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Abstract

We present a generalization of Householder sets for matrix polynomials. After
defining these sets, we analyze their topological and algebraic properties, which
include containing all of the eigenvalues of a given matrix polynomial. Then,
we use instances of these sets to derive the Geršgorin set, weighted Geršgorin
set, and weighted pseudospectra of a matrix polynomial. Finally, we show that
Householder sets are intimately connected to the Bauer-Fike theorem by using
these sets to derive Bauer-Fike-type bounds for matrix polynomials.
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1. Introduction

In 1964, Alston S. Householder presented an elegant norm derivation of the
Geršgorin set of a matrix [7]. Later, in 2004, Richard S. Varga labeled the
normed defined sets used in this derivation as Householder sets [19].

Throughout this article, we are interested in matrix polynomials of size n
and degree m:

P (λ) = Amλ
m + · · ·+A1λ+A0, Am 6= 0, (1)

where the coefficients satisfy Ai ∈ Cn×n, for i = 0, 1, . . . ,m, and λ is a complex
variable. We assume that the matrix polynomial is regular, that is, detP (λ) is
not identically zero. A finite eigenvalue of P (λ) is any scalar µ ∈ C such that
detP (µ) = 0. A nonzero vector v ∈ Cn is an eigenvector associated with the
eigenvalue µ provided that

P (µ)v = 0.

We refer to (µ, v) as an eigenpair of the matrix polynomial P (λ). Furthermore,
the geometric multiplicity of µ is the dimension of the null space of P (µ) and
its algebraic multiplicity is the multiplicity of µ as a root of detP (λ).
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Associated with each P (λ) is the reversal matrix polynomial:

PR(λ) = λmP (λ−1) = Am + · · ·+A1λ
m−1 +A0λ

m.

We say that µ =∞ is an eigenvalue of P (λ) if and only if µ = 0 is an eigenvalue
of PR(λ). The geometric and algebraic multiplicity of µ = ∞ as an eigenvalue
of P (λ) are defined by the geometric and algebraic multiplicity of µ = 0 as an
eigenvalue of PR(λ), respectively. In addition, the eigenvectors corresponding
to µ = ∞ for P (λ) are defined by the eigenvectors corresponding to µ = 0 for
PR(λ). Finally, the spectrum of P (λ) is the set of all its eigenvalues (finite and
infinite), denoted by σ(P ). If P (λ) = λI−A, then the spectrum of P (λ) reduces
to the spectrum of the matrix A, which we denote by σ(A).

The outline of this article follows: In Section 2, we define Householder sets
for matrix polynomials and analyze their topological and algebraic properties.
Throughout this section, we reference properties of subharmonic functions that
are given in Appendix A. Then, in Section 3, we use Householder sets to derive
other inclusion sets, such as the Geršgorin set, the weighted Geršgorin set, and
the weighted pseudospectra for matrix polynomials; illustrative examples are
provided. Finally, in Section 4, we apply Householder sets to derive Bauer-
Fike-type bounds for matrix polynomials; examples of how these bounds can be
applied to perturbation theory are provided.

2. Householder Sets

Suppose that (µ, v) is an eigenpair of the matrix polynomial P (λ) as defined
in (1). Then, for any matrix polynomial Q(λ) of size n, the following holds:

(P (µ)−Q(µ)) v = −Q(µ)v.

If Q(µ) is invertible, then we have

Q(µ)−1 (P (µ)−Q(µ)) v = −v.

Thus, any induced matrix norm ‖·‖ satisfies∥∥Q(µ)−1 (P (µ)−Q(µ))
∥∥ ≥ 1.

This equation motivates the definition of the generalized Householder set of
P (λ) with respect to Q(λ) and ‖·‖:

H(P,Q) = σ(Q) ∪ S(P,Q),

where

S(P,Q) = {µ ∈ C \ σ(Q) :
∥∥Q(µ)−1 (P (µ)−Q(µ))

∥∥ ≥ 1}.

A similar derivation is done in Section 1.4 of [19] for matrices A,B ∈ Cn×n.
The resulting set is known as the Householder set for A with respect to B and
‖·‖, and is defined as follows:

H(A,B) = σ(B) ∪ S(A,B),
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where
S(A,B) = {µ ∈ C \ σ(B) :

∥∥(µI −B)−1 (A−B)
∥∥ ≥ 1}.

When P (λ) = λI − A and Q(λ) = λI − B, the generalized Householder set
reduces to the Householder set for A with respect to B and ‖·‖.

Throughout this article, we assume that Q(λ) is a matrix polynomial of
degree less than or equal to the degree of P (λ). Furthermore, we consider the
matrix polynomial

Q̂(λ) = λmQ(λ−1),

where m is the degree of P (λ). Note that Q̂(λ) has a zero constant coefficient
if and only if the degree of Q(λ) is strictly less than m. Otherwise, Q̂(λ) is the
reversal matrix polynomial associated with Q(λ). In addition, we have

H(PR, Q̂) \ {0} =
{
µ ∈ C \ {0} : µ ∈

(
σ(Q̂) ∪ S(PR, Q̂)

)}
=
{
µ ∈ C \ {0} : µ−1 ∈ (σ(Q) ∪ S(P,Q))

}
=
{
µ ∈ C \ {0} : µ−1 ∈ H(P,Q)

}
.

As with the eigenvalues of P (λ), we say that µ =∞ lies in H(P,Q) if and only
if 0 lies in H(PR, Q̂).

Theorem 2.1. All eigenvalues (finite and infinite) of the matrix polynomial
P (λ) lie in the Householder set H(P,Q).

Proof. Suppose that µ ∈ σ(P ) is a finite eigenvalue. If µ ∈ σ(Q), then it is clear
that µ ∈ H(P,Q).

