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Abstract

The envelope of a square complex matrix is a spectrum encompassing region

in the complex plane. It is contained in and is akin to the numerical range in the

sense that the envelope is obtained as an infinite intersection of unbounded regions

contiguous to cubic curves, rather than half-planes. In this article, the geometry

and properties of the envelopes of special matrices are examined. In particular,

symmetries of the envelope of a tridiagonal Toeplitz matrix are obtained, and the

envelopes of block-shift matrices, Jordan blocks and 2 × 2 matrices are explicitly

characterized.
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1 Introduction

Let Mn(C) denote the algebra of n× n complex matrices. The classical numerical range (also

known as field of values) of a matrix A ∈ Mn(C) is defined as the compact and convex set

F (A) = {x∗Ax ∈ C : x ∈ C
n, x∗x = 1} ,

whose basic properties are presented in [7, Chapter 1]. Among them is the well-known spectral

containment property σ(A) ⊆ F (A), where σ(A) denotes the spectrum of A. Apparently, the

numerical range contains the convex hull of the spectrum, co{σ(A)}, which reduces to equality

in the case of a normal matrix A.

∗Department of Mathematics, National Technical University of Athens, Greece (kathy@mail.ntua.gr,

ppsarr@math.ntua.gr).
†Department of Mathematics, Washington State University, Pullman, USA (tsat@wsu.edu).

1



For a matrix A ∈ Mn(C), denote by H(A) = A+A∗

2 the hermitian part of A and by

S(A) = A−A∗

2 the skew-hermitian part of A. Then A = H(A) + S(A), and the matrices H(A)

and iS(A) are hermitian. Let also

δ1(A) ≥ δ2(A) ≥ · · · ≥ δn(A)

be the eigenvalues ofH(A) in a nonincreasing order, and y1 ∈ Cn be a unit eigenvector associated

with the largest eigenvalue δ1(A) of H(A). The eigenvalues of A that are vertices of co{σ(A)}
are called extremal [11].

By [8] (see also [7, Chapter 1]), for any θ ∈ [0, 2π), the line Lθ =
{

z ∈ C : Re z = δ1(e
iθA)

}

is a right vertical supporting line of the convex set F (eiθA) = eiθF (A). Moreover, if y1(θ) is a

unit eigenvector of H(eiθA) associated with its largest eigenvalue δ1(e
iθA), then Lθ is tangential

to F (eiθA) at the point y∗1(θ)(e
iθA)y1(θ), which lies on the boundary, denoted by ∂F (eiθA).

By the convexity of the numerical range, y∗1(θ)(e
iθA)y1(θ) ∈ ∂F (eiθA) is a right-most point

of F (eiθA), and F (eiθA) lies in the closed half-plane Hθ =
{

z ∈ C : Re z ≤ δ1(e
iθA)

}

. As a

consequence,

F (A) =
⋂

θ∈[0,2π)

e−iθHθ.

In other words, F (A) is an infinite intersection of half-planes, providing the most commonly

used method to draw the numerical range; see [7, 8].

Consider now the real quantities

u(A) = Im(y∗1S(A)y1) and v(A) = ‖S(A)y1‖22 ,

where ‖·‖2 denotes the 2-norm and |u(A)| ≤ |y∗1S(A)y1| ≤
√

v(A). In [1], Adam and Tsat-

someros introduced and studied the cubic curve

Γ(A) =
{

z ∈ C : [(δ1(A) − Re z)2 + (u(A)− Im z)2](δ2(A)− Re z)

+ (δ1(A)− Re z)(v(A)− u2(A)) = 0
}

, (1.1)

showing that all the eigenvalues of A lie to its left; namely, σ(A) lies in the unbounded closed

region

Γin(A) =
{

z ∈ C : [(δ1(A)− Re z)2 + (u(A) − Im z)2](δ2(A) − Re z)

+ (δ1(A) − Re z)(v(A)− u2(A)) ≥ 0
}

,

which is a subset of the half-plane H0 = {z ∈ C : Re z ≤ δ1(A)}. A description of the cubic

curve Γ(A) is given in the appendix at the end of the paper.

Motivated by the above, a finer spectrum localization area that is contained in the numerical

range is introduced and studied in [10, 11], called the envelope of A ∈ Mn(C) and defined as

E(A) =
⋂

θ∈[0,2π)

e−iθΓin(e
iθA).

One may immediately observe that E(A) is generated analogously to the numerical range F (A),

by replacing the closed half-planes Hθ with the regions Γin(e
iθA), θ ∈ [0, 2π). Since, for any

θ ∈ [0, 2π), eiθσ(A) = σ(eiθA) ⊆ Γin(e
iθA) ⊆ Hθ, it follows that

σ(A) ⊆ E(A) =
⋂

θ∈[0,2π)

e−iθΓin(e
iθA) ⊆

⋂

θ∈[0,2π)

e−iθHθ = F (A).
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The envelope E(A) is a compact subset of the complex plane (since it is a closed subset

of the compact numerical range F (A)), but it is not necessarily convex or connected. It has,

however, a rich structure and it satisfies some of the basic properties of F (A) and σ(A) listed

next (see [10, 11]):

(P1) Γ(AT ) = Γ(A), Γ(A∗) = Γ(A) = Γ(A), E(AT ) = E(A) and E(A∗) = E(A) = E(A). In

particular, if A is real, then the curve Γ(A) and the envelope E(A) are symmetric with

respect to the real axis.

(P2) For any unitary matrix U ∈ Mn(C), Γ(U∗AU) = Γ(A) and E(U∗AU) = E(A).

(P3) For any b ∈ C, Γ(A + bIn) = Γ(A) + b and E(A + bIn) = E(A) + b, where In denotes

the n × n identity matrix and adding a scalar to a set means adding this scalar to every

element of the set.

(P4) For any r > 0 and any a ∈ C, Γ(rA) = rΓ(A) and E(aA) = a E(A).

(P5) If A is normal and λ̂1, λ̂2, . . . , λ̂k are its simple extremal eigenvalues, then

E(A) =





⋂

θ∈[0,2π)

e−iθ
{

z ∈ C : Re z ≤ δ2(e
iθA)

}



 ∪
{

λ̂1, λ̂2, . . . , λ̂k

}

.

(P6) If λ1, λ2, . . . , λn are the eigenvalues of A, then

⋂

{

Γin(R
−1AR) : R ∈ Mn(C), det(R) 6= 0

}

⊆ Γin(diag{λ1, λ2, . . . , λn})

and
⋂

{

E(R−1AR) : R ∈ Mn(C), det(R) 6= 0
}

⊆ E(diag{λ1, λ2, . . . , λn}).

In this article, we study additional features of the envelope by turning our attention to

special types of matrices that have also been studied in the context of the numerical range.

In Section 2, we obtain the symmetries of the envelope of a tridiagonal Toeplitz matrix. In

Section 3, we construct explicitly the envelopes of block-shift matrices and Jordan blocks. In

Section 4, we prove that the envelope of any 2 × 2 matrix coincides with the spectrum of the

matrix. Finally, in Appendix A, we provide an alternative analysis of the cubic curve Γ(A) that

complements the one provided in [1] and assists in the developments of some of the new results

herein.

2 The Envelope of a Tridiagonal Toeplitz Matrix

In this section, we investigate the envelopes of tridiagonal Toeplitz matrices that arise e.g., in

the numerical solution of differential equations; they have constant entries along the diagonal,

the superdiagonal and the subdiagonal, that is,

Tn(c, a, b) =













a b · · · 0

c a
. . .

