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Abstract. Consider an n × n matrix polynomial P (λ). An upper bound for a spectral norm

distance from P (λ) to the set of n × n matrix polynomials that have a given scalar µ ∈ C as a

multiple eigenvalue was obtained by Papathanasiou and Psarrakos (2008). This paper concerns a

refinement of this result for the case of weakly normal matrix polynomials. A modified method is

developed and its efficiency is verified by two illustrative examples. The proposed methodology can

also be applied to general matrix polynomials.
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1. Introduction. Let A be an n × n complex matrix and let µ be a complex

number, and denote by Mµ the set of n × n complex matrices that have µ ∈ C as

a multiple eigenvalue. Malyshev [10] obtained the following formula for the spectral

norm distance from A to Mµ:

min
B∈Mµ

‖A−B‖2 = max
γ≥0

s2n−1

([

A− µI γIn

0 A− µI

])

,

where ‖ · ‖2 denotes the spectral matrix norm (i.e., that norm subordinate to the

euclidean vector norm) and s1(·) ≥ s2(·) ≥ s3(·) ≥ · · · are the singular values of the

corresponding matrix in a nonincreasing order. Malyshev’s work can be considered as

a theoretical solution to Wilkinson’s problem, that is, the calculation of the distance

from a matrix A ∈ Cn×n that has all its eigenvalues simple to the n×n matrices with

multiple eigenvalues. Wilkinson introduced this distance in [17], and some bounds for

it were computed by Ruhe [15], Wilkinson [18, 19, 20, 21] and Demmel [1].

However, in the non-generic case where A is a normal matrix, it is not clear how

one can construct the optimal perturbation based on Malyshev’s derivation. In 2004,

Ikramov and Nazari [4] showed this point and obtained a modification of Malyshev’s

method for normal matrices. Moreover, Malyshev’s results were extended by Lippert

[9] and Gracia [3]; in particular, they computed a spectral norm distance from A to
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the set of matrices that have two prescribed eigenvalues and studied a nearest matrix

with the two desired eigenvalues. Nazari and Rajabi [12] refined the method obtained

by Lippert and Gracia for the case of normal matrices.

In 2008, Papathanasiou and Psarrakos [14] introduced and studied a spectral norm

distance from an n×n matrix polynomial P (λ) to the set of n×n matrix polynomials

that have a given scalar µ ∈ C as a multiple eigenvalue. In particular, generalizing

Malyshev’s methodology, they computed lower and upper bounds for this distance,

constructing an associated perturbation of P (λ) to derive the upper bound. Motivated

by the above, in this note, we study the case of weakly normal matrix polynomials.

In the next section, we give some definitions, and briefly present some of the results

of [13, 14]. We also give an example of a normal matrix polynomial where the method

described in [14] for the computation of the upper bound is not directly applicable.

In Section 3, we prove that the methodology of [14] for the computation of the upper

bound is indeed not directly applicable to weakly normal matrix polynomials (see

Theorem 3.1), and in Section 4, we obtain a modified procedure to improve the

method. The same numerical example is considered to illustrate the validity of the

proposed technique. It is remarkable that the proposed technique can be applied to

general matrix polynomials and not only to weakly normal matrix polynomials; see

the discussion in Section 4 and the example of Subsection 4.2.

2. Preliminaries. For given A0, A1, . . . , Am ∈ Cn×n, with det(Am) 6= 0, and a

complex variable λ, we define the matrix polynomial

P (λ) = Amλm +Am−1λ
m−1 + · · ·+A1λ+A0.(2.1)

The study of matrix polynomials, especially with regard to their spectral analysis,

has received a great deal of attention and has been used in several applications [2, 6,

7, 11, 16]. Standard references for the theory of matrix polynomials are [2, 11]. Here,

some definitions of matrix polynomials are briefly reviewed.

If P (λ0)x0 = 0 for a scalar λ0 ∈ C and some nonzero vector x0 ∈ Cn, then the

scalar λ0 is called an eigenvalue of P (λ) and the vector x0 is known as a (right) eigen-

vector of P (λ) corresponding to λ0. The spectrum of P (λ), denoted by σ(P ), is the set

of all eigenvalues of P (λ). Since the leading matrix-coefficient Am is nonsingular, the

spectrum σ(P ) contains at most mn distinct finite elements. The multiplicity of an

eigenvalue λ0 ∈ σ(P ) as a root of the scalar polynomial detP (λ) is the algebraic mul-

tiplicity of λ0, and the dimension of the null space of the (constant) matrix P (λ0) is

the geometric multiplicity of λ0. The algebraic multiplicity of an eigenvalue is always

greater than or equal to its geometric multiplicity. An eigenvalue is called semisimple

if its algebraic and geometric multiplicities are equal; otherwise, it is called defective.
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Definition 2.1. Let P (λ) be a matrix polynomial as in (2.1). If there exists a

unitary matrix U ∈ Cn×n such that U∗P (λ)U is a diagonal matrix polynomial, then

P (λ) is weakly normal. If, in addition, all the eigenvalues of P (λ) are semisimple,

then P (λ) is normal.

