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Abstract

Consider an n x n matrix polynomial P(\) and a set ¥ consisting of k < n com-
plex numbers. Recently, Kokabifar, Loghmani, Psarrakos and Karbassi studied a
(weighted) spectral norm distance from P()) to the n x n matrix polynomials whose
spectra contain the specified set 3, under the assumption that all the entries of ¥ are
distinct. In this paper, the case in which some or all of the desired eigenvalues can
be multiple is discussed. Lower and upper bounds for the distance are computed, and
a perturbation of P()) associated to the upper bound is constructed. A detailed nu-
merical example illustrates the efficiency and validity of the proposed computational
method.
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1 Introduction

Assume that all the eigenvalues of a matrix A € C"*"™ are simple. Computing the distance
from A to the set of n x n (complex) matrices having multiple eigenvalues is known as
Wilkinson’s problem. Wilkinson introduced this problem in [22] and computed bounds for
this distance, known as Wilkinson’s distance, in [23H26]. Demmel [2] and Ruhe [I9] also
calculated alternative bounds for Wilkinson’s distance. In 1999, Malyshev [I4] obtained a
singular value optimization characterization for the spectral norm distance from A to the
set of all n x n complex matrices that have a fixed multiple eigenvalue; his work can be
construed as a solution to Wilkinson’s problem.

Expanding and improving the methodology used in [14], Gracia [4] and Lippert [13]
studied a spectral norm distance from A to n x n complex matrices with two prescribed
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eigenvalues. Moreover, a spectral norm distance from A € C"*" to the set of n xn matrices
with k& < n fixed eigenvalues is studied, geometrically by Lippert [12], and computationally
by Kokabifar, Loghmani and Karbassi [8]. Papathanasiou and Psarrakos [17], Kokabifar,
Loghmani, Nazari and Karbassi [7], and Psarrakos [I8] studied a (weighted) spectral norm
distance from an n x n matrix polynomial P()) to the n x n matrix polynomials that have
a prescribed multiple eigenvalue, two prescribed distinct eigenvalues, and a prescribed
eigenvalue of specified algebraic multiplicity, respectively. The results achieved in [I7]
and [7] can be interpreted as generalizations to matrix polynomials of results obtained
in [14] and [4[13], respectively.

Recently, Kokabifar, Loghmani, Psarrakos and Karbassi [9] extended the results of [7]
to the case of £ < n distinct eigenvalues. However, a question that arises in a natural
way is the following: What one can say if some of the desired eigenvalues are multiple? In
this paper, we investigate this problem, and obtain an upper and a lower bound for the
distance from an n X n matrix polynomial P(\) to matrix polynomials that have k < n
given eigenvalues which are not necessarily distinct, generalizing and unifying results of
[7I718]. To achieve this, we need to modify definitions, lemmas and techniques presented
in [7-917) 1]

In the next section, we review some standard definitions on matrix polynomials, and
also give some new definitions which are necessary for the remainder. In Section [, we
construct an admissible perturbation of P(\) that has the desired k eigenvalues, by ex-
tending and modifying the techniques presented in [THIITI8]. In Section @] we apply the
results of Section Bl to compute an upper and a lower bound for the distance. Finally, in
Section Bl we give a comprehensive numerical example to illustrate the proposed method.
Some partial results on the behavior of the Jordan structure of matrix polynomial under
perturbations, which are necessary for the construction of the lower bound, are presented
in an appendix.

2 Preliminaries

For Ay, Ay,..., Ay € CP" with A, # 0, and a complex variable \, we define the matriz
polynomial

PA) = ApA™ 4 Ay A" b A Ag =D AN (1)
7=0

The spectral analysis and the Jordan structure of P(X) leads to the solutions of the higher
m m—1
order linear systems of differential equations Amd dﬁr(bt) + A1 d dtm%t) +-- -+ Aou(t) = f(t)

(where f(t) is a given C"-valued piecewise continuous function of the real variable ¢) and of
difference equations A, tujim+Am—1Ujtm—1+---+Aou; = fj (where { fo, f1,... } isa given




sequence of vectors in C" and {ug,u1, ... } is a sequence to be found) [3]. As a consequence,
in the last decades, the study of matrix polynomials has received much attention of several
researchers and has met many applications in diverse areas of applied mathematics such as
boundary value problems, systems theory and control, vibrating and gyroscopic systems,
wave theory, and stochastic models. Suggested references for the theory and applications
of matrix polynomials are [3][5L10LT5,16L20L21] and the references therein.

Suppose that for a scalar A\g € C and a nonzero vector v € C", it holds that P(\g)v = 0.
Then the scalar A is called an eigenvalue of P(\), and the vector v is known as a (right)
eigenvector of P(\) corresponding to Ag. Similarly, a nonzero vector u € C" is known as
a left eigenvector of P(A) corresponding to A\g when u*P(Ag) = 0. The spectrum of P(\),
denoted by o(P), is the set of its eigenvalues. The multiplicity of an eigenvalue Ay € o(P)
as a root of the scalar polynomial det P(A) is called the algebraic multiplicity of Ao, and
the dimension of the null space of the (constant) matrix P(\g) is known as the geometric
multiplicity of A\g. The algebraic multiplicity of an eigenvalue is always greater than or
equal to its geometric multiplicity. An eigenvalue is called semisimple if its algebraic and
geometric multiplicities are equal; otherwise, it is known as defective. Throughout this
paper, it is assumed that:

(a) The coefficient matrix A, is nonsingular; this implies that P(\) has exactly mn finite
eigenvalues, counting algebraic multiplicities.

(b) The spectrum o(P) has exactly nm entries, where each eigenvalue appears as many
times as its algebraic multiplicity.

The singular values of P(\) are the nonnegative roots of the eigenvalue functions of
P(A\)*P()\), ordered in non-increasing order, and they are denoted by

s1(P (X)) 2 52 (P(A) = -+ = 8 (P(A) > 0.

Let \gp be an eigenvalue of P()\), and let ¢ be a positive integer less than or equal to
the algebraic multiplicity of Ag. If there exist ¢ vectors vq,vs,..., vy, With v # 0, such
that

P()\())’Ul = 0,
1
ﬁpl()\o)vl + P()\())’UQ = 0,

1 1
5]3”()\0)1)1 + FPI()\Q)UQ + P()\())’Ug = 0,

qg—1

Lo
Zﬁp()()\o)vqfi = 0,
i=0



where P()()\) denotes the i-th derivative of P()\) with respect to \, then the set {vy, va, ..., v,}
is called a (right) Jordan chain of length q of P(\) corresponding to Ag. The vector vy (# 0)

is clearly an eigenvector of P(\) associated to Ag, and the vectors vy, vs, ..., v, are known
as generalized eigenvectors of )y corresponding to the eigenvector vy. When m > 1, the
vectors in a Jordan chain need not be linearly independent [3, Subsection 1.4].

