Birkhoff-James ε -orthogonality sets of vectors and vector-valued polynomials

Vasiliki Panagakou, Panayiotis Psarrakos[†] and Nikos Yannakakis[‡]

May 5, 2017

Abstract

Consider a complex normed linear space $(\mathcal{X}, \|\cdot\|)$, and let $\chi, \psi \in \mathcal{X}$ with $\psi \neq 0$. Motivated by recent works on rectangular matrices and on normed linear spaces, we study the Birkhoff-James ε -orthogonality set of χ with respect to ψ , give an alternative definition for this set, and explore its rich structure. We also introduce the Birkhoff-James ε -orthogonality set of polynomials in one complex variable whose coefficients are members of \mathcal{X} , and survey and record extensions of results on matrix polynomials to these vector-valued polynomials.

Key words: norm, vector-valued polynomial, Birkhoff-James orthogonality, Birkhoff-James ε -orthogonality, numerical range.

AMS Subject Classifications: 46B99, 47A12.

1 Introduction

Let $(\mathcal{A}, \|\cdot\|)$ (for simplicity, \mathcal{A}) be a unital normed algebra over \mathbb{C} , and let \mathcal{A}^* be the dual space of \mathcal{A} , i.e., the Banach space of all continuous linear functionals of \mathcal{A} (using the induced operator norm). The *numerical range* (also known as the *field* of values) of an element $\alpha \in \mathcal{A}$ is defined as

$$F(\alpha) = \{ f(\alpha) : f \in \mathcal{A}^*, f(1) = 1, ||f|| = 1 \}.$$
 (1)

^{*}Department of Mathematics, National Technical University of Athens, Greece (vaspanagakou@gmail.com).

[†]Department of Mathematics, National Technical University of Athens, Greece (ppsarr@math.ntua.gr).

[‡]Department of Mathematics, National Technical University of Athens, Greece (nyian@math.ntua.gr).

This set has been studied extensively, and is useful in understanding matrices and operators; see [3, 4, 15, 30] and the references therein. Stampfli and Williams [30, Theorem 4], and later Bonsall and Duncan [4, Lemma 6.22.1], observed that the numerical range $F(\alpha)$ can be written in the form

$$F(\alpha) = \{ \mu \in \mathbb{C} : \|\alpha - \lambda \mathbf{1}\| \ge |\mu - \lambda|, \ \forall \lambda \in \mathbb{C} \}.$$

This means that $F(\alpha)$ is an infinite intersection of closed (circular) disks

$$\mathcal{D}(\lambda, \|\alpha - \lambda \mathbf{1}\|) = \{\mu \in \mathbb{C} : |\mu - \lambda| \le \|\alpha - \lambda \mathbf{1}\|\}, \quad \lambda \in \mathbb{C},$$

namely,

$$F(\alpha) = \bigcap_{\lambda \in \mathbb{C}} \left\{ \mu \in \mathbb{C} : |\mu - \lambda| \le \|\alpha - \lambda \mathbf{1}\| \right\} = \bigcap_{\lambda \in \mathbb{C}} \mathcal{D}\left(\lambda, \|\alpha - \lambda \mathbf{1}\|\right).$$
(2)

For two elements χ and ψ of a complex normed linear space $(\mathcal{X}, \|\cdot\|)$, χ is said to be *Birkhoff-James orthogonal* to ψ , denoted by $\chi \perp_{BJ} \psi$, if $\|\chi + \lambda \psi\| \ge \|\chi\|$ for all $\lambda \in \mathbb{C}$ [2, 18]. This orthogonality is homogeneous, but it is neither symmetric nor additive [18]. Moreover, for any $\varepsilon \in [0, 1)$, χ is called *Birkhoff-James* ε -orthogonal to ψ , denoted by $\chi \perp_{BJ}^{\varepsilon} \psi$, if $\|\chi + \lambda \psi\| \ge \sqrt{1 - \varepsilon^2} \|\chi\|$ for all $\lambda \in \mathbb{C}$ [5, 8]. It is worth mentioning that this relation is also homogeneous. In an inner product space $(\mathcal{X}, \langle \cdot, \cdot \rangle)$, with the standard orthogonality relation \perp , a $\chi \in \mathcal{X}$ is called ε orthogonal to a $\psi \in \mathcal{X}$, denoted by $\chi \perp^{\varepsilon} \psi$, if $|\langle \chi, \psi \rangle| \le \varepsilon \|\chi\| \|\psi\|$. Furthermore, for any $\varepsilon \in [0, 1), \chi \perp^{\varepsilon} \psi$ if and only if $\chi \perp_{BJ}^{\varepsilon} \psi$ [5, 8].

Inspired by (2) and the above definition of Birkhoff-James ε -orthogonality, Chorianopoulos and Psarrakos [7] (for rectangular matrices), and Karamanlis and Psarrakos [20] (for elements of a normed linear space) introduced and studied the following set: For any $\chi, \psi \in \mathcal{X}$, with $\psi \neq 0$, and any $\varepsilon \in [0, 1)$, the *Birkhoff-James* ε -orthogonality set of χ with respect to ψ is defined and denoted by

$$F^{\varepsilon}_{\parallel \cdot \parallel}(\chi;\psi) = \left\{ \mu \in \mathbb{C} : \psi \perp^{\varepsilon}_{BJ} (\chi - \mu \psi) \right\}.$$

The Birkhoff-James ε -orthogonality set is a direct generalization of the numerical range, and appears to have a rich structure and interesting geometrical properties [7, 20]. In this paper, motivated by (1), we introduce a new (equivalent) definition for the Birkhoff-James ε -orthogonality set, using continuous linear functionals. Based on this definition, in the next section, we obtain some basic properties of the set $F_{\parallel,\parallel}^{\varepsilon}(\chi;\psi)$ such as subadditivity in χ . In Section 3, we introduce the Birkhoff-James ε -orthogonality set of vector-valued polynomials in one complex variable, and investigate its localization in the complex plane. In Sections 4, 5 and 6, we study the connected components of the Birkhoff-James ε -orthogonality set of vector-valued polynomials, the boundary of this set, and the local dimension of its points, respectively. The proof techniques are analogous to existing proofs [22, 24, 25, 27, 28], albeit modified and adapted to the new setting. The main contribution of this effort is a concise generalization to a new concept. Furthermore, the results indicate that the information on Birkhoff-James ε -orthogonality set is useful in understanding vector-valued polynomials.

2 Definition and basic properties

Consider a complex normed linear space $(\mathcal{X}, \|\cdot\|)$ (for simplicity, \mathcal{X}), and let $\chi, \psi \in \mathcal{X}$ with $\psi \neq 0$. For any $\varepsilon \in [0, 1)$, it is straightforward to see that

$$F_{\parallel\cdot\parallel}^{\varepsilon}(\chi;\psi) = \{\mu \in \mathbb{C} : \psi \perp_{BJ}^{\varepsilon}(\chi - \mu\psi)\}$$
(3)
$$= \{\mu \in \mathbb{C} : \|\psi - \lambda(\chi - \mu\psi)\| \ge \sqrt{1 - \varepsilon^2} \|\psi\|, \forall \lambda \in \mathbb{C} \}$$
$$= \{\mu \in \mathbb{C} : \left\|\psi - \frac{1}{\lambda}(\chi - \mu\psi)\right\| \ge \sqrt{1 - \varepsilon^2} \|\psi\|, \forall \lambda \in \mathbb{C} \setminus \{0\} \}$$
$$= \{\mu \in \mathbb{C} : \frac{1}{|\lambda|} \|\lambda\psi - (\chi - \mu\psi)\| \ge \sqrt{1 - \varepsilon^2} \|\psi\|, \forall \lambda \in \mathbb{C} \setminus \{0\} \}$$
$$= \{\mu \in \mathbb{C} : \|\chi - (\mu - \lambda)\psi\| \ge \sqrt{1 - \varepsilon^2} \|\psi\| |\lambda|, \forall \lambda \in \mathbb{C} \}$$
$$= \{\mu \in \mathbb{C} : \|\chi - \lambda\psi\| \ge \sqrt{1 - \varepsilon^2} \|\psi\| |\mu - \lambda|, \forall \lambda \in \mathbb{C} \}$$
(4)
$$= \bigcap_{\lambda \in \mathbb{C}} \mathcal{D} \left(\lambda, \frac{\|\chi - \lambda\psi\|}{\sqrt{1 - \varepsilon^2} \|\psi\|}\right).$$
(5)

Corollary 2.2 of [18] implies that $F_{\|\cdot\|}^{\varepsilon}(\chi;\psi)$ is always *non-empty* (see also Proposition 2.1 of [20]), and the defining formula (5) ensures that $F_{\|\cdot\|}^{\varepsilon}(\chi;\psi)$ is a *compact* and *convex* subset of \mathbb{C} that lies in the closed disk $\mathcal{D}\left(0, \frac{\|\chi\|}{\sqrt{1-\varepsilon^2}\|\psi\|}\right)$. Moreover, it is apparent that for any $0 \leq \varepsilon_1 < \varepsilon_2 < 1$, $F_{\|\cdot\|}^{\varepsilon_1}(\chi;\psi) \subseteq F_{\|\cdot\|}^{\varepsilon_2}(\chi;\psi)$. The Birkhoff-James ε -orthogonality set is a direct generalization of the standard numerical range. In particular, for $\mathcal{X} = \mathcal{A}, \ \chi = \alpha, \ \psi = \mathbf{1}$ and $\varepsilon = 0$, we have $F_{\|\cdot\|}^0(\alpha;\mathbf{1}) = F(\alpha)$; see (2) and (5).

Remark 2.1. Let $\chi, \psi \in \mathcal{X}$ be nonzero, with ψ not a scalar multiple of χ , and consider the distance from ψ to span $\{\chi\}$, dist $(\psi, \text{span}\{\chi\}) = \inf_{\lambda \in \mathbb{C}} \|\psi - \lambda\chi\|$. Then, for any $\varepsilon \in [0, 1)$, it follows

$$\begin{aligned} 0 \in F_{\|\cdot\|}^{\varepsilon}(\chi;\psi) &\iff \psi \perp_{BJ}^{\varepsilon} \chi \\ &\iff \|\psi - \lambda\chi\| \ge \sqrt{1 - \varepsilon^2} \, \|\psi\|, \ \forall \lambda \in \mathbb{C} \\ &\iff \inf_{\lambda \in \mathbb{C}} \|\psi - \lambda\chi\| \ge \sqrt{1 - \varepsilon^2} \, \|\psi\| \quad (\psi \not\in \operatorname{span}\{\chi\}) \\ &\iff \operatorname{dist}(\psi, \operatorname{span}\{\chi\}) \ge \sqrt{1 - \varepsilon^2} \, \|\psi\|. \end{aligned}$$

Clearly, for $\varepsilon = 0$, $0 \in F^0_{\|\cdot\|}(\chi;\psi)$ if and only if $\operatorname{dist}(\psi, \operatorname{span}\{\chi\}) = \|\psi\|$. Moreover, if $0 \notin F^0_{\|\cdot\|}(\chi;\psi)$ (or equivalently, if $\operatorname{dist}(\psi, \operatorname{span}\{\chi\}) < \|\psi\|$), then by Theorems 3.1 and 3.5 of [20] (see also Properties (P_6) and (P_8) below), there is a unique number $\varepsilon_0 \in [0, 1)$ such that the origin lies on the boundary $\partial F^{\varepsilon_0}_{\|\cdot\|}(\chi;\psi)$ and $\operatorname{dist}(\psi, \operatorname{span}\{\chi\}) = \sqrt{1 - \varepsilon_0^2} \|\psi\|$. This number ε_0 is the smallest value of the parameter $\varepsilon \in [0, 1)$ with $0 \in F^{\varepsilon}_{\|\cdot\|}(\chi;\psi)$.

We remark that in the remainder of the paper, the zero vector is always considered as a scalar multiple of ψ .

Let $\chi, \psi \in \mathcal{X}$ with $\psi \neq 0$. Next, for convenience, we summarize the results of [20] (see also [6, 7] for rectangular matrices), describing basic properties of the Birkhoff-James ε -orthogonality set.