Otherwise, Q(µ) is invertible and

Q(µ)−1 (P (µ)−Q(µ)) v = −v

for some nonzero v ∈ Cn. Therefore, any induced operator norm satisfies∥∥Q(µ)−1 (P (µ)−Q(µ))
∥∥ ≥ 1,

and it follows that µ ∈ S(P,Q) ⊆ H(P,Q).
Now, suppose that µ =∞ is an eigenvalue of P (λ). Then 0 is an eigenvalue

of PR(λ). Furthermore, by the previous argument, it follows that 0 lies in
H(PR, Q̂) and, therefore, ∞ lies in H(P,Q).

In what follows, we discuss the properties of Householder sets. We begin
with some basic properties which we use to determine topological properties
such as necessary and sufficient conditions on the boundedness of Householder
sets. Finally, we prove that under suitable conditions the number of connected
components of a Householder set is no greater than the number of eigenvalues
of P (λ). Throughout, we assume that P (λ) is a matrix polynomial as defined
in (1) and Q(λ) is a matrix polynomial of degree less than or equal to the degree
of P (λ).
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Proposition 2.2. The following properties hold for all Householder sets of
P (λ).

I. H(P,Q) is a closed subset of C.

II. For any α ∈ C \ {0}, the following hold:
i. H(Pα, Qα) = α−1H(P,Q), where Pα(λ) = P (αλ);
ii. H(αP, αQ)) = H(P,Q), where αP (λ) results in the coefficients of

P (λ) being multiplied by α;
iii. H(αP,αQ) = H(P,Q)− α, where αP (λ) = P (λ+ α).

III. If detQ(λ) is (identically) zero, then H(P,Q) = C.

IV. Suppose that P (λ) = βQ(λ) for some β ∈ C \ {0}. If |β − 1| < 1, then
H(P,Q) = σ(P ), and if |β − 1| ≥ 1, then H(P,Q) = C.

V. If the coefficients of Q(λ) and P (λ) are real and ‖·‖ is invariant under the
complex conjugation of matrix entries, then the set H(P,Q) is symmetric
with respect to the real axis.

Proof.

I. It is clear that σ(Q) is closed as it is either a finite set or all of C. Thus,
we only need to show that the set S(P,Q) is closed. To this end, suppose
that µ ∈ C \ σ(Q) satisfies∥∥Q(µ)−1 (P (µ)−Q(µ))

∥∥ < 1.

Since Q(µ) is invertible, it follows that there exists a neighborhood about
µ for which Q(λ)−1 (P (λ)−Q(λ)) is continuous. Therefore, for z ∈ C that
are sufficiently close to µ we have∥∥Q(z)−1 (P (z)−Q(z))

∥∥ < 1.

Hence, the set C \ S(P,Q) is open, and it follows that S(P,Q) is closed.

II. Let α ∈ C \ {0}.
i. Note that

H(Pα, Qα) = σ(Qα) ∪ S(Pα, Qα)

= α−1σ(Q) ∪ α−1S(P,Q)

= α−1H(P,Q).

ii. Similarly, we have

H(αP, αQ) = σ(αQ) ∪ S(αP, αQ)

= σ(Q) ∪ S(P,Q)

= H(P,Q).

iii. Finally,

H(αP,αQ) = σ(αQ) ∪ S(αP,αQ)

= (σ(Q)− α) ∪ (S(P,Q)− α)

= H(P,Q)− α.
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III. If detQ(λ) is identically zero, then

C = σ(Q) ⊆ H(P,Q) ⊆ C.

Hence, H(P,Q) = C.

IV. If P (λ) = βQ(λ) for some β ∈ C \ {0}, then

H(P,Q) = σ(Q) ∪ S(βQ,Q)

= σ(Q) ∪ {µ ∈ C \ σ(Q) : |β − 1| ≥ 1}.

Hence, H(P,Q) = C if |β − 1| ≥ 1 and H(P,Q) = σ(Q) = σ(P ) otherwise.

V. If the coefficients of a matrix polynomial are real, then its spectrum is
symmetric with respect to the real axis. Thus, all that remains is to
show that S(P,Q) is symmetric with respect to the real axis when ‖·‖ is
invariant under the complex conjugate of matrix entries. To that end, let
µ ∈ S(P,Q). Then,∥∥Q(µ)−1 (P (µ)−Q(µ))

∥∥ =
∥∥∥Q(µ)−1 (P (µ)−Q(µ))

∥∥∥
=
∥∥Q(µ)−1 (P (µ)−Q(µ))

∥∥ ≥ 1,

and it follows that µ ∈ S(P,Q).

Proposition 2.3. The set {µ ∈ C \ σ(Q) :
∥∥Q(µ)−1 (P (µ)−Q(µ))

∥∥ > 1}
lies in the interior of S(P,Q) ⊆ H(P,Q). As a result, the boundary of the
Householder set is contained in the following union:

σ(Q) ∪
{
µ ∈ C \ σ(Q) :

∥∥Q(µ)−1 (P (µ)−Q(µ))
∥∥ = 1

}
.

Proof. Suppose that µ ∈ C \ σ(Q) satisfies∥∥Q(µ)−1 (P (µ)−Q(µ))
∥∥ > 1.

Then, by continuity, there exists an ε > 0 such that for every z ∈ C with
|µ− z| < ε, we have z /∈ σ(Q) and∥∥Q(z)−1 (P (z)−Q(z))

∥∥ > 1.

Thus, µ is an interior point of S(P,Q). Therefore, if µ is a boundary point of
H(P,Q), then µ ∈ σ(Q), or µ /∈ σ(Q) and∥∥Q(µ)−1 (P (µ)−Q(µ))

∥∥ = 1.

In the following results, we make use of properties of subharmonic functions
that are given in Appendix A.
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Theorem 2.4. If µ is an isolated point of H(P,Q), then µ ∈ σ(Q).

Proof. For the sake of contradiction, assume that µ /∈ σ(Q) and µ is an isolated
point of H(P,Q). Then, it follows from Proposition 2.3 that∥∥Q(µ)−1 (P (µ)−Q(µ))

∥∥ = 1.

