral norm

distan
e from an n×n matrix polynomial P (λ) to the n×n matrix polynomials that have

a pres
ribed multiple eigenvalue, two pres
ribed distin
t eigenvalues, and a pres
ribed

eigenvalue of spe
i�ed algebrai
 multipli
ity, respe
tively. The results a
hieved in [17℄

and [7℄ 
an be interpreted as generalizations to matrix polynomials of results obtained

in [14℄ and [4, 13℄, respe
tively.

Re
ently, Kokabifar, Loghmani, Psarrakos and Karbassi [9℄ extended the results of [7℄

to the 
ase of k ≤ n distin
t eigenvalues. However, a question that arises in a natural

way is the following: What one 
an say if some of the desired eigenvalues are multiple? In

this paper, we investigate this problem, and obtain an upper and a lower bound for the

distan
e from an n × n matrix polynomial P (λ) to matrix polynomials that have k ≤ n
given eigenvalues whi
h are not ne
essarily distin
t, generalizing and unifying results of

[7,17,18℄. To a
hieve this, we need to modify de�nitions, lemmas and te
hniques presented

in [7�9, 17, 18℄.

In the next se
tion, we review some standard de�nitions on matrix polynomials, and

also give some new de�nitions whi
h are ne
essary for the remainder. In Se
tion 3, we


onstru
t an admissible perturbation of P (λ) that has the desired k eigenvalues, by ex-

tending and modifying the te
hniques presented in [7�9,17,18℄. In Se
tion 4, we apply the

results of Se
tion 3 to 
ompute an upper and a lower bound for the distan
e. Finally, in

Se
tion 5, we give a 
omprehensive numeri
al example to illustrate the proposed method.

Some partial results on the behavior of the Jordan stru
ture of matrix polynomial under

perturbations, whi
h are ne
essary for the 
onstru
tion of the lower bound, are presented

in an appendix.

2 Preliminaries

For A0, A1, . . . , Am ∈ C
n×n

, with Am 6= 0, and a 
omplex variable λ, we de�ne the matrix

polynomial

P (λ) = Amλm +Am−1λ
m−1 + · · ·+A1λ+A0 =

m∑

j=0

Ajλ
j. (1)

The spe
tral analysis and the Jordan stru
ture of P (λ) leads to the solutions of the higher

order linear systems of di�erential equations Am
dmu(t)
dtm

+Am−1
dm−1u(t)
dtm−1 +· · ·+A0u(t) = f(t)

(where f(t) is a given C
n
-valued pie
ewise 
ontinuous fun
tion of the real variable t) and of

di�eren
e equations Amuj+m+Am−1uj+m−1+· · ·+A0uj = fj (where {f0, f1, . . . } is a given
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sequen
e of ve
tors in C
n
and {u0, u1, . . . } is a sequen
e to be found) [3℄. As a 
onsequen
e,

in the last de
ades, the study of matrix polynomials has re
eived mu
h attention of several

resear
hers and has met many appli
ations in diverse areas of applied mathemati
s su
h as

boundary value problems, systems theory and 
ontrol, vibrating and gyros
opi
 systems,

wave theory, and sto
hasti
 models. Suggested referen
es for the theory and appli
ations

of matrix polynomials are [3, 5, 10, 15, 16, 20, 21℄ and the referen
es therein.

Suppose that for a s
alar λ0 ∈ C and a nonzero ve
tor v ∈ C
n
, it holds that P (λ0)v = 0.

Then the s
alar λ0 is 
alled an eigenvalue of P (λ), and the ve
tor v is known as a (right)

eigenve
tor of P (λ) 
orresponding to λ0. Similarly, a nonzero ve
tor u ∈ C
n
is known as

a left eigenve
tor of P (λ) 
orresponding to λ0 when u∗P (λ0) = 0. The spe
trum of P (λ),
denoted by σ(P ), is the set of its eigenvalues. The multipli
ity of an eigenvalue λ0 ∈ σ(P )
as a root of the s
alar polynomial detP (λ) is 
alled the algebrai
 multipli
ity of λ0, and

the dimension of the null spa
e of the (
onstant) matrix P (λ0) is known as the geometri


multipli
ity of λ0. The algebrai
 multipli
ity of an eigenvalue is always greater than or

equal to its geometri
 multipli
ity. An eigenvalue is 
alled semisimple if its algebrai
 and

geometri
 multipli
ities are equal; otherwise, it is known as defe
tive. Throughout this

paper, it is assumed that:

(a) The 
oe�
ient matrix Am is nonsingular ; this implies that P (λ) has exa
tly mn �nite

eigenvalues, 
ounting algebrai
 multipli
ities.

(b) The spe
trum σ(P ) has exa
tly nm entries, where ea
h eigenvalue appears as many

times as its algebrai
 multipli
ity.

The singular values of P (λ) are the nonnegative roots of the eigenvalue fun
tions of

P (λ)∗P (λ), ordered in non-in
reasing order, and they are denoted by

s1 (P (λ)) ≥ s2 (P (λ)) ≥ · · · ≥ sn (P (λ)) ≥ 0.

Let λ0 be an eigenvalue of P (λ), and let q be a positive integer less than or equal to

the algebrai
 multipli
ity of λ0. If there exist q ve
tors v1, v2, . . . , vq, with v1 6= 0, su
h
that

P (λ0)v1 = 0,

1

1!
P ′(λ0)v1 + P (λ0)v2 = 0,

1

2!
P ′′(λ0)v1 +

1

1!
P ′(λ0)v2 + P (λ0)v3 = 0,

.

.

.

.

.

.

q−1
∑

i=0

1

i!
P (i)(λ0)vq−i = 0,
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where P (i)(λ) denotes the i-th derivative of P (λ) with respe
t to λ, then the set {v1, v2, . . . , vq}
is 
alled a (right) Jordan 
hain of length q of P (λ) 
orresponding to λ0. The ve
tor v1 (6= 0)
is 
learly an eigenve
tor of P (λ) asso
iated to λ0, and the ve
tors v2, v3, . . . , vq are known

as generalized eigenve
tors of λ0 
orresponding to the eigenve
tor v1. When m > 1, the
ve
tors in a Jordan 
hain need not be linearly independent [3, Subse
tion 1.4℄.

For 
onvenien
e, for every r = 1, 2, . . . , q, we say that the matrix

1
(r−1)!P

(r−1)(λ0) is the

r-th Jordan 
hain 
oe�
ient of P (λ) 
orresponding to λ0. In addition, it is assumed that

we are given a set of s distin
t s
alars µ1, µ2, . . . , µs ∈ C, with ea
h µi having multipli
ity

equal to qi ≥ 1 (i = 1, 2, . . . , s), where q1 + q2 + · · ·+ qs = k ≤ n. This set is denoted by

Σ =
{
µ1, . . . , µ1
︸ ︷︷ ︸

q1-times

, µ2, . . . , µ2
︸ ︷︷ ︸

q2-times

, . . . , µs, . . . , µs
︸ ︷︷ ︸

qs-times

}
; (2)

i.e., ea
h µi appears exa
tly qi times (i = 1, 2, . . . , s). A 
lass of additive perturbations of

P (λ), an asso
iated spe
tral norm distan
e from P (λ) to n× n matrix polynomials whose

spe
tra 
ontain the set Σ in (2), and an nk×nk matrix whi
h is 
ru
ial for our dis
ussion,

are des
ribed in the next three de�nitions.

De�nition 2.1. For a matrix polynomial P (λ) as in (1), and for arbitrary matri
es

∆0,∆1, . . . ,∆m ∈ C
n×n

, 
onsider (additive) perturbations of P (λ) of the form

Q(λ) =
m∑

j=0

(Aj +∆j)λ
j =

m∑

j=0

Ajλ
j +

m∑

j=0

∆jλ
j = P (λ) + ∆(λ). (3)

Also, for ε > 0 and a set of given nonnegative weights w = {w0, w1, . . . , wm}, with w0 > 0,
de�ne the 
lass of admissible perturbed matrix polynomials

B(P, ε, w) =
{
Q(λ) as in (3) : ‖∆j‖2 ≤ εwj , j = 0, 1, . . . ,m

}

and the s
alar polynomial w(λ) = wmλm + wm−1λ
m−1 + · · ·+ w1λ+ w0.

De�nition 2.2. For a matrix polynomial P (λ) as in (1) and a set of 
omplex numbers Σ
as in (2), the distan
e from P (λ) to the set of matrix polynomials whose spe
tra in
lude

Σ is de�ned and denoted by

Dw(P,Σ) = min {ε ≥ 0 : ∃Q(λ) ∈ B(P, ε, w) su
h that Σ ⊆ σ(Q)} .