For convenience, for every r = 1,2, ..., q, we say that the matrix (le)!P(Tfl)()\o) is the

r-th Jordan chain coefficient of P(\) corresponding to A\g. In addition, it is assumed that
we are given a set of s distinct scalars py, pa, ..., us € C, with each p; having multiplicity
equal to ¢; > 1 (i =1,2,...,s), where ¢ + g2 + - - - + ¢s = k < n. This set is denoted by

EZ{Hl)"'aMl)HQ)"'aH?)"'a,U’S)"'aMS}; (2)
—_—
q1-times qo-times qs-times
i.e., each p; appears exactly ¢; times (i = 1,2,...,s). A class of additive perturbations of

P(\), an associated spectral norm distance from P()) to n x n matrix polynomials whose
spectra contain the set ¥ in (), and an nk x nk matrix which is crucial for our discussion,
are described in the next three definitions.

Definition 2.1. For a matrix polynomial P(\) as in (), and for arbitrary matrices
Ao, A1, ..., Ay € CP") consider (additive) perturbations of P(\) of the form

Q) =D (A + AN =D AN+ AN =P +AN). (3)
§=0 §=0 j=0
Also, for € > 0 and a set of given nonnegative weights w = {wg, w1, ..., wy, }, with wy > 0,

define the class of admissible perturbed matrix polynomials
B(Pe,w) ={Q()\) asin @) : [|A;]l, <ewj, j=0,1,...,m}
and the scalar polynomial w(\) = W, A™ 4 Wy A 4 -+ wi A+ w.

Definition 2.2. For a matrix polynomial P(\) as in () and a set of complex numbers 3
as in ([2), the distance from P()\) to the set of matrix polynomials whose spectra include
3} is defined and denoted by

D,(P,Y) =min{e > 0:3Q(X\) € B(P,e,w) such that ¥ C 0(Q)} .

Definition 2.3. Let P(\) be a matrix polynomial as in (IJ), and let a set of complex
numbers ¥ as in (@) be given. For any nonzero scalar v € C, define the nk x nk block
lower triangular matrix

Fiia 0 o 0 0
Fsq o o -e- 0 0
F’Y[Pa Y] = ,
Fp 11 Fra2 - Frap—1 O
Fiq Fpo - Frp—1 Fip |
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in which:

(i) All the blocks F;; (1 <j <i<k)aren X n.

(ii) The (main) diagonal blocks of F, [P, Y] are given by
Fipo=-=Fyq=P), Fatra =" =Foutea+te = Plu),

Foitotgotaqirgor 41 = = Fog i tqeq+trger+as = P(Hs)-

ey

(iii) For all p; # pj, set 05, = ﬁ The blocks below the diagonal are given by the

recursive formula (starting from the diagonal blocks)

[ 7#=J(the next Jordan chain coefficient of Fio1j) if Fio;=Fij,
I 0 (Fi1j — Fij+1) if Fio1;%# Fijt1

(Here and elsewhere, we say that F;_; ; = F; j;1 if and only if the i-th block-row and the
Jj-th block-column of the matrix F,[P,X] correspond to the same desired eigenvalue.)

For example, if ¥ = {1, pu1, o2, 13, p3, g3}, then

Fri 0 0 0 0 0
Foy Fos 0 0 0 0
F31 F39 Fz3 0 0 0
R Py = | 731 732 s,
2B 2] Fy1 Fyp Fy3 Fig O 0
Fs1 Fs2 Fs3 Fs4 Fss5 0
Fs1 Feo Fe3z Fesa Fss Fee
P(u1) 0 0 0 0 0 |
VP (p1) P(p) 0 0 0 0
o P(un)— =) Pp1)~ P(12)
=TT lurmm P(u2) 0 0 0
Fyn—Fio p B -t ) P(y12) ~ P(y3) p (4)
1 —p3 v M1 —H3 PZI2) ga;l)tz (MS) 0 0
Fi1—Fs, Fio—F g =P (us)
Bl Bratoo Ve V) Plus) 0
P(M2)*P(H'j)7pl(u) .
Fs51—Fs2 F52—Fg3 3 T _r 2('”3) 2 on /
S e S arrrerrra v Er— — 3P (na) yP'(us) Plus) |

3 Construction of a perturbation

In this section, an n x n matrix polynomial A, () is constructed such that the spectrum
of the perturbed matrix polynomial Q~(\) = P(\) + A ()) contains a given set ¥ as in



[@). In the remainder, without loss of generality, it is assumed that the parameter 7 is real
positive [I8]. Moreover, for convenience, set p = nk — k + 1.

For the construction of the desired perturbation of P(\), consider a pair

u1(7) v1(7)
u(y) = UQ:(FY) ;o) = UQEFY) e C* (uj(v),vj(y) € C", j=1,2,...,k)
ug(7) v (7)

of left and right singular vectors corresponding to the p-th singular value of matrix F, [P, ¥],
sp (Fy [P,X]). By the definition of u(v) and v(v), it follows

B[P E]o(y) = sp (B[P, X]) u(v), (5)

or equivalently, the following matrix equations hold:

Firavi(y) = s, (Fy[P,X]) ui(7),
Fyqv1(y) + Fapua(y) = s, (Fy[P,X]) uz(7),
: : (6)
Fip_1qv1(7) + Fp—1002(y) + -+ Femip—1vp—1(y) = 8, (FY[P,X]) ug—1(7),
Fy1v1(y) + Frova(y) + - + Frpo1v—1(7) + Frapvoe(v) = s (FY [P, 3]) ug (7).

Let I:IY [P, ¥] be the nk x nk block matrix (with blocks of order n) that has the (out of
fractions) Jordan chain coefficients of P(\) exactly at the same positions as F, [P, ¥] and
zero blocks elsewhere, and denote by I,,x, the n x n identity matrix. By the definition of
matrix F,[P, ] (see Definition [23)), it is apparent that each nonzero block Fj ; (i > j) of
F,[P,%] is either, a Jordan chain coefficient, or a linear combination of the Jordan chain
coefficients lying in the i-th row and in the j-th column. As a consequence, by applying
the Gauss elimination in an appropriate way, all nonzero blocks F; ; (¢ > j) which are not
Jordan chain coefficients can be vanished. In particular, there exist nk x nk elementary
block matrices (with blocks of order n), i.e., matrices which are equal to Ipkyxni or differ
from it by one single elementary block-row or block-column operation,

Ey1,E31,E39,...,Ex 11, Ep_12,--, Ex—1k—1, Bk 1, B2y - o, Ep -1 (block-row operations)
and

Eg’l, E3’1, Egyg, e 7Ek71,1a Ek*1,27 e 7Ek71,k71a Ek71, Ek72, Ce 7Ek,k71 (block—column operations),



such that:

the (k,1)-th block of Ejy 1 F,[P,¥]E}, is either zero or a Jordan chain coefficient,

the (k,1)-th and (k,2)-th blocks of EjoFEy1F,[P, Z]EklekQ are either zero or

Jordan chain coefficients,

the (k,1)-th, (k,2)-th, ..., (k,k — 1)-th and (k — 1,1)-th blocks of Ej_11E} 1

EyoEy 1 Fy [P, E]EklekQ . Ek,k,lEk,m are either zero or Jordan chain coefficients,

the matrix H E;; | Fy[P, %] E;; | is equal to
i=2,3,...,k i=
j=i—1,i—2,...,1 i=1,2,...,i—1

~

E[P,3).