The suggested references on weakly normal and normal matrix polynomials, and

their properties are [8, 13]. Some of the results of [13] are summarized in the next

proposition.

Proposition 2.2. [13] Let P (λ) be a matrix polynomial as in (2.1). Then P (λ)

is weakly normal if and only if one of the following (equivalent) conditions holds.

(i) For every µ ∈ C, the matrix P (µ) is normal.

(ii) A0, . . . , Am are normal and mutually commuting (i.e., AiAj = AjAi; i, j =

0, . . . ,m).

(iii) Each linear combination of A0, A1, . . . , Am is a normal matrix.

(iv) There exists a unitary matrix U ∈ Cn×n such that U∗AjU is diagonal for every

j = 0, 1, . . . ,m.

As mentioned, Papathanasiou and Psarrakos [14] introduced a spectral norm

distance from a matrix polynomial P (λ) to the matrix polynomials that have µ as a

multiple eigenvalue, and computed lower and upper bounds for this distance. Consider

(additive) perturbations of P (λ) of the form

Q(λ) = P (λ) + ∆(λ) = (Am +∆m)λm + · · ·+ (A1 +∆1)λ+A0 +∆0,(2.2)

where the matrices ∆0,∆1, . . . ,∆m ∈ C
n×n are arbitrary. For a given parameter

ǫ ≥ 0 and a given set of nonnegative weights w = {w0, w1, . . . , wm} with w0 > 0,

define the class of admissible perturbed matrix polynomials

B(P, ǫ,w) = {Q(λ) as in (2.2) : ‖∆j‖2 ≤ ǫ wj , j = 0, 1, . . . ,m} ,

and the scalar polynomial w(λ) = wmλm + wm−1λ
m−1 + · · ·+ w1λ + w0. Note that

the weights w0, w1, . . . , wm allow freedom in how perturbations are measured.

For any real number γ ∈ [0,+∞), we define the 2n× 2n matrix polynomial

F [P (λ); γ] =

[

P (λ) 0

γP ′(λ) P (λ)

]

,

where P ′(λ) denotes the derivative of P (λ) with respect to λ.

Lemma 2.3. [14, Lemma 17] Let µ ∈ C and γ∗ > 0 be a point where

the singular value s2n−1(F [P (µ); γ]) attains its maximum value, and denote s∗ =

s2n−1(F [P (µ); γ∗]) > 0. Then there exists a pair

[

u1(γ∗)

u2(γ∗)

]

,

[

v1(γ∗)

v2(γ∗)

]

∈ C2n
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(uk(γ∗), vk(γ∗) ∈ Cn, k = 1, 2) of left and right singular vectors of F [P (µ); γ∗] corre-

sponding to s∗, respectively, such that

(1) u∗
2(γ∗)P

′(µ)v1(γ∗) = 0, and

(2) the n× 2 matrices U(γ∗) = [u1(γ∗) u2(γ∗)] and V (γ∗) = [v1(γ∗) v2(γ∗)] satisfy

U∗(γ∗)U(γ∗) = V ∗(γ∗)V (γ∗).

Moreover, it is remarkable that (1) implies (2) (see the proof of Lemma 17 in [14]).

Consider the quantity φ = w′(|µ|)
w(|µ|)

µ̄

|µ| , where, by convention, we set µ̄

|µ| = 0 when-

ever µ = 0. Also let V (γ∗)
† be the Moore-Penrose pseudoinverse of V (γ∗). For the

pair of singular vectors

[

u1(γ∗)

u2(γ∗)

]

,

[

v1(γ∗)

v2(γ∗)

]

∈ C2n of Lemma 2.3, define the n×n

matrix

∆γ∗
= −s∗U(γ∗)

[

1 −γ∗φ

0 1

]

V (γ∗)
†.

Theorem 2.4. [14, Theorem 19] Let P (λ) be a matrix polynomial as in (2.1),

and let w = {w0, w1, . . . , wm}, with w0 > 0, be a set of nonnegative weights. Suppose

that µ ∈ C\σ(P ′), γ∗ > 0 is a point where the singular value s2n−1(F [P (µ); γ]) attains

its maximum value, and s∗ = s2n−1(F [P (µ); γ∗]) > 0. Then, for the pair of singular

vectors

[

u1(γ∗)

u2(γ∗)

]

,

[

v1(γ∗)

v2(γ∗)

]

∈ C2n of Lemma 2.3, we have

min {ǫ ≥ 0 : ∃ Q(λ) ∈ B(P, ǫ,w) with µ as a multiple eigenvalue}

≤
s∗

w(|µ|)

∥

∥

∥

∥

V (γ∗)

[

1 −γ∗ φ

0 1

]

V (γ∗)
†

∥

∥

∥

∥

2

.

