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Abstrat

Consider an n× n matrix polynomial P (λ) and a set Σ onsisting of k ≤ n om-

plex numbers. Reently, Kokabifar, Loghmani, Psarrakos and Karbassi studied a

(weighted) spetral norm distane from P (λ) to the n× n matrix polynomials whose

spetra ontain the spei�ed set Σ, under the assumption that all the entries of Σ are

distint. In this paper, the ase in whih some or all of the desired eigenvalues an

be multiple is disussed. Lower and upper bounds for the distane are omputed, and

a perturbation of P (λ) assoiated to the upper bound is onstruted. A detailed nu-

merial example illustrates the e�ieny and validity of the proposed omputational

method.
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1 Introdution

Assume that all the eigenvalues of a matrix A ∈ C
n×n

are simple. Computing the distane

from A to the set of n × n (omplex) matries having multiple eigenvalues is known as

Wilkinson's problem. Wilkinson introdued this problem in [22℄ and omputed bounds for

this distane, known as Wilkinson's distane, in [23�26℄. Demmel [2℄ and Ruhe [19℄ also

alulated alternative bounds for Wilkinson's distane. In 1999, Malyshev [14℄ obtained a

singular value optimization haraterization for the spetral norm distane from A to the

set of all n × n omplex matries that have a �xed multiple eigenvalue; his work an be

onstrued as a solution to Wilkinson's problem.

Expanding and improving the methodology used in [14℄, Graia [4℄ and Lippert [13℄

studied a spetral norm distane from A to n × n omplex matries with two presribed
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eigenvalues. Moreover, a spetral norm distane from A ∈ C
n×n

to the set of n×n matries

with k ≤ n �xed eigenvalues is studied, geometrially by Lippert [12℄, and omputationally

by Kokabifar, Loghmani and Karbassi [8℄. Papathanasiou and Psarrakos [17℄, Kokabifar,

Loghmani, Nazari and Karbassi [7℄, and Psarrakos [18℄ studied a (weighted) spetral norm

distane from an n×n matrix polynomial P (λ) to the n×n matrix polynomials that have

a presribed multiple eigenvalue, two presribed distint eigenvalues, and a presribed

eigenvalue of spei�ed algebrai multipliity, respetively. The results ahieved in [17℄

and [7℄ an be interpreted as generalizations to matrix polynomials of results obtained

in [14℄ and [4, 13℄, respetively.

Reently, Kokabifar, Loghmani, Psarrakos and Karbassi [9℄ extended the results of [7℄

to the ase of k ≤ n distint eigenvalues. However, a question that arises in a natural

way is the following: What one an say if some of the desired eigenvalues are multiple? In

this paper, we investigate this problem, and obtain an upper and a lower bound for the

distane from an n × n matrix polynomial P (λ) to matrix polynomials that have k ≤ n
given eigenvalues whih are not neessarily distint, generalizing and unifying results of

[7,17,18℄. To ahieve this, we need to modify de�nitions, lemmas and tehniques presented

in [7�9, 17, 18℄.

In the next setion, we review some standard de�nitions on matrix polynomials, and

also give some new de�nitions whih are neessary for the remainder. In Setion 3, we

onstrut an admissible perturbation of P (λ) that has the desired k eigenvalues, by ex-

tending and modifying the tehniques presented in [7�9,17,18℄. In Setion 4, we apply the

results of Setion 3 to ompute an upper and a lower bound for the distane. Finally, in

Setion 5, we give a omprehensive numerial example to illustrate the proposed method.

Some partial results on the behavior of the Jordan struture of matrix polynomial under

perturbations, whih are neessary for the onstrution of the lower bound, are presented

in an appendix.

2 Preliminaries

For A0, A1, . . . , Am ∈ C
n×n

, with Am 6= 0, and a omplex variable λ, we de�ne the matrix

polynomial

P (λ) = Amλm +Am−1λ
m−1 + · · ·+A1λ+A0 =

m∑

j=0

Ajλ
j. (1)

The spetral analysis and the Jordan struture of P (λ) leads to the solutions of the higher

order linear systems of di�erential equations Am
dmu(t)
dtm

+Am−1
dm−1u(t)
dtm−1 +· · ·+A0u(t) = f(t)

(where f(t) is a given C
n
-valued pieewise ontinuous funtion of the real variable t) and of

di�erene equations Amuj+m+Am−1uj+m−1+· · ·+A0uj = fj (where {f0, f1, . . . } is a given
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sequene of vetors in C
n
and {u0, u1, . . . } is a sequene to be found) [3℄. As a onsequene,

in the last deades, the study of matrix polynomials has reeived muh attention of several

researhers and has met many appliations in diverse areas of applied mathematis suh as

boundary value problems, systems theory and ontrol, vibrating and gyrosopi systems,

wave theory, and stohasti models. Suggested referenes for the theory and appliations

of matrix polynomials are [3, 5, 10, 15, 16, 20, 21℄ and the referenes therein.

Suppose that for a salar λ0 ∈ C and a nonzero vetor v ∈ C
n
, it holds that P (λ0)v = 0.

Then the salar λ0 is alled an eigenvalue of P (λ), and the vetor v is known as a (right)

eigenvetor of P (λ) orresponding to λ0. Similarly, a nonzero vetor u ∈ C
n
is known as

a left eigenvetor of P (λ) orresponding to λ0 when u∗P (λ0) = 0. The spetrum of P (λ),
denoted by σ(P ), is the set of its eigenvalues. The multipliity of an eigenvalue λ0 ∈ σ(P )
as a root of the salar polynomial detP (λ) is alled the algebrai multipliity of λ0, and

the dimension of the null spae of the (onstant) matrix P (λ0) is known as the geometri

multipliity of λ0. The algebrai multipliity of an eigenvalue is always greater than or

equal to its geometri multipliity. An eigenvalue is alled semisimple if its algebrai and

geometri multipliities are equal; otherwise, it is known as defetive. Throughout this

paper, it is assumed that:

(a) The oe�ient matrix Am is nonsingular ; this implies that P (λ) has exatly mn �nite

eigenvalues, ounting algebrai multipliities.

(b) The spetrum σ(P ) has exatly nm entries, where eah eigenvalue appears as many

times as its algebrai multipliity.

The singular values of P (λ) are the nonnegative roots of the eigenvalue funtions of

P (λ)∗P (λ), ordered in non-inreasing order, and they are denoted by

s1 (P (λ)) ≥ s2 (P (λ)) ≥ · · · ≥ sn (P (λ)) ≥ 0.

Let λ0 be an eigenvalue of P (λ), and let q be a positive integer less than or equal to

the algebrai multipliity of λ0. If there exist q vetors v1, v2, . . . , vq, with v1 6= 0, suh
that

P (λ0)v1 = 0,

1

1!
P ′(λ0)v1 + P (λ0)v2 = 0,

1

2!
P ′′(λ0)v1 +

1

1!
P ′(λ0)v2 + P (λ0)v3 = 0,

.

.

.

.

.

.

q−1
∑

i=0

1

i!
P (i)(λ0)vq−i = 0,
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where P (i)(λ) denotes the i-th derivative of P (λ) with respet to λ, then the set {v1, v2, . . . , vq}
is alled a (right) Jordan hain of length q of P (λ) orresponding to λ0. The vetor v1 (6= 0)
is learly an eigenvetor of P (λ) assoiated to λ0, and the vetors v2, v3, . . . , vq are known

as generalized eigenvetors of λ0 orresponding to the eigenvetor v1. When m > 1, the
vetors in a Jordan hain need not be linearly independent [3, Subsetion 1.4℄.

For onveniene, for every r = 1, 2, . . . , q, we say that the matrix

1
(r−1)!P

(r−1)(λ0) is the

r-th Jordan hain oe�ient of P (λ) orresponding to λ0. In addition, it is assumed that

we are given a set of s distint salars µ1, µ2, . . . , µs ∈ C, with eah µi having multipliity

equal to qi ≥ 1 (i = 1, 2, . . . , s), where q1 + q2 + · · ·+ qs = k ≤ n. This set is denoted by

Σ =
{
µ1, . . . , µ1
︸ ︷︷ ︸

q1-times

, µ2, . . . , µ2
︸ ︷︷ ︸

q2-times

, . . . , µs, . . . , µs
︸ ︷︷ ︸

qs-times

}
; (2)

i.e., eah µi appears exatly qi times (i = 1, 2, . . . , s). A lass of additive perturbations of

P (λ), an assoiated spetral norm distane from P (λ) to n× n matrix polynomials whose

spetra ontain the set Σ in (2), and an nk×nk matrix whih is ruial for our disussion,

are desribed in the next three de�nitions.