- $(P_1) \text{ For any } a, b \in \mathbb{C} \text{ and any } \varepsilon \in [0,1), \ F_{\|\cdot\|}^{\varepsilon}(a\chi + b\psi;\psi) = a \ F_{\|\cdot\|}^{\varepsilon}(\chi;\psi) + b.$
- (P₂) For any nonzero $b \in \mathbb{C}$ and any $\varepsilon \in [0,1)$, $F_{\|\cdot\|}^{\varepsilon}(\chi; b\psi) = \frac{1}{b} F_{\|\cdot\|}^{\varepsilon}(\chi; \psi)$.
- (P_3) If χ is a nonzero element of \mathcal{X} , then for any $\varepsilon \in [0, 1)$,

$$\left\{\mu^{-1} \in \mathbb{C} : \mu \in F^{\varepsilon}_{\|\cdot\|}(\chi;\psi), |\mu| \ge \frac{\|\chi\|}{\|\psi\|}\right\} \subseteq F^{\varepsilon}_{\|\cdot\|}(\psi;\chi).$$

- (P₄) Let $\|\cdot\|_{\alpha}$ and $\|\cdot\|_{\beta}$ be two equivalent norms acting in \mathcal{X} , i.e., there exist two real numbers C, c > 0 such that $c \|\zeta\|_{\alpha} \leq \|\zeta\|_{\beta} \leq C \|\zeta\|_{\alpha}$ for all $\zeta \in \mathcal{X}$. Then for any $\varepsilon \in [0, 1)$, it holds that $F_{\|\cdot\|_{\alpha}}^{\varepsilon}(\chi; \psi) \subseteq F_{\|\cdot\|_{\beta}}^{\varepsilon'}(\chi; \psi)$, where $\varepsilon' = \sqrt{1 - \frac{c^2(1-\varepsilon^2)}{C^2}}$.
- $(P_5) \ \chi = a\psi$ for some $a \in \mathbb{C}$ if and only if $F_{\parallel \cdot \parallel}^{\varepsilon}(\chi; \psi) = \{a\}$ for every $\varepsilon \in [0, 1)$.
- (P₆) If χ is not a scalar multiple of ψ , then for any $0 \leq \varepsilon_1 < \varepsilon_2 < 1$, $F_{\|\cdot\|}^{\varepsilon_1}(\chi;\psi)$ lies in the interior of $F_{\|\cdot\|}^{\varepsilon_2}(\chi;\psi)$.
- (P₇) If χ is not a scalar multiple of ψ , then for any $\varepsilon \in (0,1)$, $F_{\parallel \cdot \parallel}^{\varepsilon}(\chi; \psi)$ has a non-empty interior.
- (P₈) If χ is not a scalar multiple of ψ , then for any bounded region $\Omega \subset \mathbb{C}$, there is an $\varepsilon_{\Omega} \in [0, 1)$ such that $\Omega \subseteq F_{\|\cdot\|}^{\varepsilon_{\Omega}}(\chi; \psi)$. (This means that if χ is not a scalar multiple of ψ , then $F_{\|\cdot\|}^{\varepsilon}(\chi; \psi)$ can be arbitrarily large for ε sufficiently close to 1.)
- (P_9) Let $\mu_0 \in F^{\varepsilon}_{\parallel \cdot \parallel}(\chi; \psi)$ for some $\varepsilon \in [0, 1)$.
 - (i) The scalar μ_0 lies on the boundary $\partial F^{\varepsilon}_{\|\cdot\|}(\chi;\psi)$ if and only if

$$\inf_{\lambda \in \mathbb{C}} \left\{ \|\chi - \lambda \psi\| - \sqrt{1 - \varepsilon^2} \|\psi\| \|\mu_0 - \lambda\| \right\} = 0.$$

(ii) If $\varepsilon > 0$, then $\mu_0 \in \partial F^{\varepsilon}_{\|\cdot\|}(\chi; \psi)$ if and only if

$$\min_{\lambda \in \mathbb{C}} \left\{ \|\chi - \lambda \psi\| - \sqrt{1 - \varepsilon^2} \|\psi\| \|\mu_0 - \lambda\| \right\} = 0.$$

or equivalently, if and only if $\|\chi - \lambda_0 \psi\| = \sqrt{1 - \varepsilon^2} \|\psi\| \|\mu_0 - \lambda_0\|$ for some $\lambda_0 \in \mathbb{C}$.

 (P_{10}) For any $\varepsilon \in (0,1)$,

$$\operatorname{Int}\left[F_{\|\cdot\|}^{\varepsilon}(\chi;\psi)\right] = \left\{\mu \in \mathbb{C}: \|\chi - \lambda\psi\| > \sqrt{1-\varepsilon^2} \|\psi\| \|\mu - \lambda|, \ \forall \lambda \in \mathbb{C}\right\}.$$

 (P_{11}) If the norm $\|\cdot\|$ is induced by an inner product $\langle\cdot,\cdot\rangle$, then for any $\varepsilon \in [0,1)$,

$$F_{\|\cdot\|}^{\varepsilon}(\chi;\psi) = \mathcal{D}\left(\frac{\langle \chi,\psi\rangle}{\|\psi\|^2}, \left\|\chi - \frac{\langle \chi,\psi\rangle}{\|\psi\|^2}\psi\right\| \frac{\varepsilon}{\sqrt{1-\varepsilon^2}\|\psi\|}\right).$$

Figure 1: The sets $F_{\|\cdot\|_1}^{0.5}(\chi;\psi)$ (left), $F_{\|\cdot\|_1}^{0.65}(\chi;\psi)$ (middle), and $F_{\|\cdot\|_1}^{0.5}(\chi-3\psi;2\psi)$ (right).

Example 2.1. Consider the 2×4 complex matrices $\chi = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2+i & 0 & -i & -11i \end{bmatrix}$ and $\psi = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & -1 & -1 & 1 \end{bmatrix}$. The Birkhoff-James ε -orthogonality sets $F_{\parallel,\parallel_1}^{0.5}(\chi;\psi)$, $F_{\parallel,\parallel_1}^{0.65}(\chi;\psi)$ and $F_{\parallel,\parallel_1}^{0.5}(\chi-3\psi;2\psi) = \frac{1}{2}F_{\parallel,\parallel_1}^{0.5}(\chi;\psi) - \frac{3}{2}$ are estimated by the unshaded regions in the left, middle and right parts of Figure 2, respectively. Each estimation results from having drawn 1000 circles of the form $\partial \mathcal{D}\left(\lambda, \frac{\|\chi-\lambda\psi\|}{\sqrt{1-\varepsilon^2}\|\psi\|}\right)$; see the defining formula (5). The compactness and the convexity of the sets are apparent, and Properties $(P_1), (P_2), (P_6)$ and (P_7) are verified.

Let \mathcal{X}^* denote the dual space of \mathcal{X} , i.e., the complex normed linear space of all continuous linear functionals of \mathcal{X} (using the induced operator norm).

Definition 2.1. Let $\chi, \psi \in \mathcal{X}$ with $\psi \neq 0$. For any $\varepsilon \in [0, 1)$, define the sets

$$L_{\varepsilon}(\psi) = \left\{ f \in \mathcal{X}^* : f(\psi) = \sqrt{1 - \varepsilon^2} \, \|\psi\| \text{ and } \|f\| \leqslant 1 \right\}$$

and

$$\Omega_{\varepsilon}(\chi;\psi) = \left\{ \frac{f(\chi)}{\sqrt{1-\varepsilon^2} \|\psi\|} : f \in L_{\varepsilon}(\psi) \right\}.$$

Lemma 2.1. For any nonzero vector $\psi \in \mathcal{X}$ and any $\varepsilon \in [0,1)$, the set $L_{\varepsilon}(\psi)$ is non-empty, closed and convex.

Proof. Consider an element $\chi \in \mathcal{X}$ which is not a scalar multiple of ψ . From Corollary 2.1 in [20], the Birkhoff-James ε -orthogonality set $F_{\|\cdot\|}^{\varepsilon}(\chi;\psi)$ is not empty. So, there exists at least one complex number μ in the set $F_{\|\cdot\|}^{\varepsilon}(\chi;\psi)$. In the 2dimensional vector subspace $\mathcal{Y} = \operatorname{span}\{\chi,\psi\}$, we define the linear functional $f_0 \in \mathcal{Y}^*$ such that

$$f_0(z_1\chi + z_2\psi) = z_1\mu\sqrt{1-\varepsilon^2} \, \|\psi\| + z_2\sqrt{1-\varepsilon^2} \, \|\psi\|, \quad z_1, z_2 \in \mathbb{C}.$$

Then $f_0(\chi) = \mu \sqrt{1 - \varepsilon^2} \|\psi\|$ and $f_0(\psi) = \sqrt{1 - \varepsilon^2} \|\psi\|$. Since $\mu \in F_{\|\cdot\|}^{\varepsilon}(\chi; \psi)$, we have that for every $\lambda \in \mathbb{C}$,

$$\begin{aligned} \|\chi - \lambda \psi\| & \geqslant \quad \sqrt{1 - \varepsilon^2} \, \|\psi\| \, |\mu - \lambda| \\ &= \quad |\sqrt{1 - \varepsilon^2} \, \|\psi\| \, \mu - \sqrt{1 - \varepsilon^2} \, \|\psi\| \, \lambda \, | \\ &= \quad |f_0(\chi) - \lambda f_0(\psi)| \\ &= \quad |f_0(\chi - \lambda \psi)|, \end{aligned}$$

and $||f_0|| \leq 1$ (as a continuous linear functional defined in the 2-dimensional subspace \mathcal{Y}). Applying the Hahn-Banach extension theorem, there is an extension of f_0 , say $f \in \mathcal{X}^*$, such that

$$f(\chi) = \mu \sqrt{1 - \varepsilon^2} \|\psi\|, \quad f(\psi) = \sqrt{1 - \varepsilon^2} \|\psi\|$$
 and $\|f\| = \|f_0\| \leq 1.$

Then, $f \in L_{\varepsilon}(\psi)$, and the set $L_{\varepsilon}(\psi)$ is non-empty.

For the closedness of the set $L_{\varepsilon}(\psi)$, it is enough to see that the set $\mathcal{X}^* \setminus L_{\varepsilon}(\psi)$ is open. Indeed, if a linear functional $f \in \mathcal{X}^*$ does not belong to $L_{\varepsilon}(\psi)$, then

$$f(\psi) \neq \sqrt{1 - \varepsilon^2} \|\psi\|$$
 or $\|f\| > 1$.

Consequently, by the continuity of the norm, there is a neighborhood $\mathcal{G}_f \subset \mathcal{X}^*$ of f such that for any $g \in \mathcal{G}_f$,

$$g(\psi) \neq \sqrt{1 - \varepsilon^2} \|\psi\|$$
 or $\|g\| > 1$,

and so $\mathcal{G}_f \subset \mathcal{X}^* \setminus L_{\varepsilon}(\psi)$.

Finally, for the convexity, we consider two linear functionals $f, g \in L_{\varepsilon}(\psi)$. It is easy to see that for any $t \in [0, 1]$,

$$[(1-t)f + tg](\psi) = (1-t)f(\psi) + tg(\psi) = \sqrt{1-\varepsilon^2} \|\psi\|$$

and

$$||(1-t)f + tg|| \leq (1-t)||f|| + t||g|| \leq 1,$$

and hence, (1-t)f + tg lies in $L_{\varepsilon}(\psi)$.

We have proved that for $\psi \neq 0$, the set $L_{\varepsilon}(\psi)$ is non-empty. As a consequence, the region $\Omega_{\varepsilon}(\chi; \psi)$ is non-empty. Moreover, the set $\Omega_{\varepsilon}(\chi; \psi)$ coincides with the Birkhoff-James ε -orthogonality set $F_{\parallel,\parallel}^{\varepsilon}(\chi; \psi)$.

Theorem 2.2. Let $\chi, \psi \in \mathcal{X}$, with $\psi \neq 0$. For every $\varepsilon \in [0, 1)$, it holds that

$$\Omega_{\varepsilon}(\chi;\psi) = F^{\varepsilon}_{\|\cdot\|}(\chi;\psi).$$

Proof. Let $\mu \in \Omega_{\varepsilon}(\chi; \psi)$. Then, $\mu = \frac{f_{\mu}(\chi)}{\sqrt{1 - \varepsilon^2} \|\psi\|}$ for some linear functional $f_{\mu} \in L_{\varepsilon}(\psi)$. For every $\lambda \in \mathbb{C}$, we have

$$\begin{split} \sqrt{1-\varepsilon^2} \|\psi\| \, |\mu-\lambda| &= \left| \sqrt{1-\varepsilon^2} \, \|\psi\| \, \frac{f_\mu(\chi) - \sqrt{1-\varepsilon^2} \, \|\psi\| \, \lambda}{\sqrt{1-\varepsilon^2} \, \|\psi\|} \right| \\ &= \left| f_\mu(\chi-\lambda\psi) \right| \\ &\leqslant \quad \|f_\mu\| \, \|\chi-\lambda\psi\| \\ &\leqslant \quad \|\chi-\lambda\psi\|. \end{split}$$

Thus, $\mu \in F_{\|\cdot\|}^{\varepsilon}(\chi;\psi)$, and clearly, $\Omega_{\varepsilon}(\chi;\psi) \subseteq F_{\|\cdot\|}^{\varepsilon}(\chi;\psi)$.