...
...

. . .
. . . b

0 · · · c a













∈ Mn(C), bc 6= 0.
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As shown in [5, Corollary 4], the numerical range of Tn(c, a, b) coincides with the elliptical disc

{bz + cz : z ∈ F (Jn(0))}+ {a} ,
where Jn(0) is the n× n Jordan block with zero eigenvalue and its numerical range, F (Jn(0)),

coincides with the circular disc D
(

0, cos
(

π
n+1

))

centered at the origin and having radius

cos
(

π
n+1

)

; see [14, Theorem 1]. Moreover, the eigenvalues of Tn(c, a, b) (see [3, Theorem 2.4]

and also [6, 9]) are

λj = λj(Tn(c, a, b)) = a+ 2(bc)1/2 cos

(

jπ

n+ 1

)

, j = 1, 2, . . . , n, (2.1)

and the corresponding eigenvectors xj = [xj,1 xj,2 · · · xj,n ]T can be chosen to have entries

xj,k =
( c

b

)k/2

sin

(

kjπ

n+ 1

)

, k = 1, 2, . . . , n. (2.2)

Clearly, λ1, λ2, . . . , λn are simple eigenvalues of Tn(c, a, b) lying on the (complex) line segment
{

a+ γei
arg(b)+arg(c)

2 : −2
√

|bc| cos
(

π

n+ 1

)

≤ γ ≤ 2
√

|bc| cos
(

π

n+ 1

)}

,

and they are located symmetrically with respect to point a.

The above fundamental results motivate us to consider in what follows the envelope of a

tridiagonal Toeplitz matrix.

Theorem 2.1. The envelope of a tridiagonal Toeplitz matrix Tn(c, a, b) ∈ Mn(C), bc 6= 0, is

symmetric with respect to point a.

Proof. Due to the translation property (P3) of the envelope, we have E(Tn(c, a, b)) = E(Tn(c, 0, b))+

{a}. Hence, without loss of generality, we may consider the matrix Tn(c, 0, b) with bc 6= 0, which

we denote by Tn for brevity. Then it suffices to prove that E(Tn) is symmetric with respect to

the origin, which is true when Γ(eiθTn) = Γ(−eiθTn) for every θ ∈ [0, 2π).

Keeping in mind equation (1.1), it is enough to prove that for any θ ∈ [0, 2π),

δ1(−eiθTn) = δ1(e
iθTn), δ2(−eiθTn) = δ2(e

iθTn),

v(−eiθTn) = v(eiθTn), and u(−eiθTn) = u(eiθTn).

Denote β(θ) = beiθ + ce−iθ, θ ∈ [0, 2π). By (2.1), the eigenvalues of the hermitian tridiagonal

Toeplitz matrix H(eiθTn) =
1
2Tn(β(θ), 0, β(θ)) are

δj(e
iθTn) = |β(θ)| cos

(

jπ

n+ 1

)

, j = 1, 2, . . . , n. (2.3)

Since β(θ + π) = −β(θ) for all θ ∈ [0, 2π), (2.3) yields the first pair of desired equalities for the

eigenvalues.

By (2.2) and the formula
∑n

j=1 sin
2
(

jπ
n+1

)

= n+1
2 , a unit eigenvector of H(eiθTn) associated

with the largest eigenvalue δ1(e
iθTn) is

y1(θ) =

√

2

n+ 1
D(θ)

















sin
(

π
n+1

)

sin
(

2π
n+1

)

...

sin
(

nπ
n+1

)

















, (2.4)
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and a unit eigenvector of H(eiθTn) associated with the smallest eigenvalue δn(e
iθTn) is

yn(θ) =

√

2

n+ 1
D(θ)

















sin
(

nπ
n+1

)

sin
(

2nπ
n+1

)

...

sin
(

n2π
n+1

)

















=

√

2

n+ 1
D(θ)

















sin
(

π
n+1

)

− sin
(

2π
n+1

)

...

(−1)n+1 sin
(

nπ
n+1

)

















,

where

D(θ) = diag







(

β(θ)

β(θ)

)1/2

,

(

β(θ)

β(θ)

)2/2

, . . . ,

(

β(θ)

β(θ)

)n/2






.

Observe now that y1(θ + π) = yn(θ) is a unit eigenvector of

H(ei(θ+π)Tn) = H(−eiθTn) = −H(eiθTn) = −1

2
Tn(β(θ), 0, β(θ))

associated with its largest eigenvalue

δ1(e
i(θ+π)Tn) = δ1(−eiθTn) = −δn(e

iθTn).

One can also see that each entry of the vector S(eiθTn)y1(θ+ π) = S(eiθTn)yn(θ) is either equal

to the corresponding entry of S(eiθTn)y1(θ) (at the even positions) or equal to the corresponding

entry of S(eiθTn)y1(θ) negated (at odd positions). As a consequence,

v(−eiθTn) =
∥

∥S(−eiθTn)y1(θ + π)
∥

∥

2

2
=
∥

∥−S(eiθTn)yn(θ)
∥

∥

2

2

= (S(eiθTn)yn(θ))
∗(S(eiθTn)yn(θ)) = (S(eiθTn)y1(θ))

∗(S(eiθTn)y1(θ))

= v(eiθTn).

Moreover, it is straightforward to verify that

y∗1(θ + π)S(eiθTn)y1(θ + π) = y∗n(θ)S(e
iθTn)yn(θ) = −y∗1(θ)S(e

iθTn)y1(θ),

which yields

u(−eiθTn) = Im(y∗1(θ + π)S(−eiθTn)y1(θ + π)) = Im[−(−y∗1(θ)S(e
iθTn)y1(θ))] = u(eiθTn),

completing the proof.

Theorem 2.2. The envelope of a tridiagonal Toeplitz matrix Tn(c, a, b) ∈ Mn(C), bc 6= 0, is

symmetric with respect to the line

L(Tn(c, a, b)) =
{

a+ γei
arg(b)+arg(c)

2 : γ ∈ R

}

.
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Proof. Without loss of generality, and for the sake of simplicity, we consider again the matrix

Tn = Tn(c, 0, b). We also denote θ0 = arg(b)+arg(c)
2 . Then, the envelope E(Tn) is symmetric with

respect to the line L(Tn(c, 0, b)) if and only if E(e−iθ0Tn) is symmetric with respect to the real

axis. By properties (P1) and (P4) of the envelope, we observe that

E(e−iθ0Tn) = E(e−iθ0Tn) ⇔ E(eiθ0T ∗
n) = E(e−iθ0Tn) ⇔ E(ei2θ0T ∗

n) = E(Tn),

which equivalences hold when

Γ(ei(θ+2θ0)T ∗
n) = Γ(eiθTn) ⇔ Γ(e−i(θ+2θ0)Tn) = Γ(eiθTn), ∀ θ ∈ [0, 2π).