De�nition 2.1. For a matrix polynomial P (λ) as in (1), and for arbitrary matries

∆0,∆1, . . . ,∆m ∈ C
n×n

, onsider (additive) perturbations of P (λ) of the form

Q(λ) =
m∑

j=0

(Aj +∆j)λ
j =

m∑

j=0

Ajλ
j +

m∑

j=0

∆jλ
j = P (λ) + ∆(λ). (3)

Also, for ε > 0 and a set of given nonnegative weights w = {w0, w1, . . . , wm}, with w0 > 0,
de�ne the lass of admissible perturbed matrix polynomials

B(P, ε, w) =
{
Q(λ) as in (3) : ‖∆j‖2 ≤ εwj , j = 0, 1, . . . ,m

}

and the salar polynomial w(λ) = wmλm + wm−1λ
m−1 + · · ·+ w1λ+ w0.

De�nition 2.2. For a matrix polynomial P (λ) as in (1) and a set of omplex numbers Σ
as in (2), the distane from P (λ) to the set of matrix polynomials whose spetra inlude

Σ is de�ned and denoted by

Dw(P,Σ) = min {ε ≥ 0 : ∃Q(λ) ∈ B(P, ε, w) suh that Σ ⊆ σ(Q)} .

De�nition 2.3. Let P (λ) be a matrix polynomial as in (1), and let a set of omplex

numbers Σ as in (2) be given. For any nonzero salar γ ∈ C, de�ne the nk × nk blok

lower triangular matrix

Fγ [P,Σ] =










F1,1 0 · · · 0 0
F2,1 F2,2 · · · 0 0
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Fk−1,1 Fk−1,2 · · · Fk−1,k−1 0
Fk,1 Fk,2 · · · Fk,k−1 Fk,k










,
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in whih:

(i) All the bloks Fi,j (1 ≤ j ≤ i ≤ k) are n× n.

(ii) The (main) diagonal bloks of Fγ [P,Σ] are given by

F1,1 = · · · = Fq1,q1 = P (µ1), Fq1+1,q1+1 = · · · = Fq1+q2,q1+q2 = P (µ2),

. . . , Fq1+···+qs−1+1,q1+···+qs−1+1 = · · · = Fq1+···+qs−1+qs,q1+···+qs−1+qs = P (µs).

(iii) For all µi 6= µj , set θj,i =
γ

µj−µi
. The bloks below the diagonal are given by the

reursive formula (starting from the diagonal bloks)

Fi,j =

{
γi−j(the next Jordan hain oe�ient of Fi−1,j) if Fi−1,j = Fi,j+1,
θj,i (Fi−1,j − Fi,j+1) if Fi−1,j 6= Fi,j+1.

(Here and elsewhere, we say that Fi−1,j = Fi,j+1 if and only if the i-th blok-row and the

j-th blok-olumn of the matrix Fγ [P,Σ] orrespond to the same desired eigenvalue.)

For example, if Σ = {µ1, µ1, µ2, µ3, µ3, µ3}, then

Fγ [P,Σ] =











F1,1 0 0 0 0 0
F2,1 F2,2 0 0 0 0
F3,1 F3,2 F3,3 0 0 0
F4,1 F4,2 F4,3 F4,4 0 0
F5,1 F5,2 F5,3 F5,4 F5,5 0
F6,1 F6,2 F6,3 F6,4 F6,5 F6,6











=

















P (µ1) 0 0 0 0 0
γP ′(µ1) P (µ1) 0 0 0 0

γ2 P ′(µ1)−
P (µ1)−P (µ2)

µ1−µ2

µ1−µ2
γ P (µ1)−P (µ2)

µ1−µ2
P (µ2) 0 0 0

γ
F3,1−F4,2

µ1−µ3
γ2

P(µ1)−P (µ2)
µ1−µ2

−
P(µ2)−P (µ3)

µ2−µ3

µ1−µ3
γ P (µ2)−P (µ3)

µ2−µ3
P (µ3) 0 0

γ
F4,1−F5,2

µ1−µ3
γ

F4,2−F5,3

µ1−µ3
γ2

P (µ2)−P (µ3)
µ2−µ3

−P ′(µ3)

µ2−µ3
γP ′(µ3) P (µ3) 0

γ
F5,1−F6,2

µ1−µ3
γ

F5,2−F6,3

µ1−µ3
γ3

P (µ2)−P (µ3)
µ2−µ3

−P ′(µ3)

µ2−µ3
−

P ′′(µ3)
2!

µ2−µ3

γ2

2! P
′′(µ3) γP ′(µ3) P (µ3)

















. (4)

3 Constrution of a perturbation

In this setion, an n × n matrix polynomial ∆γ(λ) is onstruted suh that the spetrum

of the perturbed matrix polynomial Qγ(λ) = P (λ) + ∆γ(λ) ontains a given set Σ as in
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(2). In the remainder, without loss of generality, it is assumed that the parameter γ is real

positive [18℄. Moreover, for onveniene, set ρ = nk − k + 1.

For the onstrution of the desired perturbation of P (λ), onsider a pair

u(γ) =








u1(γ)
u2(γ)

.

.

.

uk(γ)







, v(γ) =








v1(γ)
v2(γ)
.

.

.

vk(γ)







∈ C

nk (uj(γ), vj(γ) ∈ C
n, j = 1, 2, . . . , k)

of left and right singular vetors orresponding to the ρ-th singular value of matrix Fγ [P,Σ],
sρ (Fγ [P,Σ]). By the de�nition of u(γ) and v(γ), it follows

Fγ [P,Σ]v(γ) = sρ (Fγ [P,Σ]) u(γ), (5)

or equivalently, the following matrix equations hold:

F1,1v1(γ) = sρ (Fγ [P,Σ]) u1(γ),

F2,1v1(γ) + F2,2v2(γ) = sρ (Fγ [P,Σ]) u2(γ),

.

.

.

.

.

. (6)

Fk−1,1v1(γ) + Fk−1,2v2(γ) + · · ·+ Fk−1,k−1vk−1(γ) = sρ (Fγ [P,Σ]) uk−1(γ),

Fk,1v1(γ) + Fk,2v2(γ) + · · ·+ Fk,k−1vk−1(γ) + Fk,kvk(γ) = sρ (Fγ [P,Σ]) uk(γ).

Let F̂γ [P,Σ] be the nk×nk blok matrix (with bloks of order n) that has the (out of
frations) Jordan hain oe�ients of P (λ) exatly at the same positions as Fγ [P,Σ] and
zero bloks elsewhere, and denote by In×n the n× n identity matrix. By the de�nition of

matrix Fγ [P,Σ] (see De�nition 2.3), it is apparent that eah nonzero blok Fi,j (i ≥ j) of
Fγ [P,Σ] is either, a Jordan hain oe�ient, or a linear ombination of the Jordan hain

oe�ients lying in the i-th row and in the j-th olumn. As a onsequene, by applying

the Gauss elimination in an appropriate way, all nonzero bloks Fi,j (i > j) whih are not

Jordan hain oe�ients an be vanished. In partiular, there exist nk × nk elementary

blok matries (with bloks of order n), i.e., matries whih are equal to Ink×nk or di�er

from it by one single elementary blok-row or blok-olumn operation,

E2,1, E3,1, E3,2, . . . , Ek−1,1, Ek−1,2, . . . , Ek−1,k−1, Ek,1, Ek,2, . . . , Ek,k−1 (blok-row operations)

and

Ê2,1, Ê3,1, Ê3,2, . . . , Êk−1,1, Êk−1,2, . . . , Êk−1,k−1, Êk,1, Êk,2, . . . , Êk,k−1 (blok-olumn operations),
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suh that:

the (k, 1)-th blok of Ek,1Fγ [P,Σ]Êk,1 is either zero or a Jordan hain oe�ient,

the (k, 1)-th and (k, 2)-th bloks of Ek,2Ek,1Fγ [P,Σ]Êk,1Êk,2 are either zero or

Jordan hain oe�ients,

.

.

.

the (k, 1)-th, (k, 2)-th, . . . , (k, k − 1)-th and (k − 1, 1)-th bloks of Ek−1,1Ek,k−1 · · ·

Ek,2Ek,1Fγ [P,Σ]Êk,1Êk,2 · · · Êk,k−1Êk−1,1 are either zero or Jordan hain oe�ients,

.

.

.

the matrix








∏

i = 2, 3, . . . , k
j = i− 1, i− 2, . . . , 1

Ei,j








Fγ [P,Σ]








∏

i = k, k − 1, . . . , 2
j = 1, 2, . . . , i− 1

Êi,j








is equal to

F̂γ [P,Σ].