De�nition 2.3. Let P (λ) be a matrix polynomial as in (1), and let a set of 
omplex

numbers Σ as in (2) be given. For any nonzero s
alar γ ∈ C, de�ne the nk × nk blo
k

lower triangular matrix

Fγ [P,Σ] =










F1,1 0 · · · 0 0
F2,1 F2,2 · · · 0 0
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Fk−1,1 Fk−1,2 · · · Fk−1,k−1 0
Fk,1 Fk,2 · · · Fk,k−1 Fk,k










,
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in whi
h:

(i) All the blo
ks Fi,j (1 ≤ j ≤ i ≤ k) are n× n.

(ii) The (main) diagonal blo
ks of Fγ [P,Σ] are given by

F1,1 = · · · = Fq1,q1 = P (µ1), Fq1+1,q1+1 = · · · = Fq1+q2,q1+q2 = P (µ2),

. . . , Fq1+···+qs−1+1,q1+···+qs−1+1 = · · · = Fq1+···+qs−1+qs,q1+···+qs−1+qs = P (µs).

(iii) For all µi 6= µj , set θj,i =
γ

µj−µi
. The blo
ks below the diagonal are given by the

re
ursive formula (starting from the diagonal blo
ks)

Fi,j =

{
γi−j(the next Jordan 
hain 
oe�
ient of Fi−1,j) if Fi−1,j = Fi,j+1,
θj,i (Fi−1,j − Fi,j+1) if Fi−1,j 6= Fi,j+1.

(Here and elsewhere, we say that Fi−1,j = Fi,j+1 if and only if the i-th blo
k-row and the

j-th blo
k-
olumn of the matrix Fγ [P,Σ] 
orrespond to the same desired eigenvalue.)

For example, if Σ = {µ1, µ1, µ2, µ3, µ3, µ3}, then

Fγ [P,Σ] =











F1,1 0 0 0 0 0
F2,1 F2,2 0 0 0 0
F3,1 F3,2 F3,3 0 0 0
F4,1 F4,2 F4,3 F4,4 0 0
F5,1 F5,2 F5,3 F5,4 F5,5 0
F6,1 F6,2 F6,3 F6,4 F6,5 F6,6











=

















P (µ1) 0 0 0 0 0
γP ′(µ1) P (µ1) 0 0 0 0

γ2 P ′(µ1)−
P (µ1)−P (µ2)

µ1−µ2

µ1−µ2
γ P (µ1)−P (µ2)

µ1−µ2
P (µ2) 0 0 0

γ
F3,1−F4,2

µ1−µ3
γ2

P(µ1)−P (µ2)
µ1−µ2

−
P(µ2)−P (µ3)

µ2−µ3

µ1−µ3
γ P (µ2)−P (µ3)

µ2−µ3
P (µ3) 0 0

γ
F4,1−F5,2

µ1−µ3
γ

F4,2−F5,3

µ1−µ3
γ2

P (µ2)−P (µ3)
µ2−µ3

−P ′(µ3)

µ2−µ3
γP ′(µ3) P (µ3) 0

γ
F5,1−F6,2

µ1−µ3
γ

F5,2−F6,3

µ1−µ3
γ3

P (µ2)−P (µ3)
µ2−µ3

−P ′(µ3)

µ2−µ3
−

P ′′(µ3)
2!

µ2−µ3

γ2

2! P
′′(µ3) γP ′(µ3) P (µ3)

















. (4)

3 Constru
tion of a perturbation

In this se
tion, an n × n matrix polynomial ∆γ(λ) is 
onstru
ted su
h that the spe
trum

of the perturbed matrix polynomial Qγ(λ) = P (λ) + ∆γ(λ) 
ontains a given set Σ as in

5



(2). In the remainder, without loss of generality, it is assumed that the parameter γ is real

positive [18℄. Moreover, for 
onvenien
e, set ρ = nk − k + 1.

For the 
onstru
tion of the desired perturbation of P (λ), 
onsider a pair

u(γ) =








u1(γ)
u2(γ)

.

.

.

uk(γ)







, v(γ) =








v1(γ)
v2(γ)
.

.

.

vk(γ)







∈ C

nk (uj(γ), vj(γ) ∈ C
n, j = 1, 2, . . . , k)

of left and right singular ve
tors 
orresponding to the ρ-th singular value of matrix Fγ [P,Σ],
sρ (Fγ [P,Σ]). By the de�nition of u(γ) and v(γ), it follows

Fγ [P,Σ]v(γ) = sρ (Fγ [P,Σ]) u(γ), (5)

or equivalently, the following matrix equations hold:

F1,1v1(γ) = sρ (Fγ [P,Σ]) u1(γ),

F2,1v1(γ) + F2,2v2(γ) = sρ (Fγ [P,Σ]) u2(γ),

.

.

.

.

.

. (6)

Fk−1,1v1(γ) + Fk−1,2v2(γ) + · · ·+ Fk−1,k−1vk−1(γ) = sρ (Fγ [P,Σ]) uk−1(γ),

Fk,1v1(γ) + Fk,2v2(γ) + · · ·+ Fk,k−1vk−1(γ) + Fk,kvk(γ) = sρ (Fγ [P,Σ]) uk(γ).

Let F̂γ [P,Σ] be the nk×nk blo
k matrix (with blo
ks of order n) that has the (out of
fra
tions) Jordan 
hain 
oe�
ients of P (λ) exa
tly at the same positions as Fγ [P,Σ] and
zero blo
ks elsewhere, and denote by In×n the n× n identity matrix. By the de�nition of

matrix Fγ [P,Σ] (see De�nition 2.3), it is apparent that ea
h nonzero blo
k Fi,j (i ≥ j) of
Fγ [P,Σ] is either, a Jordan 
hain 
oe�
ient, or a linear 
ombination of the Jordan 
hain


oe�
ients lying in the i-th row and in the j-th 
olumn. As a 
onsequen
e, by applying

the Gauss elimination in an appropriate way, all nonzero blo
ks Fi,j (i > j) whi
h are not

Jordan 
hain 
oe�
ients 
an be vanished. In parti
ular, there exist nk × nk elementary

blo
k matri
es (with blo
ks of order n), i.e., matri
es whi
h are equal to Ink×nk or di�er

from it by one single elementary blo
k-row or blo
k-
olumn operation,

E2,1, E3,1, E3,2, . . . , Ek−1,1, Ek−1,2, . . . , Ek−1,k−1, Ek,1, Ek,2, . . . , Ek,k−1 (blo
k-row operations)

and

Ê2,1, Ê3,1, Ê3,2, . . . , Êk−1,1, Êk−1,2, . . . , Êk−1,k−1, Êk,1, Êk,2, . . . , Êk,k−1 (blo
k-
olumn operations),
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su
h that:

the (k, 1)-th blo
k of Ek,1Fγ [P,Σ]Êk,1 is either zero or a Jordan 
hain 
oe�
ient,

the (k, 1)-th and (k, 2)-th blo
ks of Ek,2Ek,1Fγ [P,Σ]Êk,1Êk,2 are either zero or

Jordan 
hain 
oe�
ients,

.

.

.

the (k, 1)-th, (k, 2)-th, . . . , (k, k − 1)-th and (k − 1, 1)-th blo
ks of Ek−1,1Ek,k−1 · · ·

Ek,2Ek,1Fγ [P,Σ]Êk,1Êk,2 · · · Êk,k−1Êk−1,1 are either zero or Jordan 
hain 
oe�
ients,

.

.

.

the matrix








∏

i = 2, 3, . . . , k
j = i− 1, i− 2, . . . , 1

Ei,j








Fγ [P,Σ]








∏

i = k, k − 1, . . . , 2
j = 1, 2, . . . , i− 1

Êi,j








is equal to

F̂γ [P,Σ].