In order to verify the later equality on the cubic curves, it is sufficient to obtain that

δ1(e
−i(θ+2θ0)Tn) = δ1(e

iθTn), δ2(e
−i(θ+2θ0)Tn) = δ2(e

iθTn),

v(e−i(θ+2θ0)Tn) = v(eiθTn), and u(e−i(θ+2θ0)Tn) = −u(eiθTn)

for any θ ∈ [0, 2π). As in the proof of Theorem 2.1, consider the ellipse β(θ) = beiθ + ce−iθ,

θ ∈ [0, 2π). Then, according to expression (2.3), the two largest eigenvalues of the hermitian

tridiagonal Toeplitz matrix H(e−i(θ+2θ0)Tn) =
1
2Tn(β(−θ − 2θ0), 0, β(−θ − 2θ0)) are given by

δj(e
−i(θ+2θ0)Tn) = |β(−θ − 2θ0)| cos

(

jπ

n+ 1

)

= (|b|2 + |c|2 + 2Re((bc)ei2(−θ−2θ0)))1/2 cos

(

jπ

n+ 1

)

= (|b|2 + |c|2 + 2Re(|bc|ei2(−θ−θ0)))1/2 cos

(

jπ

n+ 1

)

= (|b|2 + |c|2 + 2Re(|bc|ei2(θ+θ0)))1/2 cos

(

jπ

n+ 1

)

= (|b|2 + |c|2 + 2Re((bc)ei2θ))1/2 cos

(

jπ

n+ 1

)

= |β(θ)| cos
(

jπ

n+ 1

)

= δj(e
iθTn), j = 1, 2.

Moreover, by (2.4), a unit eigenvector of H(e−i(θ+2θ0)Tn) corresponding to the largest eigenvalue

δ1(e
−i(θ+2θ0)Tn) is given by

y1(−θ − 2θ0) =

√

2

n+ 1
D(−θ − 2θ0)

















sin
(

π
n+1

)

sin
(

2π
n+1

)

...

sin
(

nπ
n+1

)

















,

where D(θ) is as in the proof of Theorem 2.1. To further simplify the exposition of our calcula-

tions, we denote

γ(θ) = beiθ − ce−iθ, θ ∈ [0, 2π)

and

w1 =

√

2

n+ 1

[

sin
(

π
n+1

)

sin
(

2π
n+1

)

· · · sin
(

nπ
n+1

)]T

∈ R
n.
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Then, the following computations ensue:

|γ(−θ − 2θ0)| = [(be−i(θ+2θ0) − cei(θ+2θ0))(bei(θ+2θ0) − ce−i(θ+2θ0))]1/2

= (|b|2 − (bc)e−i2(θ+2θ0) − (bc)ei2(θ+2θ0) + |c|2)1/2

= (|b|2 − |bc|ei2θ0e−i2(θ+2θ0) − |bc|e−i2θ0ei2(θ+2θ0) + |c|2)1/2

= (|b|2 − 2Re(|bc|ei2(θ+θ0)) + |c|2)1/2,

|γ(θ)| = [(beiθ − ce−iθ)(be−iθ − ceiθ)]1/2

= (|b|2 − (bc)ei2θ − (bc)e−i2θ + |c|2)1/2

= (|b|2 − |bc|ei2θ0ei2θ − |bc|e−i2θ0e−i2θ + |c|2)1/2

= (|b|2 − 2Re(|bc|ei2(θ+θ0)) + |c|2)1/2,

γ(−θ − 2θ0)β(−θ − 2θ0) = (be−i(θ+2θ0) − cei(θ+2θ0))(bei(θ+2θ0) + ce−i(θ+2θ0))

= |b|2 + (bc)e−i2(θ+2θ0) − (bc)ei2(θ+2θ0) − |c|2

= |b|2 + |bc|ei2θ0e−i2(θ+2θ0) − |bc|e−i2θ0ei2(θ+2θ0) − |c|2

= |b|2 − i2 Im(|bc|ei2(θ+θ0))− |c|2,

γ(θ)β(θ) = (be−iθ − ceiθ)(beiθ + ce−iθ)

= |b|2 + (bc)e−i2θ − (bc)ei2θ − |c|2

= |b|2 + |bc|e−i2θ0e−i2θ − |bc|ei2θ0ei2θ − |c|2

= |b|2 − i2 Im(|bc|ei2(θ+θ0))− |c|2,

γ(−θ − 2θ0)β(θ) = (be−i(θ+2θ0) − cei(θ+2θ0))(be−iθ + ceiθ)

= |b|2e−i2(θ+θ0) + (bc)e−i2θ0 − (bc)ei2θ0 − |c|2ei2(θ+θ0)

= |b|2e−i2(θ+θ0) − |c|2ei2(θ+θ0),

and

γ(θ)β(−θ − 2θ0) = (be−iθ − ceiθ)(be−i(θ+2θ0) + cei(θ+2θ0))

= |b|2e−i2(θ+θ0) + (bc)ei2θ0 − (bc)e−i2θ0 − |c|2ei2(θ+θ0)

= |b|2e−i2(θ+θ0) − |c|2ei2(θ+θ0).

Thus,

|γ(−θ − 2θ0)| = |γ(θ)|, γ(−θ − 2θ0)β(−θ − 2θ0) = γ(θ)β(θ),

γ(−θ − 2θ0)β(θ) = γ(θ)β(−θ − 2θ0), and
γ(−θ − 2θ0)

2β(−θ − 2θ0)

β(−θ − 2θ0)
=

γ(θ)
2
β(θ)

β(θ)
.
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The above relations yield

v(e−i(θ+2θ0)Tn) =
∥

∥

∥S(e−i(θ+2θ0)Tn)y1(−θ − 2θ0)
∥

∥

∥

2

2

= −wT
1 D(−θ − 2θ0)

−1S(e−i(θ+2θ0)Tn)
2D(−θ − 2θ0)w1

= wT
1































|γ(θ)|2
4 0 −γ(θ)

2
β(θ)

4β(θ)
0 0

0 |γ(θ)|2
2 0

. . .

−γ(θ)2β(θ)
4β(θ) 0

. . .
. . .

. . .

0
. . .

. . .
. . .

. . . −γ(θ)
2
β(θ)

4β(θ)

. . . |γ(θ)|2
2 0

0 −γ(θ)2β(θ)
4β(θ) 0 |γ(θ)|2

4































w1

= −wT
1 D(θ)−1S(eiθTn)2D(θ)w1

=
∥

∥

∥S(eiθTn)D(θ)w1

∥

∥

∥

2

2

=
∥

∥S(eiθTn)y1(θ)
∥

∥

2

2

= v(eiθTn)

and

u(e−i(θ+2θ0)Tn) = Im(y∗1(−θ − 2θ0)S(e
−i(θ+2θ0)Tn)y1(−θ − 2θ0))

= Im
(

wT
1 D(−θ − 2θ0)

−1S(e−i(θ+2θ0)Tn)D(−θ − 2θ0)w1

)

= Im





1

2
wT

1 Tn



−γ(θ)

(

β(θ)

β(θ)

)−1/2

, 0, γ(θ)

(

β(θ)

β(θ)

)1/2


w1





= Im
(

wT
1 D(θ)−1S(eiθTn)D(θ)w1

)

= − Im
(

wT
1 D(θ)−1S(eiθTn)D(θ)w1

)

= −u(eiθTn),

completing the proof.

Example 2.3. Consider the 5× 5 tridiagonal Toeplitz matrices T5(2+ 3i, 0,−1− i) and T5(2 +

3i, 0, 0.8− i). Their envelopes are illustrated by the unshaded areas in the left and right parts of

Figure 1, respectively. The envelope of T5(2+3i, 0,−1−i) consists of three connected components,

the envelope of T5(2+3i, 0, 0.8− i) is connected, and the eigenvalues of the matrices are marked

with +’s. The symmetry results in Theorems 2.1 and 2.2 (with respect to the origin and the

straight line determined by the eigenvalues) are confirmed. It is worth noting that the numerical

range appears, as a by-product of our drawing technique, in all of our plots of an envelope; indeed,

the numerical range is depicted as the outer outlined elliptical region.
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Figure 1: The envelopes E(T5(2 + 3i, 0,−1− i)) (left) and E(T5(2 + 3i, 0, 0.8− i)) (right).