The symmetry of the divided di�erenes in part (iii) of De�nition 2.3 and the standard

properties of elementary matries imply that Êi,j = E−1
i,j , 1 ≤ j < i ≤ k. Hene, if we

de�ne the nk × nk blok upper triangular matrix

T = E2,1E3,2 E3,1 · · · Ek−1,k−2 · · · Ek−1,2Ek−1,1Ek,k−1 · · · Ek,2Ek,1

=












In 0 0 · · · 0 0
t2,1In In 0 · · · 0 0
t3,1In t3,2In In · · · 0 0
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

tk−1,1In tk−1,2In tk−1,3In · · · In 0
tk,1In tk,2In tk,3In · · · tk,k−1In In












,

then it follows

TFγ [P,Σ]T
−1 = F̂γ [P,Σ] ⇔ Fγ [P,Σ] = T−1F̂γ [P,Σ]T. (7)

Remark 3.1. For every r = 1, 2, . . . , s, i = q1+ q2+ · · ·+ qr−1+1, q1 + q2+ · · ·+ qr−1+
2, . . . , q1 + q2 + · · ·+ qr and 1 ≤ j ≤ i (where for r = 1, we set q1 + q2 + · · · + qr−1 = 0),
the entry ti,j is the (salar) oe�ient of P (µr) in the (i, j)-th blok of matrix Fγ [P,Σ]. In
partiular, for every r = 1, 2, . . . , s and q1+ q2+ · · ·+ qr−1+1 ≤ j < i ≤ q1+ q2+ · · ·+ qr,
it holds that Ei,j = In and ti,j = 0.
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Remark 3.2. In the ase where all the desired eigenvalues are assumed to be simple,

i.e., when s = k, q1 = q2 = · · · = qs = 1 and Σ = {µ1, µ2, µ3, . . . , µk}, the entries ti,j of

matrix T are given expliitly in [9℄. Moreover, if there is only one desired eigenvalue of

algebrai multipliity at least k (≤ n), i.e., if s = 1, q1 = k and Σ = {µ1, µ1, µ1, . . . , µ1},
then T = Ink (see also [18℄).

For example, onsider the matrix Fγ [P,Σ] in (4). Then, it is straightforward to verify

that for the matrix

T = I6 E3,2 E3,1 E4,3 E4,2 E4,1 I6 E5,3 E5,2 E5,1 I6 I6 E6,3 E6,2 E6,1 (8)

=











In 0 0 0 0 0
0 In 0 0 0 0

θ21,2In −θ1,2In In 0 0 0
−θ21,3θ2,3In θ1,3θ2,3In −θ2,3In In 0 0

−(2θ31,3θ2,3 + θ21,3θ
2
2,3)In (θ21,3θ2,3 + θ1,3θ

2
2,3)In −θ22,3In 0 In 0

−(3θ41,3θ2,3 + 2θ31,3θ
2
2,3 + θ21,3θ

3
2,3)In (θ31,3θ2,3 + θ21,3θ

2
2,3 + θ1,3θ

3
2,3)In −θ32,3In 0 0 In











,

it holds that

T−1 =










In 0 0 0 0 0
0 In 0 0 0 0

−θ21,2In θ1,2In In 0 0 0
(θ21,3θ2,3 − θ21,2θ2,3)In (θ1,2θ2,3 − θ1,3θ2,3)In θ2,3In In 0 0

(−θ21,2θ
2
2,3 + 2θ31,3θ2,3 + θ21,3θ

2
2,3)In (−θ21,3θ2,3 − θ1,3θ

2
2,3 + θ1,2θ

2
2,3In θ22,3In 0 In 0

(−θ21,2θ
3
2,3 + 3θ41,3θ2,3 + 2θ31,3θ

2
2,3 + θ21,3θ

3
2,3)In (−θ31,3θ2,3 − θ21,3θ

2
2,3 − θ1,3θ

2
2,3 + θ1,2θ

3
2,3)In θ32,3In 0 0 In










and

F̂γ [P,Σ] = T Fγ [P,Σ]T
−1 =











P (µ1) 0 0 0 0 0
γP ′(µ1) P (µ1) 0 0 0 0

0 0 P (µ2) 0 0 0
0 0 0 P (µ3) 0 0
0 0 0 γP ′(µ3) P (µ3) 0

0 0 0 γ2

2! P
′′(µ3) γP ′(µ3) P (µ3)











.

Now, by (5) and (7), it follows

T−1F̂γ [P,Σ]T v(γ) = sρ (Fγ [P,Σ]) u(γ),

or equivelantly,

F̂γ [P,Σ] (T v(γ)) = sρ (Fγ [P,Σ]) (T u(γ)) .
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Hene, for the vetors

û(γ) = T u(γ) =








û1(γ)
û2(γ)

.

.

.

ûk(γ)







∈ C

nk (ûj(γ) ∈ C
n, j = 1, 2, . . . , k) (9)

and

v̂(γ) = T v(γ) =








v̂1(γ)
v̂2(γ)
.

.

.

v̂k(γ)







∈ C

nk (v̂j(γ) ∈ C
n, j = 1, 2, . . . , k) , (10)

the system (6) is written







P (µ1)v̂1(γ) = sρ (Fγ [P,Σ]) û1(γ),
γP ′(µ1)v̂1(γ) + P (µ1)v̂2(γ) = sρ (Fγ [P,Σ]) û2(γ),

.

.

.

.

.

.

γq1−1

(q1−1)!P
(q1−1)(µ1)v̂1(γ) + · · ·+ P (µ1)v̂q1(γ) = sρ (Fγ [P,Σ]) ûq1(γ),







P (µ2)v̂q1+1(γ) = sρ (Fγ [P,Σ]) ûq1+1(γ),
γP ′(µ2)v̂q1+1(γ) + P (µ2)v̂q1+2(γ) = sρ (Fγ [P,Σ]) ûq1+2(γ),

.

.

.

.

.

.

γq2−1

(q2−1)!P
(q2−1)(µ2)v̂q1+1(γ) + · · ·+ P (µ2)v̂q1+q2(γ) = sρ (Fγ [P,Σ]) ûq1+q2(γ),

.

.

. (11)







P (µs)v̂q1+···+qs−1+1(γ) = sρ (Fγ [P,Σ]) ûq1+···+qs−1+1(γ),
γP ′(µs)v̂q1+···+qs−1+1(γ) + P (µs)v̂q1+···+qs−1+2(γ) = sρ (Fγ [P,Σ]) ûq1+···+qs−1+2(γ),

.

.

.

.

.

.

γqs−1

(qs−1)!P
(qs−1)(µs)v̂q1+···+qs−1+1(γ) + · · ·+ P (µs)v̂q1+···+qs−1+qs(γ) = sρ (Fγ [P,Σ]) ûq1+···+qs−1+qs(γ).

Assume that the k vetors v1(γ), v2(γ), . . . , vk(γ) ∈ C
n
are linearly independent. Then,

for every i = 1, 2, . . . , k, the vetor v̂i(γ) is nonzero, and it is a linear ombination of the

vetors v1(γ), v2(γ), . . . , vi(γ), where the oe�ient of vi(γ) in this ombination is equal

to 1. The k vetors v̂1(γ), v̂2(γ), . . . , v̂k(γ) play a leading role in omputing the desired

perturbation ∆γ(λ).

De�ne the n× k matries

Û(γ) = [ û1(γ) û2(γ) · · · ûk(γ) ] and V̂ (γ) = [ v̂1(γ) v̂1(γ) · · · v̂k(γ) ] ,
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and observe that the linear independene of the vetors v1(γ), v2(γ), . . . , vk(γ) implies

also that rank(V̂ (γ)) = k and V̂ (γ)†V̂ (γ) = Ik, where V̂ (γ)† denotes the Moore-Penrose

pseudoinverse of V̂ (γ).

We are onstruting the desired perturbed matrix polynomial Qγ(λ) = P (λ) + ∆γ(λ)

by assembling a perturbation ∆γ (λ) =
m∑

j=0
∆γ,jλ

j
, in whih

∆γ,j =
1

s

s∑

i=1

(

1

w (|µi|)

(
µ̄i

|µi|

)j

wj

)

∆γ , j = 0, 1, . . . ,m, (12)

for some n× n matrix ∆γ that has to be omputed.

Denoting by ∆
(p)
γ (λ) the p-th derivative of ∆γ (λ) with respet to λ, we have

∆(p)
γ (λ) =

m∑

j=p

∆γ,j





p−1
∏

ξ=0

(j − ξ)



λj−p.