The symmetry of the divided di�eren
es in part (iii) of De�nition 2.3 and the standard

properties of elementary matri
es imply that Êi,j = E−1
i,j , 1 ≤ j < i ≤ k. Hen
e, if we

de�ne the nk × nk blo
k upper triangular matrix

T = E2,1E3,2 E3,1 · · · Ek−1,k−2 · · · Ek−1,2Ek−1,1Ek,k−1 · · · Ek,2Ek,1

=












In 0 0 · · · 0 0
t2,1In In 0 · · · 0 0
t3,1In t3,2In In · · · 0 0
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

tk−1,1In tk−1,2In tk−1,3In · · · In 0
tk,1In tk,2In tk,3In · · · tk,k−1In In












,

then it follows

TFγ [P,Σ]T
−1 = F̂γ [P,Σ] ⇔ Fγ [P,Σ] = T−1F̂γ [P,Σ]T. (7)

Remark 3.1. For every r = 1, 2, . . . , s, i = q1+ q2+ · · ·+ qr−1+1, q1 + q2+ · · ·+ qr−1+
2, . . . , q1 + q2 + · · ·+ qr and 1 ≤ j ≤ i (where for r = 1, we set q1 + q2 + · · · + qr−1 = 0),
the entry ti,j is the (s
alar) 
oe�
ient of P (µr) in the (i, j)-th blo
k of matrix Fγ [P,Σ]. In
parti
ular, for every r = 1, 2, . . . , s and q1+ q2+ · · ·+ qr−1+1 ≤ j < i ≤ q1+ q2+ · · ·+ qr,
it holds that Ei,j = In and ti,j = 0.
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Remark 3.2. In the 
ase where all the desired eigenvalues are assumed to be simple,

i.e., when s = k, q1 = q2 = · · · = qs = 1 and Σ = {µ1, µ2, µ3, . . . , µk}, the entries ti,j of

matrix T are given expli
itly in [9℄. Moreover, if there is only one desired eigenvalue of

algebrai
 multipli
ity at least k (≤ n), i.e., if s = 1, q1 = k and Σ = {µ1, µ1, µ1, . . . , µ1},
then T = Ink (see also [18℄).

For example, 
onsider the matrix Fγ [P,Σ] in (4). Then, it is straightforward to verify

that for the matrix

T = I6 E3,2 E3,1 E4,3 E4,2 E4,1 I6 E5,3 E5,2 E5,1 I6 I6 E6,3 E6,2 E6,1 (8)

=











In 0 0 0 0 0
0 In 0 0 0 0

θ21,2In −θ1,2In In 0 0 0
−θ21,3θ2,3In θ1,3θ2,3In −θ2,3In In 0 0

−(2θ31,3θ2,3 + θ21,3θ
2
2,3)In (θ21,3θ2,3 + θ1,3θ

2
2,3)In −θ22,3In 0 In 0

−(3θ41,3θ2,3 + 2θ31,3θ
2
2,3 + θ21,3θ

3
2,3)In (θ31,3θ2,3 + θ21,3θ

2
2,3 + θ1,3θ

3
2,3)In −θ32,3In 0 0 In











,

it holds that

T−1 =










In 0 0 0 0 0
0 In 0 0 0 0

−θ21,2In θ1,2In In 0 0 0
(θ21,3θ2,3 − θ21,2θ2,3)In (θ1,2θ2,3 − θ1,3θ2,3)In θ2,3In In 0 0

(−θ21,2θ
2
2,3 + 2θ31,3θ2,3 + θ21,3θ

2
2,3)In (−θ21,3θ2,3 − θ1,3θ

2
2,3 + θ1,2θ

2
2,3In θ22,3In 0 In 0

(−θ21,2θ
3
2,3 + 3θ41,3θ2,3 + 2θ31,3θ

2
2,3 + θ21,3θ

3
2,3)In (−θ31,3θ2,3 − θ21,3θ

2
2,3 − θ1,3θ

2
2,3 + θ1,2θ

3
2,3)In θ32,3In 0 0 In










and

F̂γ [P,Σ] = T Fγ [P,Σ]T
−1 =











P (µ1) 0 0 0 0 0
γP ′(µ1) P (µ1) 0 0 0 0

0 0 P (µ2) 0 0 0
0 0 0 P (µ3) 0 0
0 0 0 γP ′(µ3) P (µ3) 0

0 0 0 γ2

2! P
′′(µ3) γP ′(µ3) P (µ3)











.

Now, by (5) and (7), it follows

T−1F̂γ [P,Σ]T v(γ) = sρ (Fγ [P,Σ]) u(γ),

or equivelantly,

F̂γ [P,Σ] (T v(γ)) = sρ (Fγ [P,Σ]) (T u(γ)) .

8



Hen
e, for the ve
tors

û(γ) = T u(γ) =








û1(γ)
û2(γ)

.

.

.

ûk(γ)







∈ C

nk (ûj(γ) ∈ C
n, j = 1, 2, . . . , k) (9)

and

v̂(γ) = T v(γ) =








v̂1(γ)
v̂2(γ)
.

.

.

v̂k(γ)







∈ C

nk (v̂j(γ) ∈ C
n, j = 1, 2, . . . , k) , (10)

the system (6) is written







P (µ1)v̂1(γ) = sρ (Fγ [P,Σ]) û1(γ),
γP ′(µ1)v̂1(γ) + P (µ1)v̂2(γ) = sρ (Fγ [P,Σ]) û2(γ),

.

.

.

.

.

.

γq1−1

(q1−1)!P
(q1−1)(µ1)v̂1(γ) + · · ·+ P (µ1)v̂q1(γ) = sρ (Fγ [P,Σ]) ûq1(γ),







P (µ2)v̂q1+1(γ) = sρ (Fγ [P,Σ]) ûq1+1(γ),
γP ′(µ2)v̂q1+1(γ) + P (µ2)v̂q1+2(γ) = sρ (Fγ [P,Σ]) ûq1+2(γ),

.

.

.

.

.

.

γq2−1

(q2−1)!P
(q2−1)(µ2)v̂q1+1(γ) + · · ·+ P (µ2)v̂q1+q2(γ) = sρ (Fγ [P,Σ]) ûq1+q2(γ),

.

.

. (11)







P (µs)v̂q1+···+qs−1+1(γ) = sρ (Fγ [P,Σ]) ûq1+···+qs−1+1(γ),
γP ′(µs)v̂q1+···+qs−1+1(γ) + P (µs)v̂q1+···+qs−1+2(γ) = sρ (Fγ [P,Σ]) ûq1+···+qs−1+2(γ),

.

.

.

.

.

.

γqs−1

(qs−1)!P
(qs−1)(µs)v̂q1+···+qs−1+1(γ) + · · ·+ P (µs)v̂q1+···+qs−1+qs(γ) = sρ (Fγ [P,Σ]) ûq1+···+qs−1+qs(γ).

Assume that the k ve
tors v1(γ), v2(γ), . . . , vk(γ) ∈ C
n
are linearly independent. Then,

for every i = 1, 2, . . . , k, the ve
tor v̂i(γ) is nonzero, and it is a linear 
ombination of the

ve
tors v1(γ), v2(γ), . . . , vi(γ), where the 
oe�
ient of vi(γ) in this 
ombination is equal

to 1. The k ve
tors v̂1(γ), v̂2(γ), . . . , v̂k(γ) play a leading role in 
omputing the desired

perturbation ∆γ(λ).

De�ne the n× k matri
es

Û(γ) = [ û1(γ) û2(γ) · · · ûk(γ) ] and V̂ (γ) = [ v̂1(γ) v̂1(γ) · · · v̂k(γ) ] ,

9



and observe that the linear independen
e of the ve
tors v1(γ), v2(γ), . . . , vk(γ) implies

also that rank(V̂ (γ)) = k and V̂ (γ)†V̂ (γ) = Ik, where V̂ (γ)† denotes the Moore-Penrose

pseudoinverse of V̂ (γ).

We are 
onstru
ting the desired perturbed matrix polynomial Qγ(λ) = P (λ) + ∆γ(λ)

by assembling a perturbation ∆γ (λ) =
m∑

j=0
∆γ,jλ

j
, in whi
h

∆γ,j =
1

s

s∑

i=1

(

1

w (|µi|)

(
µ̄i

|µi|

)j

wj

)

∆γ , j = 0, 1, . . . ,m, (12)

for some n× n matrix ∆γ that has to be 
omputed.

Denoting by ∆
(p)
γ (λ) the p-th derivative of ∆γ (λ) with respe
t to λ, we have

∆(p)
γ (λ) =

m∑

j=p

∆γ,j





p−1
∏

ξ=0

(j − ξ)



λj−p.

Thus, substituting ∆γ,j into ∆
(p)
γ (λ) and 
al
ulating the derivative for the s
alar µr (r =

1, 2, . . . , s) yield

∆(p)
γ (µr) =

1

s

m∑

j=p







(
s∑

i=1

1

w (|µi|)

(
µ̄i

|µi|

)j

µj−p
r

)



p−1
∏

ξ=0

(j − ξ)



wj







︸ ︷︷ ︸

βr,p

∆γ .