3 The Envelope of a Block-Shift Matrix

A square matrix of the block form

A =

















0 A1 0 · · · 0

0 0 A2 · · · 0
...

...
. . .

. . .
...

0 0 · · · 0 Am

0 0 · · · 0 0

















, (3.1)

with m > 1 and the zero blocks along the main diagonal being square, is called a block-shift

matrix. The next lemma can be found in [13] (see Theorem 1 and Remarks 2 and 4), and it is

stated here for the sake of completeness.

Lemma 3.1. Let A ∈ Mn(C). The following conditions are equivalent:

(i) A is permutationally similar to a block-shift matrix.

(ii) For every nonzero a ∈ C, A is diagonally similar to aA.

(iii) There is a nonzero a ∈ C, which is not a root of unity, such that A is diagonally similar

to aA,

(iv) For every θ ∈ [0, 2π), A is unitarily diagonally similar to eiθA.

Lemma 3.2. Let A ∈ Mn(C). Then A is permutationally similar to a block-shift matrix if

and only if for every θ ∈ [0, 2π), there exists a unitary diagonal matrix Uθ ∈ Mn(C) such that

H(A) = U∗
θH(eiθA)Uθ and S(A) = U∗

θ S(e
iθA)Uθ.

Proof. By Lemma 3.1, A is permutationally similar to a block-shift matrix if and only if for

every θ ∈ [0, 2π), there is a unitary diagonal matrix Uθ such that A = U∗
θ e

iθAUθ, or equivalently,

H(A) = U∗
θH(eiθA)Uθ and S(A) = U∗

θ S(e
iθA)Uθ.
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Using the above lemmas, we are now able to show that the envelope of a block-shift matrix

is a circular disc centered at the origin.

Theorem 3.3. Let A ∈ Mn(C) (n ≥ 3) be a block-shift matrix. Then E(A) coincides with the

circular disc D(0, R) centered at the origin, with radius

R =

(

δ21(A)−
(

√

2δ1(A)(δ1(A)− δ2(A)) −
√

v(A)
)2
)1/2

.

Proof. Suppose A ∈ Mn(C) is a block-shift matrix as in (3.1). Lemma 3.2 asserts that for any

θ ∈ [0, 2π), H(eiθA) = UθH(A)U∗
θ and S(eiθA) = UθS(A)U

∗
θ for some unitary Uθ ∈ Mn(C).

Thus, the eigenvalues of H(eiθA) remain constant (independently of the angle θ ∈ [0, 2π)) and

equal to δ1(A) ≥ δ2(A) ≥ · · · ≥ δn(A).

Consider a unit eigenvector y1 of H(A) associated with the largest eigenvalue δ1(A). Then

Uθ y1 is a unit eigenvector of H(eiθA) associated with δ1(A), and hence,

v(eiθA) =
∥

∥S(eiθA)Uθy1
∥

∥

2

2
=
∥

∥U∗
θ S(e

iθA)Uθy1
∥

∥

2

2
= ‖S(A)y1‖22 = v(A)

and

u(eiθA) = Im(y∗1U
∗
θ S(e

iθA)Uθy1) = Im(y∗1S(A)y1) = u(A).

It follows that all rotations of A have the same cubic curve; that is, Γ(eiθA) = Γ(A) for all

θ ∈ [0, 2π).

We are now interested in the type of the cubic curve Γ(A). It is known by [12, Theorem 1]

that F (A) = D(0, r(A)), where r(A) is the numerical radius of A. As a consequence, δ1(A) +

iu(A) = r(A) > 0 (the right-most point of F (A)), u(A) = 0, and (1.1) takes the form

Γ(A) =
{

z ∈ C : (δ2(A)− Re z)[(δ1(A) − Re z)2 + (Im z)2] + (δ1(A)− Re z)v(A) = 0
}

. (3.2)

Recall that Γ(A) is symmetric with respect to the real axis (see [10] or the appendix below),

and every eigenvalue of A lies to the left of the curve. Since A has only the zero eigenvalue of

multiplicity n ≥ 3, Theorem 3.2 in [10] ensures that Γ(A) is connected with no closed branch.

These observations lead us to the conclusion that, carrying out the rotation of Γ(A) about the

origin, the envelope E(A) coincides with a circular disc centered at the origin.

The radius of the disc can be determined by calculating the shortest distance from the

origin to the curve Γ(A). To achieve this, we have to minimize d =
√
s2 + t2, or equiva-

lently, d2, subject to s + i t ∈ Γ(A) (s, t ∈ R). Since the curve Γ(A) lies in the vertical zone

{s+ i t ∈ C : s, t ∈ R, δ2(A) < s ≤ δ1(A)}, (3.2) can be written as

Γ(A) = {s+ i t ∈ C : s, t ∈ R, f(s, t) = 0} ,

where

f(s, t) = (δ1(A) − s)2 + t2 +
(δ1(A)− s)v(A)

δ2(A)− s
.

Solving f(s, t) = 0 for d2 = s2 + t2, we obtain

d2 = d2(s) = δ1(A)(2s− δ1(A))−
(δ1(A)− s)v(A)

δ2(A)− s
.
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Hence, minimizing d2 subject to f(s, t) = 0 is equivalent to minimizing d2 with respect to s,

with δ2(A) < s ≤ δ1(A). Therefore,

(d2(s))′ = 2δ1(A)−
v(A)(δ1(A)− δ2(A))

(δ2(A)− s)2
= 0

results into

(δ2(A) − s)2 =
v(A)(δ1(A)− δ2(A))

2δ1(A)
(> 0),

and due to δ2(A) < s ≤ δ1(A), we have

s = δ2(A) +

√

v(A)(δ1(A)− δ2(A))

2δ1(A)
.

Hence, the minimum distance is

R =
(

2δ1(A)δ2(A)− δ1(A)
2 − v(A) + 2

√

2v(A)δ1(A)(δ1(A)− δ2(A))
)1/2

=

(

δ21(A)−
(

√

2δ1(A)(δ1(A)− δ2(A)) −
√

v(A)
)2
)1/2

,

and the proof is complete.

Remark 3.4. As mentioned in the above proof, the numerical range of a block-shift matrix

is also a circular disc centered at the origin [4, 12, 13]. The numerical radius of a block-shift

matrix A is r(A) = δ1(A). Hence, it is straightforward to verify that

r(A)2 −R2 =
(

√

2r(A)(r(A) − δ2(A)) −
√

v(A)
)2

.

Example 3.5. Consider a 6× 6 block-shift matrix as in (3.1) with m = 3:

A =



















0 0 0 −1 0 0

0 0 2 i 0 0

0 0 0 0 −2 0

0 0 0 0 3i 0

0 0 0 0 0 5

0 0 0 0 0 0



















.

The envelope E(A) is illustrated in Figure 2 by the unshaded area, exhibiting the circular shape

proven in Theorem 3.3. Its radius is R = 2.7416 since δ1 = r(A) = 3.1495, δ2 = 0.9522 and

v(A) = 4.7094. The zero eigenvalue of A is marked with a + and coincides with the center of

the circle.