Thus, substituting ∆γ,j into ∆
(p)
γ (λ) and alulating the derivative for the salar µr (r =

1, 2, . . . , s) yield

∆(p)
γ (µr) =

1

s

m∑

j=p







(
s∑

i=1

1

w (|µi|)

(
µ̄i

|µi|

)j

µj−p
r

)



p−1
∏

ξ=0

(j − ξ)



wj







︸ ︷︷ ︸

βr,p

∆γ .

Motivated by this relation, for r = 1, 2, . . . , s and p = 0, 1, . . . , qr, we de�ne the quantities

βr,p =
1

s

m∑

j=p







(
s∑

i=1

1

w (|µi|)

(
µ̄i

|µi|

)j

µj−p
r

)



p−1
∏

ξ=0

(j − ξ)



wj






,

where, for onvention, we set

µi

|µi|
= 0 whenever µi = 0. In partiular, for p = 0,

βr,0 =
1

s

m∑

j=0

[
s∑

i=1

(

1

w (|µi|)

(
µ̄i

|µi|
µr

)j
)

wj

]

, r = 1, 2, . . . , s. (13)

Hene, we have

∆(p)
γ (µr) = βr,p∆γ , r = 1, 2, . . . , s, p = 0, 1, . . . , qr. (14)
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To onstrut the matrix ∆γ assume that the quantities β1,0, β2,0, . . . , βs,0 are nonzero.
Then, for any r = 1, 2, . . . , s, de�ne the qr × qr Toeplitz upper triangular matrix

M [r] =
[

M
[r]
i,j

]

=


















1
βr,0

−γ
βr,1

β2

r,0

−γ2

2!
βr,2

β2

r,0

+ γ2
β2

r,1

β3

r,0

· · · ∗ ∗

0 1
βr,0

−γ
βr,1

β2

r,0

· · · ∗ ∗

0 0 1
βr,0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 0
.

.

. −γ
βr,1

β2

r,0

−γ2

2!
βr,2

β2

r,0

+ γ2
β2

r,1

β3

r,0

.

.

.

.

.

.

.

.

.

1
βr,0

−γ
βr,1

β2

r,0

0 0 0 · · · 0 1
βr,0


















whose diagonal entries M
[r]
1,1,M

[r]
2,2, . . . ,M

[r]
qr ,qr are all equal to

1
βr,0

, and the entries above

the (main) diagonal are given by the following reursive formula:

M
[r]
i,j = −

1

βr,0

j−i
∑

ξ=1

γξ

ξ!
βr,ξM

[r]
i,j−ξ, 1 ≤ i < j ≤ qr. (15)

De�ne also the k × k blok diagonal matrix M = diag

{
M [1],M [2], . . . ,M [s]

}
. Eventually,

the n× n matrix ∆γ that we are looking for, is of the form

∆γ = −sρ (Fγ [P,Σ]) Û(γ)MV̂ (γ)†. (16)

Consider the perturbation

∆γ(λ) =
m∑

j=0

∆γ,jλ
j =

m∑

j=0

[

1

s

s∑

i=1

(

1

w (|µi|)

(
µ̄i

|µi|

)j

wj

)

∆γ

]

λj.

In the remainder of this setion, it will be obtained that the presribed salars µ1, µ2, . . . , µs

are eigenvalues of the perturbed matrix polynomial

Qγ(λ) = P (λ) + ∆γ(λ) =
m∑

j=0

(Aj +∆γ,j)λ
j

(17)

with their multipliities greater than or equal to q1, q2, . . . , qs, respetively. In partiular,

for γ > 0, it an be proved that the sets

{

v̂1(γ),
1

γ
v̂2(γ),

1

γ2
v̂3(γ), . . . ,

1

γq1−1
v̂q1(γ)

}

,

{

v̂q1+1(γ),
1

γ
v̂q1+2(γ),

1

γ2
v̂q1+3(γ), . . . ,

1

γq2−1
v̂q1+q2(γ)

}

,

.

.

. (18)

{

v̂q1+···+qs−1+1(γ),
1

γ
v̂q1+···+qs−1+2(γ),

1

γ2
v̂q1+···+qs−1+3(γ), . . . ,

1

γqs−1
v̂q1+···+qs(γ)

}
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form s Jordan hains of Qγ(λ), orresponding to its eigenvalues µ1, µ2, . . . , µs, respetively.

In order to avoid unneessary prolix omputations, we restrit ourselves in proving

that the vetors v̂1(γ),
1
γ
v̂2(γ), . . . ,

1
γq1−1 v̂q1(γ) form a Jordan hain of Qγ(λ) orresponding

to µ1 as one of its eigenvalues; the extension to the remaining salars µ2, µ3, . . . , µs is

straightforward. For this purpose, in the system (11), we onsider the p-th equation (1 ≤
p ≤ q1) of the subsystem that orresponds to µ1. Sine the matrix V̂ (γ) is assumed to be

full olumn rank, we have

∆γ V̂ (γ) = −sρ (Fγ [P,Σ]) Û(γ)M.

In addition, sine we are dealing with the �rst q1 equations of system (11), we only

onsider the �rst blok of matrix M , M [1]
, whih is of size q1 × q1, and the vetors

û1(γ), û2(γ), . . . , ûq1(γ) and v̂1(γ), v̂2(γ), . . . , v̂q1(γ). For this ase, we have

∆γ [v̂1(γ) v̂2(γ) · · · v̂q1(γ)] = −sρ (Fγ [P,Σ]) [û1(γ) û2(γ) · · · ûq1(γ)]M
[1].

After doing these matrix multipliations, it is straightforward to see that the j-th olumn

of the result in the left-hand side is ∆γ v̂j(γ) (j = 1, 2, . . . , q1), while the j-th olumn of the

result in the right-hand side is −sρ (Fγ [P,Σ])
j∑

i=1
M

[1]
i,j ûi(γ). Replaing j with p− j yields

∆γ v̂p−j(γ) = −sρ (Fγ [P,Σ])

p−j
∑

i=1

M
[1]
i,p−jûi(γ), j = p− 1, p − 2, . . . , p− q1. (19)

By the p-th equation in (11), (14) and (19), it follows that the perturbed matrix

polynomial Qγ(λ) in (17) satis�es

p−1
∑

j=0

γj

j!
Q(j)

γ (µ1)v̂p−j(γ) =

p−1
∑

j=0

γj

j!
P (j)(µ1)v̂p−j(γ) +

p−1
∑

j=0

γj

j!
∆(j)

γ (µ1)v̂p−j(γ)

= sρ (Fγ [P,Σ]) ûp(γ) +

p−1
∑

j=0

γj

j!
β1,j∆γ v̂p−j(γ)

= sρ (Fγ [P,Σ]) ûp(γ) +

p−1
∑

j=0

(

γj

j!
β1,j

(

−sρ (Fγ [P,Σ])

p−j
∑

i=1

M
[1]
i,p−jûi(γ)

))

= sρ (Fγ [P,Σ]) ûp(γ)− sρ (Fγ [P,Σ])

p−1
∑

j=0

(

γj

j!
β1,j

p−j
∑

i=1

M
[1]
i,p−jûi(γ)

)

. (20)
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In (20), we observe that

p−1
∑

j=0

(

γj

j!
β1,j

p−j
∑

i=1

M
[1]
i,p−jûi(γ)

)

= β1,0

p
∑

i=1

M
[1]
i,p ûi(γ) + γβ1,1

p−1
∑

i=1

M
[1]
i,p−1ûi(γ)

+ · · · + β1,p−2
γp−2

(p− 2)!

2∑

i=1

M
[1]
i,1 ûi(γ)

+β1,p−1
γp−1

(p − 1)!
M

[1]
1,1û1(γ),

Denoting the oe�ients of û1(γ), û2(γ), . . . , ûp−1(γ) in (20) by α1, α2, . . . , αp−1, respet-

ively, for any i = 1, 2, . . . , p− 1, we have

αi = −sρ (Fγ [P,Σ])

p−i
∑

ξ=0

γξ

ξ!
β1,ξM

[1]
i,p−ξ

= −sρ (Fγ [P,Σ]) β1,0M
[1]
i,p − sρ (Fγ [P,Σ])

p−i
∑

ξ=1

γξ

ξ!
β1,ξM

[1]
i,p−ξ

= −sρ (Fγ [P,Σ]) β1,0



−
1

β1,0

p−i
∑

ξ=1

γξ

ξ!
β1,ξM

[1]
i,p−ξ



− sρ (Fγ [P,Σ])

p−i
∑

ξ=1

γξ

ξ!
β1,ξM

[1]
i,p−ξ

= 0.