Furthermore, there exists an ε > 0 such that the closed disk

D(µ, ε) = {λ ∈ C : |λ− µ| ≤ ε} (2)

contains no other points of H(P,Q).
Define φ(λ) =

∥∥Q(λ)−1 (P (λ)−Q(λ))
∥∥ on D(µ, ε). Since D(µ, ε) contains

no points of σ(Q), it follows that Q(λ)−1 (P (λ)−Q(λ)) is a non-zero analytic
matrix-valued function on D(µ, ε). Therefore, by Theorem A.3, it follows that
φ(λ) is a subharmonic function on D(µ, ε). As a subharmonic function, φ(λ)
should obtain its maximum on ∂D(µ, ε). However, φ(µ) = 1 and φ(λ) < 1 for
all λ ∈ D(µ, ε)\{µ}, which is a contradiction, and it follows that µ ∈ σ(Q).

Let Ω be a closed subset of C and let µ ∈ Ω. The local dimension of µ is
defined by

lim
h→0+

dim{Ω ∩D(µ, h)},

where h ∈ R+ and dim{·} denotes the topological dimension [8]. Any isolated
point in Ω has local dimension 0. Furthermore, any non-isolated point in Ω has
local dimension 2 if and only if its belongs to the closure of the interior of Ω,
and 1 otherwise.

Theorem 2.5. Any point of S(P,Q) has local dimension 2.

Proof. Let µ ∈ S(P,Q). It is immediately clear from Theorem 2.4 that µ cannot
have local dimension 0. Now, for the sake of contradiction, suppose that µ has
local dimension 1. Then, since µ is not an interior point of S(P,Q), there exists
an ε > 0 such that

S(P,Q) ∩D(µ, ε) ⊆
{
µ ∈ C \ σ(Q) :

∥∥Q(µ)−1 (P (µ)−Q(µ))
∥∥ = 1

}
,

where D(µ, ε) is the closed disk defined in (2).
Thus, by Theorem A.3, φ(λ) =

∥∥Q(λ)−1 (P (λ)−Q(λ))
∥∥ is a subharmonic

function on D(µ, ε), and φ(λ) takes on its maximum value of 1 at (infinitely
many) interior points of D(µ, ε). However, φ(λ) is non-constant on D(µ, ε)
since the disk must contain a point that is not in S(P,Q), otherwise µ would
be an interior point of S(P,Q). Therefore, φ(λ) taking on its maximum value
of 1 in the interior of D(µ, ε) contradicts the maximum principle, and it follows
that no µ ∈ S(P,Q) has local dimension 1.

As a corollary of Theorem 2.5, note that any point of H(P,Q) has local
dimension either 2 or 0, that is, Householder sets of P (λ) cannot have parts
which are curves.
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By Theorem 2.4, if the origin is an isolated point of H(P,Q) it follows that
0 ∈ σ(Q). Therefore, if 0 /∈ σ(Q̂), then the origin is not an isolated point of
H(PR, Q̂) and it follows that H(P,Q) is not the union of a bounded set and ∞.
Furthermore, if 0 /∈ σ(Q̂), it follows that Q(λ) is a matrix polynomial of degree
m, which we denote by

Q(λ) = Bmλ
m + · · ·+B1λ+B0,

where Bm is invertible. We are now ready to prove necessary and sufficient
conditions on the boundedness of Householder sets.

Theorem 2.6. Suppose that 0 /∈ σ(Q̂). Then, H(P,Q) is unbounded if and
only if 0 ∈ S(Am, Bm).

Proof. Suppose that 0 ∈ S(Am, Bm), that is,
∥∥B−1

m (Am −Bm)
∥∥ ≥ 1. Then,

0 ∈ S(PR, Q̂) ⊆ H(PR, Q̂) and, therefore, ∞ ∈ H(P,Q). By hypothesis, 0 is
not an isolated point of H(PR, Q̂) and, hence, ∞ is not an isolated point of
H(P,Q).

Conversely, suppose that H(P,Q) is unbounded. Then, there is a sequence
{ul}l∈N in H(P,Q) such that |ul| → ∞ as l→∞. For every l ∈ N, ul ∈ σ(Q) or
ul ∈ S(P,Q). Since 0 /∈ σ(Q̂), Q(λ) is regular and it follows that the cardinality
of σ(Q) is finite. Therefore, there exists an N > 0 such that ul /∈ σ(Q) and,
hence, ul ∈ S(P,Q) for all l > N . So, for l > N , we have∥∥∥Q̂(u−1

l )−1
(
PR(u−1

l )− Q̂(u−1
l )
)∥∥∥ ≥ 1.

Taking the limit as l→∞ we find that∥∥∥Q̂(0)−1
(
PR(0)− Q̂(0)

)∥∥∥ ≥ 1,

which implies that 0 ∈ S(Am, Bm).

It is well-known, see Corollary 6.1.6 of [6], that the number of Geršgorin
disks corresponding to A ∈ Cn×n is bounded above by n, that is, the number of
eigenvalues of A. Similarly, under suitable conditions, the number of connected
components of the Geršgorin set of a matrix polynomial P (λ) is bounded above
by the number of eigenvalues of P (λ), see Theorem 2.9 of [13]. The following
theorem generalizes these results for Householder sets.

Theorem 2.7. Suppose that 0 /∈ σ(Q̂) and H(P,Q) is bounded. Then, the
number of connected components of H(P,Q) is bounded above by nm. Moreover,
each connected component has the same number of eigenvalues of Q(λ) and
P (λ), counting multiplicities.

Proof. Let F (λ) = P (λ)−Q(λ), and define the family of matrix polynomials

Pt(λ) = Q(λ) + tF (λ),
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for t ∈ [0, 1]. Let 0 ≤ t1 ≤ t2 ≤ 1 and suppose that µ ∈ H(Pt1 , Q). Then, either
µ ∈ σ(Q) or t1

∥∥Q(µ)−1F (µ)
∥∥ ≥ 1. In either case, we have µ ∈ H(Pt2 , Q).