We next apply Theorem 3.3 to determine the envelope of a Jordan block with zero eigenvalue.

Theorem 3.6. Let n ≥ 3 and consider the n× n Jordan block

Jn(λ) =













λ 1 0

λ
. . .

. . . 1

0 λ













, λ ∈ C.
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Figure 2: The envelope of a block-shift matrix.

The envelope E(Jn(λ)) is the circular disc D(λ,R) with radius

R =





−4δ41 + 2δ21 + 2(n+ 1)δ1δ2 + δ22 − n

n+ 1
+ 2

√

2δ1(δ1 − δ2)
4δ41 − (n+ 3)δ21 − δ22 + n

n+ 1





1
2

,

where δj = cos
(

jπ
n+1

)

, j = 1, 2. Moreover, for n = 2, E(J2(λ)) = {λ}.

Proof. Denote by Jn the basic n × n Jordan block Jn(0). By the translation property (P3) of

the envelope, we have

E(Jn(λ)) = E(Jn + λIn) = E(Jn) + λ.

By Theorem 3.3, E(Jn) = D(0, Rn), where

Rn =
(

2δ1(Jn)δ2(Jn)− δ21(Jn)− v(Jn) + 2
√

2v(Jn)δ1(Jn)(δ1(Jn)− δ2(Jn))
)1/2

. (3.3)

In the sequel, we will compute the quantities δ1(Jn), δ2(Jn) and v(Jn) = ‖S(Jn)y1‖22, with y1
a unit eigenvector of H(Jn) corresponding to δ1(Jn).

Following the notation given in the previous section for tridiagonal Toeplitz matrices, we

notice thatH(Jn) = Tn

(

1
2 , 0,

1
2

)

and its eigenvalues are given explicitly by (2.1); that is, δj(Jn) =

cos
(

jπ
n+1

)

, j = 1, 2, . . . , n. Moreover, a unit eigenvector y1 of H(Jn) associated to δ1(Jn) can

be readily calculated by (2.2), that is,

y1 =

√

2

n+ 1

[

sin
(

π
n+1

)

sin
(

2π
n+1

)

· · · sin
(

nπ
n+1

) ]T

.
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As a consequence,

v(Jn) = ‖S(Jn)y1‖22 =

∥

∥

∥

∥

Tn

(

−1

2
, 0,

1

2

)

y1

∥

∥

∥

∥

2

2

=
2

n+ 1

[

sin
(

π
n+1

)

· · · sin
(

nπ
n+1

)]





























1
4 0 − 1

4 0 · · · 0

0 1
2 0 − 1

4

...

− 1
4 0 1

2 0 − 1
4

. . .
. . .

. . .

− 1
4 0 1

2 0 − 1
4

... − 1
4 0 1

2 0

0 · · · 0 − 1
4 0 1

4







































sin
(

π
n+1

)

...

sin
(

nπ
n+1

)











=
2

n+ 1

[

sin
(

π
n+1

)

· · · sin
(

nπ
n+1

)]



































1
4 sin

(

π
n+1

)

− 1
4 sin

(

3π
n+1

)

1
2 sin

(

2π
n+1

)

− 1
4 sin

(

4π
n+1

)

− 1
4 sin

(

π
n+1

)

+ 1
2 sin

(

3π
n+1

)

− 1
4 sin

(

5π
n+1

)

...

− 1
4 sin

(

(n−4)π
n+1

)

+ 1
2 sin

(

(n−2)π
n+1

)

− 1
4 sin

(

nπ
n+1

)

− 1
4 sin

(

(n−3)π
n+1

)

+ 1
2 sin

(

(n−1)π
n+1

)

− 1
4 sin

(

(n−2)π
n+1

)

+ 1
4 sin

(

nπ
n+1

)



































=
2

n+ 1

[

sin

(

π

n+ 1

)(

1

4
sin

(

π

n+ 1

)

− 1

4
sin

(

3π

n+ 1

))

+sin

(

2π

n+ 1

)(

1

2
sin

(

2π

n+ 1

)

− 1

4
sin

(

4π

n+ 1

))

+sin

(

3π

n+ 1

)(

−1

4
sin

(

π

n+ 1

)

+
1

2
sin

(

3π

n+ 1

)

− 1

4
sin

(

5π

n+ 1

))

+ · · ·

+sin

(

(n− 2)π

n+ 1

)(

−1

4
sin

(

(n− 4)π

n+ 1

)

+
1

2
sin

(

(n− 2)π

n+ 1

)

− 1

4
sin

(

nπ

n+ 1

))

+sin

(

(n− 1)π

n+ 1

)(

−1

4
sin

(

(n− 3)π

n+ 1

)

+
1

2
sin

(

(n− 1)π

n+ 1

))

+sin

(

nπ

n+ 1

)(

−1

4
sin

(

(n− 2)π

n+ 1

)

+
1

4
sin

(

nπ

n+ 1

))]
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=
2

n+ 1

[

1

4
sin2

(

π

n+ 1

)

− 1

4
sin

(

π

n+ 1

)

sin

(

3π

n+ 1

)

+
1

2
sin2

(

2π

n+ 1

)

− 1

4
sin

(

2π

n+ 1

)

sin

(

4π

n+ 1

)

−1

4
sin

(

3π

n+ 1

)

sin

(

π

n+ 1

)

+
1

2
sin2

(

3π

n+ 1

)

− 1

4
sin

(

3π

n+ 1

)

sin

(

5π

n+ 1

)

− · · ·

−1

4
sin

(

(n− 2)π

n+ 1

)

sin

(

(n− 4)π

n+ 1

)

+
1

2
sin2

(

(n− 2)π

n+ 1

)

− 1

4
sin

(

(n− 2)π

n+ 1

)

sin

(

nπ

n+ 1

)

−1

4
sin

(

(n− 1)π

n+ 1

)

sin

(

(n− 3)π

n+ 1

)

+
1

2
sin2

(

(n− 1)π

n+ 1

)

−1

4
sin

(

nπ

n+ 1

)

sin

(

(n− 2)π

n+ 1

)

+
1

4
sin2

(

nπ

n+ 1

)]

=
1

2(n+ 1)



sin2
(

π

n+ 1

)

+ 2

n−1
∑

j=2

sin2
(

jπ

n+ 1

)

+ sin2
(

nπ

n+ 1

)

− 2

n−2
∑

j=1

sin

(

jπ

n+ 1

)

sin

(

(j + 2)π

n+ 1

)





=
1

2(n+ 1)





n−2
∑

j=1

(

sin

(

jπ

n+ 1

)

− sin

(

(j + 2)π

n+ 1

))2

+ sin2
(

2π

n+ 1

)

+ sin2
(

(n− 1)π

n+ 1

)



 .