Motivated by this relation, for r = 1, 2, . . . , s and p = 0, 1, . . . , qr, we de�ne the quantities

βr,p =
1

s

m∑

j=p







(
s∑

i=1

1

w (|µi|)

(
µ̄i

|µi|

)j

µj−p
r

)



p−1
∏

ξ=0

(j − ξ)



wj






,

where, for 
onvention, we set

µi

|µi|
= 0 whenever µi = 0. In parti
ular, for p = 0,

βr,0 =
1

s

m∑

j=0

[
s∑

i=1

(

1

w (|µi|)

(
µ̄i

|µi|
µr

)j
)

wj

]

, r = 1, 2, . . . , s. (13)

Hen
e, we have

∆(p)
γ (µr) = βr,p∆γ , r = 1, 2, . . . , s, p = 0, 1, . . . , qr. (14)

10



To 
onstru
t the matrix ∆γ assume that the quantities β1,0, β2,0, . . . , βs,0 are nonzero.
Then, for any r = 1, 2, . . . , s, de�ne the qr × qr Toeplitz upper triangular matrix

M [r] =
[

M
[r]
i,j

]

=


















1
βr,0

−γ
βr,1

β2

r,0

−γ2

2!
βr,2

β2

r,0

+ γ2
β2

r,1

β3

r,0

· · · ∗ ∗

0 1
βr,0

−γ
βr,1

β2

r,0

· · · ∗ ∗

0 0 1
βr,0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 0
.

.

. −γ
βr,1

β2

r,0

−γ2

2!
βr,2

β2

r,0

+ γ2
β2

r,1

β3

r,0

.

.

.

.

.

.

.

.

.

1
βr,0

−γ
βr,1

β2

r,0

0 0 0 · · · 0 1
βr,0


















whose diagonal entries M
[r]
1,1,M

[r]
2,2, . . . ,M

[r]
qr ,qr are all equal to

1
βr,0

, and the entries above

the (main) diagonal are given by the following re
ursive formula:

M
[r]
i,j = −

1

βr,0

j−i
∑

ξ=1

γξ

ξ!
βr,ξM

[r]
i,j−ξ, 1 ≤ i < j ≤ qr. (15)

De�ne also the k × k blo
k diagonal matrix M = diag

{
M [1],M [2], . . . ,M [s]

}
. Eventually,

the n× n matrix ∆γ that we are looking for, is of the form

∆γ = −sρ (Fγ [P,Σ]) Û(γ)MV̂ (γ)†. (16)

Consider the perturbation

∆γ(λ) =
m∑

j=0

∆γ,jλ
j =

m∑

j=0

[

1

s

s∑

i=1

(

1

w (|µi|)

(
µ̄i

|µi|

)j

wj

)

∆γ

]

λj.

In the remainder of this se
tion, it will be obtained that the pres
ribed s
alars µ1, µ2, . . . , µs

are eigenvalues of the perturbed matrix polynomial

Qγ(λ) = P (λ) + ∆γ(λ) =
m∑

j=0

(Aj +∆γ,j)λ
j

(17)

with their multipli
ities greater than or equal to q1, q2, . . . , qs, respe
tively. In parti
ular,

for γ > 0, it 
an be proved that the sets

{

v̂1(γ),
1

γ
v̂2(γ),

1

γ2
v̂3(γ), . . . ,

1

γq1−1
v̂q1(γ)

}

,

{

v̂q1+1(γ),
1

γ
v̂q1+2(γ),

1

γ2
v̂q1+3(γ), . . . ,

1

γq2−1
v̂q1+q2(γ)

}

,

.

.

. (18)

{

v̂q1+···+qs−1+1(γ),
1

γ
v̂q1+···+qs−1+2(γ),

1

γ2
v̂q1+···+qs−1+3(γ), . . . ,

1

γqs−1
v̂q1+···+qs(γ)

}

11



form s Jordan 
hains of Qγ(λ), 
orresponding to its eigenvalues µ1, µ2, . . . , µs, respe
tively.

In order to avoid unne
essary prolix 
omputations, we restri
t ourselves in proving

that the ve
tors v̂1(γ),
1
γ
v̂2(γ), . . . ,

1
γq1−1 v̂q1(γ) form a Jordan 
hain of Qγ(λ) 
orresponding

to µ1 as one of its eigenvalues; the extension to the remaining s
alars µ2, µ3, . . . , µs is

straightforward. For this purpose, in the system (11), we 
onsider the p-th equation (1 ≤
p ≤ q1) of the subsystem that 
orresponds to µ1. Sin
e the matrix V̂ (γ) is assumed to be

full 
olumn rank, we have

∆γ V̂ (γ) = −sρ (Fγ [P,Σ]) Û(γ)M.

In addition, sin
e we are dealing with the �rst q1 equations of system (11), we only


onsider the �rst blo
k of matrix M , M [1]
, whi
h is of size q1 × q1, and the ve
tors

û1(γ), û2(γ), . . . , ûq1(γ) and v̂1(γ), v̂2(γ), . . . , v̂q1(γ). For this 
ase, we have

∆γ [v̂1(γ) v̂2(γ) · · · v̂q1(γ)] = −sρ (Fγ [P,Σ]) [û1(γ) û2(γ) · · · ûq1(γ)]M
[1].

After doing these matrix multipli
ations, it is straightforward to see that the j-th 
olumn

of the result in the left-hand side is ∆γ v̂j(γ) (j = 1, 2, . . . , q1), while the j-th 
olumn of the

result in the right-hand side is −sρ (Fγ [P,Σ])
j∑

i=1
M

[1]
i,j ûi(γ). Repla
ing j with p− j yields

∆γ v̂p−j(γ) = −sρ (Fγ [P,Σ])

p−j
∑

i=1

M
[1]
i,p−jûi(γ), j = p− 1, p − 2, . . . , p− q1. (19)

By the p-th equation in (11), (14) and (19), it follows that the perturbed matrix

polynomial Qγ(λ) in (17) satis�es

p−1
∑

j=0

γj

j!
Q(j)

γ (µ1)v̂p−j(γ) =

p−1
∑

j=0

γj

j!
P (j)(µ1)v̂p−j(γ) +

p−1
∑

j=0

γj

j!
∆(j)

γ (µ1)v̂p−j(γ)

= sρ (Fγ [P,Σ]) ûp(γ) +

p−1
∑

j=0

γj

j!
β1,j∆γ v̂p−j(γ)

= sρ (Fγ [P,Σ]) ûp(γ) +

p−1
∑

j=0

(

γj

j!
β1,j

(

−sρ (Fγ [P,Σ])

p−j
∑

i=1

M
[1]
i,p−jûi(γ)

))

= sρ (Fγ [P,Σ]) ûp(γ)− sρ (Fγ [P,Σ])

p−1
∑

j=0

(

γj

j!
β1,j

p−j
∑

i=1

M
[1]
i,p−jûi(γ)

)

. (20)
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In (20), we observe that

p−1
∑

j=0

(

γj

j!
β1,j

p−j
∑

i=1

M
[1]
i,p−jûi(γ)

)

= β1,0

p
∑

i=1

M
[1]
i,p ûi(γ) + γβ1,1

p−1
∑

i=1

M
[1]
i,p−1ûi(γ)

+ · · · + β1,p−2
γp−2

(p− 2)!

2∑

i=1

M
[1]
i,1 ûi(γ)

+β1,p−1
γp−1

(p − 1)!
M

[1]
1,1û1(γ),

Denoting the 
oe�
ients of û1(γ), û2(γ), . . . , ûp−1(γ) in (20) by α1, α2, . . . , αp−1, respe
t-

ively, for any i = 1, 2, . . . , p− 1, we have

αi = −sρ (Fγ [P,Σ])

p−i
∑

ξ=0

γξ

ξ!
β1,ξM

[1]
i,p−ξ

= −sρ (Fγ [P,Σ]) β1,0M
[1]
i,p − sρ (Fγ [P,Σ])

p−i
∑

ξ=1

γξ

ξ!
β1,ξM

[1]
i,p−ξ

= −sρ (Fγ [P,Σ]) β1,0



−
1

β1,0

p−i
∑

ξ=1

γξ

ξ!
β1,ξM

[1]
i,p−ξ



− sρ (Fγ [P,Σ])

p−i
∑

ξ=1

γξ

ξ!
β1,ξM

[1]
i,p−ξ

= 0.

Moreover, it is apparent that

−sρ (Fγ [P,Σ])β1,0M
[1]
p,p = −sρ (Fγ [P,Σ]) β1,0

1

β1,0
= −sρ (Fγ [P,Σ]) .

As a 
onsequen
e, for any p ∈ {1, 2, . . . , q1}, it holds

p−1
∑

j=0

γj

j!
Q(j)

γ (µ1)v̂p−j(γ) = sρ (Fγ [P,Σ]) ûp(γ)− sρ (Fγ [P,Σ]) ûp(γ) = 0.

Dividing this relation by γ1−p
yields

p−1
∑

j=0

1

j!
Q(j)

γ (µ1)
(
γj−p+1v̂p−j(γ)

)
= 0,

whi
h means that µ1 is an eigenvalue of algebrai
 multipli
ity at least q1 of Qγ(λ), with
{

v̂1(γ),
1

γ
v̂2(γ),

1

γ2
v̂3(γ), . . . ,

1

γq1−1
v̂q1(γ)

}

13



as a 
orresponding Jordan 
hain.