The symmetry of the divided differences in part (iii) of Definition 23l and the standard
properties of elementary matrices imply that F; ; = EZ_ ]-1, 1 < j < i < k. Hence, if we
define the nk x nk block upper triangular matrix

T = FEy1kE32FE31 - Ep_1p—2 - Er_120E, 11 Ekk—1 - EpoFEy

to1 1, I, 0 0 0
t311n ts2ln I, o 0 0
te11dn th—12ln tho13l, - I, 0
tk1ln ti2In tesln - tepaln In |
then it follows
TF’YI:Pa E]T_l = F’Y[P7 E] R F’Y[P7 E] — T—lFA!,YI:P’ E]T (7)

Remark 3.1. Forevery r=1,2,...;s, i1=q+¢@+ +¢a1+l,qg+q¢+ - -+qg_1+
2,...,1+q+-+q and 1 < j <i(whereforr =1 weset ¢ +q2+- -+ ¢g—1 =0),
the entry ¢; ; is the (scalar) coefficient of P(u,) in the (i, j)-th block of matrix F [P, X]. In
particular, forevery r = 1,2,...,sand 1 + @@+ -+ ¢ 1+1<j<i<q+q@+ - -+qr,
it holds that E; ; = I,, and t; ; = 0.



Remark 3.2. In the case where all the desired eigenvalues are assumed to be simple,
ie,whens=Fk ¢ =q = =¢q,=1and ¥ = {1, u2, 3, ..., 1}, the entries ¢; ; of
matrix 7" are given explicitly in [9]. Moreover, if there is only one desired eigenvalue of
algebraic multiplicity at least k (< n), ie.,if s=1,¢ =k and ¥ = {p1, o1, 11, .-, 1},
then T = I,,; (see also [18§]).

For example, consider the matrix F, [P, X] in ({@). Then, it is straightforward to verify
that for the matrix

T = IsE32E31E13F49E4116Es53Es59E5116l6Es3LEs2Es1
1, 0 0 0 0
0 1, 0 0O 0
_ 0% o1 —01,215 I, 0 0
B —03 302,31, 01,302,315, —023l, I, O
—(29%’39273 + 9%739%’3)In (9%,392,3 + 91,39%73)171 —9(%’3In 0o I,
_(39%,392,3 + 29%393,3 + 9%,39:23,3)171 (9%392,3 + 9%,393,3 + 91,39:23,3)171 _95,3In 0 0
it holds that
I I, 0 0
0 I, 0
fQ%’QIn 9172[71 I,
(03 302,3 — 07 202,3) 1, (01,2023 — 01,3023) ], 02,31,
(=03 505 3 4 207 3023 + 07 303 5) 1, ) (=03 302,3 — 01,303 5 + 01203 51, 03 31
L (—9%,293,3 + 39411,392,3 + 29?,393,3 + 9%,39:23,3)171 (_Hf,392,3 - 9%,395,3 - 91,395,3 + 91,29:23,3)171 93,3171
and
C Pu) 0 0 0 0 0
YP' () P(pa) 0 0 0 0
A 0 0 Plus) 0 0 0
_ -1 _
E[PS=TE[PST = | . 6" Plu) . .
0 0 0 ZP/(,%) P(ps) 0
L0 0 0 HP"(us) vP'(ps) Pus)

Now, by () and (@), it follows
T_lﬁv[Pa E]Tv(y) = sp (Fy[P, X)) u(v),

or equivelantly,

~

B PE(To(y)) = sp (B[P, X]) (Tu(v)) -

Soococoo

coffococo

ofocoococo
SToococoo




Hence, for the vectors

?}1(7)
a(y) = Tuly) = uz@ eC™ (i;(7) €C, j=1,2,....k)
Qg (y)
and
?:11(7)
o(y) = To(y) = UQ@ eC™ (0;() €C, j=1,2,....k),
o (7)
the system ([@)) is written
P(pa)o1(y) = sp (Fy [P, X]) 41 (7),
VP (p1)01(7) + P(p1)02(v) = s, (Fy [P, X]) (),

“+ P(u1)g, (7) = 5, (Fy [P, X]) g, (),

-1 .
D P () () + -

P(p2)0g,41(7)
VP! (112)0g, +1(7) + P(p2)0g, +2(7)

7!12*1

mp(qzil)(/@)@ql—f—l(’ﬂ + o+ P(p2)0g,44,(7) = Sp (Fy [P, X]) gy 44, (7)

P(Ns)@q1+---+qsf1+1(7) =35p (Fw [P, E]) 7~A’Jq1+
'YP,(NS)Uq1+---+qs_1+1('V) + P(:“«S)Uq1+---+qs_1+2('7) = Sp (Fw [P, X]) Ugq; +

P(q.s_l) (:U’S)@CI1+--'+qs—1+1(7) + o + P(H$)®Q1+---+qs—1+% (IY) = Sp (ny [P’ E]) 'llq1+-

7Qs—1
(gs—1)!

Assume that the k vectors vy (), v2(7), ...,

(11)

g1 +1(7)5
tga-1+2(7);

~+qs—1+Gs (7)-

vk () € C™ are linearly independent. Then,

for every i = 1,2,...,k, the vector 9;(vy) is nonzero, and it is a linear combination of the
vectors v1(7y),v2(7),...,vi(7y), where the coefficient of v;(v) in this combination is equal
to 1. The k vectors 01(7), 02(7),...,0x(7) play a leading role in computing the desired
perturbation A, (\).

Define the n x k matrices

U(y) = [t () d2(y) -+ ()] and V(y)=[01(y) 01(y) - dk(7)],



and observe that the linear independence of the vectors vi(7y),v2(7),...,vE(y) implies
also that rank(V(v)) = k and V(y)'V(y) = Ix, where V() denotes the Moore-Penrose

pseudoinverse of V(7).
We are constructing the desired perturbed matrix polynomial Q~(\) = P(A) + A, ()

by assembling a perturbation A, () = > A, ;M in which
j=0

A ! ZS: ! ( i >j A, j=0,1 (12)
7‘ =~ w ) .] = ) 7"'7m7
s =\ w(w) \wl) )T

=1

for some n x n matrix A, that has to be computed.