Moreover, it is apparent that

−sρ (Fγ [P,Σ])β1,0M
[1]
p,p = −sρ (Fγ [P,Σ]) β1,0

1

β1,0
= −sρ (Fγ [P,Σ]) .

As a onsequene, for any p ∈ {1, 2, . . . , q1}, it holds

p−1
∑

j=0

γj

j!
Q(j)

γ (µ1)v̂p−j(γ) = sρ (Fγ [P,Σ]) ûp(γ)− sρ (Fγ [P,Σ]) ûp(γ) = 0.

Dividing this relation by γ1−p
yields

p−1
∑

j=0

1

j!
Q(j)

γ (µ1)
(
γj−p+1v̂p−j(γ)

)
= 0,

whih means that µ1 is an eigenvalue of algebrai multipliity at least q1 of Qγ(λ), with
{

v̂1(γ),
1

γ
v̂2(γ),

1

γ2
v̂3(γ), . . . ,

1

γq1−1
v̂q1(γ)

}
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as a orresponding Jordan hain.

The next theorem summarizes the results obtained so far.

Theorem 3.3. Let P (λ) be a matrix polynomial as in (1), and let Σ be a set of presribed

salars as in (2) suh that the quantities β1,0, β2,0, . . . , βs,0 de�ned by (13) are nonzero.

Then, for any γ > 0 suh that the vetors v1(γ), v2(γ), . . . , vk(γ) are linearly independent,

the salars µ1, µ2, . . . , µs are eigenvalues of the perturbed matrix polynomial Qγ(λ) given

by (17), with algebrai multipliities greater than or equal to q1, q2, . . . , qs, respetively.

Moreover, the sets in (18) are Jordan hains of Qγ(λ) orresponding to µ1, µ2, . . . , µs,

respetively.

Remark 3.4. The disussion in this setion and the onstrution of the perturbed matrix

polynomial Qγ(λ) in (17) generalize main results of [9, 18℄; in partiular, they yield the

results of [9, Setion 3℄ when s = k (≤ n), and the results of [18, Setion 3℄ when s = 1.

Remark 3.5. As mentioned in [9, 18℄, it is not easy to obtain onditions ensuring that

the quantities β1,0, β2,0, . . . , βs,0 are nonzero and/or the vetors v1(γ), v2(γ), . . . , vk(γ) are
linearly independent. However, in all our experiments, these two required onditions hold

generially.

4 Bounds for Dw(P,Σ)

In this setion, we give an upper and a lower bound for the spetral norm distane Dw(P,Σ)
introdued in De�nition 2.2. First, we see that an upper bound for Dw(P,Σ) is diretly ob-

tained by the onstrution of the perturbed matrix polynomial Qγ(λ) in (17). In partiular,

by (12), it follows

‖∆γ,j‖2 ≤
wj

s

(
s∑

i=1

1

w(|µi|)

)

‖∆γ‖2 , j = 0, 1, . . . ,m.

Assume that βi,0 6= 0, i = 1, 2, . . . , s, and the vetors v1(γ), v2(γ), . . . , vk(γ) are linearly

independent for some γ > 0. Realling De�nition 2.1, the distane Dw(P,Σ) satis�es

Dw(P,Σ) ≤
1

s

(
s∑

i=1

1

w(|µi|)

)

‖∆γ‖2 . (21)

In the remainder of this setion, a lower bound for Dw(P,Σ) is omputed. At this

point, it is neessary to reall that having an eigenvalue µi of the matrix polynomial P (λ)
with algebrai multipliity qi does not neessarily mean that µi has a Jordan hain of length

qi. Atually, it means that if the eigenvalue µi has geometri multipliity gi, then P (λ)
has gi Jordan hains assoiated to gi (not neessarily linearly independent) eigenvetors,
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with total number of vetors equal to the algebrai multipliity qi [3, 10, 15℄. Thus, some

onepts and disussions are needed to ope with this di�ulty by onsidering what is

presented in Appendix A. Moreover, to ompute a lower bound, linear independene of the

vetors v1(γ), v2(γ), . . . , vk(γ) is not required, but the weights w1, . . . , wm−1 are needed to

be positive; reall that from the de�nition of perturbations of P (λ), it is assumed that

w0 > 0.

Lemma 4.1. Let P (λ) be a matrix polynomial as in (1), and let Σ be a set as desribed

in (2). Suppose that the spetrum of P (λ) ontains Σ and eah eigenvalue µi ∈ σ(P )
(i = 1, 2, . . . , s) has a Jordan hain of length qi. Then, sρ (Fγ [P,Σ]) = 0 for any γ > 0
(reall that ρ = nk − k + 1).

Proof. Suppose that µ1, µ2, . . . , µs are eigenvalues of the matrix polynomial P (λ) with

algebrai multipliities at least q1, q2, . . . , qs, respetively, and q1 + q2 + · · · + qs = k ≤ n.
Let also γ be a positive number. By hypothesis, there exist k (not neessarily linearly

independent) vetors y1, y2, . . . , yk ∈ C
n
suh that y1, yq1+1, yq1+q2+1, . . . , yq1+···+qs−1+1 are

nonzero and the following s sets of matrix equations are satis�ed:







P (µ1) y1 = 0,
γP ′ (µ1) y1 + P (µ1) y2 = 0,

.

.

.

.

.

.

γq1−1

(q1−1)!P
(q1−1) (µ1) y1 + · · ·+ P (µ1) yq1 = 0,







P (µ2) yq1+1 = 0,
γP ′ (µ2) yq1+1 + P (µ2) yq1+2 = 0,

.

.

.

.

.

.

γq2−1

(q2−1)!P
(q2−1) (µ2) yq1+1 + · · ·+ P (µ2) yq1+q2 = 0,

.

.

. (22)







P (µs) yq1+···+qs−1+1 = 0,

γP̂ ′ (µs) yq1+···+qs−1+1 + P (µs) yq1+···+qs−1+2 = 0,
.

.

.

.

.

.

γqs−1

(qs−1)!P
(qs−1) (µs) yq1+···+qs−1+1 + · · ·+ P (µs) yq1+···+qs−1+qs = 0.

(In other words, the vetors y1,
1
γ
y2, . . . ,

1
γq1−1 yq1 form a Jordan hain of length q1 orres-

ponding to µ1, the vetors yq1+1,
1
γ
yq1+2, . . . ,

1
γq2−1 yq1+q2 form a Jordan hain of length q2

orresponding to µ2, and so on.)
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Reall the nk×nk matrix F̂γ [P,Σ] and the nk×nk nonsingular blok upper triangular

matrix T whih are de�ned in the previous setion and satisfy (7). Consider also the

(nonzero) linearly independent vetors



















0n
.

.

.

0n
0n
y1
0nq2
0nq3
.

.

.

0nqs



















,



















0n
.

.

.

0n
y1
y2
0nq2
0nq3
.

.

.

0nqs



















, . . . ,



















y1
y2
.

.

.

yq1−1

yq1
0nq2
0nq3
.

.

.

0nqs



















,



















0nq1
0n
.

.

.

0n
0n

yq1+1

0nq3
.

.

.

0nqs



















,



















0nq1
0n
.

.

.

0n
yq1+1

yq−1+2

0nq3
.

.

.

0nqs



















, . . . ,



















0nq1
yq1+1

yq1+2

.

.

.

yq1+q2−1

yq1+q2

0nq3
.

.

.

0nqs



















, . . . ,



















0nq1
0nq2
0nq3
.

.

.

0nqs−1

yq1+···+qs−1+1

yq1+···+qs−1+2

.

.

.

yk



















,

where 0n denotes the zero vetor of order n. By (22), it follows readily that all these vetors

are null vetors of matrix F̂γ [P,Σ]. By the similarity of Fγ [P,Σ] and F̂γ [P,Σ], the proof is
omplete.

Consider a perturbation of matrix polynomial P (λ), Q(λ) = P (λ)+∆(λ). By following
exatly the struture of Fγ [P,Σ] in De�nition 2.3, onstrut the nk × nk blok lower

triangular matries Fγ [Q,Σ] and Fγ [∆,Σ]. Clearly, it holds that Fγ [Q,Σ] = Fγ [P,Σ] +
Fγ [∆,Σ]. As a onsequene, Lemma 4.1 and the Weyl inequalities for singular values (e.g.

see Corollary 5.1 of [1℄) imply the following:

Corollary 4.2. Let P (λ) be a matrix polynomial as in (1), and let Σ be a set of presribed

salars as in (2). Suppose that γ > 0, Σ is a subset of the spetrum of an n × n matrix

polynomial Q(λ) = P (λ) + ∆(λ), and eah eigenvalue µi ∈ σ(Q) (i = 1, 2, . . . , s) has a

Jordan hain of length qi. Then, sρ(Fγ [P,Σ]) ≤ ‖Fγ [∆,Σ]‖2.