The next theorem summarizes the results obtained so far.

Theorem 3.3. Let P (λ) be a matrix polynomial as in (1), and let Σ be a set of pres
ribed

s
alars as in (2) su
h that the quantities β1,0, β2,0, . . . , βs,0 de�ned by (13) are nonzero.

Then, for any γ > 0 su
h that the ve
tors v1(γ), v2(γ), . . . , vk(γ) are linearly independent,

the s
alars µ1, µ2, . . . , µs are eigenvalues of the perturbed matrix polynomial Qγ(λ) given

by (17), with algebrai
 multipli
ities greater than or equal to q1, q2, . . . , qs, respe
tively.

Moreover, the sets in (18) are Jordan 
hains of Qγ(λ) 
orresponding to µ1, µ2, . . . , µs,

respe
tively.

Remark 3.4. The dis
ussion in this se
tion and the 
onstru
tion of the perturbed matrix

polynomial Qγ(λ) in (17) generalize main results of [9, 18℄; in parti
ular, they yield the

results of [9, Se
tion 3℄ when s = k (≤ n), and the results of [18, Se
tion 3℄ when s = 1.

Remark 3.5. As mentioned in [9, 18℄, it is not easy to obtain 
onditions ensuring that

the quantities β1,0, β2,0, . . . , βs,0 are nonzero and/or the ve
tors v1(γ), v2(γ), . . . , vk(γ) are
linearly independent. However, in all our experiments, these two required 
onditions hold

generi
ally.

4 Bounds for Dw(P,Σ)

In this se
tion, we give an upper and a lower bound for the spe
tral norm distan
e Dw(P,Σ)
introdu
ed in De�nition 2.2. First, we see that an upper bound for Dw(P,Σ) is dire
tly ob-

tained by the 
onstru
tion of the perturbed matrix polynomial Qγ(λ) in (17). In parti
ular,

by (12), it follows

‖∆γ,j‖2 ≤
wj

s

(
s∑

i=1

1

w(|µi|)

)

‖∆γ‖2 , j = 0, 1, . . . ,m.

Assume that βi,0 6= 0, i = 1, 2, . . . , s, and the ve
tors v1(γ), v2(γ), . . . , vk(γ) are linearly

independent for some γ > 0. Re
alling De�nition 2.1, the distan
e Dw(P,Σ) satis�es

Dw(P,Σ) ≤
1

s

(
s∑

i=1

1

w(|µi|)

)

‖∆γ‖2 . (21)

In the remainder of this se
tion, a lower bound for Dw(P,Σ) is 
omputed. At this

point, it is ne
essary to re
all that having an eigenvalue µi of the matrix polynomial P (λ)
with algebrai
 multipli
ity qi does not ne
essarily mean that µi has a Jordan 
hain of length

qi. A
tually, it means that if the eigenvalue µi has geometri
 multipli
ity gi, then P (λ)
has gi Jordan 
hains asso
iated to gi (not ne
essarily linearly independent) eigenve
tors,
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with total number of ve
tors equal to the algebrai
 multipli
ity qi [3, 10, 15℄. Thus, some


on
epts and dis
ussions are needed to 
ope with this di�
ulty by 
onsidering what is

presented in Appendix A. Moreover, to 
ompute a lower bound, linear independen
e of the

ve
tors v1(γ), v2(γ), . . . , vk(γ) is not required, but the weights w1, . . . , wm−1 are needed to

be positive; re
all that from the de�nition of perturbations of P (λ), it is assumed that

w0 > 0.

Lemma 4.1. Let P (λ) be a matrix polynomial as in (1), and let Σ be a set as des
ribed

in (2). Suppose that the spe
trum of P (λ) 
ontains Σ and ea
h eigenvalue µi ∈ σ(P )
(i = 1, 2, . . . , s) has a Jordan 
hain of length qi. Then, sρ (Fγ [P,Σ]) = 0 for any γ > 0
(re
all that ρ = nk − k + 1).

Proof. Suppose that µ1, µ2, . . . , µs are eigenvalues of the matrix polynomial P (λ) with

algebrai
 multipli
ities at least q1, q2, . . . , qs, respe
tively, and q1 + q2 + · · · + qs = k ≤ n.
Let also γ be a positive number. By hypothesis, there exist k (not ne
essarily linearly

independent) ve
tors y1, y2, . . . , yk ∈ C
n
su
h that y1, yq1+1, yq1+q2+1, . . . , yq1+···+qs−1+1 are

nonzero and the following s sets of matrix equations are satis�ed:







P (µ1) y1 = 0,
γP ′ (µ1) y1 + P (µ1) y2 = 0,

.

.

.

.

.

.

γq1−1

(q1−1)!P
(q1−1) (µ1) y1 + · · ·+ P (µ1) yq1 = 0,







P (µ2) yq1+1 = 0,
γP ′ (µ2) yq1+1 + P (µ2) yq1+2 = 0,

.

.

.

.

.

.

γq2−1

(q2−1)!P
(q2−1) (µ2) yq1+1 + · · ·+ P (µ2) yq1+q2 = 0,

.

.

. (22)







P (µs) yq1+···+qs−1+1 = 0,

γP̂ ′ (µs) yq1+···+qs−1+1 + P (µs) yq1+···+qs−1+2 = 0,
.

.

.

.

.

.

γqs−1

(qs−1)!P
(qs−1) (µs) yq1+···+qs−1+1 + · · ·+ P (µs) yq1+···+qs−1+qs = 0.

(In other words, the ve
tors y1,
1
γ
y2, . . . ,

1
γq1−1 yq1 form a Jordan 
hain of length q1 
orres-

ponding to µ1, the ve
tors yq1+1,
1
γ
yq1+2, . . . ,

1
γq2−1 yq1+q2 form a Jordan 
hain of length q2


orresponding to µ2, and so on.)
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Re
all the nk×nk matrix F̂γ [P,Σ] and the nk×nk nonsingular blo
k upper triangular

matrix T whi
h are de�ned in the previous se
tion and satisfy (7). Consider also the

(nonzero) linearly independent ve
tors



















0n
.

.

.

0n
0n
y1
0nq2
0nq3
.

.

.

0nqs



















,



















0n
.

.

.

0n
y1
y2
0nq2
0nq3
.

.

.

0nqs



















, . . . ,



















y1
y2
.

.

.

yq1−1

yq1
0nq2
0nq3
.

.

.

0nqs



















,



















0nq1
0n
.

.

.

0n
0n

yq1+1

0nq3
.

.

.

0nqs



















,



















0nq1
0n
.

.

.

0n
yq1+1

yq−1+2

0nq3
.

.

.

0nqs



















, . . . ,



















0nq1
yq1+1

yq1+2

.

.

.

yq1+q2−1

yq1+q2

0nq3
.

.

.

0nqs



















, . . . ,



















0nq1
0nq2
0nq3
.

.

.

0nqs−1

yq1+···+qs−1+1

yq1+···+qs−1+2

.

.

.

yk



















,

where 0n denotes the zero ve
tor of order n. By (22), it follows readily that all these ve
tors

are null ve
tors of matrix F̂γ [P,Σ]. By the similarity of Fγ [P,Σ] and F̂γ [P,Σ], the proof is

omplete.

Consider a perturbation of matrix polynomial P (λ), Q(λ) = P (λ)+∆(λ). By following
exa
tly the stru
ture of Fγ [P,Σ] in De�nition 2.3, 
onstru
t the nk × nk blo
k lower

triangular matri
es Fγ [Q,Σ] and Fγ [∆,Σ]. Clearly, it holds that Fγ [Q,Σ] = Fγ [P,Σ] +
Fγ [∆,Σ]. As a 
onsequen
e, Lemma 4.1 and the Weyl inequalities for singular values (e.g.

see Corollary 5.1 of [1℄) imply the following:

Corollary 4.2. Let P (λ) be a matrix polynomial as in (1), and let Σ be a set of pres
ribed

s
alars as in (2). Suppose that γ > 0, Σ is a subset of the spe
trum of an n × n matrix

polynomial Q(λ) = P (λ) + ∆(λ), and ea
h eigenvalue µi ∈ σ(Q) (i = 1, 2, . . . , s) has a

Jordan 
hain of length qi. Then, sρ(Fγ [P,Σ]) ≤ ‖Fγ [∆,Σ]‖2.

For 
onvenien
e, denote

Fγ [∆,Σ] =








F1,1 0 · · · 0
F2,1 F2,2 · · · 0
.

.

.

.

.

.

.

.

.

.

.

.