Denoting by A(Wp ) (A) the p-th derivative of A, () with respect to A, we have

m p—1
AP N =S Aa 5  TG-9 | ¥
Jj=p £=0

Thus, substituting A ; into A(Wp ) (M) and calculating the derivative for the scalar u, (r =
1,2,...,s) yield

1 — o 1 [L; i n .
AY ()= 13 (Zwumn(ﬁa) p ) [LG-9)uw A,

i=1 £=0

Brp

Motivated by this relation, for r =1,2,...,s and p =0,1,...,q,, we define the quantities

_1 m s 1 i; 7 o p—1 - .
Bro =5 2 (wa)(w) & ) [LG=9 fu.

i=1 £=0

J=p

where, for convention, we set |Z ?| = 0 whenever u; = 0. In particular, for p =0,
1

IR ECNES 1 i 7 I .
&’O‘szlz (wum)(w“’")) ] b (13)

j=0 Li=1

Hence, we have

A’(yp)(lu’T) = IBT',pA’ya r= 152)' S, P = 0) 15 sy Qre (]-4)

10



To construct the matrix A, assume that the quantities 819, 82,0, ..., 8s,0 are nonzero.
Then, for any r = 1,2,...,s, define the ¢, x g, Toeplitz upper triangular matrix

T T, 53 i
e TV CRE G * §
1
Ml = [MW} _| Y 0 Bro
J . ﬁr, Br 2 Br
0 ' _’763,; 2! 522 + 631
1 Brl
Br,O _75
0 0 0 0 ﬁr,o |
whose diagonal entries Ml[q,MQ[r}z, . .,Mq[ﬂqr are all equal to ﬁ, and the entries above
the (main) diagonal are given by the following recursive formula:
ot 1<i<j< 15
YT T & s'ﬁﬂf e 1Si<isa (15)

Define also the k£ x k block diagonal matrix M = diag {M[l], M2 M) } Eventually,
the n x n matrix A, that we are looking for, is of the form

Ay = —s, (Fy [P, X]) U('Y)MV('Y)T (16)
Consider the perturbation

ZA N = Z [ ; <w<|1ui|> (i )j““) A”] .

In the remamder of this section, it will be obtained that the prescribed scalars p1, po, . . ., s
are eigenvalues of the perturbed matrix polynomial

m

Qv(\) = PO) +A,(0) =D (4 + A ) N (17)
j=0
with their multiplicities greater than or equal to qi,q2,...,gs, respectively. In particular,
for v > 0, it can be proved that the sets
. 1, 1 . 1
{80, 206, Z 00 i
. 1. 1 1
Bgy+1(7), ;Uq1+2(7) 2 0 gy +3(7) -+ P Bgr+a2(7) ¢
: (18)
. 1. 1 1
g 4--tgsr+1(7), ;Uq1+---+qs_1+2(’7) 2 Db +3(0), - quﬁ +a:(7)

11



form s Jordan chains of @~ (), corresponding to its eigenvalues pq, pia, . . . , pis, respectively.

In order to avoid unnecessary prolix computations, we restrict ourselves in proving
that the vectors 01 (7), %’f)g ), VTlfl@ql () form a Jordan chain of Q(\) corresponding
to p1 as one of its eigenvalues; the extension to the remaining scalars ps, us, ..., fs is
straightforward. For this purpose, in the system (III), we consider the p-th equation (1 <
p < q1) of the subsystem that corresponds to p1. Since the matrix V(fy) is assumed to be
full column rank, we have

AV () = =5, (B [P,E) U(1)M

In addition, since we are dealing with the first ¢; equations of system (IIJ), we only
consider the first block of matrix M, MW which is of size ¢; x ¢1, and the vectors
1(7y), 42(7), ..., Ug, () and 01(7), 02(7), - .., Ug, (7). For this case, we have

Ay [01(7) 2(7) -+ 0y (1)] = =8, (Fy [P.E]) [@a(y) @a(y) -+ dg, (7)] M.

After doing these matrix multiplications, it is straightforward to see that the j-th column
of the result in the left-hand side is Ay0;(7y) (j = 1,2,...,¢1), while the j-th column of the

j
result in the right-hand side is —s, (F, [P, X]) > Ml[lj]ﬂz('y) Replacing j with p — j yields
i=1

. . .
Aytp—j(7) = —sp (Fy [P, X] ZMZp] —;u ), J=p—Lp—2,....p—q (19)

By the p-th equation in (IIl), (I4) and (I9), it follows that the perturbed matrix
polynomial Q- ()) in (1) satisfies

p—1 — p—1

"YJ . . ’)’] . N
> i) = }0: POm)sp-0) + 3y A7 ) 5(2)
J]= = 7=

= (F [P.X])d +Z Bl,g ~+Up— J('Y)

= Sp(Fw[PaE])ap(’Y)"i'Z(%ﬁl,j <_ PZ ZMJ? J i >>
j=0 : i=1

p—1

= 5 (B [P.E) iy(7) — 5, (F, [P, ]Z< ﬁuz ) (20)

J=0

12



In (20, we observe that

Z( ﬁuz ,p]z‘ > = 5102 +’Yﬁ11z Zplz
i=1

+/81,p 2 'Zlel] l

Vp_l 1 .
+51,p—1MM1[&u1(’Y),

Denoting the coefficients of @ (v), 42(7), ..., 4p—1(y) in @0) by aq,as,...,ap_1, respect-
ively, for any ¢ = 1,2,...,p — 1, we have

e i)
0 = —s, (R[PSS Lol
e=0 >
) S
= =5, (Fy [P, X)) BroM;, — sp (Fy [P, X]) ?ﬁlvfMi,p—f
=
1 2o ) — 7 0
= 5 (F'y [P, X]) B1,0 _/8— _|51,§Mz,p7§ —Sp (F'y [P, X)) yﬁl My, ¢
1,0 = S = S

= 0.

Moreover, it is apparent that
1
—sp (Fy [P, X)) 51,0M1£}1]9 = —s, (Fy [P, X]) ﬁl,Om = —s, (I [P,X]).

As a consequence, for any p € {1,2,...,q}, it holds

g
> %Q@(m)@p—j(v) = 5p (I [P, X]) p(7) = 5, (B [P, 5]) () = 0.
j=0

Dividing this relation by !~ yields
p—1 1 ‘
> ﬁQ(J)(ul) (VP 8,5(y) =0,
j=0
which means that ;1 is an eigenvalue of algebraic multiplicity at least g1 of Q~(\), with

{0100, Zaat). i), s i)}
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as a corresponding Jordan chain.

The next theorem summarizes the results obtained so far.