Moreover, the perturbed matrix polynomial

Qγ∗
(λ) = P (λ) + ∆γ∗

(λ) = P (λ) +

m
∑

j=0

wj

w(|µ|)

(

µ

|µ|

)j

∆γ∗
λj ,(2.3)

lies on the boundary of the set B

(

P, s∗
w(|µ|)

∥

∥

∥

∥

V (γ∗)

[

1 −γ∗ φ

0 1

]

V (γ∗)
†

∥

∥

∥

∥

2

,w

)

and

has µ as a (multiple) defective eigenvalue.

Some numerical examples in Section 8 of [14] illustrate the effectiveness of the

upper bound of Theorem 2.4. In all these examples, s∗ is a simple singular value,

and consequently, the singular vectors

[

u1(γ∗)

u2(γ∗)

]

,

[

v1(γ∗)

v2(γ∗)

]

∈ C2n of Lemma 2.3

are directly computable (due to their essential uniqueness). When s∗ is not simple,

the vector spaces formed by the left and right singular vectors corresponding to s∗
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are at least two dimensional, and (1) and (2) of Lemma 2.3 hold only for particular

consistent pairs of left and right singular vectors.

Now let us consider the normal (in particular, diagonal) matrix polynomial

P (λ) =





1 0 0

0 1 0

0 0 1



λ2 +





−3 0 0

0 −1 0

0 0 3



λ+





2 0 0

0 0 0

0 0 2



(2.4)

that is borrowed from [13, Section 3]. Also let the set of weights w = {1, 1, 1}

and the scalar µ = −4. The singular value s5(F [P (−4); γ]) attains its maximum

value at γ∗ = 2.0180, and at this point, we have s∗ = s5(F [P (−4); 2.0180]) =

s4(F [P (−4); 2.0180]) = 12.8841; i.e., s∗ is a multiple singular value of matrix

F [P (−4); 2.0180]. A left and a right singular vectors of F [P (−4); 2.0180] correspo-

nding to s∗ are

[

u1(γ∗)

u2(γ∗)

]

=

















0

0.8407

0

0

0.5416

0

















and

[

v1(γ∗)

v2(γ∗)

]

=

















0

0.5416

0

0

0.8407

0

















,

respectively, and they yield the perturbed matrix polynomial (see (2.3))

Qγ∗
(λ) =





1 0 0

0 0.0664 0

0 0 1



λ2 +





−3 0 0

0 −0.0664 0

0 0 3



λ+





2 0 0

0 −0.9336 0

0 0 2



 .

One can see that µ = −4 is not a multiple eigenvalue of Qγ∗
(λ). Moreover, properties

(1) and (2) of Lemma 2.3 do not hold since u∗
2(γ∗)P

′(µ)v1(γ∗) = −2.6396 6= 0 and

‖U∗(γ∗)U(γ∗)− V ∗(γ∗)V (γ∗)‖2 = 0.4134 6= 0.

Clearly, this example verifies that the computation of appropriate singular vec-

tors which satisfy (1) and (2) of Lemma 2.3 is still an open problem when s∗ is a

multiple singular value. In the next section, we obtain that for weakly normal matrix

polynomials, s∗ is always a multiple singular value, and in Section 4, we solve the

problem of calculation of the desired singular vectors of Lemma 2.3.

3. Weakly normal matrix polynomials. In this section, by extending the

analysis performed in [5], we prove that s∗ is always a multiple singular value of

F [P (µ); γ∗] when P (λ) is a weakly normal matrix polynomial.

Let P (λ) be a weakly normal matrix polynomial, and let µ ∈ C\σ(P ′). By

Proposition 2.2 (iv), it follows that there exists a unitary matrix U ∈ Cn×n such
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that all matrices U∗A0U,U
∗A1U, . . . , U

∗AmU are diagonal. Hence, U∗P (µ)U and

U∗P ′(µ)U are also diagonal matrices; in particular,

U∗P (µ)U = diag{ζ1, ζ2, . . . , ζn} and U∗P ′(µ)U = diag{ξ1, ξ2, . . . , ξn},

where all scalars ξ1, ξ2, . . . , ξn ∈ C are nonzero (recall that P ′(µ) is nonsingular) and,

without loss of generality, we assume that

|ζ1| ≥ |ζ2| ≥ · · · ≥ |ζn| .

As a consequence,

[

U∗ 0

0 U∗

]

F [P (µ); γ]

[

U 0

0 U

]

=

[

U∗ 0

0 U∗

] [

P (µ) 0

γP ′(µ) P (µ)

] [

U 0

0 U

]

=

[

diag{ζ1, ζ2, . . . , ζn} 0

γ diag{ξ1, ξ2, . . . , ξn} diag{ζ1, ζ2, . . . , ζn}

]

.

It is straightforward to verify that there is a 2n× 2n permutation matrix R such

that

R

[

diag{ζ1, ζ2, . . . , ζn} 0

γ diag{ξ1, ξ2, . . . , ξn} diag{ζ1, ζ2, . . . , ζn}

]

RT

=

[

ζ1 0

γ ξ1 ζ1

]

⊕

[

ζ2 0

γ ξ2 ζ2

]

⊕ · · · ⊕

[

ζn 0

γ ξn ζn

]

.