Fk,1 Fk,2 · · · Fk,k








∈ C
nk×nk,

with Fi,j ∈ C
n×n

, 1 ≤ j ≤ i ≤ k. Moreover, for the weight polynomial w(λ) = wmλm +
wm−1λ

m−1 + · · · + w1λ+ w0, assuming that one 
an use the term �Jordan 
oe�
ient� for

s
alar polynomials as for matrix polynomials, de�ne the k × k lower triangular matrix

Fγ [w,Σ] =








f1,1 0 · · · 0
f2,1 f2,2 · · · 0
.

.

.

.

.

.

.

.

.

.

.

.

fk,1 fk,2 · · · fk,k







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su
h that fi,i = w (|µi|) (i = 1, 2, . . . , k), and analogous to (iii) of De�nition 2.3, the entries

below the diagonal are given by the re
ursive formula (starting from the diagonal entries)

fi,j =

{
γi−j(the next Jordan 
hain 
oe�
ient of fi−1,j) if fi−1,j = fi,j+1,
|θj,i| (fi−1,j + fi,j+1) if fi−1,j 6= fi,j+1.

Next lemma yields a lower bound of the distan
e Dw(P,Σ).

Lemma 4.3. Let P (λ) be a matrix polynomial as in (1), Σ be a set of pres
ribed s
alars

as in (2), and all the weights w0, w1, . . . , wm−1 be positive. Consider a matrix polynomial

Q(λ) = P (λ) + ∆(λ) in B(P, ε, w) having the set Σ in its spe
trum. Then, for any γ > 0,

ε ≥
sρ (Fγ [P,Σ])

‖Fγ [w,Σ]‖2
.

Proof. The set B(P, ε, w) is 
losed and for any positive integer p, there is a matrix poly-

nomial Qp(λ) ∈ B(Q, 1/p,w) that lies in the interior of B(P, ε, w) and has a nonsingular

leading 
oe�
ient. Moreover, by Corollary A.6 of Appendix, for ea
h p and any positive

integer q, there is a Qp,q(λ) ∈ B(Qp, 1/q,w) su
h that σ(Qp,q) = σ(Qp) and all the eigen-

values of Qp,q(λ) have geometri
 multipli
ity 1 (i.e., every eigenvalue of Qp,q(λ) has exa
tly
one Jordan 
hain of length equal to the algebrai
 multipli
ity of the eigenvalue). Hen
e,

there is a sequen
e of matrix polynomials in the interior of B(P, ε, w) having all their ei-

genvalues of geometri
 multipli
ity 1, whi
h 
onverges to the perturbed matrix polynomial

Q(λ). As a 
onsequen
e, by the 
ontinuity of the Jordan stru
ture and the singular value

de
omposition (with respe
t to matrix entries), without loss of generality, we may assume

that ea
h eigenvalue µi of Q(λ) (i = 1, 2, . . . , s) has a Jordan 
hain of length qi. Then, by
Corollary 4.2, sρ(Fγ [P,Σ]) ≤ ‖Fγ [∆,Σ]‖2.

The rest of the proof is devoted to obtain the inequality ‖Fγ [∆,Σ]‖2 ≤ ε ‖Fγ [w,Σ]‖2.
To do this, for i = 1, 2, . . . , k, observe that

‖∆(µi)‖2 ≤
m∑

j=0

‖∆j‖2 |µi|
j ≤ ε

m∑

j=0

wj |µi|
j = εw (|µi|) . (23)

Moreover, for every i = 1, 2, . . . , s and p = 1, 2, . . . , qi,

∥
∥
∥∆(p) (µi)

∥
∥
∥
2

≤

m∑

j=p

j(j − 1) · · · (j − p+ 1) ‖∆j‖2 |µi|
j−p

≤ ε
m∑

j=p

j(j − 1) · · · (j − p+ 1)wj |µi|
j−p = εw(p) (|µi|) . (24)
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Consequently, keeping in mind the de�nition of Fγ [w,Σ], and using (23) and (24), one 
an

verify that (see the proof of Lemma 4.2 of [9℄ and the dis
ussion before it)

‖Fi,i‖2 ≤ εfi,i,

and

‖Fi,j‖2 = ‖θi,j (Fi−1,j −Fi,j+1)‖2
≤ |θi,j|

(
‖Fi−1,j‖2 + ‖Fi,j+1‖2

)

≤ ε |θi,j| (fi−1,j + fi,j+1) = εfi,j.

Then, for any γ 6= 0, a unit ve
tor

x =








x1
x2
.

.

.

xk







∈ C

kn (xi ∈ C
n, i = 1, 2, . . . , k)


an be 
onsidered su
h that

‖Fγ [∆,Σ]‖22 = ‖Fγ [∆,Σ] x‖22

= ‖F1,1x1‖
2
2 + ‖F2,1x1 + F2,2x2‖

2
2 + · · ·+

∥
∥
∥
∥

k∑

i=1

Fk,ixi

∥
∥
∥
∥

2

2

≤ (εf1,1)
2 ‖x1‖

2
2 + (εf2,1)

2 ‖x1‖
2
2 + (εf2,2)

2 ‖x2‖
2
2

+ (εf2,1) (εf2,2) ‖x1‖2‖x2‖2 + · · · + (εfk,k)
2 ‖xk‖

2
2

= ε2

∥
∥
∥
∥
∥










f1,1 0 · · · 0
f2,1 f2,2 · · · 0
f3,1 f3,2 · · · 0
.

.

.

.

.

.

.

.

.

.

.

.

fk,1 fk,2 · · · fk,k

















‖x1‖2
‖x2‖2

.

.

.

‖xk‖2








∥
∥
∥
∥
∥

2

2

≤ ε2 ‖Fγ [w,Σ]‖
2
2 .

This 
ompletes the proof.

By the above lemma (and a

ording to De�nition 2.2), it follows

Dw(P,Σ) ≥
sρ (Fγ [P,Σ])

‖Fγ [w,Σ]‖2
. (25)
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It will be 
onvenient to denote the lower bound in (25) by βlow,δ(P,Σ, γ) and the upper

bound in (21) by βup(P,Σ, γ), i.e.,

βlow,δ(P,Σ, γ) =
sρ (Fγ [P,Σ])

‖Fγ [w,Σ]‖2

and

βup(P,Σ, γ) =
1

s

s∑

i=1

(
1

w (|µi|)

)

‖∆γ‖2.

The main results of this se
tion are summarized in the next theorem.

Theorem 4.4. Let P (λ) be a matrix polynomial as in (1), and let Σ be a set of pres
ribed

s
alars as in (2).

(a) If all the weights w0, w1, . . . , wm are positive, then for any γ > 0, Dw(P,Σ) ≥
βlow,δ(P,Σ, γ).

(b) If the s
alars β1,0, β2,0, . . . , βs,0 in (13) are nonzero, then for any γ > 0 su
h that

v1(γ), v2(γ), . . . , vk(γ) are linearly independent ve
tors, Dw(P,Σ) ≤ βup(P,Σ, γ).
Moreover, the matrix polynomial Qγ(γ) in (17) lies on the boundary of B(P, βup(P,Σ, γ), w).

5 A numeri
al example

In this se
tion, we verify the validity and the e�e
tiveness of our results and dis
ussions in

the previous se
tions, by presenting a 
omprehensive numeri
al experiment. Following the

methodology given in Se
tion 3, we 
onstru
t an asso
iated perturbation of a given matrix

polynomial. Also, we 
ompute lower and upper bounds for the distan
e Dw (P,Σ), a

ord-
ing to the results obtained in Se
tion 4. All 
omputations were performed in MATLAB

with 16 signi�
ant digits; however, for simpli
ity, all numeri
al results are shown with 4
de
imal pla
es.

Example 5.1. Consider the 6× 6 matrix polynomial

P (λ) = I6λ
2 +











−4 1 0 −1 4 0
0 8 0 2 0 −1
0 0 0 0 −7 0
0 0 0 −5 6 0
0 0 0 0 0 −1
0 0 0 0 0 4











λ+











3 0 0 0 −3 2
0 16 −8 1 0 −1
0 0 4 0 11 0
0 0 0 4 −5 0
0 0 0 0 9 2
0 0 0 0 0 8










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Figure 1: The graphs of the upper bound βup (P,Σ, γ) and the lower bound βlow (P,Σ, γ).

and the set

Σ = {µ1, µ1, µ2, µ3, µ3, µ3} = {1, 1, 2, 3, 3, 3},

i.e., s = 3, q1 = 2, q2 = 1, q3 = 3 and k = q1 + q2 + q3 = 6 (= n). Consider also the set

of weights w = {18.2014, 10.9003, 1}, whi
h are the spe
tral norms of the 
orresponding


oe�
ient matri
es. Figure 1 illustrates the graphs of the upper bound βup (P,Σ, γ) and
the lower bound βlow (P,Σ, γ) for γ ∈ (0, 5].