Theorem 3.3. Let P(\) be a matriz polynomial as in ([{l), and let X be a set of prescribed
scalars as in (@) such that the quantities 10,520, .-,0s0 defined by [I3) are nonzero.
Then, for any v > 0 such that the vectors vi(7y),v2(7),...,vk(7y) are linearly independent,
the scalars i1, pio, ..., jts are eigenvalues of the perturbed matriz polynomial Q~(X\) given
by (IT), with algebraic multiplicities greater than or equal to qi,qa,...,qs, respectively.
Moreover, the sets in (I8)) are Jordan chains of Q(\) corresponding to i1, pa, ..., fis,
respectively.

Remark 3.4. The discussion in this section and the construction of the perturbed matrix
polynomial Q~(A) in (I7) generalize main results of [4,[I8]; in particular, they yield the
results of [, Section 3] when s = k(< n), and the results of [I8 Section 3| when s = 1.

Remark 3.5. As mentioned in [9[I8], it is not easy to obtain conditions ensuring that
the quantities 5 9, 52,0, .., 85,0 are nonzero and/or the vectors v (), v2(7),...,vk(y) are
linearly independent. However, in all our experiments, these two required conditions hold
generically.

4 Bounds for D,(P,Y)

In this section, we give an upper and a lower bound for the spectral norm distance D,,(P, )
introduced in Definition 22l First, we see that an upper bound for D, (P, ¥) is directly ob-
tained by the construction of the perturbed matrix polynomial Q()) in (I7). In particular,
by ([I2)), it follows

s

Ws 1
A, ll, < 2 A, §=0,1,....m.
T Zw(lu-l) T2

i=1 v

Assume that 8;0 # 0, i = 1,2,...,s, and the vectors v (y),v2(7),...,vk(y) are linearly
independent for some v > 0. Recalling Definition ] the distance D,, (P, Y) satisfies

D,(P.%) < (Z #) ™~N (21)

s \ & wlli))

In the remainder of this section, a lower bound for D, (P,) is computed. At this
point, it is necessary to recall that having an eigenvalue p; of the matrix polynomial P()\)
with algebraic multiplicity ¢; does not necessarily mean that p; has a Jordan chain of length
gi- Actually, it means that if the eigenvalue p; has geometric multiplicity g;, then P())
has g; Jordan chains associated to g; (not necessarily linearly independent) eigenvectors,

14



with total number of vectors equal to the algebraic multiplicity ¢; [BJI0,[I5]. Thus, some
concepts and discussions are needed to cope with this difficulty by considering what is
presented in Appendix A. Moreover, to compute a lower bound, linear independence of the
vectors v1(7),v2(7), ..., vk(7y) is not required, but the weights wy, ..., w,,—1 are needed to
be positive; recall that from the definition of perturbations of P(\), it is assumed that
wo > 0.

Lemma 4.1. Let P(\) be a matriz polynomial as in [{l), and let ¥ be a set as described
in @). Suppose that the spectrum of P(X) contains ¥ and each eigenvalue p; € o(P)
(t =1,2,...,s) has a Jordan chain of length q;. Then, s, (F,[P,X]) = 0 for any v > 0
(recall that p =nk —k+1).

Proof. Suppose that pi,pa,...,pus are eigenvalues of the matrix polynomial P(\) with
algebraic multiplicities at least q1,qo, ..., qs, respectively, and ¢ + ¢ + -+ ¢qs = k < n.
Let also v be a positive number. By hypothesis, there exist k& (not necessarily linearly

independent) vectors yi, 42, ...,y € C" such that Y1, Yg 41, Ygi+qe+1s- - - » Yqu+-+qs_1+1 ATE
nonzero and the following s sets of matrix equations are satisfied:
P (p1)y =0,

YP' (1) y1 + P (p1) y2 = 0,

!

P () yr+- -+ P () g, =0,

( P (p2) yg,+1 =0,
VP (112) Ygu+1 + P (112) Ygr+2 = 0,

~i2—1

\ (q2_1)!P(q2_1) (/1’2) Yq1+1 +--+P (/1’2) Yq+q2 — 0’

(22)

R P (p1s) Ygr+-4gs-141 = 0,
VP (1s) Ygr++qs—1+1 + P (1s) Ygr+--+q,—14+2 = 0,

ryq\s*l

(qs—l)!P(qs_l) () Yyt tqer+1 + -+ P (1ts) Ygr+-tgqe_s+q. = 0

(In other words, the vectors y1, %yg, ey W%lyql form a Jordan chain of length ¢ corres-
ponding to pu1, the vectors yq, 11, %yq1+2, cee W%lyqﬁ(p form a Jordan chain of length ¢
corresponding to ug, and so on.)
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Recall the nk x nk matrix Fw [P, Y] and the nk x nk nonsingular block upper triangular

matrix 7" which are defined in the previous section and satisfy (). Consider also the
(nonzero) linearly independent vectors

On Y1 Omh Omh Omh Omh
: Y2 0, On Yg1+1 Ongs
On . Yqr+2 0”“13
Y1 Ygq1 -1 0n, (0% :
) Y2 oo Yqr On ) Ygi1+1 Yq1+q2—1 Ong,_;
Ongs Ongs Yq1+1 Yg—1+2 Yaq1+q2 Yqi+-+qs1+1
Ongs Ongs Ongs Ongs Ongs Yqu+-+qs—1+42
1 L Ong, | L Ong. | L Onge 1 [ Ong. | L Ong, | L Yk J

where 0,, denotes the zero vector of order n. By (22), it follows readily that all these vectors
are null vectors of matrix F, [P, ¥]. By the similarity of F.,[P,¥] and F, [P, ], the proof is
complete. O

Consider a perturbation of matrix polynomial P()\), Q(\) = P(A\)+A()). By following
exactly the structure of F,[P,X] in Definition 3] construct the nk x nk block lower
triangular matrices F,[Q, Y] and F,[A,X]. Clearly, it holds that F,[Q,X] = F,[P,X] +
F,[A,X]. As a consequence, Lemma [T and the Weyl inequalities for singular values (e.g.
see Corollary 5.1 of [I]) imply the following;:

Corollary 4.2. Let P(\) be a matriz polynomial as in (), and let X be a set of prescribed
scalars as in (). Suppose that v > 0, ¥ is a subset of the spectrum of an n x n matriz
polynomial Q(N\) = P(A) + A(N), and each eigenvalue p; € o(Q) (i = 1,2,...,s) has a
Jordan chain of length q;. Then, s,(F,[P, X]) < || F,[A,X]|,.

