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Abstract

Consider a complex normed linear space (X, ||-||), and let x,¥ € X
with ¢ # 0. Motivated by recent works on rectangular matrices and
on normed linear spaces, we study the Birkhoff-James e-orthogonality
set of x with respect to v, give an alternative definition for this set,
and explore its rich structure. We also introduce the Birkhoff-James
e-orthogonality set of polynomials in one complex variable whose coef-
ficients are members of X', and survey and record extensions of results
on matrix polynomials to these vector-valued polynomials.

Key words: norm, vector-valued polynomial, Birkhoff-James orthogonality, Birkhoff-
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1 Introduction

Let (A, -|) (for simplicity, \A) be a unital normed algebra over C, and let A* be
the dual space of A, i.e., the Banach space of all continuous linear functionals of A
(using the induced operator norm). The numerical range (also known as the field
of values) of an element o € A is defined as

Flo) ={f(a): fe A, f(1) =1, |fl=1}. (1)
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This set has been studied extensively, and is useful in understanding matrices and
operators; see [3, 4, 15, 30] and the references therein. Stampfli and Williams [30,
Theorem 4], and later Bonsall and Duncan [4, Lemma 6.22.1], observed that the
numerical range F'(«) can be written in the form

Fla)={peC: |la=A1|| > |p— A, VA eC}.
This means that F'(«) is an infinite intersection of closed (circular) disks
DA Jla=M) ={peC: [p=A <fla=A1]}, AeC,
namely,

Fla) = (Y {reC: [p=A<lla=AL]} = (YD lla=AL]).  (2)
xeC AeC

For two elements x and 1 of a complex normed linear space (X, ||-||), x is said to
be Birkhoff-James orthogonal to 1, denoted by x Lps ¥, if ||x + M| > ||x|| for all
A € C [2, 18]. This orthogonality is homogeneous, but it is neither symmetric nor
additive [18]. Moreover, for any € € [0, 1), x is called Birkhoff-James e-orthogonal
to 1, denoted by x L% ; v, if [|[x + M| > V1 =2 x| for all A € C [5, §]. It
is worth mentioning that this relation is also homogeneous. In an inner product
space (X, (-,-)), with the standard orthogonality relation 1, a x € X is called e-
orthogonal to a 1 € X, denoted by x L& v, if |(x,¥)| < e]|x|l ||]]. Furthermore,
for any € € [0,1), x L° ¢ if and only if x L%, ¢ [5, 8].

Inspired by (2) and the above definition of Birkhoff-James e-orthogonality, Cho-
rianopoulos and Psarrakos [7] (for rectangular matrices), and Karamanlis and Psar-
rakos [20] (for elements of a normed linear space) introduced and studied the fol-
lowing set: For any x,v € X, with ¢» # 0, and any € € [0, 1), the Birkhoff-James
e-orthogonality set of x with respect to 1) is defined and denoted by

Fiiy) ={neC: ¢ Ly, (x —m)}.

The Birkhoff-James e-orthogonality set is a direct generalization of the numerical
range, and appears to have a rich structure and interesting geometrical properties [7,
20]. In this paper, motivated by (1), we introduce a new (equivalent) definition for
the Birkhoff-James e-orthogonality set, using continuous linear functionals. Based
on this definition, in the next section, we obtain some basic properties of the set
F|‘|5_|| (x;%) such as subadditivity in x. In Section 3, we introduce the Birkhoff-
James e-orthogonality set of vector-valued polynomials in one complex variable,
and investigate its localization in the complex plane. In Sections 4, 5 and 6, we
study the connected components of the Birkhoff-James e-orthogonality set of vector-
valued polynomials, the boundary of this set, and the local dimension of its points,
respectively. The proof techniques are analogous to existing proofs [22, 24, 25, 27,
28], albeit modified and adapted to the new setting. The main contribution of
this effort is a concise generalization to a new concept. Furthermore, the results
indicate that the information on Birkhoff-James e-orthogonality set is useful in
understanding vector-valued polynomials.