For the converse, we consider two cases:

(i) Suppose that $\chi = c\psi$ for a constant $c \in \mathbb{C}$. Then, by Property (P_5) , $F_{\parallel \cdot \parallel}^{\varepsilon}(\chi; \psi) = F_{\parallel \cdot \parallel}^{\varepsilon}(c\psi; \psi) = \{c\}$. Also,

$$\frac{f(\chi)}{\sqrt{1-\varepsilon^2} \|\psi\|} = \frac{f(c\psi)}{\sqrt{1-\varepsilon^2} \|\psi\|} = \frac{cf(\psi)}{\sqrt{1-\varepsilon^2} \|\psi\|} = c, \quad \forall f \in L_{\varepsilon}(\psi),$$

and hence, $\Omega_{\varepsilon}(c\psi;\psi) = \{c\}.$

(ii) Suppose that $\chi, \psi \in \mathcal{X}$ are nonzero and linearly independent, and consider a scalar $\mu \in F_{\|\cdot\|}^{\varepsilon}(\chi; \psi)$. By the proof of Lemma 2.1, there exists a continuous linear functional $f_{\mu} \in L_{\varepsilon}(\psi)$ such that $f_{\mu}(\chi) = \mu \sqrt{1 - \varepsilon^2} \|\psi\|$. Thus, $\mu \in \Omega_{\varepsilon}(\chi; \psi)$, and the proof is complete.

The above alternative definition of the Birkhoff-James ε -orthogonality set yields readily the subadditivity of $F_{\parallel \cdot \parallel}^{\varepsilon}(\chi; \psi)$ in χ , which is necessary for the proofs of our results in Sections 5 and 6.

Proposition 2.3. Let $\chi_1, \chi_2, \psi \in \mathcal{X}$, with $\psi \neq 0$. Then, it holds that

$$F_{\parallel \cdot \parallel}^{\varepsilon}(\chi_1 + \chi_2; \psi) \subseteq F_{\parallel \cdot \parallel}^{\varepsilon}(\chi_1; \psi) + F_{\parallel \cdot \parallel}^{\varepsilon}(\chi_2; \psi).$$

Proof. It is easy to see that

$$\begin{aligned} F_{\parallel\cdot\parallel}^{\varepsilon}(\chi_{1}+\chi_{2};\psi) &= \Omega_{\varepsilon}(\chi_{1}+\chi_{2};\psi) \\ &= \left\{ \frac{f(\chi_{1}+\chi_{2})}{\sqrt{1-\varepsilon^{2}} \|\psi\|} : f \in L_{\varepsilon}(\psi) \right\} \\ &= \left\{ \frac{f(\chi_{1})}{\sqrt{1-\varepsilon^{2}} \|\psi\|} + \frac{f(\chi_{2})}{\sqrt{1-\varepsilon^{2}} \|\psi\|} : f \in L_{\varepsilon}(\psi) \right\} \\ &\subseteq \left\{ \frac{f(\chi_{1})}{\sqrt{1-\varepsilon^{2}} \|\psi\|} : f \in L_{\varepsilon}(\psi) \right\} + \left\{ \frac{g(\chi_{2})}{\sqrt{1-\varepsilon^{2}} \|\psi\|} : g \in L_{\varepsilon}(\psi) \right\} \\ &= \Omega_{\varepsilon}(\chi_{1};\psi) + \Omega_{\varepsilon}(\chi_{2};\psi) \\ &= F_{\parallel\cdot\parallel}^{\varepsilon}(\chi_{1};\psi) + F_{\parallel\cdot\parallel}^{\varepsilon}(\chi_{2};\psi). \end{aligned}$$

Figure 2: The sets $F_{\|\cdot\|_1}^{0.4}(\chi_1;\psi)$ (left), $F_{\|\cdot\|_1}^{0.4}(\chi_2;\psi)$ (middle), and $F_{\|\cdot\|_1}^{0.4}(\chi_1 + \chi_2;\psi)$ (right).

Example 2.2. Consider the sequences $\chi_1 = \left\{1, \frac{1}{2-i}, \frac{1}{(2-i)^2}, \frac{1}{(2-i)^3}, \dots\right\}$, $\chi_2 = \left\{1, \frac{1}{1-2i}, \frac{1}{(1-2i)^2}, \frac{1}{(1-2i)^3}, \dots\right\}$ and $\psi = \left\{1, \frac{1}{1+i}, \frac{1}{(1+i)^2}, \frac{1}{(1+i)^3}, \dots\right\}$ of the complex normed linear space ℓ^1 . The Birkhoff-James ε -orthogonality sets $F_{\parallel,\parallel_1}^{0.4}(\chi_1;\psi), F_{\parallel,\parallel_1}^{0.4}(\chi_2;\psi)$ and $F_{\parallel,\parallel_1}^{0.4}(\chi_1+\chi_2;\psi)$ are estimated by the unshaded regions in the left, middle and right parts of Figure 2, respectively. Each estimation results from having drawn 500 circles; see the defining formula (5). The compactness and the convexity of the sets, Property (P_7) , and the subadditivity of Proposition 2.3 are verified.

Proposition 2.4. Let $\chi, \psi \in \mathcal{X}$, with $\psi \neq 0$, χ not a scalar multiple of ψ , and $\varepsilon \in [0, 1)$. If $\mu \in \partial F_{\|\cdot\|}^{\varepsilon}(\chi; \psi)$, then for every continuous linear functional $f_{\mu} \in L_{\varepsilon}(\psi)$ such that $\mu = \frac{f_{\mu}(\chi)}{\sqrt{1-\varepsilon^2} \|\psi\|}$, it holds that $\|f_{\mu}\| = 1$.

Proof. Let $\mu \in \partial F_{\parallel,\parallel}^{\varepsilon}(\chi; \psi)$. Then, by Property (P_9) ,

$$\inf_{\lambda \in \mathbb{C}} \left\{ \|\chi - \lambda \psi\| - \sqrt{1 - \varepsilon^2} \|\psi\| \|\mu - \lambda\| \right\} = 0.$$

For every $f_{\mu} \in L_{\varepsilon}(\psi)$ with $\mu = \frac{f_{\mu}(\chi)}{\sqrt{1-\varepsilon^2} \|\psi\|}$, we have

$$0 = \inf_{\lambda \in \mathbb{C}} \left\{ \|\chi - \lambda \psi\| - \left| \sqrt{1 - \varepsilon^2} \|\psi\| \frac{f_{\mu}(\chi) - \sqrt{1 - \varepsilon^2} \|\psi\| \lambda}{\sqrt{1 - \varepsilon^2} \|\psi\|} \right| \right\}$$
$$= \inf_{\lambda \in \mathbb{C}} \left\{ \|\chi - \lambda \psi\| - |f_{\mu}(\chi) - \lambda f_{\mu}(\psi)| \right\}$$
$$= \inf_{\lambda \in \mathbb{C}} \left\{ \|\chi - \lambda \psi\| - |f_{\mu}(\chi - \lambda \psi)| \right\}$$
$$= -\sup_{\lambda \in \mathbb{C}} \left\{ |f_{\mu}(\chi - \lambda \psi)| - \|\chi - \lambda \psi\| \right\}$$
$$= -\sup_{\lambda \in \mathbb{C}} \left\{ \frac{|f_{\mu}(\chi - \lambda \psi)|}{\|\chi - \lambda \psi\|} - 1 \right\},$$

and we conclude that $||f_{\mu}|| = 1$.

Proposition 2.5. Let $\chi, \psi \in \mathcal{X}$, with $\psi \neq 0$, χ not a scalar multiple of ψ , and $\varepsilon \in [0, 1)$. Then, it holds that

$$\max\left\{\mathrm{Re}\mu:\,\mu\in F_{\|\cdot\|}^{\varepsilon}(\chi;\psi)\right\}\leqslant \inf_{a>0}\frac{1}{a}\left\{\frac{\|\psi+a\chi\|}{\sqrt{1-\varepsilon^2}\,\|\psi\|}-1\right\}.$$

Proof. Consider a continuous linear functional $f \in L_{\varepsilon}(\psi)$. Then, for any a > 0, we have

$$\begin{aligned} \frac{f(\chi)}{\sqrt{1-\varepsilon^2} \|\psi\|} &= \frac{1}{a} \left[\frac{f(\psi+a\chi-\psi)}{\sqrt{1-\varepsilon^2} \|\psi\|} \right] \\ &= \frac{1}{a} \left[\frac{f(\psi+a\chi)}{\sqrt{1-\varepsilon^2} \|\psi\|} - \frac{f(\psi)}{\sqrt{1-\varepsilon^2} \|\psi\|} \right] \\ &= \frac{1}{a} \left[\frac{f(\psi+a\chi)}{\sqrt{1-\varepsilon^2} \|\psi\|} - 1 \right]. \end{aligned}$$

Hence,

$$\operatorname{Re}\frac{f(\chi)}{\sqrt{1-\varepsilon^2}\,\|\psi\|} = \operatorname{Re}\frac{1}{a}\left[\frac{f(\psi+a\chi)}{\sqrt{1-\varepsilon^2}\,\|\psi\|} - 1\right] = \frac{1}{a}\left[\operatorname{Re}\frac{f(\psi+a\chi)}{\sqrt{1-\varepsilon^2}\,\|\psi\|} - 1\right],$$

and consequently,

$$\operatorname{Re}\frac{f(\chi)}{\sqrt{1-\varepsilon^2}\|\psi\|} + \frac{1}{a} = \frac{1}{a}\operatorname{Re}\frac{f(\psi+a\chi)}{\sqrt{1-\varepsilon^2}\|\psi\|} \leqslant \frac{1}{a}\left[\frac{|f(\psi+a\chi)|}{\sqrt{1-\varepsilon^2}\|\psi\|}\right].$$

Thus, for any a > 0,

$$\operatorname{Re}\frac{f(\chi)}{\sqrt{1-\varepsilon^2}\|\psi\|} \leqslant \frac{1}{a} \left[\frac{|f(\psi+a\chi)|}{\sqrt{1-\varepsilon^2}\|\psi\|} - 1\right] \leqslant \frac{1}{a} \left[\frac{\|\psi+a\chi\|}{\sqrt{1-\varepsilon^2}\|\psi\|} - 1\right],$$

and the proof is complete.

Consider a vector-valued polynomial

$$P(z) = \chi_m z^m + \chi_{m-1} z^{m-1} + \dots + \chi_1 z + \chi_0, \tag{6}$$

with vector coefficients $\chi_i \in \mathcal{X}$ (i = 0, 1, ..., m), $\chi_m \neq 0$, and a scalar variable $z \in \mathbb{C}$. Vector-valued polynomials appear in the approximation of vector-valued functions [1, 29]. Moreover, special cases of vector-valued polynomials such as square matrix polynomials [9, 10, 11, 19, 21], rectangular matrix polynomials [9, 19] and operator polynomials [12, 17, 23, 26], appear in many applications like systems of differential-algebraic equations, linear system theory, control theory, vibration analysis of structural systems, and acoustics.

For any $\varepsilon \in [0, 1)$, and any nonzero vector $\psi \in \mathcal{X}$ such that $F_{\|\cdot\|}^{\varepsilon}(\chi_m; \psi) \neq \{0\}$, we can define the Birkhoff-James ε -orthogonality set of P(z) with respect to ψ . **Definition 3.1.** Let P(z) be a vector-valued polynomial as in (6), $\varepsilon \in [0, 1)$, and $\psi \in \mathcal{X}$ be a nonzero vector such that $F_{\|\cdot\|}^{\varepsilon}(\chi_m; \psi) \neq \{0\}$. The *Birkhoff-James* ε -orthogonality set of P(z) with respect to ψ is defined and denoted by

$$W_{\parallel\cdot\parallel}^{\varepsilon}(P(z);\psi) = \left\{ \mu \in \mathbb{C} : 0 \in F_{\parallel\cdot\parallel}^{\varepsilon}(P(\mu);\psi) \right\}$$

= $\{\mu \in \mathbb{C} : f(P(\mu)) = 0, f \in L_{\varepsilon}(\psi) \}$
= $\{\mu \in \mathbb{C} : f(\chi_m)\mu^m + f(\chi_{m-1})\mu^{m-1} + \dots + f(\chi_1)\mu + f(\chi_0) = 0, f \in L_{\varepsilon}(\psi) \}$
= $\{\mu \in \mathbb{C} : \psi \perp_{BJ}^{\varepsilon} P(\mu) \}$ (7)
= $\left\{ \mu \in \mathbb{C} : \|P(\mu) - \lambda\psi\| \ge \sqrt{1 - \varepsilon^2} \|\psi\| |\lambda|, \forall \lambda \in \mathbb{C} \right\}.$

Note that for $\chi_m \neq 0$ and $\varepsilon \in (0, 1)$, the condition $F_{\|\cdot\|}^{\varepsilon}(\chi_m; \psi) \neq \{0\}$ is always satisfied; see Properties (P_5) and (P_7) .