Applying now the sum-to-product trigonometric identity, and keeping in mind the relation

n
∑

j=1

cos2
(

jπ

n+ 1

)

= n−
n
∑

j=1

sin2
(

jπ

n+ 1

)

= n− n+ 1

2
=

n− 1

2
,

we get

v(Jn) =
1

2(n+ 1)





n−2
∑

j=1

4

(

sin2
(

π

n+ 1

)

cos2
(

(j + 1)π

n+ 1

))

+ 2− cos2
(

2π

n+ 1

)

− cos2
(

(n− 1)π

n+ 1

)





=
1

2(n+ 1)



4 sin2
(

π

n+ 1

) n−2
∑

j=1

cos2
(

(j + 1)π

n+ 1

)

+ 2− 2 cos2
(

2π

n+ 1

)





=
1

2(n+ 1)



4

(

1− cos2
(

π

n+ 1

)) n−2
∑

j=1

cos2
(

(j + 1)π

n+ 1

)

+ 2− 2 cos2
(

2π

n+ 1

)





=
1

2(n+ 1)



4

(

1− cos2
(

π

n+ 1

))





n
∑

j=1

cos2
(

jπ

n+ 1

)

− cos2
(

π

n+ 1

)

− cos2
(

nπ

n+ 1

)





+2− 2 cos2
(

2π

n+ 1

)]

=
1

2(n+ 1)

[

4

(

1− cos2
(

π

n+ 1

))(

n− 1

2
− 2 cos2

(

π

n+ 1

))

+ 2− 2 cos2
(

2π

n+ 1

)]

.
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Substituting δj = δj(Jn) = cos
(

jπ
n+1

)

, j = 1, 2, into the above, we obtain

v(Jn) =
1

2(n+ 1)

[

4(1− δ21)

(

n− 1

2
− 2δ21

)

+ 2− 2δ22

]

=
1

n+ 1

[

2(1− δ21)

(

n− 1

2
− 2δ21

)

+ 1− δ22

]

=
1

n+ 1

[

(1− δ21)(n− 1− 4δ21) + 1− δ22
]

=
1

n+ 1

[

4δ41 − (n+ 3)δ21 − δ22 + n
]

.

In turn, we substitute the above expression for v(Jn) into (3.3) to derive

R2
n = 2δ1δ2 − δ21 −

4δ41 − (n+ 3)δ21 − δ22 + n

n+ 1
+ 2

√

2δ1(δ1 − δ2)
4δ41 − (n+ 3)δ21 − δ22 + n

n+ 1

=
−4δ41 + 2δ21 + 2(n+ 1)δ1δ2 + δ22 − n

n+ 1
+ 2

√

2δ1(δ1 − δ2)
4δ41 − (n+ 3)δ21 − δ22 + n

n+ 1
.

For the 2× 2 Jordan block J2 =

[

0 1

0 0

]

, we have

δ1(J2) = −δ2(J2) = 1/2, u(J2) = 0 and v(J2) =

∥

∥

∥

∥

[

0 1/2

−1/2 0

] [
√
2/2√
2/2

]∥

∥

∥

∥

2

2

= 1/4.

According to the discussion in the proof of Theorem 3.3, the curve Γ(eiθJ2) remains unchanged

during all rotations θ ∈ [0, 2π), with equation

(

Re z +
1

2

)

[

(

Re z − 1

2

)2

+ (Im z)2

]

+
1

4

(

Re z − 1

2

)

= 0 (3.4)

and discriminant ∆ = (δ1 − δ2)
2 − 4(v(J2) − u2(J2)) = 0. Taking into account the case (b)

of the classification mentioned in the appendix, the curve is singular with a node at the origin

(0, 0) =
(

δ1+δ2
2 , u

)

. Hence, the rotation of the curve about the origin yields E(J2) = {0}.

4 The Envelope of a 2× 2 Matrix

In this section, we derive that the envelope of every 2 × 2 complex matrix coincides with the

point set of the spectrum of the matrix.

Theorem 4.1. Let A be a 2× 2 complex matrix. Then E(A) = σ(A).

Proof. According to Schur’s triangularization theorem, A ∈ M2(C) is unitarily similar to an

upper triangular matrix T =

[

λ α

0 µ

]

, where λ and µ are the eigenvalues of A, and α ∈ C.

If α = 0, then by [11, Corollary 4.2], E(A) = E(T ) = σ(A).
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If α 6= 0 and λ = µ, then properties (P2), (P3) and (P4) of the envelope yield

E(A) = E(T ) = E(λI2 + αJ2(0)) = λ+ αE(J2(0)) = {λ} = σ(A).

Suppose now that α 6= 0 and λ 6= µ. By Lemma 1.3.1 in [7], there exists a unitary matrix

U ∈ M2(C) such that

U∗
(

T − tr(T )

2
I2

)

U =

[

0 c

d 0

]

=

[

0 |c|eiθ1
|d|eiθ2 0

]

,

for some c, d ∈ C and θ1, θ2 ∈ [0, 2π). Consider the unitary matrix V =

[

1 0

0 ei
θ2−θ1

2

]

for which

V ∗U∗
(

T − tr(T )

2
I2

)

UV = ei
θ1+θ2

2

[

0 |c|
|d| 0

]

.

Due to the unitary invariance property (P2) and the translation property (P3) of the envelope,

it follows that

E(A) = ei
θ1+θ2

2 E
([

0 |c|
|d| 0

])

+
tr(T )

2
.

If cd = 0, then we get one of the trivial cases discussed above. Thus, it suffices to describe the

envelope of the matrix B =

[

0 |c|
|d| 0

]

, with cd 6= 0. Notice that ±
√

|cd| are the eigenvalues

of B. Moreover, using for brevity the notation δj,θ = δj(e
iθB) (j = 1, 2), uθ = u(eiθB) and

vθ = v(eiθB), we have

E(B) =
⋂

θ∈[0,2π)

e−iθΓin(e
iθB), (4.1)

where

Γin(e
iθB) =

{

s+ i t ∈ C : s, t ∈ R, (δ2,θ − s)[(δ1,θ − s)2 + (uθ − t)2] + (δ1,θ − s)(vθ − u2θ) ≥ 0
}

.

Next, observe that

H(eiθB) =

[

0 eiθ|c|+e−iθ|d|
2

e−iθ|c|+eiθ|d|
2 0

]

, S(eiθB) =

[

0 eiθ|c|−e−iθ|d|
2

−e−iθ|c|+eiθ|d|
2 0

]

and δ1,θ = −δ2,θ =

∣

∣eiθ|c|+ e−iθ|d|
∣

∣

2
=

√

|c|2 + |d|2 + 2|cd| cos(2θ)
2

, (4.2)

as well as that a unit eigenvector of H(eiθB) corresponding to the eigenvalue δ1,θ is

y1,θ =

√
2

2

[

1
e−iθ|c|+eiθ|d|

2δ1,θ

]

.

Hence,

vθ =
∥

∥S(eiθB)y1,θ
∥

∥

2

2
=

1

4

∣

∣eiθ|c| − e−iθ|d|
∣

∣

2
=

|c|2 + |d|2 − 2|cd| cos(2θ)
4

(4.3)

and

i uθ = y∗1,θS(e
iθB)y1,θ =

1

2

[

1 eiθ|c|+e−iθ|d|
2δ1,θ

]

[

0 eiθ|c|−e−iθ|d|
2

−e−iθ|c|+eiθ|d|
2 0

][

1
e−iθ|c|+eiθ|d|

2δ1,θ

]

=
1

8δ1,θ
[(eiθ|c| − e−iθ|d|)(e−iθ|c|+ eiθ|d|)− (e−iθ|c| − eiθ|d|)(eiθ|c|+ e−iθ|d|)]

= i
|cd| sin(2θ)

2δ1,θ
. (4.4)
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It is apparent from (4.1) that

E(B) ⊆ Γin(B) ∩ e−
iπ
2 Γin(e

iπ
2 B) ∩ e

iπ
2 Γin(e

− iπ
2 B).