2 Definition and basic properties

Consider a complex normed linear space (X, || - ||) (for simplicity, X), and let x, 9 €
X with ¢ # 0. For any € € [0, 1), it is straightforward to see that

Fiay) = {peC:y Ly, (x—m)} (3)
peC: v —Mx - p)l| = VI—22|yll, YA eC}

pec: H¢——x M¢H »ﬂ—a%¢|vxeC\mﬁ

— {uec: - - w2 VISl vaec\ (o)
{meCs Ix=(u=Nul = VI=2|lllIA, ¥reC}

= {peC: Ix—xl = VI=ewllu-A, ¥reC} (4)
|x—Aw>

- DA 221, 5

ﬂl ( Vi—e |y 5)

Corollary 2.2 of [18] implies that Fi (x;®) is always non-empty (see also Proposi-
tion 2.1 of [20]), and the defining formula (5) ensures that F}f (x;¢) is a compact

e : [l :
and conver subset of C that lies in the closed disk D (O NeE=AT ) Moreover, it

is apparent that for any 0 < g1 < g9 < 1, FHEH( x;¥) C F|| ”( X;v). The Birkhoff-
James e-orthogonality set is a direct generalization of the standard numerical range.
In particular, for X = A, x = a, ¥» = 1 and € = 0, we have FI?'H (o;1) = F(a); see
(2) and (5).

Remark 2.1. Let x,% € X be nonzero, with ¥ not a scalar multiple of y, and
consider the distance from ¢ to span{x}, dist(¢, span{x}) = Ain{; Iy — Ax||. Then,

€

for any ¢ € [0, 1), it follows

0eFi(x;v) <= v1lp;x
= |v-Xxll=V1i-ey|, vrxeC
= b= > V1= ¢ll (¥ ¢ span{x})

> dist(¢,span{x}) = V1 - [¢]].

Clearly, for e = 0, 0 € FH |(x; ) if and only if dist(¢, span{x}) = [|¢[|. More-
over, if 0 ¢ FH |(x; ) (or equivalently, if dist(¢), span{x}) < [|¢]|), then by The-
orems 3.1 and 3.5 of [20] (see also Properties (Ps) and (FPg) below), there is a
unique number g9 € [0,1) such that the origin lies on the boundary JF E! H( X; )
and dist (1, span{x}) = /1 — €02 ||¢||. This number & is the smallest value of the
parameter € € [0,1) with 0 € Er (x; ¥).

We remark that in the remainder of the paper, the zero vector is always con-
sidered as a scalar multiple of .



Let x,1¢ € X with ¢ # 0. Next, for convenience, we summarize the results
of [20] (see also [6, 7] for rectangular matrices), describing basic properties of the
Birkhoff-James e-orthogonality set.

(Py) For any a,b € C and any € € [0, 1), Fi, (ax + b; ) = a i (x; ) +b.
(P,) For any nonzero b € C and any ¢ € [0,1), Ff (x;b¢) = %FH?H()(; ).

(Ps) If x is a nonzero element of X, then for any € € [0, 1),

{ul €C:peFj06y), [ul = %} C Fiiy (i)

(Py) Let || - ||o and || - || be two equivalent norms acting in X, i.e., there exist
two real numbers C,c¢ > 0 such that c||{lla < [¢llg < C|¢]lo for all
¢ € X. Then for any ¢ € [0, 1), it holds that Flﬁl‘a(x; ) C F|‘|5_/”B(x; 1), where

2(1—e2
g =41 -2 (025).

(P5) x = ay for some a € C if and only if Ff | (x;1) = {a} for every € € [0,1).

(Ps) If x is not a scalar multiple of 9, then for any 0 < &1 < g9 < 1, Flﬁ‘(x;z/))
lies in the interior of FHEZH (x; ).

(P7) If x is not a scalar multiple of v, then for any £ € (0,1), Ery (x; %) has a
non-empty interior.
(Pg) If  is not a scalar multiple of v, then for any bounded region Q@ C C, there

is an €q € [0,1) such that Q C Fﬁl‘ (x;%). (This means that if x is not a

scalar multiple of 1, then F) IT-II (x; %) can be arbitrarily large for e sufficiently
close to 1.)

(Po) Let po € Ff7 (x;4) for some € € [0,1).