Since the set $L_{\varepsilon}(\psi)$ is non-empty and closed, it follows readily that $W_{\|\cdot\|}^{\varepsilon}(P(z);\psi)$ is also non-empty and closed. Moreover, for any $0 \leq \varepsilon_1 < \varepsilon_2 < 1$, $W_{\|\cdot\|}^{\varepsilon_1}(P(z);\psi) \subseteq W_{\|\cdot\|}^{\varepsilon_2}(P(z);\psi)$.

Remark 3.1. Consider a vector-valued polynomial P(z) as in (6), a nonzero vector $\psi \in \mathcal{X}$ with $F_{\|\cdot\|}^{\varepsilon}(\chi_m; \psi) \neq \{0\}$, and a $\mu \in \mathbb{C}$ such that $P(\mu)$ is not a scalar multiple of ψ . For any $\varepsilon \in [0, 1)$,

$$\begin{split} \mu \in W^{\varepsilon}_{\|\cdot\|}(P(z);\psi) &\iff \|P(\mu) - \lambda\psi\| \geqslant \sqrt{1 - \varepsilon^2} \|\psi\| \, |\lambda|, \ \forall \lambda \in \mathbb{C} \\ &\iff \left\| \frac{1}{\lambda} P(\mu) - \psi \right\| \geqslant \sqrt{1 - \varepsilon^2} \|\psi\|, \ \forall \lambda \in \mathbb{C} \setminus \{0\} \\ &\iff \|\psi - \lambda P(\mu)\| \geqslant \sqrt{1 - \varepsilon^2} \|\psi\|, \ \forall \lambda \in \mathbb{C} \\ &\iff \inf_{\lambda \in \mathbb{C}} \|\psi - \lambda P(\mu)\| \geqslant \sqrt{1 - \varepsilon^2} \|\psi\| \quad (\psi \notin \operatorname{span}\{P(\mu)\}) \\ &\iff \operatorname{dist}(\psi, \operatorname{span}\{P(\mu)\}) \geqslant \sqrt{1 - \varepsilon^2} \|\psi\|. \end{split}$$

As in the case of $F^0_{\|\cdot\|}(\chi;\psi)$, μ lies in the region $W^0_{\|\cdot\|}(P(z);\psi)$ if and only if $\operatorname{dist}(\psi,\operatorname{span}\{P(\mu)\}) = \|\psi\|$. Moreover, if $\mu \notin W^0_{\|\cdot\|}(P(z);\psi)$ (or equivalently, if $\operatorname{dist}(\psi,\operatorname{span}\{P(\mu)\}) < \|\psi\|$), then there is a number $\varepsilon_0 \in [0,1)$ such that $\mu \in \partial W^{\varepsilon_0}_{\|\cdot\|}(P(z);\psi)$ and $\operatorname{dist}(\psi,\operatorname{span}\{P(\mu)\}) = \sqrt{1-\varepsilon_0^2} \|\psi\|$. This number ε_0 can be chosen to be the smallest value of the parameter $\varepsilon \in [0,1)$ with $\mu \in W^{\varepsilon}_{\|\cdot\|}(P(z);\psi)$.

It is easy to verify the next three properties.

- $\begin{array}{l} (P_{12}) \ \ \text{For any scalar} \ a \in \mathbb{C} \setminus \{0\}, W^{\varepsilon}_{\|\cdot\|}(aP(z);\psi) = W^{\varepsilon}_{\|\cdot\|}(P(z);\psi), W^{\varepsilon}_{\|\cdot\|}(P(az);\psi) = \\ a^{-1}W^{\varepsilon}_{\|\cdot\|}(P(z);\psi) \ \text{and} \ W^{\varepsilon}_{\|\cdot\|}(P(z+a);\psi) = W^{\varepsilon}_{\|\cdot\|}(P(z);\psi) a. \end{array}$
- (P₁₃) If $R(z) = \chi_0 z^m + \chi_1 z^{m-1} + \dots + \chi_{m-1} z + \chi_m = z^m P(z^{-1})$ is the reverse vector-valued polynomial of P(z), then

$$W^{\varepsilon}_{\|\cdot\|}(R(z);\psi)\setminus\{0\} = \left\{\mu\in\mathbb{C}: \ \mu^{-1}\in W^{\varepsilon}_{\|\cdot\|}(P(z);\psi)\setminus\{0\}\right\}.$$

(P₁₄) If there exists a continuous linear functional $f \in L_{\varepsilon}(\psi)$ such that $f(\chi_m) = f(\chi_{m-1}) = \cdots = f(\chi_0) = 0$, then $W_{\|\cdot\|}^{\varepsilon}(P(z);\psi) = \mathbb{C}$.

For the remainder of the paper, it is necessary to introduce the following radii.

Definition 3.2. Let $\chi, \psi \in \mathcal{X}$, with ψ nonzero. For any $\varepsilon \in [0, 1)$, the Birkhoff-James ε -orthogonality inner radius of χ with respect to ψ is defined as

$$\widehat{r}^{\varepsilon}_{\|\cdot\|}(\chi;\psi) = \min\left\{|z|: z \in F^{\varepsilon}_{\|\cdot\|}(\chi;\psi)
ight\},$$

and the Birkhoff-James ε -orthogonality outer radius of χ with respect to ψ is defined as

$$r_{\parallel,\parallel}^{\varepsilon}(\chi;\psi) = \max\left\{|z|: \, z \in F_{\parallel,\parallel}^{\varepsilon}(\chi;\psi)\right\} \ \left(\leq \frac{\|\chi\|}{\sqrt{1-\varepsilon^2} \, \|\psi\|}\right).$$

Theorem 3.1. (For rectangular matrix polynomials, see Theorem 12 in [7], and for the standard numerical range of square matrix polynomials, see Theorem 2.3 in [24].) Let P(z) be a vector-valued polynomial as in (6), $\varepsilon \in [0,1)$, and $\psi \in \mathcal{X}$ be a nonzero vector such that $F_{\parallel\cdot\parallel}^{\varepsilon}(\chi_m;\psi) \neq \{0\}$. Then, the set $W_{\parallel\cdot\parallel}^{\varepsilon}(P(z);\psi)$ is bounded if and only if $0 \notin F_{\parallel\cdot\parallel}^{\varepsilon}(\chi_m;\psi)$.

Proof. Let $0 \notin F_{\|\cdot\|}^{\varepsilon}(\chi_m; \psi)$, or equivalently, $\hat{r}_{\|\cdot\|}^{\varepsilon}(\chi_m; \psi) > 0$. We will obtain that $W_{\|\cdot\|}^{\varepsilon}(P(z); \psi)$ is bounded; in particular, we will prove that $W_{\|\cdot\|}^{\varepsilon}(P(z); \psi) \subseteq \mathcal{D}(0, M)$, where

$$M = 1 + \frac{\max_{0 \le j \le m-1} r_{\parallel \cdot \parallel}^{\varepsilon}(\chi_j; \psi)}{\widehat{r}_{\parallel \cdot \parallel}^{\varepsilon}(\chi_m; \psi)}.$$
(8)

Since $M \ge 1$, we consider a scalar $\mu \in W^{\varepsilon}_{\|\cdot\|}(P(z);\psi)$ with $|\mu| \ge 1$. Then, there exists a continuous linear functional $f \in L_{\varepsilon}(\psi)$ such that

$$f(\chi_m)\mu^m + f(\chi_{m-1})\mu^{m-1} + \dots + f(\chi_1)\mu + f(\chi_0) = 0.$$

As a consequence,

$$\begin{split} \mu|^{m} &= \left. \frac{\left| \sum_{j=0}^{m-1} f(\chi_{j}) \mu^{j} \right|}{|f(\chi_{m})|} \leqslant \frac{\sum_{j=0}^{m-1} |f(\chi_{j})| \, |\mu|^{j}}{|f(\chi_{m})|} \\ &\leqslant \left. \frac{\max_{0 \leqslant j \leqslant m-1} r_{\|\cdot\|}^{\varepsilon}(\chi_{j};\psi)}{\frac{|\mu|^{m} - 1}{\sqrt{1 - \varepsilon^{2}} \|\psi\|}} \frac{|\mu|^{m} - 1}{|\mu| - 1} \\ &\leqslant \left. \frac{\max_{0 \leqslant j \leqslant m-1} r_{\|\cdot\|}^{\varepsilon}(\chi_{j};\psi)}{\widehat{r}_{\|\cdot\|}^{\varepsilon}(\chi_{m};\psi)} \frac{|\mu|^{m} - 1}{|\mu| - 1} \right]. \end{split}$$

Thus,

$$|\mu| - 1 \leqslant \frac{\max_{0 \leqslant j \leqslant m-1} r_{\|\cdot\|}^{\varepsilon}(\chi_j;\psi)}{\widehat{r}_{\|\cdot\|}^{\varepsilon}(\chi_m;\psi)} \frac{|\mu|^m - 1}{|\mu|^m} \leqslant \frac{\max_{0 \leqslant j \leqslant m-1} r_{\|\cdot\|}^{\varepsilon}(\chi_j;\psi)}{\widehat{r}_{\|\cdot\|}^{\varepsilon}(\chi_m;\psi)},$$

and hence, $|\mu| \leq M$.

For the converse, we assume that $W_{\parallel,\parallel}^{\varepsilon}(P(z);\psi)$ is bounded and $0 \in F_{\parallel,\parallel}^{\varepsilon}(\chi_m;\psi)$. Then there is a continuous linear functional $f \in L_{\varepsilon}(\psi)$ such that $f(\chi_m) = 0$. Since $W_{\parallel,\parallel}^{\varepsilon}(P(z);\psi) \neq \mathbb{C}$, Property (P_{14}) implies that $f(\chi_s) \neq 0$ for some $s \in \{0,1,2,\ldots,m-1\}$. Moreover, since $F_{\parallel,\parallel}^{\varepsilon}(\chi_m;\psi) \neq \{0\}$, there exists a sequence of continuous linear functionals $\{f_1, f_2, \ldots\} \subset L_{\varepsilon}(\psi)$ such that $f_j(\chi_m) \neq 0$, $j = 1, 2, \ldots$, and $f_j(\chi_m) \to 0$ as $j \to +\infty$. We consider now the scalar polynomials

$$f_j(P(z)) = f_j(\chi_m) z^m + f_j(\chi_{m-1}) z^{m-1} + \dots + f_j(\chi_1) z + f_j(\chi_0), \quad j = 1, 2, \dots$$

It is clear that $\frac{f_j(\chi_s)}{f_j(\chi_m)} \to \infty$ as $j \to +\infty$; this is a contradiction because we have assumed that $W_{\|\cdot\|}^{\varepsilon}(P(z);\psi)$ is bounded, and hence, all the roots and the elementary symmetric functions of the scalar polynomials $f_j(P(z)), j = 1, 2, \ldots$, are bounded.

Theorem 3.2. (For the standard numerical range of square matrix polynomials, see Theorem 3.1 in [27].) Consider a nonzero vector $\psi \in \mathcal{X}$, an $\varepsilon \in [0, 1)$, and the vector-valued polynomial $P(z) = \psi z^m + \chi_{m-1} z^{m-1} + \cdots + \chi_1 z + \chi_0$ (i.e., $\chi_m = \psi$). Then, for every $\mu \in W^{\varepsilon}_{\parallel \cdot \parallel}(P(z); \psi)$, it holds

$$\frac{\hat{r}_{\|\cdot\|}^{\varepsilon}(\chi_{0};\psi)}{\hat{r}_{\|\cdot\|}^{\varepsilon}(\chi_{0};\psi) + \max_{1 \leqslant j \leqslant m} r_{\|\cdot\|}^{\varepsilon}(\chi_{j};\psi)} \leqslant |\mu| \leqslant 1 + \max_{0 \leqslant j \leqslant m-1} r_{\|\cdot\|}^{\varepsilon}(\chi_{j};\psi).$$

Proof. Since $F_{\|\cdot\|}^{\varepsilon}(\psi;\psi) = \{1\}$ does not contain the origin, the set $W_{\|\cdot\|}^{\varepsilon}(P(z);\psi)$ is bounded.