The fact that the singular values of a matrix are invariant under unitary similarity

transformations implies that the 2n× 2n matrices

F [P (µ); γ] and

[

ζ1 0

γ ξ1 ζ1

]

⊕

[

ζ2 0

γ ξ2 ζ2

]

⊕ · · · ⊕

[

ζn 0

γ ξn ζn

]

,

have the same singular values. Therefore, in what follows, we are focused on the

singular values of the matrix

[

ζ1 0

γ ξ1 ζ1

]

⊕

[

ζ2 0

γ ξ2 ζ2

]

⊕· · ·⊕

[

ζn 0

γ ξn ζn

]

, which

are the union of the singular values of

[

ζi 0

γ ξi ζi

]

, i = 1, 2, . . . , n.

For any i = 1, 2, . . . , n, let si,1(γ) ≥ si,2(γ) be the singular values of

[

ζi 0

γ ξi ζi

]

,

and consider the characteristic polynomial of the matrix

[

ζi 0

γ ξi ζi

]∗ [
ζi 0

γ ξi ζi

]

=

[

|ζi|
2
+ γ2 |ξi|

2
γ ξi ζi

γ ξi ζi |ζi|
2

]

,
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that is,

det

(

tI −

[

|ζi|
2
+ γ2 |ξi|

2
γ ξi ζi

γ ξi ζi |ζi|
2

])

= t2 −
(

2 |ζi|
2
+ γ2 |ξi|

2
)

t+ |ζi|
4
.

The positive square roots of the eigenvalues of matrix

[

|ζi|
2
+ γ |ξi|

2
γ ξi ζi

γ ξi ζi |ζi|
2

]

are

the singular values of the matrix

[

ζi 0

γ ξi ζi

]

, namely,

si,1(γ) =

√

√

√

√

|ζi|
2
+

γ2 |ξi|
2

2
+ γ |ξi|

√

|ζi|
2
+

γ2 |ξi|
2

4
,

and

si,2(γ) =

√

√

√

√

|ζi|
2
+

γ2 |ξi|
2

2
− γ |ξi|

√

|ζi|
2
+

γ2 |ξi|
2

4
.

As γ ≥ 0 increases, si,1(γ) increases and lim
γ→+∞

si,1(γ) = +∞, while si,2(γ) decreases

and lim
γ→+∞

si,2(γ) = 0 (recall that |ξi| > 0, i = 1, 2, . . . , n). Also, it is apparent that

si,2(γ) ≤ |ζi| ≤ si,1(γ) and si,1(0) = si,2(0) = |ζi| .

Next we consider two cases with respect to |ζn−1| and |ζn|.

Case 1. Suppose |ζn| < |ζn−1|. At γ = 0, it holds that sn,1(0) = |ζn| < |ζn−1| =

sn−1,2(0). According to the above discussion, as the nonnegative variable γ increases

from zero, the functions

s1,1(γ), s2,1(γ), . . . , sn−1,1(γ), sn,1(γ),

increase to +∞, whereas the functions

s1,2(γ), s2,2(γ), . . . , sn−1,2(γ), sn,2(γ),

decrease to 0. Let (γ0, s0) be the first point in R2 where the graph of the increas-

ing function sn,1(γ) intersects the graph of one of the n − 1 decreasing functions

s1,2(γ), s2,2(γ), . . . , sn−1,2(γ), say sκ,2(γ) (for some κ ∈ {1, 2, . . . , n− 1}). Note that

by the definitions of si,1(γ) and si,2(γ) (i = 1, 2, . . . , n), s0 lies in the open interval

(0, |ζn−1|) and the graph of sn,1(γ) cannot intersect the graph of one of the increasing

functions s1,1(γ), s2,1(γ), . . . , sn−1,1(γ) for γ ≤ γ0.

Since sn,2(γ) and sκ,2(γ) are both decreasing functions in γ ≥ 0, it follows that

(see Figure 4.1 below, where κ = n− 1 = 2)

γ∗ = γ0 and s∗ = s0 = s2n−1(F [P (µ); γ∗]) = sn,1(γ∗) = sκ,2(γ∗) = s2n−2(F [P (µ); γ∗]).
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Hence, when |ζn| < |ζn−1|, γ∗ is the minimum positive root of one of the equations

sn,1(γ) = sn−1,2(γ), sn,1(γ) = sn−2,2(γ), . . . , sn,1(γ) = s1,2(γ),

and s∗ is a multiple singular value of F [P (µ); γ∗].

Case 2. Suppose |ζn| = |ζn−1|. Then, it follows that sn,1(γ) = sn−1,1(γ) and

sn,2(γ) = sn−1,2(γ). Moreover, one can see that at γ = 0,

sn,1(0) = sn,2(0) = sn−1,1(0) = sn−1,2(0) = |ζn| = |ζn−1| ,

i.e.,

s2n(F [P (µ); 0]) = s2n−1(F [P (µ); 0]) = s2n−2(F [P (µ); 0])

= s2n−3(F [P (µ); 0]) = |ζn| = |ζn−1| .