For convenience, denote

Fii 0 0
Fo1 Fa2 -+ O

E A= : € Crhxnk,
Fri1 Fr2 Fek

with F; ; € C"*", 1 < j < i < k. Moreover, for the weight polynomial w(\) = w, A™ +
Wit AN 4w A + wp, assuming that one can use the term “Jordan coefficient” for
scalar polynomials as for matrix polynomials, define the k x k lower triangular matrix

fii 0 - 0

foq fa2 - O
F’Y [’LU,E] = - . . -

fea fre Jrk
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such that f;; = w (|ps]) (i = 1,2,..., k), and analogous to (iii) of Definition 2.3, the entries
below the diagonal are given by the recursive formula (starting from the diagonal entries)

e { 77 (the next Jordan chain coefficient of fi—1j) %f fi—15 = fij+1,
7 105l (fim1, + fij+1) if fi—1; # fij+1-

Next lemma yields a lower bound of the distance D, (P, ).

Lemma 4.3. Let P(\) be a matriz polynomial as in [Il), ¥ be a set of prescribed scalars
as in @), and all the weights wg, w1, ..., wy—1 be positive. Consider a matriz polynomial
Q(\) = P(\) + A(N) in B(P,e,w) having the set ¥ in its spectrum. Then, for any v > 0,

c SP (F’Y [P’ E])
— Ay fw, Xl

Proof. The set B(P,e,w) is closed and for any positive integer p, there is a matrix poly-
nomial Q,(\) € B(Q,1/p,w) that lies in the interior of B(P,e,w) and has a nonsingular
leading coefficient. Moreover, by Corollary [A.6] of Appendix, for each p and any positive
integer ¢, there is a Q) 4(A) € B(Qp, 1/¢, w) such that o(Qp4) = 0(Q)p) and all the eigen-
values of Q) 4(A) have geometric multiplicity 1 (i.e., every eigenvalue of @, 4()\) has exactly
one Jordan chain of length equal to the algebraic multiplicity of the eigenvalue). Hence,
there is a sequence of matrix polynomials in the interior of B(P, e, w) having all their ei-
genvalues of geometric multiplicity 1, which converges to the perturbed matrix polynomial
Q(XN). As a consequence, by the continuity of the Jordan structure and the singular value
decomposition (with respect to matrix entries), without loss of generality, we may assume
that each eigenvalue p; of Q(A) (i =1,2,...,s) has a Jordan chain of length ¢;. Then, by
Corollary A2, s,(F, [P, X]) < ||F,[A, X]]],.

The rest of the proof is devoted to obtain the inequality ||Fy[A,X]||, < e ||Fy[w, X]|],-
To do this, for i = 1,2,..., k, observe that

m m
1A ()l < D 1Al il <€D wj sl = ew (|uil). (23)
§=0 j=0
Moreover, for every t = 1,2,...,sand p=1,2,...,q,

A9 G, < D256 - DG =t DA b
J=p

< e JU -1 (G p A Dwslpl P = ew® (). (24)
Jj=p
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Consequently, keeping in mind the definition of F,[w, ¥], and using (23) and (24]), one can

verify that (see the proof of Lemma 4.2 of [9] and the discussion before it)

1 Fiilly < efi

and
I Filly = N0ij (Fic1y — Fij+1)ll,
< 0351 (1 Fi-15llo + 1 Fijs1lls)
< el0ijl (fi-1j + fij+1) = efiy-

Then, for any v # 0, a unit vector

z1
Z2

r=| " |eCm (zyeCi=12,...,k)
T

can be considered such that

2 2
|1 [AZ]; = 1Fy[AZ]z];
2
- Hfl,l?ﬂl”% + | F2021 + ]-"2,23:2”% 4ot

k
> Friwi
i=1

< (efu)? ey + (ef2n) lzally + (efaz)” 223
+ (efa) (f2) lzillllally + - + (fir) ey

2

[ fin 0 -0
fo1 foo -+ O ||‘T1H2
, , N
= ||| f31 f32 -+ O 2]
. : L : ,
— el
L fk?,l fk?,2 fk?,k‘ ]

2
< €2 |F, [w, X5
This completes the proof.

By the above lemma (and according to Definition 2.2), it follows

> SP(FW[P’E])

DulP2) 2 5 10 5],
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It will be convenient to denote the lower bound in (23] by Bjow,s(P, X, ~y) and the upper
bound in ZI)) by By (P, X,7), i.e.,

s, (B [PX)
Biows(P. %) = 51

and

s

1 1
P57 = 13 (Gt ) 1ol

The main results of this section are summarized in the next theorem.

Theorem 4.4. Let P(\) be a matriz polynomial as in ([{l), and let X be a set of prescribed
scalars as in ([2).

(a) If all the weights wg,wi,...,wy, are positive, then for any v > 0, D, (P,X) >
6[010,5(137 27'7)

(b) If the scalars By, 520,--.,08s0 in [I3) are nonzero, then for any v > 0 such that
v1(7),v2(7), ..., k() are linearly independent vectors, D, (P,%X) < Bup(P,%,7).
Moreover, the matriz polynomial Q- (7) in (D) lies on the boundary of B(P, Bupy(P, %, 7), w).

5 A numerical example

In this section, we verify the validity and the effectiveness of our results and discussions in
the previous sections, by presenting a comprehensive numerical experiment. Following the
methodology given in Section Bl we construct an associated perturbation of a given matrix
polynomial. Also, we compute lower and upper bounds for the distance D,, (P, X)), accord-
ing to the results obtained in Section @ All computations were performed in MATLAB
with 16 significant digits; however, for simplicity, all numerical results are shown with 4
decimal places.

Example 5.1. Consider the 6 x 6 matrix polynomial

410 -1 4 0 30 0 0 -3 2
0 80 2 0 -1 016 -8 1 0 -1
0 00 0 -7 0 00 4 0 11 0

_ 2
PN=IN+1 0 00 5 6 o |00 0 4 -5 o0
0 00 0 0 -1 00 0 0 9 2
0 00 0 0 4 (000 0 0 0 8
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201

Upper Bound
18— —. Lower Bound

Figure 1: The graphs of the upper bound f,, (P, %, ) and the lower bound Bjo, (P, X, 7).

and the set

= {,U'17M17/-1'27,U'37M37M3} - {17 172737373}7

ie,s=3,¢1=2,¢g=1,qg3=3and k =¢q +¢2+ g3 = 6 (= n). Consider also the set
of weights w = {18.2014,10.9003, 1}, which are the spectral norms of the corresponding
coefficient matrices. Figure [l illustrates the graphs of the upper bound 3, (P, %,v) and
the lower bound Sy, (P, X,7) for v € (0, 5].