Therefore, H(Pt, Q) is a nondecreasing family of compact sets for t ∈ [0, 1].
Since 0 /∈ σ(Q̂), it follows that Q(λ) has degree m and Bm is invertible.

In addition, since H(P,Q) is bounded, the scalar polynomial detPt(λ) has
degree nm for all t ∈ [0, 1]. The continuity of the roots of detPt(λ) with respect
to t implies that every eigenvalue of Q(λ) is connected to an eigenvalue of P (λ)
by a continuous curve in H(P,Q). Since every such curve must lie in a connected
component of H(P,Q), the result follows.

3. More Inclusion Sets

Householder sets were originally used to give elegant derivations of the
Geršgorin and weighted Geršgorin set of a matrix [7, 19]. It is in this spirit
that we use the generalized Householder sets defined in Section 2 to formulate
the Geršgorin set, the weighted Geršgorin set, and the weighted pseudospectra
of a matrix polynomial. Here and throughout the remainder of the article, we
denote by diagP (λ) the diagonal matrix polynomial whose diagonal entries are
equal to the diagonal entries of P (λ), by P (λ)i,j the (i, j)-th entry of P (λ), and
by diag (x1, . . . , xn) a diagonal matrix whose diagonal entries are x1, . . . , xn.

3.1. The Geršgorin Set

Recently, in [2, 10, 13], the authors developed a generalized Geršgorin set
for matrix polynomials and analytic matrix-valued functions. Specifically, the
Geršgorin set of the matrix polynomial P (λ) is defined by

G(P ) =

n⋃
i=1

Gi(P ), (3)

where

Gi(P ) =

µ ∈ C : |P (µ)i,i| ≤
n∑
j=1
j 6=i

|P (µ)i,j |

 .

When P (λ) = λI − A, G(P ) reduces to the classic Geršgorin set of the matrix
A [6], which we denote by G(A). Also, if P (λ) = λB − A, then G(P ) reduces
to the Geršgorin-type set of the matrix pencil (A,B) [9, 16]. In this section,
we show that the Geršgorin set for matrix polynomials is an instance of the
Householder sets defined in Section 2.

Theorem 3.1. Let P (λ) be a matrix polynomial as defined in (1). Then, the
Householder set of P (λ) with respect to diagP (λ) and ‖·‖ = ‖·‖∞ coincides with
the Geršgorin set of P (λ).
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Proof. Suppose that µ ∈ H(P,diagP ). If µ ∈ σ(diagP ), then there is some
i ∈ {1, . . . , n} such that P (µ)i,i = 0 and it follows that µ ∈ Gi(P ) ⊆ G(P ).
Otherwise, µ ∈ S(P,diagP ) and it follows that∥∥∥diagP (µ)

−1
(P (µ)− diagP (µ))

∥∥∥
∞
≥ 1.

Note that the entries of the matrix diagP (µ)
−1

(P (µ)− diagP (µ)) = [xi,j ] can
be written as xi,j = 0 if i = j and

xi,j =
P (µ)i,j
P (µ)i,i

otherwise. Therefore,

1 ≤
∥∥∥diagP (µ)

−1
(P (µ)− diagP (µ))

∥∥∥
∞

= max
1≤i≤n

 n∑
j=1
j 6=i

∣∣∣∣P (µ)i,j
P (µ)i,i

∣∣∣∣
 .

Hence, there is an i ∈ {1, . . . , n} such that

|P (µ)i,i| ≤
n∑
j=1
j 6=i

|P (µ)i,j |

and it follows that µ ∈ Gi(P ) ⊆ G(P ).
Conversely, suppose that µ ∈ G(P ). Then, there exists an i ∈ {1, . . . , n}

such that

|P (µ)i,i| ≤
n∑
j=1
j 6=i

|P (µ)i,j | .

If P (µ)i,i = 0, then it follows that µ ∈ σ(diagP ) ⊆ H(P,diagP ). Otherwise,

1 ≤ max
1≤i≤n

 n∑
j=1
j 6=i

∣∣∣∣P (µ)i,j
P (µ)i,i

∣∣∣∣
 =

∥∥∥diagP (µ)
−1

(P (µ)− diagP (µ))
∥∥∥
∞

and, hence, µ ∈ S(P,diagP ) ⊆ H(P,diagP ).

3.2. The Weighted Geršgorin Set

Geršgorin was the first to recognize the use of similarity transformations
X−1AX, where X = diag (x1, . . . , xn) and xi > 0, for i = 1, . . . , n, to sharpen
the bounds on the Geršgorin set of A ∈ Cn×n [4]. Any similarity transformation
can be used; however, a diagonal similarity transformation with positive entries
has the advantage of an easily understood impact on the inclusion set. The set
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GX(A) = G(X−1AX) is known as the weighted Geršgorin set of A with respect
to X and is equal to the following union

GX(A) =

n⋃
i=1

GXi (A), (4)

where

GXi (A) =

µ ∈ C : |µ− ai,i| ≤
n∑
j=1
j 6=i

|ai,j |xj
xi

 .

Now, define the set of all positive diagonal matrices

D = {diag (x1, . . . , xn) : xi > 0, i = 1, . . . , n}.

For each X ∈ D, we define

νX(u) =
∥∥X−1u

∥∥
∞ , (5)

for all u ∈ Cn. It is clear that νX(·) is a norm on Cn. Furthermore, the matrix
norm induced by νX(·) is defined by

νX(A) =
∥∥X−1AX

∥∥
∞ ,

for all A ∈ Cn×n. The weighted Geršgorin set of the matrix polynomial P (λ),
denoted by GX(P ), is the Householder set of P (λ) with respect to diagP (λ)
and ‖·‖ = νX(·).