For onveniene, denote

Fγ [∆,Σ] =








F1,1 0 · · · 0
F2,1 F2,2 · · · 0
.

.

.

.

.

.

.

.

.

.

.

.

Fk,1 Fk,2 · · · Fk,k








∈ C
nk×nk,

with Fi,j ∈ C
n×n

, 1 ≤ j ≤ i ≤ k. Moreover, for the weight polynomial w(λ) = wmλm +
wm−1λ

m−1 + · · · + w1λ+ w0, assuming that one an use the term �Jordan oe�ient� for

salar polynomials as for matrix polynomials, de�ne the k × k lower triangular matrix

Fγ [w,Σ] =








f1,1 0 · · · 0
f2,1 f2,2 · · · 0
.

.

.

.

.

.

.

.

.

.

.

.

fk,1 fk,2 · · · fk,k
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suh that fi,i = w (|µi|) (i = 1, 2, . . . , k), and analogous to (iii) of De�nition 2.3, the entries

below the diagonal are given by the reursive formula (starting from the diagonal entries)

fi,j =

{
γi−j(the next Jordan hain oe�ient of fi−1,j) if fi−1,j = fi,j+1,
|θj,i| (fi−1,j + fi,j+1) if fi−1,j 6= fi,j+1.

Next lemma yields a lower bound of the distane Dw(P,Σ).

Lemma 4.3. Let P (λ) be a matrix polynomial as in (1), Σ be a set of presribed salars

as in (2), and all the weights w0, w1, . . . , wm−1 be positive. Consider a matrix polynomial

Q(λ) = P (λ) + ∆(λ) in B(P, ε, w) having the set Σ in its spetrum. Then, for any γ > 0,

ε ≥
sρ (Fγ [P,Σ])

‖Fγ [w,Σ]‖2
.

Proof. The set B(P, ε, w) is losed and for any positive integer p, there is a matrix poly-

nomial Qp(λ) ∈ B(Q, 1/p,w) that lies in the interior of B(P, ε, w) and has a nonsingular

leading oe�ient. Moreover, by Corollary A.6 of Appendix, for eah p and any positive

integer q, there is a Qp,q(λ) ∈ B(Qp, 1/q,w) suh that σ(Qp,q) = σ(Qp) and all the eigen-

values of Qp,q(λ) have geometri multipliity 1 (i.e., every eigenvalue of Qp,q(λ) has exatly
one Jordan hain of length equal to the algebrai multipliity of the eigenvalue). Hene,

there is a sequene of matrix polynomials in the interior of B(P, ε, w) having all their ei-

genvalues of geometri multipliity 1, whih onverges to the perturbed matrix polynomial

Q(λ). As a onsequene, by the ontinuity of the Jordan struture and the singular value

deomposition (with respet to matrix entries), without loss of generality, we may assume

that eah eigenvalue µi of Q(λ) (i = 1, 2, . . . , s) has a Jordan hain of length qi. Then, by
Corollary 4.2, sρ(Fγ [P,Σ]) ≤ ‖Fγ [∆,Σ]‖2.

The rest of the proof is devoted to obtain the inequality ‖Fγ [∆,Σ]‖2 ≤ ε ‖Fγ [w,Σ]‖2.
To do this, for i = 1, 2, . . . , k, observe that

‖∆(µi)‖2 ≤
m∑

j=0

‖∆j‖2 |µi|
j ≤ ε

m∑

j=0

wj |µi|
j = εw (|µi|) . (23)

Moreover, for every i = 1, 2, . . . , s and p = 1, 2, . . . , qi,

∥
∥
∥∆(p) (µi)

∥
∥
∥
2

≤

m∑

j=p

j(j − 1) · · · (j − p+ 1) ‖∆j‖2 |µi|
j−p

≤ ε
m∑

j=p

j(j − 1) · · · (j − p+ 1)wj |µi|
j−p = εw(p) (|µi|) . (24)
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Consequently, keeping in mind the de�nition of Fγ [w,Σ], and using (23) and (24), one an

verify that (see the proof of Lemma 4.2 of [9℄ and the disussion before it)

‖Fi,i‖2 ≤ εfi,i,

and

‖Fi,j‖2 = ‖θi,j (Fi−1,j −Fi,j+1)‖2
≤ |θi,j|

(
‖Fi−1,j‖2 + ‖Fi,j+1‖2

)

≤ ε |θi,j| (fi−1,j + fi,j+1) = εfi,j.

Then, for any γ 6= 0, a unit vetor

x =








x1
x2
.

.

.

xk







∈ C

kn (xi ∈ C
n, i = 1, 2, . . . , k)

an be onsidered suh that

‖Fγ [∆,Σ]‖22 = ‖Fγ [∆,Σ] x‖22

= ‖F1,1x1‖
2
2 + ‖F2,1x1 + F2,2x2‖

2
2 + · · ·+

∥
∥
∥
∥

k∑

i=1

Fk,ixi

∥
∥
∥
∥

2

2

≤ (εf1,1)
2 ‖x1‖

2
2 + (εf2,1)

2 ‖x1‖
2
2 + (εf2,2)

2 ‖x2‖
2
2

+ (εf2,1) (εf2,2) ‖x1‖2‖x2‖2 + · · · + (εfk,k)
2 ‖xk‖

2
2

= ε2

∥
∥
∥
∥
∥










f1,1 0 · · · 0
f2,1 f2,2 · · · 0
f3,1 f3,2 · · · 0
.

.

.

.

.

.

.

.

.

.

.

.

fk,1 fk,2 · · · fk,k

















‖x1‖2
‖x2‖2

.

.

.

‖xk‖2








∥
∥
∥
∥
∥

2

2

≤ ε2 ‖Fγ [w,Σ]‖
2
2 .

This ompletes the proof.

By the above lemma (and aording to De�nition 2.2), it follows

Dw(P,Σ) ≥
sρ (Fγ [P,Σ])

‖Fγ [w,Σ]‖2
. (25)
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It will be onvenient to denote the lower bound in (25) by βlow,δ(P,Σ, γ) and the upper

bound in (21) by βup(P,Σ, γ), i.e.,

βlow,δ(P,Σ, γ) =
sρ (Fγ [P,Σ])

‖Fγ [w,Σ]‖2

and

βup(P,Σ, γ) =
1

s

s∑

i=1

(
1

w (|µi|)

)

‖∆γ‖2.

The main results of this setion are summarized in the next theorem.

Theorem 4.4. Let P (λ) be a matrix polynomial as in (1), and let Σ be a set of presribed

salars as in (2).

(a) If all the weights w0, w1, . . . , wm are positive, then for any γ > 0, Dw(P,Σ) ≥
βlow,δ(P,Σ, γ).

(b) If the salars β1,0, β2,0, . . . , βs,0 in (13) are nonzero, then for any γ > 0 suh that

v1(γ), v2(γ), . . . , vk(γ) are linearly independent vetors, Dw(P,Σ) ≤ βup(P,Σ, γ).
Moreover, the matrix polynomial Qγ(γ) in (17) lies on the boundary of B(P, βup(P,Σ, γ), w).

5 A numerial example

In this setion, we verify the validity and the e�etiveness of our results and disussions in

the previous setions, by presenting a omprehensive numerial experiment. Following the

methodology given in Setion 3, we onstrut an assoiated perturbation of a given matrix

polynomial. Also, we ompute lower and upper bounds for the distane Dw (P,Σ), aord-
ing to the results obtained in Setion 4. All omputations were performed in MATLAB

with 16 signi�ant digits; however, for simpliity, all numerial results are shown with 4
deimal plaes.

Example 5.1. Consider the 6× 6 matrix polynomial

P (λ) = I6λ
2 +











−4 1 0 −1 4 0
0 8 0 2 0 −1
0 0 0 0 −7 0
0 0 0 −5 6 0
0 0 0 0 0 −1
0 0 0 0 0 4











λ+











3 0 0 0 −3 2
0 16 −8 1 0 −1
0 0 4 0 11 0
0 0 0 4 −5 0
0 0 0 0 9 2
0 0 0 0 0 8
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Figure 1: The graphs of the upper bound βup (P,Σ, γ) and the lower bound βlow (P,Σ, γ).

and the set

Σ = {µ1, µ1, µ2, µ3, µ3, µ3} = {1, 1, 2, 3, 3, 3},

i.e., s = 3, q1 = 2, q2 = 1, q3 = 3 and k = q1 + q2 + q3 = 6 (= n). Consider also the set

of weights w = {18.2014, 10.9003, 1}, whih are the spetral norms of the orresponding

oe�ient matries. Figure 1 illustrates the graphs of the upper bound βup (P,Σ, γ) and
the lower bound βlow (P,Σ, γ) for γ ∈ (0, 5].