For the value v = 3, we construct a perturbed matrix polynomial Q3(\) = P()\) +
As(\), whose spectrum contains the set ¥. The matrix F3[P,X] is given by (@), the
singular value s, (Fy [P, X]) = s31 (F3 [P, X]) is equal to 1.0984, and the matrix 7" in (§) is
of the form

Is 0 0 0 0 0
0 Is 0 0 0 0
- 91, 314 Is 0 0 0
6.751¢ 45l 3Ig I 0 O
43.8750Is —20.25I —9Is 0 Ig O

| 167.0625I5 70.8750Ig 27l 0 0 Ig |

By (@), ([I0) and (I6]), we compute the required vectors ©;(3) and 4;(3) (i = 1,2,...,6),
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and the matrix

Az = —s31 (F3[P, X)) UB)MV(3)T
0.1471 04017 —0.1227 05755 —0.8616  0.5150
0019 —0.0632 0.0204 —0.0236 00102  0.6517
| —0.0956 —0.2241 —0.1835 04688 14087  16.8831
= | 212610 —3.3113 1.1005 —2.7597 6.0712  —3.1099 |’
0.9518  4.1610 —0.5813 —0.2851 —10.2916 —1.2288
0.1051  0.3406 —0.2436 —0.1013 —0.4117 —17.7001 |
where
M = diag{M[11,M[21,M[31}
0.6894 —0.5835 0.3903
— diag [1'3520 _11;762?(’)9],[0.9386}, 0 06894 —0.5835
’ 0 0 0.6894
By (I2), we obtain the perturbation
0.0036  0.0097 —0.0030 0.0139 —0.0209 0.0125
—0.0005 —0.0015 0.0005 —0.0006 0.0002  0.0158
Ag(n) — | TO002 00054 —0.0044 00114 0031 04088 |
—0.0305 —0.0802 0.0266 —0.0668 0.1470 —0.0753
0.0230  0.1008 —0.0141 —0.0069 —0.2492 —0.0298
0.0025  0.0082 —0.0059 —0.0025 —0.0100 —0.4286 |
[ 00388 0.1060 —0.0324 0.1519 —0.2274 0.1359
—0.0050 —0.0167 0.0054 —0.0062 0.0027  0.1720
L | 00252 —0.0592 —0.0484 0.1237 03718 44561 | |
—0.3328 —0.8740 0.2904 —0.7284 1.6024 —0.8208
0.2512  1.0982 —0.1534 —0.0753 —2.7163 —0.3243
0.0277  0.0899 —0.0643 —0.0267 —0.1087 —4.6717 |
0.0648  0.1770 —0.0541 0.2536 —0.3797 0.2270
—0.0084 —0.0279 0.0090 —0.0104 0.0045  0.2872
—0.0422 —0.0988 —0.0809 0.2066  0.6209  7.4408
T 05558 —1.4594 04850 —1.2162 2.6757 —1.3706
0.4195  1.8338 —0.2562 —0.1257 —4.5357 —0.5416
0.0463  0.1501 —0.1074 —0.0446 —0.1815 —7.8008 |

The perturbed matrix polynomial Q3(\) = P(X) 4+ As(A) lies on the boundary of the set
B(P, Bup(P, X, 3),w) = B(P,0.5991,w), and its spectrum

o(Qs3) = {0.5719,0.9726,1,1,2,3,3,3,0.1786 -+ 1.26801, —4.0589 + 0.72841}
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contains . Moreover, for v = 1, it is straightforward to compute Sy, (P, X, 1) = 0.0034.
As a consequence,

Brow(P,,1) = 0.0034 < Dy, (P,%) < 0.5991 = B,,(P,%,3).

Finally, we remark that for v = 1.7, the vectors vy (1.7),v2(1.7),...,v(1.7) are

A

close to be linearly dependent with sg(V'(1.7)) = 0.0006, and for v = 4.4, the vectors

~

v1(4.4),v5(4.4),...,v6(4.4) are linearly dependent with sg(V'(4.4)) = 0. This explains the
transient behaviour of the graph in Figure [l around these two values of .
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Appendix A On the sensitivity of Jordan structure

Let A = RAJARzl be the Jordan canonical form of a matrix A € C"*", where J4 is a
Jordan matrix and R4 is a nonsingular matrix with columns the Jordan chains (eigen-
vectors and generalized eigenvectors) of A. Suppose also that the first h Jordan blocks of
J4 are of the form

N 1 -0

o) =| 0 CCVN sz,
: 1
0 0 Ao
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and correspond to an eigenvalue \g € o(A).

For a real € € (0, 1), we consider the n X n matrices

Lo=1I,®ec I, ® 6_(81+82)152 @@ (Srtsatotsn)

Sh
and

e’ if (i,5) = (s1+sa4+-- 45,51 524+ 5+ 1),

T: = [ri;] with 7; = { 0  otherwise

Il =1,2,...,h — 1. Then it is straightforward to verify that L;lJAL€ = Ja, and that
LT, L. is the n x n matrix with ones at positions (s1,s1 + 1), (s1 + 82,81 + 82+ 1),. ..,
(s1+s2+ -+ Sp_1,81 + 82+ -+ s,_1 + 1) and zeros elsewhere. As a consequence,
L;l(JA +T:)Lc is the Jordan matrix that follows from J4 by replacing the (s +s9+ -+
sp) X (s1+ s2+ -+ sp,) principal submatrix J(Ag, s1) @ J (Ao, s2) @ - BJ (Ao, i) by the
Jordan block J(Xg, s1 + 82 + -+ 4 sp,) € C(s1tsattsp) X (s1+s2++sp)

Defining Ja. = L7'(Ja + T:)L. and A = (RaLc) [L7'(Ja +T:)Le| (RaL:)™!, we
observe that A = A, — RAT.R,' with ||A — Ac|l2 = |[RAT-R ]2 < &%||Rall2||[ Ry la-
Moreover, the matrices A and A, have the same characteristic polynomial; in other words,
they have exactly the same eigenvalues with the same algebraic multiplicities.

Definition A.1. Let A, B € C™*" be two matrices with the same characteristic polyno-
mial. We say that the Jordan structure of A assemblingly majorizes the Jordan structure
of B if there exist Jordan canonical forms of A and B, with the Jordan blocks of each
eigenvalue of A not necessarily in an nonincreasing order of sizes,

A= RaJaR," and B = RpJpRj,

such that for each eigenvalue \g € o(A) = o(B), the associated Jordan blocks of A,
Ja(No,si) (1 =1,2,...,p), and of B, Jg(Ao,7i) (i =1,2,...,q), satisfy p < ¢ and

81:T1+..-+T£1, 82:T§1+1+“'+T£2, ce Sp:r£p71+...+7~q
forsome 1 <& <& <o < -1 <q.

For example, consider the matrices

N 1 0 0 N 1 0 0 Xo 1 0 0
1o a1 0 1o a0 0 1o x 0 0
A=10 0 2% 01"l 0 0 x o] @™ C=10 ¢ a1
0 0 0 X 0 0 0 X 0 0 0 X

Then the Jordan structure of A assemblingly majorizes the Jordan structure of B but not
the Jordan structure of C.