Let $\mu \in W_{\|\cdot\|}^{\varepsilon}(P(z);\psi)$. By definition, there exists a continuous linear functional $f \in L_{\varepsilon}(\psi)$ such that $f(\psi)\mu^m + f(\chi_{m-1})\mu^{m-1} + \cdots + f(\chi_1)\mu + f(\chi_0) = 0$. Since the lower bound of the theorem is less than or equal to 1, for the first inequality, we may assume that $|\mu| < 1$. Then, we have that

$$f(\chi_0) = -(f(\psi)\mu^m + f(\chi_{m-1})\mu^{m-1} + \dots + f(\chi_1)\mu),$$

or

$$|f(\chi_0)| = |f(\psi)\mu^m + f(\chi_{m-1})\mu^{m-1} + \dots + f(\chi_1)\mu|.$$

Hence,

$$\widehat{r}_{\|\cdot\|}^{\varepsilon}(\chi_{0},\psi) \leq \frac{|f(\psi)\mu^{m} + f(\chi_{m-1})\mu^{m-1} + \dots + f(\chi_{1})\mu|}{\sqrt{1 - \varepsilon^{2}} \|\psi\|}$$

$$\leq \frac{|f(\psi)| \, |\mu|^{m} + |f(\chi_{m-1})| \, |\mu|^{m-1} + \dots + |f(\chi_{1})| \, |\mu|}{\sqrt{1 - \varepsilon^{2}} \|\psi\|}$$

$$\leq \frac{|\mu|}{1 - |\mu|} \max_{1 \leq j \leq m} r_{\|\cdot\|}^{\varepsilon}(\chi_{j};\psi),$$

which yields the first inequality.

The upper bound of the theorem coincides with the upper bound M in (8), and the proof is complete.

Suppose that the norm $\|\cdot\|$ is induced by an inner product $\langle\cdot,\cdot\rangle$. Then by Property (P_{11}) (see also Proposition 5.1 in [20]), the Birkhoff-James ε -orthogonality set of χ with respect to $\psi \neq 0$ is a closed disk, namely,

$$F_{\parallel \cdot \parallel}^{\varepsilon}(\chi;\psi) = \mathcal{D}\left(\frac{\langle \chi,\psi \rangle}{\|\psi\|^2}, \left\|\chi - \frac{\langle \chi,\psi \rangle}{\|\psi\|^2}\psi\right\| \frac{\varepsilon}{\sqrt{1-\varepsilon^2}\|\psi\|}\right)$$

Let P(z) be a vector-valued polynomial as in (6), $\varepsilon \in [0, 1)$, and $\psi \in \mathcal{X}$ be a nonzero vector such that $F_{\|\cdot\|}^{\varepsilon}(\chi_m; \psi) \neq \{0\}$. Then, by (7), we have

$$\begin{split} W^{\varepsilon}_{\|\cdot\|}(P(z);\psi) &= \left\{\mu \in \mathbb{C} : \psi \perp^{\varepsilon}_{BJ} P(\mu)\right\} \\ &= \left\{\mu \in \mathbb{C} : \psi \perp^{\varepsilon} P(\mu)\right\} \\ &= \left\{\mu \in \mathbb{C} : |\langle P(\mu), \psi \rangle| \leq \varepsilon \|\psi\| \|P(\mu)\|\right\} \\ &= \left\{\mu \in \mathbb{C} : |\langle P(\mu), \psi \rangle|^{2} \leq \varepsilon^{2} \|\psi\|^{2} \|P(\mu)\|^{2}\right\} \\ &= \left\{\mu \in \mathbb{C} : \langle P(\mu), \psi \rangle \langle \psi, P(\mu) \rangle \leq \varepsilon^{2} \|\psi\|^{2} \langle P(\mu), P(\mu) \rangle\right\} \\ &= \left\{\mu \in \mathbb{C} : \langle \sum_{i=0}^{m} \chi_{i} \mu^{i}, \psi \rangle \langle \psi, \sum_{j=0}^{m} \chi_{j} \mu^{j} \rangle \leq \varepsilon^{2} \|\psi\|^{2} \langle \sum_{i=0}^{m} \chi_{i} \mu^{i}, \sum_{j=0}^{m} \chi_{j} \mu^{j} \rangle\right\} \\ &= \left\{\mu \in \mathbb{C} : \sum_{i,j=0}^{m} \langle \chi_{i}, \psi \rangle \langle \psi, \chi_{j} \rangle \mu^{i} \overline{\mu}^{j} - \varepsilon^{2} \|\psi\|^{2} \sum_{i,j=0}^{m} \langle \chi_{i}, \chi_{j} \rangle \mu^{i} \overline{\mu}^{j} \leq 0\right\}. \end{split}$$

Figure 3: Birkhoff-James ε -orthogonality sets of P(z) (left part) and R(z) (right part).

Example 3.1. Consider the four-dimensional quadratic vector-valued polynomial

$$P(z) = \begin{bmatrix} 1\\0\\0.8\\i \end{bmatrix} z^2 + \begin{bmatrix} i\\-1\\0.5\\0 \end{bmatrix} z + \begin{bmatrix} 2\\-3\\-0.1\\-i \end{bmatrix},$$

its reverse vector-valued polynomial

$$R(z) = \begin{bmatrix} 2\\ -3\\ -0.1\\ -i \end{bmatrix} z^2 + \begin{bmatrix} i\\ -1\\ 0.5\\ 0 \end{bmatrix} z + \begin{bmatrix} 1\\ 0\\ 0.8\\ i \end{bmatrix},$$

and the vector $\psi = \begin{bmatrix} 0.6 & 0 & 0.9 & 0.2 \end{bmatrix}^T$. For the euclidean norm (which is induced by the standard inner product), we have drawn the boundaries of the ε -orthogonality sets $W_{\|\cdot\|_2}^{\varepsilon}(P(z);\psi)$, $\varepsilon = 0.3, 0.5, 0.7, 0.73$, and $W_{\|\cdot\|_2}^{\varepsilon}(R(z);\psi)$, $\varepsilon = 0.2, 0.25, 0.26, 0.265, 0.27$, in the left and the right part of Figure 3, respectively. As expecting by Theorem 3.1, the origin lies in $W_{\|\cdot\|_2}^{\varepsilon}(P(z);\psi)$ (or equivalently, the origin lies in $F_{\|\cdot\|_2}^{\varepsilon}(\chi_0;\psi)$) if and only if $W_{\|\cdot\|_2}^{\varepsilon}(R(z);\psi)$ is unbounded.

4 Connected components

In this section, we study the connected components of the Birkhoff-James ε -orthogonality set $W_{\|\cdot\|}^{\varepsilon}(P(z);\psi)$, when this set is bounded. The following lemma is necessary for our analysis.

Lemma 4.1. Let P(z) be a vector-valued polynomial as in (6), and let L be a non-empty, closed and convex subset of \mathcal{X}^* such that $f(\chi_m) \neq 0$ for all $f \in L$. Then, the roots of the scalar polynomial $f(P(z)) = f(\chi_m)z^m + f(\chi_{m-1})z^{m-1} + \cdots + f(\chi_1)z + f(\chi_0)$ are continuous with respect to $f \in L$.

Proof. It is well known that the roots of a scalar polynomial are continuous functions of the coefficients of the polynomial, as long as the leading coefficient is nonzero; see Appendix D in [14]. The vector coefficients $\chi_0, \chi_1, \ldots, \chi_m \in \mathcal{X}$ of the vector-valued polynomial $P(z) = \chi_m z^m + \chi_{m-1} z^{m-1} + \cdots + \chi_1 z + \chi_0$ are constant, and hence, the coefficients $f(\chi_0), f(\chi_1), \ldots, f(\chi_m)$ of the scalar polynomial f(P(z)) depend only on $f \in L$. If $\{f_1, f_2, \ldots\} \subset L$ is a sequence of continuous linear functionals that converges to $f \in L$ (i.e., $||f_k - f|| \to 0$, as $k \to +\infty$), then for any $j = 0, 1, \ldots, m$, it holds

$$||f(\chi_j) - f_k(\chi_j)|| \le ||(f - f_k)(\chi_j)|| \le ||f - f_k|| ||\chi_j||, \quad k = 1, 2, \dots,$$

and the proof is complete.

Theorem 4.2. (For the standard numerical range of square matrix polynomials, see Theorem 2.2 in [24].) Let P(z) be a vector-valued polynomial as in (6), $\varepsilon \in$ [0,1), and $\psi \in \mathcal{X}$ be a nonzero vector such that $0 \notin F_{\parallel,\parallel}^{\varepsilon}(\chi_m;\psi)$ (or equivalently, $W_{\parallel,\parallel}^{\varepsilon}(P(z);\psi)$ is bounded). Suppose that $W_{\parallel,\parallel}^{\varepsilon}(P(z);\psi)$ has r connected components. If κ is the minimum number of distinct zeros of the scalar polynomial f(P(z)) = $f(\chi_m)z^m + f(\chi_{m-1})z^{m-1} + \cdots + f(\chi_1)z + f(\chi_0)$ over all $f \in L_{\varepsilon}(\psi)$, then $r \leqslant \kappa \leqslant m$. Proof. Consider a continuous linear functional $f_1 \in L_{\varepsilon}(\psi)$ such that the scalar polynomial $f_1(P(z)) = f_1(\chi_m)z^m + f(\chi_{m-1})z^{m-1} + \cdots + f_1(\chi_1)z + f_1(\chi_0)$ has exactly $\kappa (\leq m)$ distinct roots. Let also $f_2 \in L_{\varepsilon}(\psi)$. Since $0 \notin F_{\parallel \cdot \parallel}^{\varepsilon}(\chi_m; \psi)$, both scalars $f_1(\chi_m)$ and $f_2(\chi_m)$ are nonzero. Moreover, by the convexity of the set $L_{\varepsilon}(\psi)$ and the region $F_{\parallel \cdot \parallel}^{\varepsilon}(\chi_m; \psi)$ (keeping in mind that $0 \notin F_{\parallel \cdot \parallel}^{\varepsilon}(\chi_m; \psi)$), every continuous linear functional

$$g_t = (1-t)f_1 + tf_2 \in L_{\varepsilon}(\psi), \quad t \in [0,1],$$

satisfies the condition $g_t(\chi_m) \neq 0$. Thus, by Lemma 4.1, the roots of the scalar polynomial

$$g_t(P(z)) = g_t(\chi_m) z^m + g_t(\chi_{m-1}) z^{m-1} + \dots + g_t(\chi_1) z + g_t(\chi_0), \quad t \in [0, 1]$$

are continuous functions of t. Hence, the κ roots of the scalar polynomial $f_1(P(z))$ are connected with continuous curves in $W^{\varepsilon}_{\|\cdot\|}(P(z);\psi)$ with the roots of $f_2(P(z))$. Consequently, the number of the connected components of $W^{\varepsilon}_{\|\cdot\|}(P(z);\psi)$ is less than or equal to κ .

Suppose that for every continuous linear functional $f \in L_{\varepsilon}(\psi)$, the scalar polynomial f(P(z)) has m simple roots (this means that $f(\chi_m)$ is always nonzero and $W_{\parallel,\parallel}^{\varepsilon}(P(z);\psi)$ is bounded). Then, these m simple roots define m continuous maps

$$\rho_i: L_{\varepsilon}(\psi) \to \mathbb{C}, \quad i = 1, 2, \dots, m.$$
(9)

Definition 4.1. Let $\chi, \psi \in \mathcal{X}$, with $\psi \neq 0$, and consider a complex number $\mu \in F_{\|\cdot\|}^{\varepsilon}(\chi; \psi)$. We define the set

$$S_{\chi,\psi}(\mu) = \left\{ f \in L_{\varepsilon}(\psi) : \ \mu = \frac{f(\chi)}{\sqrt{1 - \varepsilon^2} \|\psi\|} \right\} \subseteq L_{\varepsilon}(\psi).$$

Moreover, for the vector-valued polynomial P(z), we define the set

$$S_{P(z),\psi}(\mu) = \{ f \in L_{\varepsilon}(\psi) : f(P(\mu)) = 0 \} = S_{P(\mu),\psi}(0).$$

Lemma 4.3. Let $\chi, \psi \in \mathcal{X}$, with $\psi \neq 0$, and consider a complex number $\mu \in F_{\|\cdot\|}^{\varepsilon}(\chi; \psi)$. Then, the set $S_{\chi,\psi}(\mu)$ is convex.