For the value γ = 3, we onstrut a perturbed matrix polynomial Q3(λ) = P (λ) +
∆3(λ), whose spetrum ontains the set Σ. The matrix F3 [P,Σ] is given by (4), the

singular value sρ (Fγ [P,Σ]) = s31 (F3 [P,Σ]) is equal to 1.0984, and the matrix T in (8) is

of the form

T =











I6 0 0 0 0 0
0 I6 0 0 0 0
9I6 3I6 I6 0 0 0

6.75I6 4.5I6 3I6 I6 0 0
43.8750I6 −20.25I6 −9I6 0 I6 0
167.0625I6 70.8750I6 27I6 0 0 I6











.

By (9), (10) and (16), we ompute the required vetors v̂i(3) and ûi(3) (i = 1, 2, . . . , 6),
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and the matrix

∆3 = −s31 (F3 [P,Σ]) Û(3)MV̂ (3)†

=











0.1471 0.4017 −0.1227 0.5755 −0.8616 0.5150
−0.019 −0.0632 0.0204 −0.0236 0.0102 0.6517
−0.0956 −0.2241 −0.1835 0.4688 1.4087 16.8831
−1.2610 −3.3113 1.1005 −2.7597 6.0712 −3.1099
0.9518 4.1610 −0.5813 −0.2851 −10.2916 −1.2288
0.1051 0.3406 −0.2436 −0.1013 −0.4117 −17.7001











,

where

M = diag

{

M [1],M [2],M [3]
}

= diag







[
1.3720 −1.7639

0 1.3720

]

,
[

0.9386
]

,





0.6894 −0.5835 0.3903
0 0.6894 −0.5835
0 0 0.6894










.

By (12), we obtain the perturbation

∆3 (λ) =











0.0036 0.0097 −0.0030 0.0139 −0.0209 0.0125
−0.0005 −0.0015 0.0005 −0.0006 0.0002 0.0158
−0.0023 −0.0054 −0.0044 0.0114 0.0341 0.4088
−0.0305 −0.0802 0.0266 −0.0668 0.1470 −0.0753
0.0230 0.1008 −0.0141 −0.0069 −0.2492 −0.0298
0.0025 0.0082 −0.0059 −0.0025 −0.0100 −0.4286











λ2

+











0.0388 0.1060 −0.0324 0.1519 −0.2274 0.1359
−0.0050 −0.0167 0.0054 −0.0062 0.0027 0.1720
−0.0252 −0.0592 −0.0484 0.1237 0.3718 4.4561
−0.3328 −0.8740 0.2904 −0.7284 1.6024 −0.8208
0.2512 1.0982 −0.1534 −0.0753 −2.7163 −0.3243
0.0277 0.0899 −0.0643 −0.0267 −0.1087 −4.6717











λ

+











0.0648 0.1770 −0.0541 0.2536 −0.3797 0.2270
−0.0084 −0.0279 0.0090 −0.0104 0.0045 0.2872
−0.0422 −0.0988 −0.0809 0.2066 0.6209 7.4408
−0.5558 −1.4594 0.4850 −1.2162 2.6757 −1.3706
0.4195 1.8338 −0.2562 −0.1257 −4.5357 −0.5416
0.0463 0.1501 −0.1074 −0.0446 −0.1815 −7.8008











.

The perturbed matrix polynomial Q3(λ) = P (λ) + ∆3(λ) lies on the boundary of the set

B(P, βup(P,Σ, 3), w) = B(P, 0.5991, w), and its spetrum

σ(Q3) = {0.5719, 0.9726, 1, 1, 2, 3, 3, 3, 0.1786 ± 1.2680 i,−4.0589 ± 0.7284 i}
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ontains Σ. Moreover, for γ = 1, it is straightforward to ompute βlow(P,Σ, 1) = 0.0034.
As a onsequene,

βlow(P,Σ, 1) = 0.0034 ≤ Dw (P,Σ) ≤ 0.5991 = βup(P,Σ, 3).

Finally, we remark that for γ = 1.7, the vetors v1(1.7), v2(1.7), . . . , v6(1.7) are

lose to be linearly dependent with s6(V̂ (1.7)) = 0.0006, and for γ = 4.4, the vetors

v1(4.4), v2(4.4), . . . , v6(4.4) are linearly dependent with s6(V̂ (4.4)) = 0. This explains the
transient behaviour of the graph in Figure 1, around these two values of γ.
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Appendix A On the sensitivity of Jordan struture

Let A = RAJAR
−1
A be the Jordan anonial form of a matrix A ∈ C

n×n
, where JA is a

Jordan matrix and RA is a nonsingular matrix with olumns the Jordan hains (eigen-

vetors and generalized eigenvetors) of A. Suppose also that the �rst h Jordan bloks of

JA are of the form

J(λ0, si) =









λ0 1 · · · 0

0 λ0
.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 1
0 0 · · · λ0









∈ C
si×si , s1 ≥ s2 ≥ · · · ≥ sh,
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and orrespond to an eigenvalue λ0 ∈ σ(A).

For a real ε ∈ (0, 1), we onsider the n× n matries

Lε = Is1 ⊕ ε−s1Is2 ⊕ ε−(s1+s2)Is2 ⊕ · · · ⊕ ε−(s1+s2+···+sh)Ish

and

Tε = [τi,j] with τi,j =

{
εsl if (i, j) = (s1 + s2 + · · · + sl, s1 + s2 + · · ·+ sl + 1),
0 otherwise,

l = 1, 2, . . . , h − 1. Then it is straightforward to verify that L−1
ε JALε = JA, and that

L−1
ε TεLε is the n× n matrix with ones at positions (s1, s1 + 1), (s1 + s2, s1 + s2 + 1), . . . ,

(s1 + s2 + · · · + sh−1, s1 + s2 + · · · + sh−1 + 1) and zeros elsewhere. As a onsequene,

L−1
ε (JA+Tε)Lε is the Jordan matrix that follows from JA by replaing the (s1+ s2+ · · ·+

sh)× (s1 + s2 + · · ·+ sh) prinipal submatrix J(λ0, s1)⊕ J(λ0, s2)⊕ · · · ⊕J(λ0, sk) by the

Jordan blok J(λ0, s1 + s2 + · · ·+ sh) ∈ C
(s1+s2+···+sh)×(s1+s2+···+sh)

.

De�ning JAε = L−1
ε (JA + Tε)Lε and Aε = (RALε)

[
L−1
ε (JA + Tε)Lε

]
(RALε)

−1
, we

observe that A = Aε − RATεR
−1
A with ‖A − Aε‖2 = ‖RATεR

−1
A ‖2 ≤ εsk‖RA‖2‖R

−1
A ‖2.

Moreover, the matries A and Aε have the same harateristi polynomial; in other words,

they have exatly the same eigenvalues with the same algebrai multipliities.

De�nition A.1. Let A,B ∈ C
n×n

be two matries with the same harateristi polyno-

mial. We say that the Jordan struture of A assemblingly majorizes the Jordan struture

of B if there exist Jordan anonial forms of A and B, with the Jordan bloks of eah

eigenvalue of A not neessarily in an noninreasing order of sizes,

A = RAJAR
−1
A and B = RBJBR

−1
B ,

suh that for eah eigenvalue λ0 ∈ σ(A) = σ(B), the assoiated Jordan bloks of A,
JA(λ0, si) (i = 1, 2, . . . , p), and of B, JB(λ0, ri) (i = 1, 2, . . . , q), satisfy p ≤ q and

s1 = r1 + · · ·+ rξ1 , s2 = rξ1+1 + · · · + rξ2 , . . . , sp = rξp−1
+ · · · + rq

for some 1 ≤ ξ1 < ξ2 < · · · < ξp−1 < q.

For example, onsider the matries

A =







λ0 1 0 0
0 λ0 1 0
0 0 λ0 0
0 0 0 λ0






, B =







λ0 1 0 0
0 λ0 0 0
0 0 λ0 0
0 0 0 λ0







and C =







λ0 1 0 0
0 λ0 0 0
0 0 λ0 1
0 0 0 λ0






.

Then the Jordan struture of A assemblingly majorizes the Jordan struture of B but not

the Jordan struture of C.