Theorem 3.2. Let P (λ) = λI − A. Then, GX(P ) reduces to the weighted
Geršgorin set with respect to X of the matrix A as defined in (4).

Proof. Suppose that µ ∈ H(P,diagP ). If µ ∈ σ(diagP ), then there is some
i ∈ {1, . . . , n} such that µ − ai,i = 0 and it follows that µ ∈ GXi (A) ⊆ GX(A).
Otherwise, µ ∈ S(P,diagP ), and it follows that

νX

(
diagP (µ)

−1
(P (µ)− diagP (µ))

)
≥ 1,

that is, ∥∥∥X−1 diag (µI −A)
−1

(diagA−A)X
∥∥∥
∞
≥ 1.

Therefore, we have

1 ≤ max
1≤i≤n

 n∑
j=1
j 6=i

∣∣∣∣ aijxj
(µ− aii)xi

∣∣∣∣
 .

So, there is an i ∈ {1, . . . , n} such that

|µ− aii| ≤
n∑
j=1
j 6=i

|aij |xj
xi

,
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which implies that µ ∈ GXi (A) ⊆ GX(A).
Conversely, suppose that µ ∈ GX(A). Then, there exists an i ∈ {1, . . . , n}

such that

|µ− aii| ≤
n∑
j=1
j 6=i

|aij |xj
xi

.

If µ− aii = 0, then it follows that µ ∈ σ(diagP ) ⊆ H(P,diagP ). Otherwise,

1 ≤ max
1≤i≤n

 n∑
j=1
j 6=i

∣∣∣∣ aijxj
(µ− aii)xi

∣∣∣∣


= νX

(
diagP (µ)

−1
(P (µ)− diagP (µ))

)
and, hence, µ ∈ S(P,diagP ) ⊆ H(P,diagP ).

It follows from Theorem 3.2 that GX(P ) is a generalization of the weighted
Geršgorin set of a matrix. Furthermore, the intersection⋂

X∈D
GX(P )

is equal to the minimal Geršgorin set of P (λ) as defined in [10].

3.3. The Weighted Pseudospectrum

Finally, we consider the weighted pseudospectra of a matrix polynomial,
which is an established tool for gaining insight into the sensitivity of eigenvalues
to perturbations in the coefficients of the matrix polynomial [1, 3, 11, 14, 17].
In this section, we show that the weighted pseudospectra can be represented as
a union of Householder sets.

Let P (λ) be a matrix polynomial as defined in (1) and consider (additive)
perturbations of P (λ) of the form

P∆(λ) = (Am + ∆m)λm + · · ·+ (A1 + ∆1)λ+ (A0 + ∆0),

where the matrices ∆0,∆1, . . . ,∆m ∈ Cn×n are arbitrary. For a given ε > 0
and a set of nonnegative weights w = {w0, w1, . . . , wm}, the ε-pseudospectrum
of P (λ) with respect to w is defined by

σε,w(P ) = {µ ∈ C : detP∆(µ) = 0, ‖∆j‖ ≤ εwj , j = 0, 1, . . . ,m},

where ‖·‖ is any induced matrix norm.
It is useful to define the associated compact set of perturbations of P (λ)

B(P, ε,w) = {P∆(λ) : ‖∆j‖ ≤ εwj , j = 0, 1, . . . ,m}. (6)
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Then, the ε-pseudospectrum of P (λ) can also be expressed in the form

σε,w(P ) = {µ ∈ C : detP∆(µ) = 0, P∆(λ) ∈ B(P, ε,w)}.

Furthermore, by Lemma 2.1 of [17], we have

σε,w(P ) =
{
µ ∈ C :

∥∥P (µ)−1
∥∥−1 ≤ εqw(|µ|)

}
,

where
qw(λ) = wmλ

m + · · ·+ w1λ+ w0.

Theorem 3.3. Let P (λ) be a matrix polynomial as defined in (1), and let ε > 0
and w be given. Then, for any perturbation P∆(λ) ∈ B(P, ε,w), we have

H(P∆, P ) ⊆ σε,w(P ).

Proof. Suppose that µ ∈ H(P∆, P ). If µ ∈ σ(P ), then µ ∈ σε,w(P ). Otherwise,
µ ∈ S(P∆, P ), and it follows that∥∥P (µ)−1 (∆mµ

m + · · ·+ ∆1µ+ ∆0)
∥∥ ≥ 1.

Therefore,

1 ≤
∥∥P (µ)−1 (∆mµ

m + · · ·+ ∆1µ+ ∆0)
∥∥

≤ ε
∥∥P (µ)−1

∥∥ qw(|µ|),

which implies that ∥∥P (µ)−1
∥∥−1 ≤ εqw(|µ|),

and µ ∈ σε,w(P ).

Corollary 3.4. Let P (λ) be a matrix polynomial as defined in (1), and let ε > 0
and w be given. Then, the union of H(P∆, P ) over all P∆(λ) ∈ B(P, ε,w) is
equal to σε,w(P ).

Proof. By Theorem 2.1, the eigenvalues of P∆(λ) are contained in H(P∆, P ).
Thus, σε,w(P ) is contained in the union ofH(P∆, P ) over all P∆(λ) ∈ B(P, ε,w),
and the result follows from Theorem 3.3.

Corollary 3.5. Let P (λ) be a matrix polynomial as defined in (1), Q(λ) a
matrix polynomial of degree m, with coefficients Bi ∈ Cn×n for i = 0, 1, . . . ,m,
and w a given set of weights. If

ε ≥ max{‖Aj −Bj‖/wj : wj > 0, j = 0, 1, . . . ,m},

then for every µ ∈ H(P,Q) there is a Q∆(λ) ∈ B(Q, ε,w) such that µ ∈ σ(Q∆).