() The scalar i lies on the boundary Fj (x; ) if and only if
. _ _ _ 2 _ —
it {llx =Xl = VI= ] [0 — A} = 0.
(ii) If e > 0, then po € OF (x;¢) if and only if
. _ _ _ 2 _ —
min { | = X = VI=& ] lno = Al} = 0,

or equivalently, if and only if ||x — Ao®|| = V1 — 2 ||¢|| |10 — Ao| for
some \g € C.

(Pyp) For any € € (0,1),
nt [Fi 06 w)| = {neCx Ix =2l > VI=e |yl lu— |, vaeC}.

(P11) If the norm || - || is induced by an inner product (-, -), then for any e € [0,1),

{(x:¥) )
1l HX R

iy 0gv) = D( %bH

\/éHMI) '
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Figure 1: The sets )P (x;¢) (left), F*°(x;%) (middle), and F'P (x —
31¥;2¢) (right).

1 2 4
Example 2.1. Consider the 2 x 4 complex matrices x = { 3 }

24+1 0 —-i —11i

and 1) = (1) _11 _01 (1) . The Birkhoff-James e-orthogonality sets F”O'.ﬁ—)l (x; ¥),
1 3 .
FIR'I?f(X;@ZJ) and F‘?ﬁl (x — 39;2¢)) = 3 F‘?ﬁl (x;9) — 5 are estimated by the un-

shaded regions in the left, middle and right parts of Figure 2, respectively. Each
estimation results from having drawn 1000 circles of the form 9D ()\, Hl’(\/_—_ai%),
see the defining formula (5). The compactness and the convexity of the sets are

apparent, and Properties (Py), (P2), (Ps) and (P7) are verified.
Let X'* denote the dual space of X, i.e., the complex normed linear space of all

continuous linear functionals of X (using the induced operator norm).

Definition 2.1. Let x,¢ € X with ¢) # 0. For any ¢ € [0, 1), define the sets

L) ={feX : f) = V1= o] and ||f]| <1}

and

fx)
V1= [y

Lemma 2.1. For any nonzero vector ¥ € X and any € € [0,1), the set L.(v) is
non-empty, closed and convez.

2.00) = { feLw).

Proof. Consider an element x € X which is not a scalar multiple of ¥. From
Corollary 2.1 in [20], the Birkhoff-James e-orthogonality set FHE'H (x; ¥) is not empty.
So, there exists at least one complex number p in the set Flla-ll (x;¢). In the 2-
dimensional vector subspace ) = span{x, ¢}, we define the linear functional fj €
Y* such that

folaax + 220) = zapv/1 =2 [ + 22V 1 =2 |9, 21,22 € C.



Then fo(x) = pvT— 2 [ and fo() = VI~ []. Since i € FF (), we

have that for every A € C,

V1=e?[[g|[n—Al
[V1-e2|Ylp—v1-e?|[P] Al
= [fo(x) = Afo(¥)]

| folx — MY,

Ix — Al

WV

and || fo|l < 1 (as a continuous linear functional defined in the 2-dimensional sub-
space )). Applying the Hahn-Banach extension theorem, there is an extension of
fo, say f € X*, such that

fO)=pvi=el¥ll, f(¥)=v1=e*|¢| and [f[|=]/foll <1.
Then, f € L.(¢), and the set L.(v)) is non-empty.

For the closedness of the set L.(1)), it is enough to see that the set X™*\ L.(¢))
is open. Indeed, if a linear functional f € X* does not belong to L.(v), then

f) #vVi=e|¢]| or |f]l>1.

Consequently, by the continuity of the norm, there is a neighborhood Gy C X* of
f such that for any g € Gy,

g(@) #v1=e2|y] or gl >1,
and so Gy C X*\ L ().

Finally, for the convexity, we consider two linear functionals f,g € L.(¢). It is
easy to see that for any ¢ € [0, 1],

(I=0)f +tgl(¥) = A=) f(¥) +tg(¥) = V1-e[¢]

and
[(L=)f+tgll <A =) fI+tllgll <1,

and hence, (1 —t)f +tg lies in L.(v). O

We have proved that for ¢ # 0, the set L.(¢) is non-empty. As a consequence,
the region Q.(x;%) is non-empty. Moreover, the set Q.(x;%) coincides with the
Birkhoff-James e-orthogonality set F[} | (x; ).