Since sn,2(γ) and sn−1,2(γ)) are decreasing functions in γ ≥ 0, s2n−1(F [P (µ); γ])

attains its maximum value s∗ at γ = 0 = γ∗, and s∗ is a multiple singular value

of F [P (µ); 0]. In this non-generic case, an upper bound and an associate perturbed

matrix polynomial can be computed by the method described in Section 6 of [14].

Hence, we have the following result.

Theorem 3.1. Let P (λ) in (2.1) be a weakly normal matrix polynomial, and let

µ ∈ C\σ(P ′). If γ∗ > 0 is a point where the singular value s2n−1(F [P (µ); γ]) attains

its maximum value, then s∗ = s2n−1(F [P (µ); γ∗]) > 0 is a multiple singular value of

F [P (µ); γ∗].

4. Computing the desired singular vectors. In this section, we apply a

technique described in [4] (see also the proof of Lemma 5 in [10]) to compute a

consistent pair of left and right singular vectors of F [P (µ); γ∗] corresponding to the

singular value s∗, so that (1) and (2) of Lemma 2.3 hold. We remark that the proposed

methodology can be applied to general matrix polynomials when the singular value

s∗ is not simple (since Lemma 4.1 below and the relative analysis are valid for any

n × n matrix polynomial), and not only to weakly normal matrix polynomials; see

also the example of Subsection 4.2.

4.1. The case of multiplicity 2. First we consider the case where γ∗ > 0 and

the multiplicity of the singular value s∗ > 0 is equal to 2, and we work on the example

of Section 2.

Recall that for the normal matrix polynomial P (λ) in (2.4) and for µ = −4,

the singular value s2n−1(F [P (µ); γ]) = s5(F [P (−4); γ]) attains its maximum value at

γ∗ = 2.0180 and s∗ = s5(F [P (−4); 2.0180]) = s4(F [P (−4); 2.0180]) = 12.8841 (i.e., s∗
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Fig. 4.1. The singular values s2n−1(F [P (µ); γ]) (solid line) and s2n−2(F [P (µ); γ])
(dashed line).

is a double singular value of F [P (−4); 2.0180]). Two pairs of left and a right singular

vectors of F [P (−4); 2.0180] corresponding to s∗, which do not satisfy properties (1)

and (2) of Lemma 2.3 are

[

u1(γ∗)

u2(γ∗)

]

=

















0

0.8407

0

0

0.5416

0

















,

[

v1(γ∗)

v2(γ∗)

]

=

















0

0.5416

0

0

0.8407

0

















,

and

[

û1(γ∗)

û2(γ∗)

]

=

















0

0

−0.4222

0

0

0.9065

















,

[

v̂1(γ∗)

v̂2(γ∗)

]

=

















0

0

−0.9065

0

0

0.4222

















.

In particular, we have

u2(γ∗)
∗P ′(−4)v1(γ∗) = −2.6396 6= 0 and û2(γ∗)

∗P ′(−4)v̂1(γ∗) = 4.1089 6= 0.

In Figure 4.1, the graphs of

s2n−1(F [P (µ); γ]) = s5(F [P (−4); γ]) and s2n−2(F [P (µ); γ]) = s4(F [P (−4); γ]),

are plotted for γ ∈ [0, 10], and their common point (γ∗, s∗) = (2.0180, 12.8841) is

marked with “◦”. With respect to the discussion in the previous section, it is worth
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noting that in this example, the graph of s2,2(γ) (that is, sn−1,2(γ)) is the graph of the

decreasing functions s1,2(γ) and s2,2(γ) that intersects first the graph of the increasing

function s3,1(γ) (that is, sn,1(γ)). Moreover, it is apparent that s2n−1(F [P (µ); γ]) and

s2n−2(F [P (µ); γ]) are non-differentiable functions at γ∗.

Since s∗ = s5(F [P (−4); 2.0180]) = s4(F [P (−4); 2.0180]) = 12.8841 is a double

singular value, the pairs of unit vectors
[

u1(γ∗)

u2(γ∗)

]

,

[

û1(γ∗)

û2(γ∗)

]

and

[

v1(γ∗)

v2(γ∗)

]

,

[

v̂1(γ∗)

v̂2(γ∗)

]

form orthonormal bases of the left and right singular subspaces corresponding to
s∗, respectively. So, recalling that in Lemma 2.3, assertion (1) yields assertion (2),
henceforth we are looking for a pair of unit vectors

[

ũ1(γ∗)

ũ2(γ∗)

]

= α

[

u1(γ∗)

u2(γ∗)

]

+ β

[

û1(γ∗)

û2(γ∗)

]

,

[

ṽ1(γ∗)

ṽ2(γ∗)

]

= α

[

v1(γ∗)

v2(γ∗)

]

+ β

[

v̂1(γ∗)

v̂2(γ∗)

]

(4.1)

such that

ũ2(γ∗)
∗P ′(µ)ṽ1(γ∗) = 0,(4.2)

where the scalars α, β ∈ C satisfy |α|
2
+ |β|

2
= 1. By substituting the unknown

singular vectors of (4.1) into (4.2), we obtain

[

α β
]

M

[

α

β

]

= 0,(4.3)

where

M =

[

u2(γ∗)
∗P ′(µ)v1(γ∗) u2(γ∗)

∗P ′(µ)v̂1(γ∗)

û2(γ∗)
∗P ′(µ)v1(γ∗) û2(γ∗)

∗P ′(µ)v̂1(γ∗)

]

.(4.4)

Lemma 4.1. The matrix M in (4.4) is always hermitian.