Proof. For j = 0, 1, . . . ,m, define ∆j = Aj − Bj . Then, for j = 0, 1, . . . ,m, we
have ‖∆j‖ ≤ εwj . Therefore,

P (λ) = Amλ
m + · · ·+A1λ+A0

= (Bm + ∆m)λm + · · ·+ (B1 + ∆1)λ+ (B0 + ∆0)

is an element of B(Q, ε,w). By Theorem 3.3, it follows that H(P,Q) ⊆ σε,w(Q).
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3.4. Examples

In this section, we present three examples to illustrate the properties derived
in Section 2. For each example, we plot three Householder sets that correspond
to the inclusion sets from Sections 3.1–3.3. Furthermore, the shaded (light blue)
region represents the interior of the Householder set, the darker curve (orange)
is the boundary of the set3, and the asterisks (black) are the eigenvalues of the
matrix polynomial. It is worth mentioning that we compute the interior and
boundary of these Householder sets with a brute force method in Mathematica,
and we are interested in developing more efficient methods for computing the
boundary of Householder sets.

Example 3.6. Let

P (λ) =

[
5λ6 + λ3 + 7 2λ6 + 4

λ6 + 1 2λ6 + 3λ

]
and consider the three Householder sets in Figure 1.
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Figure 1: Householder sets of Example 3.6

The Householder set on the left corresponds to the Geršgorin set of P (λ);
the Householder set in the center corresponds to the weighted Geršgorin set of
P (λ), where X = diag (5, 2); the Householder set on the right corresponds to
H(P∆, P ), where ‖·‖ = ‖·‖∞ and P∆(λ) is an element of B(P, ε,w) as defined
in (6), randomly selected with ε = 0.075 and wj = ‖Aj‖∞, for j = 0, 1, . . . ,m.

Note that the Householder sets on the left and in the center are symmetric
with respect to the real axis, verifying Proposition 2.2 since the coefficients of
P (λ) are real. In contrast, the Householder set on the right is not symmetric,
which can be attributed to P∆(λ) having complex coefficients. Also, since none
of the Householder sets make up the whole complex plane, we know that both
P (λ) and diagP (λ) are regular. However, the Householder set in the center is
unbounded, by Theorem 2.6, since 0 ∈ H(Am, Bm). Finally, by Theorem 3.3,
the Householder set on the right is a subset of the ε-pseudospectrum of P (λ).

3Note that the darker curve (orange) surrounding the central plot of Figure 1 is not the
boundary of the set, but rather indicates that the set is unbounded.
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Example 3.7. Let

P (λ) =

λ10 + 3.5i 3i 0
2 λ10 − 2i 0

0.5 + 2i −7i λ10 + 5− 3i


and consider the three Householder sets in Figure 2.
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Figure 2: Householder sets of Example 3.7

The Householder set on the left corresponds to the Geršgorin set of P (λ);
the Householder set in the center corresponds to the weighted Geršgorin set of
P (λ), where X = diag (1, 1, 10); the Householder set on the right corresponds to
H(P∆, P ), where ‖·‖ = ‖·‖∞ and P∆(λ) is an element of B(P, ε,w) as defined
in (6), randomly selected with ε = 0.075 and wj = ‖Aj‖∞, for j = 0, 1, . . . ,m.

Note that the Householder set in the center illustrates the potential of the
weighted Geršgorin set to sharpen the bounds on the original Geršgorin set,
whereas the weights chosen in Example 3.6 made the bounds worse.

Example 3.8. Let

P (λ) =

λ2 − 2λ+ 1 0 λ
0 λ2 − 1 0
0 0 λ2 + 1


and consider the three Householder sets in Figure 3.

The Householder set on the left corresponds to the Geršgorin set of P (λ);
the Householder set in the center corresponds to the weighted Geršgorin set of
P (λ), where X = diag (10, 1, 1); the Householder set on the right corresponds to
H(P∆, P ), where ‖·‖ = ‖·‖∞ and P∆(λ) is an element of B(P, ε,w) as defined
in (6), randomly selected with ε = 0.075 and wj = ‖Aj‖∞, for j = 0, 1, . . . ,m.

Note that the Householder set on the left and in the center has three isolated
points. These three points are eigenvalues of diagP (λ), which we expected
from the necessary condition in Theorem 2.4. However, there is an eigenvalue
of diagP (λ) that is not isolated, thus, this condition is not sufficient. Finally,
since H(P∆, P ) is a subset the ε-pseudospectrum, the right part of the figure
indicates that the eigenvalue 1 is more sensitive to perturbations than the other
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Figure 3: Householder sets of Example 3.8

eigenvalues of P (λ). This increased sensitivity is expected from Theorem 2
of [14]; indeed, 1 is the only multiple eigenvalue of P (λ) and it has algebraic
multiplicity 3 and geometric multiplicity 2.

4. Bauer-Fike-Type Bounds

In Section 3, we showed that Householder sets can be used to give elegant
derivations of other inclusion sets. In addition, these normed derived sets are
intimately connected with the Bauer-Fike theorem, see Theorem IV.1.6 of [16],
which in turn is deeply connected to the perturbation theory of matrices [18, 20].
In particular, the following proposition holds for any matrix polynomial P (λ)
as defined in (1).

Proposition 4.1. Let ∆P (λ) be a matrix polynomial of size n and degree less
than or equal to m, also let P∆(λ) = P (λ) + ∆P (λ). If µ∆ is an eigenvalue of
P∆(λ) that is not an eigenvalue of P (λ), then for any invertible M ∈ Cn×n we
have ∥∥M−1P (µ∆)−1M

∥∥−1 ≤
∥∥M−1∆P (µ)M

∥∥ ,
where ‖·‖ is any induced matrix norm.

Proof. Since µ∆ ∈ σ(P∆) and µ /∈ σ(P ), it follows that

µ∆ ∈ S(M−1P∆(λ)M,M−1P (λ)M).

Therefore,
∥∥(M−1P (µ∆)−1M)(M−1∆P (µ∆)M)

∥∥ ≥ 1, and the result follows.