By Definition [AT] and the above discussion, the next results follow readily.
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Proposition A.2. For any matriz A € C" and any § € (0,1), there is a matriz A €

C™*™ such that the Jordan structure of A assemblingly majorizes the Jordan structure of
A, and ||A — Al <.

Corollary A.3. For any matriz A € C"" and any 6 € (0,1), there is an A € C™"
such that A and A have the same characteristic polynomaal, all the eigenvalues offl have
geometric multiplicity 1 (i.e., each eigenvalue offl corresponds to exactly one Jordan block
of J; and has a Jordan chain of length equal to the algebraic multiplicity of the eigenvalue),

and ||A — Ally < 0.

Consider now an n X n matrix polynomial P(A) = A, AN+ Ay g A™ oo+ AN+ Ag
as in ({Il), with nonsingular leading coefficient A,,. Any eigenvalue of P()\) of geometric
multiplicity g has g maximal Jordan chains associated to g (nonzero) eigenvectors, with
total number of eigenvectors and generalized eigenvectors equal to the algebraic multipli-
city of this eigenvalue. The largest length of Jordan chains of P()) corresponding to an
eigenvalue \g € o(P) is known as the index of annihilation of Ay [6]. An n X nm matrix
Xp with columns maximal Jordan chains of P(A) and an nm x nm Jordan matrix Jp form
a Jordan pair (Xp,Jp) of P(X\) [3] if the matrix

Xp
XpJp

6 Cnmxnm

Sp = :
ij;”—l
is nonsingular and
ApXpJP + Ay XpJp b4+ A1 XpJp + AgXp = 0.

The index of annihilation of an eigenvalue Ao € o(P) coincides with the size of the largest
Jordan blocks of Jp corresponding to Ag; for details on the Jordan structure of matrix

polynomials, see [3L1T].
By Theorem 2.4 in [3], we have the following proposition.

Proposition A.4. Let (Xp, Jp) be a Jordan pair of the matriz polynomial P(\) in [{I), and
let 5131 =[Vi Vo - Vi ], Vi, Vo, ..., Vi, € C"*™. Then P(\) admits the representation

I
M,
P\ = Ap\™— A XpJESy! _
)\mfljn
= A\ — A XpJp (Vi+ Vad+ -+ VA1)

25



By the previous discussion on matrices and Proposition [A.2] there are appropriate
matrices T., L. € C"™*"™ guch that the nm x nm Jordan matrix Jp = L-YJp +T.)L.
assemblingly majorizes Jp and the distance ||Jp — Jp||2 is arbitrarily small. Furthermore,
the representation of P()\) in Proposition [A4] yields

1

Xp [ 6L
PO) = AN — ApXp(LedpLst —T)™ XP(LEJP:LE =T A
XP(LejPLg;l —T.)mt )\m;lfn
XpL. ! I,
A AXpLdp | T L:EJP A:I” _ B
XPL;jg,1*1 m=1 I,

for some matrix polynomial E’()\) = Ep AN 4 B o N2 oo B\ + Ey. Without
loss of generality, we assume that 7. and L. are chosen such as the matrix

XpL.
~ XPLajP

e Cnmxnm
XpL.Jp!

is nonsingular; by continuity, this is true for sufficiently small € > 0.

By Theorem 7.8 in [3], (XpLe., jp) is a Jordan pair of the perturbed matrix polynomial

1

XpL, a I,
R . . XpL:.Jp AL,
O(\) = P(A) + EQ\) = Ap\™ — Ap XpLo B | |
XPLEjg—l )\m—lln

The difference E(A) = P(\) = Q(\) = Ep i A™ 1+ -+ + By A + Ej is written

-1 -1

XPLEA XP I’ﬂ
~ . XPLEJP m XPJP )\In
E()\) :AmXP LEJP . _JP . : 9
XpL ! XpJpt AL
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which means that for every j =0,1,...,m — 1,

_ 0

XpLe ! xp 17!
. N XpL.Jp XpJp
E] = AmXP LEJ};’L : — JF . In < j-th position
XpLeJp! XpJp—! 0
As a consequence,
XpL. 17" xp 17
. . XpL.Jp . XpJp
1Ejllz < [[Amll2l|Xpll2||LeJp : —Jp :

P : ,

XpL Jp—t XpJpt
X{D -1 Xp -1
N XpL.JpL:! XpJp
= | Amll2lXpll2||Le JB L : i ‘
A ) 2
XpL.Jp L1 XpJp!
XP ! Xp -t
Xp(Jp +1T7) XpJp
= [Amll2Xpll2||(Jp +T)™ : —Jp' : - (26)
: : )
Xp(Jp +T)m ! XpJpt

For sufficient small £ > 0, the upper bound (26]) can be arbitrarily small, and thus,
Proposition and Corollary are generalized to the case of matrix polynomials.

Proposition A.5. Let P()\) be an n x n matriz polynomial as in (), and let the weights
Wo, Wi, ..., Wy—1 be positive. Then, for any § € (0,1), there is an n x n matriz polynomial
P(\) € B(P, 6, w), with leading coefficient Ap,, such that the Jordan matriz Jp assemblingly
majorizes the Jordan matriz Jp.

Corollary A.6. Let P(\) be an n X n matriz polynomial as in ([Il), and let the weights
W, Wi, ..., Wy—1 be positive. Then, for any § € (0,1), there is an n x n matriz polyno-
mial P(\) € B(P,6,w), with leading coefficient A,,, such that det P(\) = det P()\) and
all the eigenvalues of P()\) have geometric multiplicity 1 (i.e., every eigenvalue of ]5()\)
corresponds to exactly one Jordan block of Jp and has a Jordan chain of length equal to
the algebraic multiplicity of the eigenvalue).

Example A.7. (See Example 14.4 of [IT]) The matrix polynomial
A2 1 07,9 0 -1
P(A)_[o )\2]_[0 1]A+[0 0])\
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has exactly one eigenvalue, A\g = 0, and a Jordan pair of the form

010
100 0
(Xp,Jp) = [0101], 001 |a&[0]
000
Moreover,
100 0 C[roo0oo
[ xp 1 _ 0101 o [ xp 77" Joo 1 0
SP_[XPJP]_ 0100 ™ SP_[XPJP] “loo 0 1
0010 01 -1 0

For ¢ = 1073, we consider the set of positive weights w = {wq, w1, ws} = {1,1,1} and the
matrices

100 0 000 O
010 0 000 O
Le=1lo 01 o and o= o g 109 |
0 0 0 107 000 O
and we define
0100
. 0010
N | _
Jp =L (Jp +T.)L. = 00 01
0000
It is straightforward to verify that the pair
0100
. 100 0 0010
(XpLe, Jp) = [0 10 109]’ 0001
0000

is a Jordan pair of the perturbed matrix polynomial

- 1 0 0 -1 0 0 _
O A S s PO L PR
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