Proof. Recall that γ∗ and s∗ are positive. By the proof of Lemma 17 in [14], it

follows that the diagonal entries of matrix M are real.

By the definition of the pairs of singular vectors
[

u1(γ∗)

u2(γ∗)

]

,

[

v1(γ∗)

v2(γ∗)

]

and

[

û1(γ∗)

û2(γ∗)

]

,

[

v̂1(γ∗)

v̂2(γ∗)

]

of F [P (µ); γ∗] corresponding to s∗, we have















[

P (µ) 0

γ∗P
′(µ) P (µ)

] [

v1(γ∗)

v2(γ∗)

]

= s∗

[

u1(γ∗)

u2(γ∗)

]

,

[

P (µ) 0

γ∗P
′(µ) P (µ)

] [

v̂1(γ∗)

v̂2(γ∗)

]

= s∗

[

û1(γ∗)

û2(γ∗)

]

,
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or equivalently,















P (µ)v1(γ∗) = s∗u1(γ∗),

γ∗P
′(µ)v1(γ∗) + P (µ)v2(γ∗) = s∗u2(γ∗),

P (µ)v̂1(γ∗) = s∗û1(γ∗),

γ∗P
′(µ)v̂1(γ∗) + P (µ)v̂2(γ∗) = s∗û2(γ∗),

(4.5)

and















[

u1(γ∗)
∗ u2(γ∗)

∗
]

[

P (µ) 0

γ∗P
′(µ) P (µ)

]

= s∗
[

v1(γ∗)
∗ v2(γ∗)

∗
]

,

[

û1(γ∗)
∗ û2(γ∗)

∗
]

[

P (µ) 0

γ∗P
′(µ) P (µ)

]

= s∗
[

v̂1(γ∗)
∗ v̂2(γ∗)

∗
]

,

or equivalently,















u1(γ∗)
∗P (µ) + γ∗u2(γ∗)

∗P ′(µ) = s∗v1(γ∗)
∗,

u2(γ∗)
∗P (µ) = s∗v2(γ∗)

∗,

û1(γ∗)
∗P (µ) + γ∗û2(γ∗)

∗P ′(µ) = s∗v̂1(γ∗)
∗,

û2(γ∗)
∗P (µ) = s∗v̂2(γ∗)

∗.

(4.6)

By pre-multiplying the fourth equation in (4.5) by u2(γ∗)
∗, and post-multiplying

the second equation of (4.6) by v̂2(γ∗), we obtain

γ∗u2(γ∗)
∗P ′(µ)v̂1(γ∗) + u2(γ∗)

∗P (µ)v̂2(γ∗) = s∗u2(γ∗)
∗û2(γ∗),

and

u2(γ∗)
∗P (µ)v̂2(γ∗) = s∗v2(γ∗)

∗v̂2(γ∗),

respectively. As a consequence,

γ∗u2(γ∗)
∗P ′(µ)v̂1(γ∗) = s∗ (u2(γ∗)

∗û2(γ∗)− v2(γ∗)
∗v̂2(γ∗)) .(4.7)

Performing similar calculations, one can verify that

γ∗û2(γ∗)
∗P ′(µ)v1(γ∗) = s∗ (û2(γ∗)

∗u2(γ∗)− v̂2(γ∗)
∗v2(γ∗)) .(4.8)

Clearly, equations (4.7) and (4.8) imply that the non-diagonal entries of matrix M

are complex conjugates of each other.

By Lemma 2.3 (1), equation (4.3) has always a nontrivial (i.e., nonzero) solution.

Hence, the hermitian matrix M in (4.4) cannot be (positive or negative) definite. IfM

is singular semidefinite, then (4.3) holds for any unit eigenvector of M corresponding

to 0. So, we may assume that M is an indefinite hermitian matrix; this is the case in
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our numerical example, where the matrix M has a negative and a positive diagonal

entries, namely, −2.6396 and 4.1089.

To derive an explicit solution of (4.3), suppose that η1, η2 ∈ C are the (real)

eigenvalues of matrix M , with η1 > 0 > η2, and let ω1, ω2 ∈ C2 be unit eigenvectors

of M corresponding to η1 and η2, respectively. Then, it is straightforward to see

(keeping in mind the orthogonality of the eigenvectors) that the unit vector

[

α

β

]

=

√

|η2|

|η1|+ |η2|
ω1 +

√

|η1|

|η1|+ |η2|
ω2

satisfies

[

α β
]

M

[

α

β

]

=
|η1| η2

|η1|+ |η2|
+

|η2| η1
|η1|+ |η2|

= 0.