Theorem 2.2. Let x,v € X, with ¢ # 0. For every ¢ € [0,1), it holds that

Q) = F|T.|| ;).



fu(X) . .
Proof. Let pn € Q.(x;v). Then, p = —===—— for some linear functional f, €
) v1i=e?|y| 8
L.(v). For every A € C, we have

V122 = AT ey 00 = V-2l A
L—e?|[Ylllp—Al = e 19|l \/—IWJII
= 1ful =)
< fulllix =29
< =2yl

Thus, p € Ff(x;¢), and clearly, Q- (x;¥) € Ff, (x; ¥).
For the converse, we consider two cases:

(i) Suppose that x = ¢t for a constant ¢ € C. Then, by Property (Ps), Fi (x;¥) =
Fi (cip;1p) = {c}. Also,

00 few) efw)
Vil Vi—e el Vi-e [l

and hence, Q. (cy; ) = {c}.

=c, VfeL(),

(ii) Suppose that x,% € X are nonzero and linearly independent, and consider a

scalar u € F |‘|5_” (x;%). By the proof of Lemma 2.1, there exists a continuous linear

functional f, € L.(v) such that f,(x) = pv1—e2|[¢||. Thus, p € Q-(x;¢), and
the proof is complete.

The above alternative definition of the Birkhoff-James e-orthogonality set yields

readily the subadditivity of FHE'H (x; %) in x, which is necessary for the proofs of our
results in Sections 5 and 6.

Proposition 2.3. Let x1,x2,¢ € X, with ¢ # 0. Then, it holds that

iy +x25¢) C Fy(xasy) + Fiy(xe; ).

Proof. Tt is easy to see that
Fiia+x2sv) = Qe+ x29)

- (Tt e L)

Vi o]
fixe)
{¢—1—a2|wn il fELE(w)}
fxa) _9be)
{¢—1—s2|wn ' f6L5(¢>}+{¢—1—a2|wn o€ L)
Qe (x1;¢) + Qe (x259)
Fi (xas ) + Fif (xa; ¥)-
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Figure 2: The sets F]?_ﬁl(xl; ) (left), Fﬁﬁl (x2;%) (middle), and FHO_'ﬁll(x;l +
X2;¢) (right).

1 1 1
Example 2.2. Consider the sequences x1 = {1, JSERNCIFIEANCREREE },

1 1 1 1 1 1

X2 = {1’1—21’ (1—20)2’ (1—21)3"“}and V= {1’ 1+i (1+1)2 (1+i)3""}
of the complex normed linear space ¢'. The Birkhoff-James e-orthogonality sets
Fl?_'ﬁll (x1;%), Fl?_'ﬁll (x2;) and F‘?jﬁll (x1 + X2;%) are estimated by the unshaded re-
gions in the left, middle and right parts of Figure 2, respectively. Each estimation
results from having drawn 500 circles; see the defining formula (5). The compactness
and the convexity of the sets, Property (Pr), and the subadditivity of Proposition
2.3 are verified.

Proposition 2.4. Let x,v € X, with ¢ # 0, x not a scalar multiple of 1, and
eel0,1). Ifu e 3F”€,” (x; %), then for every continuous linear functional f,, € Lo(1)

such that p = L£G0— it holds that | £, = 1.

Proof. Let u € Bﬂm(x; ). Then, by Property (Fy),
. _ _ _ 2 _ —
it {|lx =2l = VI= 2] |u =2} =0.

For every f, € L.(¢) with p = Juld e have

V1=eZ |4’
. Ju(x) = VI =e2[[i]| A
0 = i2£{||x_)\w“_'\/1—52|w” . \/1_—62”1“‘ }
= dnf {llx = Ml = [£u (0 = Afu@)I}
= inf {[x = Al = [£ulx = A)l}
= —sup{|fulx = M) — |Ix — M|}
AeC
o =) }
- 228{ TEE A
and we conclude that || f,| = 1. O



Proposition 2.5. Let x,v € X, with ¢ # 0, x not a scalar multiple of 1, and
e €10,1). Then, it holds that

-l < g L[ Yt
max Ry g1 € Ffy 0 ¥) < fuf {7/1_—|¢|| 1.