To prove that the above intersection coincides with the spectrum of A, we need to calculate the

quantities (4.2), (4.3) and (4.4) for the angles θ1 = 0, θ2 = π
2 and θ3 = −π

2 , that is,

δ1,0 =
|c|+ |d|

2
, v0 =

( |c| − |d|
2

)2

, u0 = 0,

and

δ1,π2 = δ1,−π
2
=

||c| − |d||
2

, vπ
2
= v−π

2
=

( |c|+ |d|
2

)2

, uπ
2
= u−π

2
= 0.

For θ1 = 0, the discriminant of the cubic curve Γ(B) is ∆0 = (δ1,0−δ2,0)
2−4(v0−u20) = 4|cd| > 0.

From the case (a) described in the appendix, it follows that the region

Γin(B) =
{

s+ i t ∈ C : s, t ∈ R, (s+ δ1,0)t
2 ≤ (δ1,0 − s)(s2 − |cd|)

}

comprises two branches; a closed bounded branch lying in the vertical zone

{

s+ i t ∈ C :
√

|cd| ≤ s ≤ δ1,0, t ∈ R

}

and an unbounded branch lying in the closed half-plane
{

s+ i t ∈ C : s ≤ −
√

|cd|, t ∈ R

}

.

For θ2 = π
2 and θ3 = −π

2 , the cubic curves Γ(e
iπ
2 B) and Γ(e−

iπ
2 B) are identical, and their

common discriminant is ∆π
2
= ∆−π

2
=
(

δ1,π
2
− δ2,π

2

)2 − 4
(

vπ
2
− u2π

2

)

= −4|cd| < 0. The case

(e) in the appendix reveals that Γin(e
iπ
2 B) = Γin(e

− iπ
2 B) is an unbounded region lying in the

closed half-plane
{

s+ i t ∈ C : s ≤ δ1,π2 , t ∈ R
}

. As a consequence, we have the rotations

e−
iπ
2 Γin(e

iπ
2 B) = e−

iπ
2

{

s+ i t ∈ C : s, t ∈ R,
(

s+ δ1,π2
)

t2 ≤
(

δ1,π2 − s
)

(s2 + |cd|)
}

=
{

s+ i t ∈ C : s, t ∈ R,
(

δ1,π
2
− t
)

s2 ≤
(

δ1,π
2
+ t
)

(t2 + |cd|)
}

(4.5)

⊆
{

s+ i t ∈ C : s ∈ R, t ≥ −δ1,π2
}

and

e
iπ
2 Γin(e

− iπ
2 B) = e

iπ
2

{

s+ i t ∈ C : s, t ∈ R,
(

s+ δ1,π
2

)

t2 ≤
(

δ1,π
2
− s
)

(s2 + |cd|)
}

=
{

s+ i t ∈ C : s, t ∈ R,
(

δ1,π2 + t
)

s2 ≤
(

δ1,π2 − t
)

(t2 + |cd|)
}

(4.6)

⊆
{

s+ i t ∈ C : s ∈ R, t ≤ δ1,π
2

}

.

By (4.5) and (4.6), it is now clear that both regions e−
iπ
2 Γin(e

iπ
2 B) and e

iπ
2 Γin(e

− iπ
2 B) are

symmetric with respect to the imaginary axis. Moreover, e−
iπ
2 Γin(e

iπ
2 B) is a reflection of

e
iπ
2 Γin(e

− iπ
2 B) with about the real axis and the origin.

It is straightforward to identify the points at which the curves e−
iπ
2 Γ(e

iπ
2 B) and e

iπ
2 Γ(e−

iπ
2 B)

meet. Indeed, the equations

(δ1,π2 − t)s2 = (δ1,π2 + t)(t2 + |cd|) and (δ1,π2 + t)s2 = (δ1,π2 − t)(t2 + |cd|) (4.7)

yield readily that

s2 = t2 + |cd|. (4.8)
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Figure 3: The curves Γ(B) (solid curve), e−
iπ
2 Γ(e

iπ
2 B) (dashed curve) and e

iπ
2 Γ(e−

iπ
2 B) (dotted

curve) intersect at the eigenvalues of B.

Substituting (4.8) into any of the two equations in (4.7) implies that t = 0. As a conse-

quence, the curves e−
iπ
2 Γ(e

iπ
2 B) and e

iπ
2 Γ(e−

iπ
2 B) intersect at ±

√

|cd|, and thus, the intersection

e−
iπ
2 Γin(e

iπ
2 B)∩e iπ

2 Γin(e
− iπ

2 B) lies in the vertical zone
{

s+ i t ∈ C : −
√

|cd| ≤ s ≤
√

|cd|, t ∈ R

}

.

Hence,

Γin(B) ∩ e−
iπ
2 Γin(e

iπ
2 B) ∩ e

iπ
2 Γin(e

− iπ
2 B) = {±

√

|cd|} = σ(B),

and the proof is complete.

Our last example illustrates the observations in the above result and the concepts in its

proof.

Example 4.2. Consider the 2 × 2 matrix B =

[

0 2

8 0

]

, with spectrum σ(B) = {−4, 4}. The

curves Γ(B), e−
iπ
2 Γ(e

iπ
2 B) and e

iπ
2 Γ(e−

iπ
2 B) are illustrated in Figure 3 by the solid, dashed

and dotted curves, respectively. As one may observe, they all meet at only two points, the

eigenvalues of B, which are marked by ∗’s.

Appendix A An Alternative Analysis of Γ(A)

The cubic curve Γ(A) defined in (1.1) is introduced and studied in [1] and subsequently led to

the consideration of the envelope in [10, 11]. In this appendix, we present an alternative analysis

and classification of Γ(A), used in the main part of the paper.

By definition, Γ(A) is the locus of the points z = s+ i t, with coordinates s ∈ [δ2(A), δ1(A)]

18



and t ∈ R, such that fA(s, t) = 0, where

fA(s, t) = [(δ1(A) − s)2 + (u(A)− t)2](δ2(A) − s) + (δ1(A)− s)(v(A) − u2(A)) (A.1)

is a real polynomial in two variables of total degree 3. Changing variables s 7→ x + δ2(A) and

t 7→ y + u(A) in (A.1), converts fA(s, t) = 0 into a more amenable equation. In particular,

consider

FA(x, y) = − x3 + 2(δ1(A)− δ2(A))x
2 − [(δ1(A)− δ2(A))

2 + v(A)− u2(A)]x

+(δ1(A)− δ2(A))(v(A) − u2(A)) − xy2,

and let us denote α(A) = δ1(A) − δ2(A) ≥ 0 and β(A) = v(A) − u2(A) ≥ 0. Then (A.1) is

transformed into its canonical form with respect to the new coordinates x ∈ [0, α(A)] and y ∈ R,

that is,

FA(x, y) = 0,

or equivalently,

xy2 = −x3 + 2α(A)x2 − [α2(A) + β(A)]x + α(A)β(A),

or equivalently,

xy2 = −(x− α(A))(x2 − α(A)x + β(A)). (A.2)

According to Newton’s classification of cubic curves [2], (A.2) belongs to the class of defective

hyperbolas. The curve has only one real asymptote, the vertical axis x = 0 (or s = δ2(A)) and

it is symmetric with respect to the horizontal axis y = 0 (or t = u(A)). The cubic polynomial

P (x) = −(x− α(A))(x2 − α(A)x + β(A)) has at most three real nonnegative roots, the nature

of which classifies (A.2) into five different categories. Specifically, we consider the discriminant

∆ = α(A)2 − 4β(A) of the quadratic factor of P (x), and we distinguish the following cases:

(a) Suppose that P (x) has three distinct positive roots

x1 = α(A), x2 =
α(A) +

√
∆

2
and x3 =

α(A) −
√
∆

2
.