For the value γ = 3, we 
onstru
t a perturbed matrix polynomial Q3(λ) = P (λ) +
∆3(λ), whose spe
trum 
ontains the set Σ. The matrix F3 [P,Σ] is given by (4), the

singular value sρ (Fγ [P,Σ]) = s31 (F3 [P,Σ]) is equal to 1.0984, and the matrix T in (8) is

of the form

T =











I6 0 0 0 0 0
0 I6 0 0 0 0
9I6 3I6 I6 0 0 0

6.75I6 4.5I6 3I6 I6 0 0
43.8750I6 −20.25I6 −9I6 0 I6 0
167.0625I6 70.8750I6 27I6 0 0 I6











.

By (9), (10) and (16), we 
ompute the required ve
tors v̂i(3) and ûi(3) (i = 1, 2, . . . , 6),
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and the matrix

∆3 = −s31 (F3 [P,Σ]) Û(3)MV̂ (3)†

=











0.1471 0.4017 −0.1227 0.5755 −0.8616 0.5150
−0.019 −0.0632 0.0204 −0.0236 0.0102 0.6517
−0.0956 −0.2241 −0.1835 0.4688 1.4087 16.8831
−1.2610 −3.3113 1.1005 −2.7597 6.0712 −3.1099
0.9518 4.1610 −0.5813 −0.2851 −10.2916 −1.2288
0.1051 0.3406 −0.2436 −0.1013 −0.4117 −17.7001











,

where

M = diag

{

M [1],M [2],M [3]
}

= diag







[
1.3720 −1.7639

0 1.3720

]

,
[

0.9386
]

,





0.6894 −0.5835 0.3903
0 0.6894 −0.5835
0 0 0.6894










.

By (12), we obtain the perturbation

∆3 (λ) =











0.0036 0.0097 −0.0030 0.0139 −0.0209 0.0125
−0.0005 −0.0015 0.0005 −0.0006 0.0002 0.0158
−0.0023 −0.0054 −0.0044 0.0114 0.0341 0.4088
−0.0305 −0.0802 0.0266 −0.0668 0.1470 −0.0753
0.0230 0.1008 −0.0141 −0.0069 −0.2492 −0.0298
0.0025 0.0082 −0.0059 −0.0025 −0.0100 −0.4286











λ2

+











0.0388 0.1060 −0.0324 0.1519 −0.2274 0.1359
−0.0050 −0.0167 0.0054 −0.0062 0.0027 0.1720
−0.0252 −0.0592 −0.0484 0.1237 0.3718 4.4561
−0.3328 −0.8740 0.2904 −0.7284 1.6024 −0.8208
0.2512 1.0982 −0.1534 −0.0753 −2.7163 −0.3243
0.0277 0.0899 −0.0643 −0.0267 −0.1087 −4.6717











λ

+











0.0648 0.1770 −0.0541 0.2536 −0.3797 0.2270
−0.0084 −0.0279 0.0090 −0.0104 0.0045 0.2872
−0.0422 −0.0988 −0.0809 0.2066 0.6209 7.4408
−0.5558 −1.4594 0.4850 −1.2162 2.6757 −1.3706
0.4195 1.8338 −0.2562 −0.1257 −4.5357 −0.5416
0.0463 0.1501 −0.1074 −0.0446 −0.1815 −7.8008











.

The perturbed matrix polynomial Q3(λ) = P (λ) + ∆3(λ) lies on the boundary of the set

B(P, βup(P,Σ, 3), w) = B(P, 0.5991, w), and its spe
trum

σ(Q3) = {0.5719, 0.9726, 1, 1, 2, 3, 3, 3, 0.1786 ± 1.2680 i,−4.0589 ± 0.7284 i}
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ontains Σ. Moreover, for γ = 1, it is straightforward to 
ompute βlow(P,Σ, 1) = 0.0034.
As a 
onsequen
e,

βlow(P,Σ, 1) = 0.0034 ≤ Dw (P,Σ) ≤ 0.5991 = βup(P,Σ, 3).

Finally, we remark that for γ = 1.7, the ve
tors v1(1.7), v2(1.7), . . . , v6(1.7) are


lose to be linearly dependent with s6(V̂ (1.7)) = 0.0006, and for γ = 4.4, the ve
tors

v1(4.4), v2(4.4), . . . , v6(4.4) are linearly dependent with s6(V̂ (4.4)) = 0. This explains the
transient behaviour of the graph in Figure 1, around these two values of γ.
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Appendix A On the sensitivity of Jordan stru
ture

Let A = RAJAR
−1
A be the Jordan 
anoni
al form of a matrix A ∈ C

n×n
, where JA is a

Jordan matrix and RA is a nonsingular matrix with 
olumns the Jordan 
hains (eigen-

ve
tors and generalized eigenve
tors) of A. Suppose also that the �rst h Jordan blo
ks of

JA are of the form

J(λ0, si) =









λ0 1 · · · 0

0 λ0
.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 1
0 0 · · · λ0









∈ C
si×si , s1 ≥ s2 ≥ · · · ≥ sh,
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and 
orrespond to an eigenvalue λ0 ∈ σ(A).

For a real ε ∈ (0, 1), we 
onsider the n× n matri
es

Lε = Is1 ⊕ ε−s1Is2 ⊕ ε−(s1+s2)Is2 ⊕ · · · ⊕ ε−(s1+s2+···+sh)Ish

and

Tε = [τi,j] with τi,j =

{
εsl if (i, j) = (s1 + s2 + · · · + sl, s1 + s2 + · · ·+ sl + 1),
0 otherwise,

l = 1, 2, . . . , h − 1. Then it is straightforward to verify that L−1
ε JALε = JA, and that

L−1
ε TεLε is the n× n matrix with ones at positions (s1, s1 + 1), (s1 + s2, s1 + s2 + 1), . . . ,

(s1 + s2 + · · · + sh−1, s1 + s2 + · · · + sh−1 + 1) and zeros elsewhere. As a 
onsequen
e,

L−1
ε (JA+Tε)Lε is the Jordan matrix that follows from JA by repla
ing the (s1+ s2+ · · ·+

sh)× (s1 + s2 + · · ·+ sh) prin
ipal submatrix J(λ0, s1)⊕ J(λ0, s2)⊕ · · · ⊕J(λ0, sk) by the

Jordan blo
k J(λ0, s1 + s2 + · · ·+ sh) ∈ C
(s1+s2+···+sh)×(s1+s2+···+sh)

.

De�ning JAε = L−1
ε (JA + Tε)Lε and Aε = (RALε)

[
L−1
ε (JA + Tε)Lε

]
(RALε)

−1
, we

observe that A = Aε − RATεR
−1
A with ‖A − Aε‖2 = ‖RATεR

−1
A ‖2 ≤ εsk‖RA‖2‖R

−1
A ‖2.

Moreover, the matri
es A and Aε have the same 
hara
teristi
 polynomial; in other words,

they have exa
tly the same eigenvalues with the same algebrai
 multipli
ities.

De�nition A.1. Let A,B ∈ C
n×n

be two matri
es with the same 
hara
teristi
 polyno-

mial. We say that the Jordan stru
ture of A assemblingly majorizes the Jordan stru
ture

of B if there exist Jordan 
anoni
al forms of A and B, with the Jordan blo
ks of ea
h

eigenvalue of A not ne
essarily in an nonin
reasing order of sizes,

A = RAJAR
−1
A and B = RBJBR

−1
B ,

su
h that for ea
h eigenvalue λ0 ∈ σ(A) = σ(B), the asso
iated Jordan blo
ks of A,
JA(λ0, si) (i = 1, 2, . . . , p), and of B, JB(λ0, ri) (i = 1, 2, . . . , q), satisfy p ≤ q and

s1 = r1 + · · ·+ rξ1 , s2 = rξ1+1 + · · · + rξ2 , . . . , sp = rξp−1
+ · · · + rq

for some 1 ≤ ξ1 < ξ2 < · · · < ξp−1 < q.

For example, 
onsider the matri
es

A =







λ0 1 0 0
0 λ0 1 0
0 0 λ0 0
0 0 0 λ0






, B =







λ0 1 0 0
0 λ0 0 0
0 0 λ0 0
0 0 0 λ0







and C =







λ0 1 0 0
0 λ0 0 0
0 0 λ0 1
0 0 0 λ0






.

Then the Jordan stru
ture of A assemblingly majorizes the Jordan stru
ture of B but not

the Jordan stru
ture of C.

By De�nition A.1 and the above dis
ussion, the next results follow readily.
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Proposition A.2. For any matrix A ∈ C
n×n

and any δ ∈ (0, 1), there is a matrix Â ∈
C
n×n

su
h that the Jordan stru
ture of Â assemblingly majorizes the Jordan stru
ture of

A, and ‖A− Â‖2 ≤ δ.