Proof. Consider two continuous linear functionals $f_1, f_2 \in S_{\chi,\psi}(\mu)$ and a $t \in [0, 1]$. Then we have that $\frac{f_1(\chi)}{\sqrt{1 - \varepsilon^2} \|\psi\|} = \mu = \frac{f_2(\chi)}{\sqrt{1 - \varepsilon^2} \|\psi\|}$. As a consequence, $\frac{[tf_1 + (1 - t)f_2](\chi)}{\sqrt{1 - \varepsilon^2} \|\psi\|} = \mu,$

and $tf_1 + (1-t)f_2$ also lies in $S_{\chi,\psi}(\mu)$.

Theorem 4.4. (For operator polynomials, see Theorem 1 in [25].) Let P(z) be a vector-valued polynomial as in (6), $\varepsilon \in [0, 1)$, and $\psi \in \mathcal{X}$ be a nonzero vector such that $0 \notin F_{\|\cdot\|}^{\varepsilon}(\chi_m; \psi)$ (or equivalently, $W_{\|\cdot\|}^{\varepsilon}(P(z); \psi)$ is bounded). Suppose that for every $f \in L_{\varepsilon}(\psi)$, the scalar polynomial $f(P(z)) = f(\chi_m)z^m + f(\chi_{m-1})z^{m-1} + \cdots + f(\chi_1)z + f(\chi_0)$ has exactly m simple roots. Then, $W_{\|\cdot\|}^{\varepsilon}(P(z); \psi)$ has exactly m connected components.

Proof. We consider the images of the root functions $\rho_1, \rho_2, \ldots, \rho_m$ in (9),

$$W_i = \rho_i(L_{\varepsilon}(\psi)) \subseteq W^{\varepsilon}_{\parallel \cdot \parallel}(P(z);\psi), \quad i = 1, 2, \dots, m.$$

These sets are connected and satisfy

$$W_{\parallel\cdot\parallel}^{\varepsilon}(P(z);\psi) = \bigcup_{1 \leq i \leq m} W_i$$

We need to prove that $W_i \cap W_j = \emptyset$ for all $i \neq j$.

Without loss of generality, assume that $W_1 \cap W_2 \neq \emptyset$. Then there exists a $\mu \in \mathbb{C}$ such that

$$\rho_1(f_1) = \mu = \rho_2(f_2)$$
 for some functionals $f_1, f_2 \in L_{\varepsilon}(\psi)$.

Then both f_1 and f_2 lie in $S_{P(z),\psi}(\mu)$. Moreover, it holds

$$S_{P(z),\psi}(\mu) = \bigcup_{1 \leq i \leq m} \left\{ f \in L_{\varepsilon}(\psi) : \mu = \rho_i(f) \right\},\,$$

i.e., $S_{P(z),\psi}(\mu)$ is the union of

$$S_1 = \{ f \in L_{\varepsilon}(\psi) : \mu = \rho_1(f) \} \text{ and } S_2 = \bigcup_{2 \leq i \leq m} \{ f \in L_{\varepsilon}(\psi) : \mu = \rho_i(f) \}.$$

Obviously, $f_1 \in S_1$ and $f_2 \in S_2$, and the sets S_1 and S_2 are not empty. The sets S_1 and S_2 are closed as pre-images of continuous maps. Since the set $S_{P(z),\psi}(\mu)$ is convex, it is also connected, and hence, $S_1 \cap S_2 \neq \emptyset$. Thus, there exists a functional f such that $\rho_1(f) = z = \rho_i(f)$ for some $i \ge 2$; this is a contradiction because we have assumed that the roots are simple.

5 Boundary

Since the Birkhoff-James ε -orthogonality set $W_{\|\cdot\|}^{\varepsilon}(P(z);\psi)$ is closed, its boundary is of special interest. In the following two theorems, we describe the strong connection between a boundary point z_0 of $W_{\|\cdot\|}^{\varepsilon}(P(z);\psi)$ and the origin as a boundary point of the region $F_{\|\cdot\|}^{\varepsilon}(P(z_0);\psi)$.

Theorem 5.1. (For rectangular matrix polynomials, see Theorem 19 (i) in [7], and for the standard numerical range of square matrix polynomials, see Theorem 1.1

in [27].) Let P(z) be a vector-valued polynomial as in (6), $\varepsilon \in [0, 1)$, and $\psi \in \mathcal{X}$ be a nonzero vector such that $F^{\varepsilon}_{\|\cdot\|}(\chi_m; \psi) \neq \{0\}$. If $z_0 \in \partial W^{\varepsilon}_{\|\cdot\|}(P(z); \psi)$, then $0 \in \partial F^{\varepsilon}_{\|\cdot\|}(P(z_0); \psi)$.

Proof. Since $z_0 \in \partial W_{\|\cdot\|}^{\varepsilon}(P(z);\psi) \subseteq W_{\|\cdot\|}^{\varepsilon}(P(z);\psi)$, there is a continuous linear functional $f_0 \in L_{\varepsilon}(\psi)$ such that $f_0(P(z_0)) = 0$. So, $0 \in F_{\|\cdot\|}^{\varepsilon}(P(z_0);\psi)$, and it is sufficient to prove that the origin does not belong to the interior of $F_{\|\cdot\|}^{\varepsilon}(P(z_0);\psi)$.

Let $\{z_1, z_2, ...\} \subset \mathbb{C} \setminus W_{\parallel,\parallel}^{\varepsilon}(P(z); \psi)$ be a sequence of complex numbers converging to z_0 , and assume that 0 lies in the interior of $F_{\parallel,\parallel}^{\varepsilon}(P(z_0); \psi)$. Then, there is a real number $\delta > 0$ such that $\mathcal{D}(0, \delta) \subseteq F_{\parallel,\parallel}^{\varepsilon}(P(z_0); \psi)$. Moreover, there exist $f_{\delta,1}, f_{\delta,2}, f_{\delta,3} \in L_{\varepsilon}(\psi)$ such that the triangle with vertices $\frac{f_{\delta,1}(P(z_0))}{\sqrt{1-\varepsilon^2} \|\psi\|}$, $\frac{f_{\delta,2}(P(z_0))}{\sqrt{1-\varepsilon^2} \|\psi\|}$ contains the origin in its interior and lies in the disk

 $\frac{f_{\delta,2}(P(z_0))}{\sqrt{1-\varepsilon^2} \|\psi\|} \text{ and } \frac{f_{\delta,3}(P(z_0))}{\sqrt{1-\varepsilon^2} \|\psi\|} \text{ contains the origin in its interior and lies in the disk} \\\mathcal{D}(0,\delta/2). \text{ Continuity yields}$

$$\lim_{n \to +\infty} \frac{f_{\delta,i}(P(z_n))}{\sqrt{1 - \varepsilon^2} \|\psi\|} = \frac{f_{\delta,i}(P(z_0))}{\sqrt{1 - \varepsilon^2} \|\psi\|}, \quad i = 1, 2, 3,$$

and as a consequence, there is a positive integer n_0 such that $0 \in F_{\|\cdot\|}^{\varepsilon}(P(z_n);\psi)$ for every $n \ge n_0$. Hence, for every positive integer $n \ge n_0$, $z_n \in W_{\|\cdot\|}^{\varepsilon}(P(z);\psi)$; this is a contradiction.

For the remainder, we need to consider the vector-valued polynomial

$$P'(z) = m\chi_m z^{m-1} + (m-1)\chi_{m-1} z^{m-2} + \dots + 2\chi_2 z + \chi_1.$$

Theorem 5.2. (For rectangular matrix polynomials, see Theorem 19 (ii) in [7], and for the standard numerical range of square matrix polynomials, see Theorem 2 in [22].) Let P(z) be a vector-valued polynomial as in (6), $\varepsilon \in [0, 1)$, and $\psi \in \mathcal{X}$ be a nonzero vector such that $F_{\parallel \cdot \parallel}^{\varepsilon}(\chi_m; \psi) \neq \{0\}$. Let also $z_0 \in W_{\parallel \cdot \parallel}^{\varepsilon}(P(z); \psi)$ such that $F_{\parallel \cdot \parallel}^{\varepsilon}(P(z_0); \psi) \neq \{0\}$ and $0 \notin F_{\parallel \cdot \parallel}^{\varepsilon}(P'(z_0); \psi)$. If $0 \in \partial F_{\parallel \cdot \parallel}^{\varepsilon}(P(z_0); \psi)$, then $z_0 \in \partial W_{\parallel \cdot \parallel}^{\varepsilon}(P(z); \psi)$.

Proof. Let $0 \in \partial F_{\|\cdot\|}^{\varepsilon}(P(z_0);\psi)$, and assume that z_0 is an interior point of the set $W_{\|\cdot\|}^{\varepsilon}(P(z);\psi)$. Then, there exists a $\delta > 0$ such that $\mathcal{D}(z_0,\delta) \subseteq W_{\|\cdot\|}^{\varepsilon}(P(z);\psi)$. Hence, for any $z \in \mathcal{D}(z_0,\delta) \setminus \{z_0\}$, there is a $f_z \in L_{\varepsilon}(\psi)$ such that $f_z(P(z)) = 0$. Moreover,

$$0 = f_z(P(z)) = f_z(P(z - z_0 + z_0))$$

= $f_z(P(z_0) + (z - z_0)P'(z_0) + (z - z_0)R(z, z_0))$
= $f_z(P(z_0)) + (z - z_0)f_z(P'(z_0) + R(z, z_0)),$

where $R(z, z_0)$ is a vector-valued polynomial in z_0 and z, such that $||R(z, z_0)|| \to 0$ as $|z - z_0| \to 0$. Since $0 \notin F_{\|\cdot\|}^{\varepsilon}(P'(z_0); \psi)$, by the subadditivity of Proposition 2.3, the

positive number δ can be chosen small enough such that for every $z \in \mathcal{D}(z_0, \delta) \setminus \{z_0\}$,

$$0 \notin F_{\parallel \cdot \parallel}^{\varepsilon}(P'(z_0) + R(z, z_0); \psi) \quad \left(\subseteq F_{\parallel \cdot \parallel}^{\varepsilon}(P'(z_0); \psi) + \mathcal{D}\left(0, \frac{\|R(z, z_0)\|}{\sqrt{1 - \varepsilon^2} \|\psi\|}\right)\right)$$

and

$$z - z_0 = -\frac{f_z(P(z_0))}{f_z(P'(z_0) + R(z, z_0))}.$$
(10)

By the convexity of $F_{\|\cdot\|}^{\varepsilon}(P'(z_0) + R(z, z_0); \psi)$, there exist angles $\theta_1, \theta_2, \theta_3$ such that $0 < \theta_2 - \theta_1 \leq \theta_3 < \pi$ and

$$F_{\|\cdot\|}^{\varepsilon}(P'(z_0) + R(z, z_0); \psi) \subset \{ w \in \mathbb{C} : \theta_1 \leqslant \arg(w) \leqslant \theta_2 \}, \quad \forall z \in \mathcal{D}(z_0, \delta) \setminus \{ z_0 \}.$$

Also, $F_{\|\cdot\|}^{\varepsilon}(P(z_0);\psi) \neq \{0\}$ and $0 \in \partial F_{\|\cdot\|}^{\varepsilon}(P(z_0);\psi)$. Therefore, by the convexity of $F_{\|\cdot\|}^{\varepsilon}(P(z_0);\psi)$, there exist angles ϕ_1, ϕ_2 such that $0 < \phi_2 - \phi_1 \leq \pi$ and

$$F_{\parallel \cdot \parallel}^{\varepsilon}(P(z_0);\psi) \subset \left\{ w \in \mathbb{C} : \phi_1 \leqslant \arg(w) \leqslant \phi_2 \right\}.$$

Consequently, the angular of the right hand-side of (10) cannot take all the values in $[0, 2\pi)$. This is a contradiction, since the left hand-side is not constrained.

Next, we consider the isolated points of the Birkhoff-James ε -orthogonality set $W_{\parallel,\parallel}^{\varepsilon}(P(z);\psi)$.

Proposition 5.3. (For the standard numerical range of square matrix polynomials, see Theorem 2.1 in [27].) Let P(z) be a vector-valued polynomial as in (6), $\varepsilon \in [0,1)$, and $\psi \in \mathcal{X}$ be a nonzero vector such that $0 \notin F_{\|\cdot\|}^{\varepsilon}(\chi_m; \psi)$ (or equivalently, $W_{\|\cdot\|}^{\varepsilon}(P(z); \psi)$ is bounded). If z_0 is an isolated point of $W_{\|\cdot\|}^{\varepsilon}(P(z); \psi)$, then $F_{\|\cdot\|}^{\varepsilon}(P(z_0); \psi) = \{0\}$. If, in addition, $\varepsilon > 0$, then $P(z_0) = 0$.