Finally, in order to verify the validity of this refinement, we return again to the

normal matrix polynomial P (λ) in (2.4), and by applying the above methodology, we

obtain α = 0.7803 and β = 0.6254. Consequently, the desired vectors in (4.1) are

(approximately)

[

ũ1(γ∗)

ũ2(γ∗)

]

=

















0

0.6560

−0.2640

0

0.4226

0.5669

















and

[

ṽ1(γ∗)

ṽ2(γ∗)

]

=

















0

0.4226

−0.5669

0

0.6560

0.2640

















.

In particular, it holds that

ũ∗
2(γ∗)P

′(−4)ṽ1(γ∗) = −4.4409 · 10−16,

and for the n × 2 matrices Ũ(γ∗) = [ũ1(γ∗) ũ2(γ∗)] and Ṽ (γ∗) = [ṽ1(γ∗) ṽ2(γ∗)], we

have
∥

∥

∥
Ũ∗(γ∗)Ũ(γ∗)− Ṽ ∗(γ∗)Ṽ (γ∗)

∥

∥

∥

2
= 1.1383 · 10−6.

Thus, Lemma 2.3 is verified.

Moreover, using the matrices Ũ(γ∗) and Ṽ (γ∗), Theorem 2.4 yields the upper
bound 0.9465 for the distance from P (λ) to the set of 3× 3 quadratic matrix polyno-
mials that have µ = −4 as a multiple eigenvalue, and the perturbed matrix polynomial

Q̃γ∗(λ) =







1 0 0

0 0.0680 0.0152

0 −0.1552 0.5986






λ
2+







−3 0 0

0 −0.0680 −0.0152

0 0.1552 3.4014






λ+







2 0 0

0 −0.9320 0.0152

0 −0.1552 1.5986
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that lies on the boundary of B (P, 0.9465,w) and has spectrum

σ
(

Q̃γ∗
(λ)
)

= {1, 2, 4.1982, −0.5140, −4.0000± i 0.0031} .

In addition, the lower bound 0.4031 of the distance is given by Theorem 11 in [14].

(All computations were performed in Matlab with 16 significant digits.)

4.2. An example of a general matrix polynomial. In this subsection, we

give an example to illustrate that the methodology proposed in the previous subsection

can be applied to general matrix polynomials. In particular, we consider the matrix

polynomial

P (λ) =





−3 −4 −5

4 5 3

−3 5 5



λ2 +





3 −2 5

−1 −1 −1

3 2 −1



λ+





−2 5 2

−4 0 −1

1 3 −3



 ,

which is not weakly normal, and the scalar µ = 3. We also choose the spectral norms

of the matrix-coefficients as the corresponding weights, i.e., w = {6.1031, 6.2464,

11.2766}. The graphs of s6(F [P (3); γ]), s5(F [P (3); γ]) and s4(F [P (3); γ]), for γ ∈

[0, 5], are plotted in Figure 4.2.

The function s5(F [P (3); γ]) attains its maximum at γ∗ = 2.5926, and the sin-

gular value s5(F [P (3); 2.5926]) is of multiplicity 2. In particular, Matlab generates

the singular value s5(F [P (3); 2.5926]) = 14.8953 with corresponding pair of singular

vectors

[

u1(γ∗)

u2(γ∗)

]

=

















−0.3918

0.5038

−0.6469

−0.0468

−0.3439

0.2317

















,

[

v1(γ∗)

v2(γ∗)

]

=

















0.3859

−0.1845

0.1766

−0.8711

−0.0131

0.1638

















,

and the singular value s4(F [P (3); 2.5926]) = 14.8956 with corresponding pair of sin-

gular vectors

[

û1(γ∗)

û2(γ∗)

]

=

















−0.1205

−0.3037

0.0849

−0.7653

−0.5057

−0.2114

















,

[

v̂1(γ∗)

v̂2(γ∗)

]

=

















−0.0008

−0.5160

0.7465

0.2843

−0.2913

0.1042

















.

The method described in the previous subsection yields the scalars α = −0.5245 and
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Fig. 4.2. The graphs of s6(F [P (3); γ]) (doted line), s5(F [P (3); γ]) (solid line) and

s4(F [P (3); γ]) (dashed line).

β = 0.8514, and the vectors

[

ũ1(γ∗)

ũ2(γ∗)

]

=

















0.1029

−0.5228

0.4116

−0.6270

−0.2502

−0.3015

















and

[

ṽ1(γ∗)

ṽ2(γ∗)

]

=

















−0.2031

−0.3425

0.5429

0.6989

−0.2411

0.0028

















which satisfy

ũ∗
2(γ∗)P

′(3)ṽ1(γ∗) = 4.4409 · 10−16.