Corollary A.3. For any matrix A ∈ C
n×n

and any δ ∈ (0, 1), there is an Â ∈ C
n×n

su
h that Â and A have the same 
hara
teristi
 polynomial, all the eigenvalues of Â have

geometri
 multipli
ity 1 (i.e., ea
h eigenvalue of Â 
orresponds to exa
tly one Jordan blo
k

of J
Â
and has a Jordan 
hain of length equal to the algebrai
 multipli
ity of the eigenvalue),

and ‖A− Â‖2 ≤ δ.

Consider now an n×n matrix polynomial P (λ) = Amλm+Am−1λ
m−1+ · · ·+A1λ+A0

as in (1), with nonsingular leading 
oe�
ient Am. Any eigenvalue of P (λ) of geometri


multipli
ity g has g maximal Jordan 
hains asso
iated to g (nonzero) eigenve
tors, with

total number of eigenve
tors and generalized eigenve
tors equal to the algebrai
 multipli-


ity of this eigenvalue. The largest length of Jordan 
hains of P (λ) 
orresponding to an

eigenvalue λ0 ∈ σ(P ) is known as the index of annihilation of λ0 [6℄. An n × nm matrix

XP with 
olumns maximal Jordan 
hains of P (λ) and an nm×nm Jordan matrix JP form

a Jordan pair (XP , JP ) of P (λ) [3℄ if the matrix

SP =








XP

XPJP
.

.

.

XPJ
m−1
P








∈ C
nm×nm

is nonsingular and

AmXPJ
m
P +Am−1XPJ

m−1
P + · · ·+A1XPJP +A0XP = 0.

The index of annihilation of an eigenvalue λ0 ∈ σ(P ) 
oin
ides with the size of the largest

Jordan blo
ks of JP 
orresponding to λ0; for details on the Jordan stru
ture of matrix

polynomials, see [3, 11℄.

By Theorem 2.4 in [3℄, we have the following proposition.

Proposition A.4. Let (XP , JP ) be a Jordan pair of the matrix polynomial P (λ) in (1), and
let S−1

P = [V1 V2 · · · Vm ], V1, V2, . . . , Vm ∈ C
n×n

. Then P (λ) admits the representation

P (λ) = Amλm −AmXPJ
m
P S−1

P








In
λIn
.

.

.

λm−1In








= Amλm −AmXPJ
m
P

(
V1 + V2λ+ · · ·+ Vmλm−1

)
.
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By the previous dis
ussion on matri
es and Proposition A.2, there are appropriate

matri
es Tε, Lε ∈ C
nm×nm

su
h that the nm × nm Jordan matrix ĴP = L−1
ε (JP + Tε)Lε

assemblingly majorizes JP and the distan
e ‖JP − ĴP ‖2 is arbitrarily small. Furthermore,

the representation of P (λ) in Proposition A.4 yields

P (λ) = Amλm −AmXP (LεĴPL
−1
ε − Tε)

m








XP

XP (LεĴPL
−1
ε − Tε)

.

.

.

XP (LεĴPL
−1
ε − Tε)

m−1








−1 






In
λIn
.

.

.

λm−1In








= Amλm −AmXPLεĴ
m
P








XPLε

XPLεĴP
.

.

.

XPLεĴ
m−1
P








−1 






In
λIn
.

.

.

λm−1In







− Ê(λ)

for some matrix polynomial Ê(λ) = Êm−1λ
m−1 + Êm−2λ

m−2 + · · · + Ê1λ+ Ê0. Without

loss of generality, we assume that Tε and Lε are 
hosen su
h as the matrix

ŜP =








XPLε

XPLεĴP
.

.

.

XPLεĴ
m−1
P








∈ C
nm×nm

is nonsingular; by 
ontinuity, this is true for su�
iently small ε > 0.

By Theorem 7.8 in [3℄, (XPLε, ĴP ) is a Jordan pair of the perturbed matrix polynomial

Q̂(λ) = P (λ) + Ê(λ) = Amλm −AmXPLεĴ
m
P








XPLε

XPLεĴP
.

.

.

XPLεĴ
m−1
P








−1 






In
λIn
.

.

.

λm−1In







.

The di�eren
e Ê(λ) = P (λ)− Q̂(λ) = Êm−1λ
m−1 + · · ·+ Ê1λ+ Ê0 is written

Ê(λ) = AmXP







LεĴ

m
P







XPLε

XPLεĴP
.

.

.

XPLεĴ
m−1
P







−1

− Jm
P







XP

XPJP
.

.

.

XPJ
m−1
P







−1













In
λIn
.

.

.

λm−1In






,
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whi
h means that for every j = 0, 1, . . . ,m− 1,

Êj = AmXP







LεĴ

m
P







XPLε

XPLεĴP
.

.

.

XPLεĴ
m−1
P







−1

− Jm
P







XP

XPJP
.

.

.

XPJ
m−1
P







−1
















0
.

.

.

In
.

.

.

0










← j-th position .

As a 
onsequen
e,

‖Êj‖2 ≤ ‖Am‖2‖XP‖2

∥
∥
∥
∥
∥
LεĴ

m
P








XPLε

XPLεĴP
.

.

.

XPLεĴ
m−1
P








−1

− Jm
P








XP

XPJP
.

.

.

XPJ
m−1
P








−1

∥
∥
∥
∥
∥
2

= ‖Am‖2‖XP‖2

∥
∥
∥
∥
∥
LεĴ

m
P L−1

ε








XP

XPLεĴPL
−1
ε

.

.

.

XPLεĴ
m−1
P L−1

ε








−1

− Jm
P








XP

XPJP
.

.

.

XPJ
m−1
P








−1

∥
∥
∥
∥
∥
2

= ‖Am‖2‖XP‖2

∥
∥
∥
∥
∥
(JP + Tε)

m








XP

XP (JP + Tε)
.

.

.

XP (JP + Tε)
m−1








−1

− Jm
P








XP

XPJP
.

.

.

XPJ
m−1
P








−1

∥
∥
∥
∥
∥
2

. (26)

For su�
ient small ε > 0, the upper bound (26) 
an be arbitrarily small, and thus,

Proposition A.2 and Corollary A.3 are generalized to the 
ase of matrix polynomials.

Proposition A.5. Let P (λ) be an n× n matrix polynomial as in (1), and let the weights

w0, w1, . . . , wm−1 be positive. Then, for any δ ∈ (0, 1), there is an n×n matrix polynomial

P̂ (λ) ∈ B(P, δ, w), with leading 
oe�
ient Am, su
h that the Jordan matrix J
P̂
assemblingly

majorizes the Jordan matrix JP .

Corollary A.6. Let P (λ) be an n × n matrix polynomial as in (1), and let the weights

w0, w1, . . . , wm−1 be positive. Then, for any δ ∈ (0, 1), there is an n × n matrix polyno-

mial P̂ (λ) ∈ B(P, δ, w), with leading 
oe�
ient Am, su
h that detP (λ) = det P̂ (λ) and

all the eigenvalues of P̂ (λ) have geometri
 multipli
ity 1 (i.e., every eigenvalue of P̂ (λ)

orresponds to exa
tly one Jordan blo
k of J

P̂
and has a Jordan 
hain of length equal to

the algebrai
 multipli
ity of the eigenvalue).

Example A.7. (See Example 14.4 of [11℄) The matrix polynomial

P (λ) =

[
λ2 −λ
0 λ2

]

=

[
1 0
0 1

]

λ2 +

[
0 −1
0 0

]

λ
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has exa
tly one eigenvalue, λ0 = 0, and a Jordan pair of the form

(XP , JP ) =





[
1 0 0 0
0 1 0 1

]

,





0 1 0
0 0 1
0 0 0



⊕
[
0
]



 .

Moreover,

SP =

[
XP

XPJP

]

=







1 0 0 0
0 1 0 1
0 1 0 0
0 0 1 0







and S−1
P =

[
XP

XPJP

]−1

=







1 0 0 0
0 0 1 0
0 0 0 1
0 1 −1 0






.

For ε = 10−3
, we 
onsider the set of positive weights w = {w0, w1, w2} = {1, 1, 1} and the

matri
es

Lε =







1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 109







and Tε =







0 0 0 0
0 0 0 0
0 0 0 10−9

0 0 0 0






,

and we de�ne

ĴP = L−1
ε (JP + Tε)Lε =







0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0






.

It is straightforward to verify that the pair

(XPLε, ĴP ) =







[
1 0 0 0
0 1 0 109

]

,







0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0













is a Jordan pair of the perturbed matrix polynomial

P̂ (λ) =

[
1 0
0 1

]

λ2 +

[
0 −1

10−9 0

]

λ+

[
0 0
0 −10−9

]

∈ B(P, 10−9, w).
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