Proof. Suppose that the singleton $\{z_0\}$ is a connected component of $W^{\varepsilon}_{\|\cdot\|}(P(z);\psi)$. Then, there is a continuous linear functional $f_0 \in L_{\varepsilon}(\psi)$ such that

$$f_0(P(z_0)) = f_0(\chi_m) z_0^m + f_0(\chi_{m-1}) z_0^{m-1} + \dots + f_0(\chi_1) z_0 + f_0(\chi_0) = 0.$$

Since $0 \notin F_{\parallel,\parallel}^{\varepsilon}(\chi_m; \psi)$, the convexity of $L_{\varepsilon}(\psi)$ and the continuity of the roots of the scalar polynomial f(P(z)) with respect to $f \in L_{\varepsilon}(\psi)$ imply that the roots of the scalar polynomial $f_0(P(z))$ are connected to the roots of any scalar polynomial f(P(z)), with $f \in L_{\varepsilon}(\psi)$, by continuous curves in $W_{\parallel,\parallel}^{\varepsilon}(P(z);\psi)$ (see also the proof of Theorem 4.2). As a consequence, for any $f \in L_{\varepsilon}(\psi)$, z_0 is a root of the scalar polynomial f(P(z)). Thus, $f(P(z_0)) = 0$ for every $f \in L_{\varepsilon}(\psi)$, and hence, $F_{\parallel,\parallel}^{\varepsilon}(P(z_0);\psi) = \{0\}$. Furthermore, if $\varepsilon > 0$, then Properties (P_5) and (P_7) yield $P(z_0) = 0$.

6 Local dimension

Let Ω be a closed subset of \mathbb{C} . A recursive definition of the *topological dimension* of Ω , denoted by dim { Ω }, is the following [13, 16]: If Ω is an empty set, then dim { Ω } = -1. If Ω is a non-empty set, then dim { Ω } is the least integer number $k \in \{0, 1, 2\}$ for which every point of Ω has arbitrarily small neighborhoods in Ω whose boundaries are of topological dimension less than k. Clearly, if Ω is countable, then dim { Ω } = 0, and if Ω is a (non-degenerate) curve, then dim { Ω } = 1.

Consider a point $z_0 \in \Omega$. The *local dimension* of z_0 in Ω is defined as the limit $\lim_{h\to 0^+} \dim \{\Omega \cap D(z_0,h)\}, h \in (0,+\infty)$. In particular, the local dimension of z_0 in Ω is equal to

- 0 if and only if z_0 is an isolated point of Ω ,
- 1 if and only if z_0 is a non-isolated point of Ω which does not lie in the closure of the interior of Ω ,
- 2 if and only if z_0 lies in the closure of the interior of Ω .

As in the case of the boundary, the local dimension of a point z_0 in $W^{\varepsilon}_{\|\cdot\|}(P(z);\psi)$ is strongly connected to the local dimension of the origin in the set $F^{\varepsilon}_{\|\cdot\|}(P(z_0);\psi)$.

Theorem 6.1. (For the standard numerical range of square matrix polynomials, see Theorem 1 in [28].) Let P(z) be a vector-valued polynomial as in (6), $\varepsilon \in [0, 1)$, and $\psi \in \mathcal{X}$ be a nonzero vector such that $F_{\parallel \cdot \parallel}^{\varepsilon}(\chi_m; \psi) \neq \{0\}$. Let also $z_0 \in W_{\parallel \cdot \parallel}^{\varepsilon}(P(z); \psi)$ with local dimension in $W_{\parallel \cdot \parallel}^{\varepsilon}(P(z); \psi)$ equal to 1, such that $F_{\parallel \cdot \parallel}^{\varepsilon}(P(z_0); \psi) \neq \{0\}$, the origin is a differentiable point of $\partial F_{\parallel \cdot \parallel}^{\varepsilon}(P(z_0); \psi)$ and $0 \notin F_{\parallel \cdot \parallel}^{\varepsilon}(P'(z_0); \psi)$. Then, the local dimension of 0 in $F_{\parallel \cdot \parallel}^{\varepsilon}(P(z_0); \psi)$ is 1.

Proof. Since the local dimension of z_0 in $W_{\|\cdot\|}^{\varepsilon}(P(z);\psi)$ is equal to 1, it follows that $z_0 \in \partial W_{\|\cdot\|}^{\varepsilon}(P(z);\psi)$, z_0 is not an isolated point of $W_{\|\cdot\|}^{\varepsilon}(P(z);\psi)$, and there is a real number r > 0 such that $W_{\|\cdot\|}^{\varepsilon}(P(z);\psi) \cap \mathcal{D}(z_0,r) \subseteq \partial W_{\|\cdot\|}^{\varepsilon}(P(z);\psi)$. For the sake of contradiction, assume that the local dimension of the origin in $F_{\|\cdot\|}^{\varepsilon}(P(z_0);\psi)$ is equal to 2 (i.e., the convex set $F_{\|\cdot\|}^{\varepsilon}(P(z_0);\psi)$ has a non-empty interior).

By Theorem 5.1, for every $z \in \mathcal{D}(z_0, r)$, it holds that $0 \in \partial F_{\|\cdot\|}^{\varepsilon}(P(z); \psi)$. Moreover, the origin is a differentiable point of $\partial F_{\|\cdot\|}^{\varepsilon}(P(z_0); \psi)$, and hence, there is a unique tangent line of $\partial F_{\|\cdot\|}^{\varepsilon}(P(z_0); \psi)$ at the origin, which defines a closed half-plane \mathcal{H}_1 and an open half-plane $\mathcal{H}_2 = \mathbb{C} \setminus \mathcal{H}_1$, such that $F_{\|\cdot\|}^{\varepsilon}(P(z_0); \psi) \subset \mathcal{H}_1$.

For every $\rho \in [0, r]$ and $\theta \in [0, 2\pi]$, $z_0 + \rho e^{i\theta}$ is either a boundary point or an exterior point of the set $W_{\parallel,\parallel}^{\varepsilon}(P(z); \psi)$. As a consequence, for every $\rho \in [0, r]$ and $\theta \in [0, 2\pi]$, the origin is either a boundary point or an exterior point of the convex set $F_{\parallel,\parallel}^{\varepsilon}(P(z_0 + \rho e^{i\theta}); \psi)$. Moreover, it holds

$$P(z_0 + \rho e^{i\theta}) = P(z_0) + \rho e^{i\theta} P'(z_0) + \rho e^{i\theta} R(z_0, \rho e^{i\theta}),$$

where $R(z_0, \rho e^{i\theta})$ is a vector-valued polynomial in z_0 and $\rho e^{i\theta}$, such that $||R(z_0, \rho e^{i\theta})|| \to 0$ as $\rho \to 0$. Since $0 \notin F^{\varepsilon}_{||\cdot||}(P'(z_0); \psi)$, subadditivity implies that for small enough r, there exists a convex cone

$$\mathcal{K}(z_0, r) = \{ z \in \mathbb{C} : \theta_1 \leqslant \arg(z) \leqslant \theta_2, \ 0 < \theta_2 - \theta_1 \leqslant \theta_3 < \pi \},\$$

such that for every $\rho \in [0, r]$ and $\theta \in [0, 2\pi]$,

$$F^{\varepsilon}_{\|\cdot\|}(P'(z_0) + R(z_0, \rho e^{\mathrm{i}\theta}); \psi) \subset \mathcal{K}(z_0, r) \setminus \{0\}.$$

For suitable $\theta \in [0, 2\pi]$,

$$e^{\mathrm{i} heta}F^arepsilon_{\|\cdot\|}(P'(z_0)+R(z_0,
ho e^{\mathrm{i} heta});\psi)\,\subset\,e^{\mathrm{i} heta}\mathcal{K}(z_0,r)\setminus\{0\}\,\subset\,\mathcal{H}_2.$$

Then, for every linear functional $f \in L_{\varepsilon}(\psi)$,

$$\frac{f(P(z_0+\rho e^{\mathrm{i}\theta}))}{\sqrt{1-\varepsilon^2} \|\psi\|} = \frac{f(P(z_0))}{\sqrt{1-\varepsilon^2} \|\psi\|} + \frac{\rho e^{\mathrm{i}\theta} f(P'(z_0)+R(z_0,\rho e^{\mathrm{i}\theta}))}{\sqrt{1-\varepsilon^2} \|\psi\|},$$

where

$$\frac{f(P(z_0))}{\sqrt{1-\varepsilon^2} \|\psi\|} \in F_{\|\cdot\|}^{\varepsilon}(P(z_0);\psi) \subset \mathcal{H}_1$$

and

$$\frac{\rho e^{\mathrm{i}\theta} f(P'(z_0) + R(z_0, \rho e^{\mathrm{i}\theta}))}{\sqrt{1 - \varepsilon^2} \|\psi\|} \in e^{\mathrm{i}\theta} \mathcal{K}(z_0, r) \setminus \{0\} \subset \mathcal{H}_2.$$

Consequently, as ρ takes values from 0 to r, a part of $F_{\parallel,\parallel}^{\varepsilon}(P(z_0 + \rho e^{i\theta}); \psi)$, in a neighborhood of the origin, is moving continuously into the half-plane \mathcal{H}_2 . Thus, there is an $r_{\theta} \in (0, r]$ such that the origin lies in the interior of $F_{\parallel,\parallel}^{\varepsilon}(P(z_0) + r_{\theta}e^{i\theta}[P'(z_0) + R(z_0, \rho e^{i\theta})]; \psi) = F_{\parallel,\parallel}^{\varepsilon}(P(z_0 + r_{\theta}e^{i\theta}); \psi)$; this contradicts the definition of r.

If $z_0 \in W^{\varepsilon}_{\|\cdot\|}(P(z);\psi)$ such that $F^{\varepsilon}_{\|\cdot\|}(P(z_0);\psi) \neq \{0\}$, then $P(z_0)$ is not a scalar multiple of ψ . Hence, if $\varepsilon > 0$, then the convexity of $F^{\varepsilon}_{\|\cdot\|}(P(z_0);\psi)$ and Property (P_7) imply that the local dimension of 0 in $F^{\varepsilon}_{\|\cdot\|}(P(z_0);\psi)$ is equal to 2. As a consequence, we have the following corollary.

Corollary 6.2. Let P(z) be a vector-valued polynomial as in (6), $\varepsilon \in (0, 1)$, and $\psi \in \mathcal{X}$ be a nonzero vector such that $F_{\parallel \cdot \parallel}^{\varepsilon}(\chi_m; \psi) \neq \{0\}$. Let also z_0 be a nonisolated boundary point of $W_{\parallel \cdot \parallel}^{\varepsilon}(P(z); \psi)$ such that $F_{\parallel \cdot \parallel}^{\varepsilon}(P(z_0); \psi) \neq \{0\}$, the origin is a differentiable point of $\partial F_{\parallel \cdot \parallel}^{\varepsilon}(P(z_0); \psi)$ and $0 \notin F_{\parallel \cdot \parallel}^{\varepsilon}(P'(z_0); \psi)$. Then the local dimension of z_0 in $W_{\parallel \cdot \parallel}^{\varepsilon}(P(z); \psi)$ is equal to 2.

The case $\varepsilon = 0$ is considered in the next result.

Theorem 6.3. (For the standard numerical range of square matrix polynomials, see Theorem 2 in [28].) Let P(z) be a vector-valued polynomial as in (6) and $\psi \in \mathcal{X}$ be a nonzero vector such that $F^0_{\parallel \cdot \parallel}(\chi_m; \psi) \neq \{0\}$. Let also z_0 be an interior point of $W^0_{\parallel \cdot \parallel}(P(z); \psi)$ or a differentiable point of $\partial W^0_{\parallel \cdot \parallel}(P(z); \psi)$ with local dimension in $W^0_{\parallel \cdot \parallel}(P(z); \psi)$ equal to 2, such that $F^0_{\parallel \cdot \parallel}(P(z_0); \psi) \neq \{0\}$ and $0 \notin F^0_{\parallel \cdot \parallel}(P'(z_0); \psi)$. Then, the local dimension of the origin in $F^0_{\parallel \cdot \parallel}(P(z_0); \psi)$ is equal to 2.

Proof. If z_0 is an interior point of $W^0_{\|\cdot\|}(P(z);\psi)$, then by Theorem 5.2, the origin is also an interior point of $F^0_{\|\cdot\|}(P(z_0);\psi)$. In this case, the local dimension of z_0 in $W^0_{\|\cdot\|}(P(z);\psi)$ and the local dimension of 0 in $F^0_{\|\cdot\|}(P(z_0);\psi)$ are both equal to 2.