For the n× 2 matrices Ũ(γ∗) = [ũ1(γ∗) ũ2(γ∗)] and Ṽ (γ∗) = [ṽ1(γ∗) ṽ2(γ∗)], we have
∥

∥

∥
Ũ∗(γ∗)Ũ(γ∗)− Ṽ ∗(γ∗)Ṽ (γ∗)

∥

∥

∥

2
= 6.1503 · 10−6.

Moreover, we obtain the upper bound 0.2256 for the distance from P (λ) to the
set of 3 × 3 matrix polynomials that have µ = 3 as a multiple eigenvalue, and the
perturbed matrix polynomial

Q̃γ∗(λ) =







−1.6611 −4.4373 −5.0271

2.8986 4.8091 3.7479

−1.3058 4.8002 4.4998






λ
2 +







3.7416 −2.2422 4.9850

−1.6101 −1.1057 −0.5857

3.9385 1.8893 −1.2771






λ

+







−1.2754 4.7633 1.9854

−4.5961 −0.1033 −0.5952

1.9170 2.8919 −3.2707






,

that lies on the boundary of B (P, 0.2256,w) and has spectrum

σ
(

Q̃γ∗
(λ)
)

= {−0.8468, −0.4656, 0.8085± i 0.6406, 3.0000± i 0.0048} .
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In addition, the lower bound 0.0586 of the distance is given by Theorem 11 of [14].

4.3. The case of multiplicity greater than 2. Suppose that γ∗ > 0, and

the multiplicity of the singular value s∗ > 0 is r ≥ 3. For weakly normal matrix

polynomials, this means that the graph of the increasing function sn,1(γ) intersects the

graphs of more than one of the n−1 decreasing functions s1,2(γ), s2,2(γ), . . . , sn−1,2(γ),

at the point (γ∗, s∗).

Let also
[

u
(1)
1 (γ∗)

u
(1)
2 (γ∗)

]

,

[

u
(2)
1 (γ∗)

u
(2)
2 (γ∗)

]

, . . . ,

[

u
(r)
1 (γ∗)

u
(r)
2 (γ∗)

]

,

and
[

v
(1)
1 (γ∗)

v
(1)
2 (γ∗)

]

,

[

v
(2)
1 (γ∗)

v
(2)
2 (γ∗)

]

, . . . ,

[

v
(r)
1 (γ∗)

v
(r)
2 (γ∗)

]

,

be orthonormal bases of the left and right singular subspaces of F [P (µ); γ∗] corre-

sponding to s∗, respectively. Then, we are looking for a pair of unit vectors

[

ũ1(γ∗)

ũ2(γ∗)

]

=

r
∑

j=1

αj

[

u
(j)
1 (γ∗)

u
(j)
2 (γ∗)

]

,

[

ṽ1(γ∗)

ṽ2(γ∗)

]

=

r
∑

j=1

αj

[

v
(j)
1 (γ∗)

v
(j)
2 (γ∗)

]

,(4.9)

such that

ũ2(γ∗)
∗P ′(µ)ṽ1(γ∗) = 0,(4.10)

where the scalars α1, α2, . . . , αr ∈ C satisfy |α1|
2
+ |α2|

2
+ · · ·+ |αr|

2
= 1.

Following the arguments of the methodology described in Subsection 4.1, we can

compute the desired vectors in (4.9) that satisfy (4.10). In particular, we need to find

a solution of the equation

[

α1 α2 · · · αr

]

Mr











α1

α2

...

αr











= 0,(4.11)

where the r × r matrix

Mr =











u
(1)
2 (γ∗)

∗P ′(µ)v
(1)
1 (γ∗) u

(1)
2 (γ∗)

∗P ′(µ)v
(2)
1 (γ∗) · · · u

(1)
2 (γ∗)

∗P ′(µ)v
(r)
1 (γ∗)

u
(2)
2 (γ∗)

∗P ′(µ)v
(1)
1 (γ∗) u

(2)
2 (γ∗)

∗P ′(µ)v
(2)
1 (γ∗) · · · u

(2)
2 (γ∗)

∗P ′(µ)v
(r)
1 (γ∗)

...
...

. . .
...

u
(r)
2 (γ∗)

∗P ′(µ)v
(1)
1 (γ∗) u

(r)
2 (γ∗)

∗P ′(µ)v
(2)
1 (γ∗) · · · u

(r)
2 (γ∗)

∗P ′(µ)v
(r)
1 (γ∗)
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is hermitian and not definite. Considering a unit eigenvector ωmax ∈ Cr of Mr corre-

sponding to the maximum eigenvalue ηmax ≥ 0 of Mr and an eigenvector ωmin ∈ Cr

corresponding to the minimum eigenvalue ηmin ≤ 0 of Mr, it is straightforward to

verify that the unit vector
√

|ηmin|

|ηmax|+ |ηmin|
ωmax +

√

|ηmax|

|ηmax|+ |ηmin|
ωmin

satisfies (4.11).
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