Note that the Bauer-Fike theorem is a special case of Proposition 4.1. To
this end, let P (λ) = A−λI and ∆P (λ) = E; then, the result in Proposition 4.1
is equivalent to the result in Theorem IV.1.6 of [16]. Moreover, this result
immediately implies the Bauer-Fike theorem for diagonalizable matrices, see
Theorem 6.3.2 of [6], provided that ‖·‖ is a matrix norm induced by an absolute
norm on Cn as defined in (5.4.18) of [6].
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Prior to extending the Bauer-Fike theorem for diagonalizable matrices to
matrix polynomials, we note that some matrix polynomials can be diagonalized
by congruence or strict equivalence, see [12]. While this requires the coefficient
matrices satisfy a strong commutativity condition, there are many applications
in engineering where this condition arises naturally. In this case, it is easy to
see how Proposition 4.1 can be used to derive a generalized Bauer-Fike theorem
for simultaneously diagonalizable matrix polynomials.

More generally, every matrix polynomial can be diagonalized as follows:

E(λ)P (λ)F (λ) = D(λ), (7)

where D(λ) = diag (d1(λ), . . . , dn(λ)) and E(λ) and F (λ) are unimodular, that
is, matrix polynomials with constant nonzero determinant [5]. In this more
general setting, the following theorem holds.

Theorem 4.2. Let ∆P (λ) be a matrix polynomial of size n and degree less
than or equal to m, also let P∆(λ) = P (λ) + ∆P (λ). Then, for each eigenvalue
µ∆ ∈ σ(P∆), there is a di(λ) as in (7) such that

|di(µ∆)| ≤ ‖E(µ∆)‖ ‖F (µ∆)‖ ‖∆P (µ∆)‖ , (8)

where ‖·‖ is any absolute induced matrix norm.

Proof. Let µ∆ ∈ σ(P∆) and consider the Householder set of E(λ)P∆(λ)F (λ)
with respect to D(λ) and ‖·‖. By Theorem 2.1, it follows that µ∆ ∈ σ(D) or∥∥D(µ∆)−1E(µ∆)∆P (µ∆)F (µ∆)

∥∥ ≥ 1.

In the former case, the result is trivial. Assuming the latter we have

1 ≤
∥∥D(µ∆)−1E(µ∆)∆P (µ∆)F (µ∆)

∥∥
≤ ‖E(µ∆)∆P (µ∆)F (µ∆)‖

∥∥D(µ∆)−1
∥∥

= ‖E(µ∆)∆P (µ∆)F (µ∆)‖ max
1≤i≤n

∣∣di(µ∆)−1
∣∣ ,

where the last line follows from Theorem 5.6.36 of [6]. Therefore,

min
1≤i≤n

|di(µ∆)| ≤ ‖E(µ∆)∆P (µ∆)F (µ∆)‖

≤ ‖E(µ∆)‖ ‖F (µ∆)‖ ‖∆P (µ∆)‖ .

Note that the Bauer-Fike theorem for diagonalizable matrices is a special
instance of Theorem 4.2. Indeed, let P (λ) = λI − A and ∆P (λ) = E, where
A,E ∈ Cn×n. If A is diagonalizable, then there exists an invertible M ∈ Cn×n
such that M−1 (λI −A)M = diag (λ− µ1, . . . , λ− µn), where µ1, . . . , µn are
the eigenvalues of A. By Theorem 4.2, for each µ∆ ∈ σ(A + E), there exists a
µi ∈ σ(A) such that

|µ∆ − µi| ≤
∥∥M−1

∥∥ ‖M‖ ‖E‖ .
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Example 4.3. The following matrix polynomial is from [12]:

P (λ) = λ2

[
41 12
12 34

]
+ λ

[
−73 −36
−36 −52

]
+

[
32 24
24 18

]
.

Note that the coefficient matrices of P (λ) are simultaneously diagonalizable by
congruence. In particular, there exists a unitary matrix U such that

U∗P (λ)U = diag(50λ2 − 100λ+ 50, 25λ2 − 25λ)

: = diag(d1(λ), d2(λ)).

Let ε > 0 and w = {w1, w2, w3} be nonnegative weights. Keeping in mind
the notation of Section 3.3, for any µ∆ ∈ σ(P∆), where P∆(λ) ∈ B(P, ε,w),
Theorem 4.2 implies that there is a di(λ), i ∈ {1, 2}, such that

|di(µ∆)| ≤ εqw(|µ∆|).

Next, we consider the case where the D(λ) in (7) is the Smith form of P (λ).
Then, the diagonal entries di(λ) are known as the invariant polynomials of
P (λ). Furthermore, each invariant polynomial can be represented as a product
of linear factors

di(λ) = (λ− µi,1)αi,1 · · · (λ− µi,ki)αi,ki , i = 1, . . . , n, (9)

where µi,1, . . . , µi,ki are distinct complex numbers and αi,1, . . . , αi,ki are positive
integers. The factors (λ − µi,j)αi,j , j = 1, . . . , ki, i = 1, . . . , n, are called the
elementary divisors of P (λ). Furthermore, an elementary divisor is called linear
if ai,j = 1, and nonlinear otherwise. Finally, it is clear that the complex numbers
µi,1, . . . , µi,ki are eigenvalues of P (λ).

Now, let µ∆ ∈ σ(P∆) as defined the hypothesis of Theorem 4.2. Then, there
exists an invariant polynomial di(λ) of P (λ) that satisfies the bound in (8).
Let di(λ) be written as in (9) and select µi,l, l ∈ {1, . . . , ki}, that minimizes
|µ∆ − µi,l|. Furthermore, define

f(λ) =

ki∏
j=1
j 6=l

(λ− µi,j)αi,j ,

so that di(λ) = f(λ)(λ− µi,l)αi,l . Applying the bounds in (8), it follows that

|µ∆ − µi,l| ≤
(
‖E(µ∆)‖ ‖F (µ∆)‖ ‖∆P (µ∆)‖

|f(µ∆)|

)1/αi,l

, (10)

where αi,l is no greater than the algebraic multiplicity of µi,l and f(λ) is a
polynomial that is nonzero in a neighborhood of µ∆.