Let $z_0 \in \partial W^0_{\|\cdot\|}(P(z);\psi)$. Since z_0 is a differentiable point of $\partial W^{\varepsilon}_{\|\cdot\|}(P(z);\psi)$ and has local dimension 2 in $W^0_{\|\cdot\|}(P(z);\psi)$, there exists a $\phi_0 \in [0,2\pi]$ such that for every $\phi \in (\phi_0, \phi_0 + \pi)$, there is an arbitrarily small $r_{\phi} > 0$ with $z_0 + r_{\phi}e^{i\phi}$ lying in the interior of $W^0_{\|\cdot\|}(P(z);\psi)$. For the sake of contradiction, we assume that the origin has local dimension 1 in $F^0_{\|\cdot\|}(P(z_0);\psi)$. Then, by the convexity of the set $F^0_{\|\cdot\|}(P(z_0);\psi) \neq \{0\}$, it follows that $F^0_{\|\cdot\|}(P(z_0);\psi)$ is a (non-degenerate) line segment passing through the origin.

The straight line which is defined by the line segment $F^0_{\|\cdot\|}(P(z_0);\psi)$ defines two closed half-planes \mathcal{H}_1 and \mathcal{H}_2 . As in the proof of Theorem 6.1,

$$P(z_0 + re^{i\phi}) = P(z_0) + re^{i\phi}P'(z_0) + re^{i\phi}R(z_0, re^{i\phi}),$$

where $||R(z_0, re^{i\phi})|| \to 0$ as $r \to 0$. Since $0 \notin F^0_{||\cdot||}(P'(z_0); \psi)$, for small enough r, there exists a convex cone

$$\mathcal{K}(z_0, r) = \{ z \in \mathbb{C} : \theta_1 \leqslant \arg(z) \leqslant \theta_2, \ 0 < \theta_2 - \theta_1 \leqslant \theta_3 < \pi \},\$$

such that

$$F^0_{\parallel \cdot \parallel}(P'(z_0) + R(z_0, re^{\mathrm{i}\phi}); \psi) \subseteq \mathcal{K}(z_0, r) \setminus \{0\}.$$

Also, there is a $\theta \in (\phi_0, \phi_0 + \pi)$ such that the set $e^{i\theta} F^0_{\parallel \cdot \parallel}(P'(z_0) + R(z_0, re^{i\phi}); \psi)$ lies in the interior of \mathcal{H}_1 or \mathcal{H}_2 . Since

$$F^{0}_{\|\cdot\|}(P(z_{0}+r_{\theta}e^{i\theta});\psi) \subseteq F^{0}_{\|\cdot\|}(P(z_{0});\psi)+r_{\theta}e^{i\theta}F^{0}_{\|\cdot\|}(P'(z_{0})+R(z_{0},re^{i\phi});\psi),$$

 $F^{0}_{\parallel \cdot \parallel}(P(z_{0} + r_{\theta}e^{i\theta});\psi) \text{ lies in the interior of } \mathcal{H}_{1} \text{ or } \mathcal{H}_{2}. \text{ As a consequence, } 0 \notin F^{0}_{\parallel \cdot \parallel}(P(z_{0} + r_{\theta}e^{i\theta});\psi); \text{ this is a contradiction because } z_{0} + r_{\theta}e^{i\theta} \in W^{0}_{\parallel \cdot \parallel}(P(z);\psi). \square$

Finally, we obtain that bounded Birkhoff-James ε -orthogonality sets of linear vector-valued polynomials are simply connected.

Theorem 6.4. (For the standard numerical range of square matrix polynomials, see Theorem 4 in [28].) Let $\chi_1 z + \chi_0$ be a linear vector-valued polynomial, $\varepsilon \in [0, 1)$, and $\psi \in \mathcal{X}$ be a nonzero vector such that $F_{\parallel,\parallel}^{\varepsilon}(\chi_1; \psi) \neq \{0\}$. If the set $W_{\parallel,\parallel}^{\varepsilon}(\chi_1 z + \chi_0; \psi)$ is bounded, then it is simply connected.

Proof. Suppose $W_{\|\cdot\|}^{\varepsilon}(\chi_1 z + \chi_0; \psi)$ is not simply connected. Then there is a complex number $w_0 \notin W_{\|\cdot\|}^{\varepsilon}(\chi_1 z + \chi_0; \psi)$ such that for every $\phi \in [0, 2\pi]$, there exists an $r_{\phi} > 0$ such that $w_0 + r_{\phi} e^{i\phi} \in W_{\|\cdot\|}^{\varepsilon}(\chi_1 z + \chi_0; \psi)$. By Property (P_{12}) , for any scalar $a \in \mathbb{C}$, it holds that $W_{\|\cdot\|}^{\varepsilon}(\chi_1(z + a) + \chi_0; \psi) = W_{\|\cdot\|}^{\varepsilon}(\chi_1 z + \chi_0; \psi) - a$. Thus, without loss of generality, we may assume that $w_0 = 0$.

By the boundedness of $W_{\|\cdot\|}^{\varepsilon}(\chi_1 z + \chi_0; \psi)$ and the assumption that the origin does not lie in $W_{\|\cdot\|}^{\varepsilon}(\chi_1 z + \chi_0; \psi)$, both convex sets $F_{\|\cdot\|}^{\varepsilon}(\chi_1; \psi)$ and $F_{\|\cdot\|}^{\varepsilon}(\chi_0; \psi)$ do not contain the origin. As a consequence, there exist two convex cones

$$\mathcal{K}_1 = \left\{ z \in \mathbb{C} : \, \theta_1 \leqslant \arg(z) \leqslant \widetilde{\theta}_1, \, 0 < \widetilde{\theta}_1 - \theta_1 \leqslant \xi_1 < \pi \right\}$$

and

$$\mathcal{K}_2 = \left\{ z \in \mathbb{C} : \, \theta_2 \leqslant \arg(z) \leqslant \widetilde{\theta}_2, \, \, 0 < \widetilde{\theta}_2 - \theta_2 \leqslant \xi_2 < \pi \right\},\,$$

such that $F_{\parallel,\parallel}^{\varepsilon}(\chi_1;\psi)$ lies in the interior of \mathcal{K}_1 and $F_{\parallel,\parallel}^{\varepsilon}(\chi_0;\psi)$ lies in the interior of \mathcal{K}_2 . Hence, there exists a $\phi_0 \in [0,2\pi]$ such that the convex regions $F_{\parallel,\parallel}^{\varepsilon}(r_{\phi_0}e^{\mathrm{i}\phi_0}\chi_1;\psi) = r_{\phi_0}e^{\mathrm{i}\phi_0}F_{\parallel,\parallel}^{\varepsilon}(\chi_1;\psi)$ and $F_{\parallel,\parallel}^{\varepsilon}(\chi_0;\psi)$ lie in the interior of the convex cone

$$\mathcal{K}_0 = \left\{ z \in \mathbb{C} : \, \theta_0 \leqslant \arg(z) \leqslant \widetilde{\theta}_0, \, 0 < \widetilde{\theta}_0 - \theta_0 \leqslant \xi_0 < \pi \right\},\,$$

where $\max\{\xi_1, \xi_2\} \leq \xi_0$. Therefore, by the subadditivity of Proposition 2.3, the set

$$F_{\|\cdot\|}^{\varepsilon}(\chi_1 r_{\phi_0} e^{\mathbf{i}\phi_0} + \chi_0; \psi) \subseteq r_{\phi_0} e^{\mathbf{i}\phi_0} F_{\|\cdot\|}^{\varepsilon}(\chi_1; \psi) + F_{\|\cdot\|}^{\varepsilon}(\chi_0; \psi)$$

lies in the interior of \mathcal{K}_0 , and it does not contain the origin; this is a contradiction.

References

- G.A. Anastassiou and S.G. Gal, On the best approximation of vector valued functions by polynomials with coefficients in vector spaces, Ann. Mat. Pura Appl., 186 (2007), 251–265.
- [2] G. Birkhoff, Orthogonality in linear metric spaces, Duke Math. J., 1 (1935), 169–172.
- [3] F.F. Bonsall and J. Duncan, Numerical Ranges of Operators on Normed Spaces and of Elements of Normed Algebras, London Math. Soc. Lecture Note Ser., Cambridge University Press, New York, 1971.
- [4] F.F. Bonsall and J. Duncan, Numerical Ranges II, London Math. Soc. Lecture Note Ser., Cambridge University Press, New York, 1973.
- [5] J. Chmielinski, On an ε-Birkhoff orthogonality, J. Ineq. Pure and Appl. Math., 6 (2005), Article 79.
- [6] Ch. Chorianopoulos, S. Karanasios and P. Psarrakos, A definition of numerical range of rectangular matrices, *Linear Multilinear Algebra*, 57 (2009), 459–475.
- [7] Ch. Chorianopoulos and P. Psarrakos, Birkhoff-James approximate orthogonality sets and numerical ranges, *Linear Algebra Appl.*, 434 (2011), 2089–2108.
- [8] S.S. Dragomir, On approximation of continuous linear functionals in normed linear spaces, An. Univ. Timişoara Ser. Ştiinţ. Mat., 29 (1991), 51–58.

- [9] F.R. Gantmacher, The Theory of Matrices, Chelsea Publishing Company, New York, 1959.
- [10] I. Gohberg, P. Lancaster and L. Rodman, Matrix Polynomials, Academic Press, New York, 1982.
- [11] I. Gohberg, P. Lancaster and L. Rodman, Spectral analysis of selfadjoint matrix polynomials, Ann. of Math., 112 (1980), 33–71.
- [12] I. Gohberg, P. Lancaster and L. Rodman, Representation and divisibility of operator polynomials, Canad. J. Math., 30 (1978), 1045–1069.
- [13] J. Hocking and G. Young, *Topology*, Dover, New York, 1988.
- [14] R.A. Horn and C.R. Johnson, *Matrix Analysis*, Cambridge University Press, Cambridge, 1990.
- [15] R.A. Horn and C.R. Johnson, *Topics in Matrix Analysis*, Cambridge University Press, Cambridge, 1991.
- [16] W. Hurewicz and H. Wallman, Dimension Theory (revised edition), Princeton Mathematical Series, Vol. 4, Princeton University Press, Princeton, 1996.
- [17] N. Ito and H.K. Wimmer, Self-inversive Hilbert space operator polynomials with spectrum on the unit circle, J. Math. Anal. Appl., 436 (2016), 683–691.
- [18] R.C. James, Orthogonality and linear functionals in normed linear spaces, Trans. Amer. Math. Soc., 61 (1947), 265–292.
- [19] T. Kailath, Linear Systems, Prentice Hall, Englewood Cliffs, 1980.
- [20] M. Karamanlis and P.J. Psarrakos, Birkhoff-James ε-orthogonality sets in normed linear spaces, Textos Mat., University of Coimbra, 44 (2013), 81–92.
- [21] P. Lancaster, Lambda-matrices and Vibrating Systems, Pergamon Press, Oxford, 1966.
- [22] P. Lancaster and P. Psarrakos, Normal and seminormal eigenvalues of analytic matrix functions, *Integral Equations Operator Theory*, **41** (2001), 331–342.
- [23] L. Lerer, L. Rodman and M. Tismenetsky, Bezoutian and Schur-Cohn problem for operator polynomials, J. Math. Anal. Appl., 103 (1984), 83–102.
- [24] C-K. Li and L. Rodman, Numerical range of matrix polynomials, SIAM J. Matrix Anal. Appl., 15 (1994), 1256–1265.
- [25] Y. Lyubich, Seperation of roots of matrix and operator polynomials, Integral Equations Operator Theory, 29 (1997), 52–62.
- [26] A.S. Markus, Introduction to the Spectral Theory of Polynomial Operator Pencils, Translations of Mathematical Monographs, Vol. 71, American Mathematical Society, Providence, 1988.
- [27] J. Maroulas and P. Psarrakos, The boundary of numerical range of matrix polynomials, *Linear Algebra Appl.*, 267 (1997), 101–111.

- [28] H. Nakazato and P. Psarrakos, On the shape of numerical range of matrix polynomials, *Linear Algebra Appl.*, **338** (2001), 105–123.
- [29] I.B. Prolla, Approximation of Vector Valued Functions, Notas de Matematica, Vol. 62, North-Holland Publishing Company, Amsterdam, 1977.
- [30] J.G. Stampfli and J.P. Williams, Growth conditions and the numerical range in a Banach algebra, *Tôhoku Math. Journ.*, **20** (1968), 417–424.