In this case, ∆ > 0, δ1(A) > δ2(A) and v(A) > u2(A), and Γ(A) is a conchoidal hyperbola

with an oval at its convexity. The oval forms a bounded region lying in the zone oriented by

the vertical lines determined by the roots x1 > x2, while the hyperbola forms an unbounded

region lying in the left half-plane determined by the root x3; see Figure 4(a).

(b) Suppose that P (x) has two equal positive roots

x1 = α(A) >
α(A)

2
= x2 = x3.

In this case, ∆ = 0, δ1(A) > δ2(A) and v(A) > u2(A), and Γ(A) is a curve where the

conchoidal hyperbola and the oval coalesce (folium of Descartes), intersecting each other at

the node (x2, y(x2)) =
(

α(A)
2 , 0

)

; see Figure 4(b).

(c) Suppose that P (x) has only the zero root

x1 = x2 = x3 = 0.

In this case, ∆ = 0, δ1(A) = δ2(A) and v(A) = u2(A), and Γ(A) coincides with the vertical

axis x = 0.
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Figure 4: Different types of cubic curves (A.2), corresponding to the cases (a) ∆ > 0, (b) ∆ = 0

and (e) ∆ < 0.

(d) Suppose that P (x) has two equal positive roots

x1 = x2 = α(A) >
α(A)

2
= x3.

In this case, ∆ > 0, δ1(A) > δ2(A) and v(A) = u2(A), and Γ(A) degenerates to the vertical

axis x = 0 with an isolated point-acnode (x1, y(x1)) = (α(A), 0).

(e) Suppose that P (x) has only one real root

x1 = α(A).

In this case, ∆ < 0, δ1(A) ≥ δ2(A) and v(A) > u2(A), and Γ(A) is a pure conchoidal curve

(degenerating to the line x = 0 whether δ1(A) = δ2(A)) with no oval, node or isolated point;

see Figure 4(e).

The aforementioned description verifies that Γ(A) is a nonsingular curve in cases (a), (c) and

(e). An essential attribute of a nonsingular cubic curve is the measure of how much it deviates

from a straight line, namely, its curvature. Affine transformations preserve the curvature, and

therefore, we shall use the curvature formula for FA(x, y) = 0 in (A.2). The symmetry of the

curve with respect to the horizontal axis y = 0 permits us to restrict to the positive quadrant

and specialize to the curve

y = y(x) =

√

(

α(A)

x
− 1

)

(x2 − α(A)x + β(A)) > 0, (A.3)

at which we apply the curvature formula

κ(x) =
|y′′(x)|

((y′(x))2 + 1)3/2
.

Now we want to find out how large κ(x) can get. Our search for maxima starts studying the

critical points of κ(x), which occur at points x ∈ [0, α(A)] where the first derivative

κ′(x) =
y′′′(x)(1 + (y′(x))2)− 3y′(x)(y′′(x))2

((y′(x))2 + 1)5/2
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vanishes. Thus,

y′′′(x)(1 + (y′(x))2)− 3y′(x)(y′′(x))2 = 0. (A.4)

Using ordinary differential calculus in (A.3), we calculate (for x, y 6= 0)

y′(x) =
−2x3 + 2α(A)x2 − α(A)β(A)

2x2y
,

y′′(x) =
β(A)

[

4x4 − 12α(A)x3 + 12α2(A)x2 − 4α(A)(α2(A) + β(A))x + 3α2(A)β(A)
]

4x4y3
,

y′′′(x) = 3α(A)β2(A)

−20x4 + 50α(A)x3 − (42α2(A) + 8β(A))x2 + 12α(A)(α2(A) + β(A))x − 5α2(A)β(A)

8x6y5

+3β(A)
(x− α(A))5

x4y5
.

If we substitute these derivatives into (A.4), we derive

(−2x+ α(A))(4x4 − 8α(A)x3 + 6α2(A)x2 − 2α3(A)x + α2(A)β(A)) = 0.

So the critical points of κ(x) are x = α(A)
2 , or the real roots of the quartic polynomial

Q(x) = 4x4 − 8α(A)x3 + 6α2(A)x2 − 2α3(A)x+ α2(A)β(A).

Using Sturm’s theorem, we can count the number of distinct real roots of Q(x) in [0, α(A)] in

terms of the number of variations in sign of the values of the Sturm’s sequence at the endpoints

of the interval. Hence, we firstly compute the Sturm sequence for Q(x):

Q0(x) = 4x4 − 8α(A)x3 + 6α2(A)x2 − 2α3(A)x + α2(A)β(A),

Q1(x) = 16x3 − 24α(A)x2 + 12α2(A)x− 2α3(A),

Q2(x) =
α4(A)

4
− α2(A)β(A) =

α2(A)∆

4
.

Then we evaluate {Q0(x), Q1(x), Q2(x)} at x = 0 and x = α(A), and we obtain S(0) =
{

α2(A)β(A),−α3(A), α2(A)∆
4

}

and S(α(A)) =
{

α2(A)β(A), α3(A), α2(A)∆
4

}

, respectively. The

curve y = y(x) in (A.3) is nonsingular whenever ∆ > 0 or ∆ < 0. Therefore, we have:

1. If ∆ > 0, we can see by case (a) that (A.3) is the upper half of a conchoidal hyperbola

and an oval with x ∈
(

0, α(A)−
√
∆

2

]

∪
[

α(A)+
√
∆

2 , α(A)
]

. Evidently, the point at which

the curve attains its maximum curvature lies on the oval and occurs at one of the two

distinct real roots of the polynomial Q(x). This is due to the fact that S(0) = {+,−,+}
contains 2 sign changes whereas S(α(A)) = {+,+,+} has no sign change. Also, the value

x = α(A)
2 does not verify y = y(x) in (A.3).

By the fundamental theorem of algebra and the fact that the non-real roots of any

polynomial equation come in complex conjugate pairs, we expect exactly two real roots

0 < x1 < x2 ≤ α(A) of Q(x) = 0.

2. If ∆ < 0, then (A.3) is the upper half of a pure conchoidal curve with no singularities in the

interval [0, α(A)] (see case (e)). Apparently, Q(x) has no real roots, since S(0) = {+,−,−}
contains 1 sign change, as well as S(α(A)) = {+,+,−}. This implies that the maximum

curvature of the curve occurs at the point (x, y) =
(

α(A)
2 ,

√
−∆
2

)

.
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Likewise, we also consider the symmetric points with respect to the axis y = 0 and sum up the

aforementioned approach in the next proposition.

Proposition A.1. Let A ∈ Mn(C). Suppose that the cubic curve Γ(A) defined in (1.1) is

nonsingular and δ1(A) > δ2(A). If ∆ < 0, then the maximum curvature of Γ(A) occurs at the

points δ1(A)+δ2(A)
2 + i

(

u(A) ±
√
−∆
2

)

. If ∆ > 0, then the maximum curvature of Γ(A) occurs at

the points z ∈ Γ(A) such that Re z is the largest real root of the polynomial

Q(s) = (s− δ1(A))(s − δ2(A))[(2s− δ1(A) − δ2(A))
2 + (δ1(A)− δ2(A))

2]

+
1

4
(δ1(A)− δ2(A))

2[(δ1(A)− δ2(A))
2 −∆].
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