Example 4.4. The following matrix polynomial is from [12]:

P (λ) = λ2

[
1 0
0 1

]
+ λ

[
2 1
1 2

]
+

[
1 1
1 2

]
.
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It can be shown, see [12], that P (λ) cannot be diagonalized via congruence or
strict equivalence. However, we can still use the Smith form of P (λ) and (10)
in order to analyze the affects of a perturbation on the eigenvalues of P (λ).

To this end, consider the perturbed matrix polynomial

P∆(λ) = λ2

[
1 0
0 1

]
+ λ

[
2 1
1 2

]
+

[
1 1 + ε

1− ε 2

]
,

where 0 < ε < 1. The eigenvalues of P∆(λ) are

−1 +
√
εekπi/4,

for k = 1, 3, 5, 7. Furthermore,

E(λ) =

[
0 1
1 λ(2 + 3λ+ λ2)

]
and F (λ) =

[
−(λ+ 1) (λ+ 1)2

1 −(λ+ 1)

]
are unimodular matrix polynomials such that E(λ)P (λ)F (λ) = diag (1, (λ+ 1)4).
For any µ∆ ∈ σ(P∆), it can easily be verified that

‖E(µ∆)‖∞ ≤ 1 + 2
√
ε and ‖F (µ∆)‖∞ ≤ 1 + 2

√
ε.

Keeping in mind the notation of Section 3.3, it follows that

‖P∆(µ∆)‖ ≤ εqw(|µ∆|),

where w = {1, 0, 0}. Applying the bounds in (10), we verify that

√
ε = |µ∆ − µ| ≤

(
ε(1 + 4

√
ε+ 4ε)

)1/4
≤ (9ε)

1/4
.

5. Conclusion

Householder sets for matrix polynomials have a wide range of interesting
properties and applications. In Section 2, we introduced the Householder sets
for matrix polynomials and analyzed their topological and algebraic properties.
Then, in Section 3, we showed that instances of Householder sets could be used
to derive other well-known inclusion sets for matrix polynomials. Specifically, we
derived the Geršgorin set, weighted Geršgorin set, and weighted pseudospectra
of a matrix polynomial. Finally, in Section 4, we showed that Householder sets
are intimately connected to the Bauer-Fike theorem by using these sets to derive
Bauer-Fike-type bounds for matrix polynomials. We note that our definition of
Householder sets can easily be extended for analytic matrix-valued functions,
as well as for consistent and compatible matrix norms; many of our results
will be applicable in these more general settings. Future research includes the
application of Householder sets to the analysis of additive and multiplicative
perturbation theory for matrix polynomials, as well as an efficient method for
computing the boundary of the Householder sets.
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Appendix A. Subharmonic Functions

In this appendix, we give our working definition of subharmonic functions
and prove some basic properties of subharmonic functions which are used in this
article.

Let Ω be an open set in C. The continuous function f : Ω→ R is said to be
subharmonic in Ω provided that for any closed disk D(z, r) ⊂ Ω of center z and
radius r,

f(z) ≤ 1

2π

∫ 2π

0

f(z + reiθ)dθ.

Proposition A.1. Suppose {fα : α ∈ A} is a family of subharmonic functions
in Ω that are bounded above. Then,

f(λ) = sup
α∈A

fα(λ)

is subharmonic on Ω.

Proof. The function f is clearly continuous. Now, consider the closed disk
D(z, r) ⊂ Ω. For any α ∈ A we have

fα(z) ≤ 1

2π

∫ 2π

0

fα(z + reiθ)dθ

≤ 1

2π

∫ 2π

0

f(z + reiθ)dθ.

Therefore,

f(z) = sup
α∈A

fα(z) ≤ 1

2π

∫ 2π

0

f(z + reiθ)dθ

and it follows that f is subharmonic in Ω.

Proposition A.2. Suppose that f : Ω→ R is subharmonic in Ω and φ : R→ R
is continuous, convex, and non-decreasing. Then, φ(f(λ)) is subharmonic in Ω.

Proof. Again, it is clear that φ(f(λ)) is continuous. Furthermore, for any closed
disk D(z, r) ⊂ Ω, we have

1

2π

∫ 2π

0

φ(f(z + reiθ))dθ ≥ φ
(

1

2π

∫ 2π

0

f(z + reiθ)dθ

)
≥ φ(f(z)).

The first inequality is a result of Jensen’s inequality, see Theorem 3.3 of [15],
and the second inequality is a result of f being subharmonic and φ being non-
decreasing.

Theorem A.3. Let Ω be a region and suppose that A : Ω→ Cn×n is a non-zero
analytic matrix-valued function. Furthermore, let ‖·‖ be any induced matrix
norm. Then, log ‖A(λ)‖ and ‖A(λ)‖ are both subharmonic functions in Ω.
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Proof. We need only to show that the former assertion is true since the latter
will then follow from Proposition A.2. Let ‖·‖ denote the norm on Cn from
which our matrix norm is induced. Furthermore, let ‖·‖D denote the dual of
‖·‖. By Theorem 5.5.9 and Theorem 5.6.2 of [6], it follows that

‖A(λ)‖ = max
‖x‖=‖y‖D=1

|y∗A(λ)x|.

For each x, y ∈ Cn \ {0}, y∗A(λ)x is a non-zero analytic function in Ω. Also, by
Theorem 17.3 of [15], the function log |y∗A(λ)x| is subharmonic in Ω. Therefore,
by Proposition A.1,

log ‖A(λ)‖ = max
‖x‖=‖y‖D=1

log |y∗A(λ)x|

is subharmonic in Ω
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