By De�nition A.1 and the above disussion, the next results follow readily.
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Proposition A.2. For any matrix A ∈ C
n×n

and any δ ∈ (0, 1), there is a matrix Â ∈
C
n×n

suh that the Jordan struture of Â assemblingly majorizes the Jordan struture of

A, and ‖A− Â‖2 ≤ δ.

Corollary A.3. For any matrix A ∈ C
n×n

and any δ ∈ (0, 1), there is an Â ∈ C
n×n

suh that Â and A have the same harateristi polynomial, all the eigenvalues of Â have

geometri multipliity 1 (i.e., eah eigenvalue of Â orresponds to exatly one Jordan blok

of J
Â
and has a Jordan hain of length equal to the algebrai multipliity of the eigenvalue),

and ‖A− Â‖2 ≤ δ.

Consider now an n×n matrix polynomial P (λ) = Amλm+Am−1λ
m−1+ · · ·+A1λ+A0

as in (1), with nonsingular leading oe�ient Am. Any eigenvalue of P (λ) of geometri

multipliity g has g maximal Jordan hains assoiated to g (nonzero) eigenvetors, with

total number of eigenvetors and generalized eigenvetors equal to the algebrai multipli-

ity of this eigenvalue. The largest length of Jordan hains of P (λ) orresponding to an

eigenvalue λ0 ∈ σ(P ) is known as the index of annihilation of λ0 [6℄. An n × nm matrix

XP with olumns maximal Jordan hains of P (λ) and an nm×nm Jordan matrix JP form

a Jordan pair (XP , JP ) of P (λ) [3℄ if the matrix

SP =








XP

XPJP
.

.

.

XPJ
m−1
P








∈ C
nm×nm

is nonsingular and

AmXPJ
m
P +Am−1XPJ

m−1
P + · · ·+A1XPJP +A0XP = 0.

The index of annihilation of an eigenvalue λ0 ∈ σ(P ) oinides with the size of the largest

Jordan bloks of JP orresponding to λ0; for details on the Jordan struture of matrix

polynomials, see [3, 11℄.

By Theorem 2.4 in [3℄, we have the following proposition.

Proposition A.4. Let (XP , JP ) be a Jordan pair of the matrix polynomial P (λ) in (1), and
let S−1

P = [V1 V2 · · · Vm ], V1, V2, . . . , Vm ∈ C
n×n

. Then P (λ) admits the representation

P (λ) = Amλm −AmXPJ
m
P S−1

P








In
λIn
.

.

.

λm−1In








= Amλm −AmXPJ
m
P

(
V1 + V2λ+ · · ·+ Vmλm−1

)
.
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By the previous disussion on matries and Proposition A.2, there are appropriate

matries Tε, Lε ∈ C
nm×nm

suh that the nm × nm Jordan matrix ĴP = L−1
ε (JP + Tε)Lε

assemblingly majorizes JP and the distane ‖JP − ĴP ‖2 is arbitrarily small. Furthermore,

the representation of P (λ) in Proposition A.4 yields

P (λ) = Amλm −AmXP (LεĴPL
−1
ε − Tε)

m








XP

XP (LεĴPL
−1
ε − Tε)

.

.

.

XP (LεĴPL
−1
ε − Tε)

m−1








−1 






In
λIn
.

.

.

λm−1In








= Amλm −AmXPLεĴ
m
P








XPLε

XPLεĴP
.

.

.

XPLεĴ
m−1
P








−1 






In
λIn
.

.

.

λm−1In







− Ê(λ)

for some matrix polynomial Ê(λ) = Êm−1λ
m−1 + Êm−2λ

m−2 + · · · + Ê1λ+ Ê0. Without

loss of generality, we assume that Tε and Lε are hosen suh as the matrix

ŜP =








XPLε

XPLεĴP
.

.

.

XPLεĴ
m−1
P








∈ C
nm×nm

is nonsingular; by ontinuity, this is true for su�iently small ε > 0.

By Theorem 7.8 in [3℄, (XPLε, ĴP ) is a Jordan pair of the perturbed matrix polynomial

Q̂(λ) = P (λ) + Ê(λ) = Amλm −AmXPLεĴ
m
P








XPLε

XPLεĴP
.

.

.

XPLεĴ
m−1
P








−1 






In
λIn
.

.

.

λm−1In







.

The di�erene Ê(λ) = P (λ)− Q̂(λ) = Êm−1λ
m−1 + · · ·+ Ê1λ+ Ê0 is written

Ê(λ) = AmXP







LεĴ

m
P







XPLε

XPLεĴP
.

.

.

XPLεĴ
m−1
P







−1

− Jm
P







XP

XPJP
.

.

.

XPJ
m−1
P







−1













In
λIn
.

.

.

λm−1In






,
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whih means that for every j = 0, 1, . . . ,m− 1,

Êj = AmXP







LεĴ

m
P







XPLε

XPLεĴP
.

.

.

XPLεĴ
m−1
P







−1

− Jm
P







XP

XPJP
.

.

.

XPJ
m−1
P







−1
















0
.

.

.

In
.

.

.

0










← j-th position .

As a onsequene,

‖Êj‖2 ≤ ‖Am‖2‖XP‖2

∥
∥
∥
∥
∥
LεĴ

m
P








XPLε

XPLεĴP
.

.

.

XPLεĴ
m−1
P








−1

− Jm
P








XP

XPJP
.

.

.

XPJ
m−1
P








−1

∥
∥
∥
∥
∥
2

= ‖Am‖2‖XP‖2

∥
∥
∥
∥
∥
LεĴ

m
P L−1

ε








XP

XPLεĴPL
−1
ε

.

.

.

XPLεĴ
m−1
P L−1

ε








−1

− Jm
P








XP

XPJP
.

.

.

XPJ
m−1
P








−1

∥
∥
∥
∥
∥
2

= ‖Am‖2‖XP‖2

∥
∥
∥
∥
∥
(JP + Tε)

m








XP

XP (JP + Tε)
.

.

.

XP (JP + Tε)
m−1








−1

− Jm
P








XP

XPJP
.

.

.

XPJ
m−1
P








−1

∥
∥
∥
∥
∥
2

. (26)

For su�ient small ε > 0, the upper bound (26) an be arbitrarily small, and thus,

Proposition A.2 and Corollary A.3 are generalized to the ase of matrix polynomials.

Proposition A.5. Let P (λ) be an n× n matrix polynomial as in (1), and let the weights

w0, w1, . . . , wm−1 be positive. Then, for any δ ∈ (0, 1), there is an n×n matrix polynomial

P̂ (λ) ∈ B(P, δ, w), with leading oe�ient Am, suh that the Jordan matrix J
P̂
assemblingly

majorizes the Jordan matrix JP .

Corollary A.6. Let P (λ) be an n × n matrix polynomial as in (1), and let the weights

w0, w1, . . . , wm−1 be positive. Then, for any δ ∈ (0, 1), there is an n × n matrix polyno-

mial P̂ (λ) ∈ B(P, δ, w), with leading oe�ient Am, suh that detP (λ) = det P̂ (λ) and

all the eigenvalues of P̂ (λ) have geometri multipliity 1 (i.e., every eigenvalue of P̂ (λ)
orresponds to exatly one Jordan blok of J

P̂
and has a Jordan hain of length equal to

the algebrai multipliity of the eigenvalue).

Example A.7. (See Example 14.4 of [11℄) The matrix polynomial

P (λ) =

[
λ2 −λ
0 λ2

]

=

[
1 0
0 1

]

λ2 +

[
0 −1
0 0

]

λ

27



has exatly one eigenvalue, λ0 = 0, and a Jordan pair of the form

(XP , JP ) =





[
1 0 0 0
0 1 0 1

]

,





0 1 0
0 0 1
0 0 0



⊕
[
0
]



 .

Moreover,

SP =

[
XP

XPJP

]

=







1 0 0 0
0 1 0 1
0 1 0 0
0 0 1 0







and S−1
P =

[
XP

XPJP

]−1

=







1 0 0 0
0 0 1 0
0 0 0 1
0 1 −1 0






.

For ε = 10−3
, we onsider the set of positive weights w = {w0, w1, w2} = {1, 1, 1} and the

matries

Lε =







1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 109







and Tε =







0 0 0 0
0 0 0 0
0 0 0 10−9

0 0 0 0






,

and we de�ne

ĴP = L−1
ε (JP + Tε)Lε =







0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0






.

It is straightforward to verify that the pair

(XPLε, ĴP ) =







[
1 0 0 0
0 1 0 109

]

,







0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0













is a Jordan pair of the perturbed matrix polynomial

P̂ (λ) =

[
1 0
0 1

]

λ2 +

[
0 −1

10−9 0

]

λ+

[
0 0
0 −10−9

]

∈ B(P, 10−9, w).
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