Proof. Cousider a continuous linear functional f € L.(¢). Then, for any a > 0, we
have

)
V1—e2 ||y

'f(1/)+ax—¢)}
L V1=

[ ftax) @) }
VI=-e2yll VI-e2|y
[ fW@+ax) _1}

VI =2y

QI Q= |

Hence,

o SOOI
V1i=e* |y

and consequently,

f(x) 11 f( +ax) 1[|f(w+ax)l]
Re——2X 4 = _ “Re 20T 2\ AWTAIL]
VT2l Ta e VI Sa VI

Thus, for any a > 0,

1
a

fota) J|_1llge fWHan) _
Vi 1} a[R Nt 1]’

Re 40 1[I/ +ax)l _1} <1 [ ¥ + ax| _1]
Vi—e? |y alvli-e|y alvV1—e |y ’
and the proof is complete. O

3 Vector-valued polynomials

Consider a vector-valued polynomial
P(2) = Xmz™ + xm-12""" + - + x12 + X0, (6)

with vector coefficients x; € X (i = 0,1,...,m), xm # 0, and a scalar variable
z € C. Vector-valued polynomials appear in the approximation of vector-valued
functions [1, 29]. Moreover, special cases of vector-valued polynomials such as
square matrix polynomials [9, 10, 11, 19, 21], rectangular matrix polynomials [9, 19]
and operator polynomials [12, 17, 23, 26], appear in many applications like systems
of differential-algebraic equations, linear system theory, control theory, vibration
analysis of structural systems, and acoustics.

For any ¢ € [0,1), and any nonzero vector 1 € &' such that Fj | (xm;¢) # {0},
we can define the Birkhoff-James e-orthogonality set of P(z) with respect to 1.



Definition 3.1. Let P(z) be a vector-valued polynomial as in (6), € € [0,1),
and ¢ € X be a nonzero vector such that Fj (xm; ) # {0}. The Birkhoff-James
e-orthogonality set of P(z) with respect to 9 is defined and denoted by

Win(PE:) = {MEC:OEFIT-H(P(M);W}
= {neC: f(P(n)=0, feL(v)}
(1 EC: FOmM™ + FOtmt )™ 4+ FOx )+ Flxo) = 0, f € Le(w)}
= {MEC:M P(u)} (7)
= {uec:1PG -2l > VI=2|v] ]\, m e}

Note that for x,,n, # 0 and € € (0, 1), the condition Eyy (xm; ) # {0} is always
satisfied; see Properties (Ps) and (Pr).

Since the set Lc(¢) is non-empty and closed, it follows readily that W (P(2); %)
is also non-empty and closed. Moreover, for any 0 < e; < eg < 1, Wl‘lil”( (2);9) C

Remark 3.1. Consider a vector-valued polynomial P(z) asin (6), a nonzero vector
¥ € X with Fj | (xm; ) # {0}, and a u € C such that P(u) is not a scalar multiple
of 1. For any ¢ € [0,1),

1P(s) = Mol > V1= ]l [Al, VA€
H;Pw—w} > V=2l ¥AeC\{0)

I = AP(u)|| = V1 -2y, YAeC

inf [l - AP W= VI=e ] (& span{P(u)})
dist (¢, span{P(1)}) > V1 -2 |||,

As in the case of F|'|3_|| (x;¥), w lies in the region W|'|3_” (P(2);%) if and only if
dist(¢, span{P(u)}) = ||¢||. Moreover, if u ¢ WI?-II (P(2);%) (or equivalently, if
dist(¢0, span{P(p)}) < [|¢||), then there is a number gy € [0,1) such that u €
8WIIE-OII (P(2);v) and dist(, span{P(u)}) = v/1 — o2 ||¥||. This number ¢ can be
chosen to be the smallest value of the parameter ¢ € [0,1) with p € Wi (P(2);9).

1€ Wiy (P(2);9)

IIMHH

It is easy to verify the next three properties.

(Py2) For any scalar a € C\{0}, Wi H(aP(z); ¥) =Wi, (P(2);9), Wi, (P(az);y) =
71W|\,|\(P( z);¢) and Wi (P(z +a);y) = Wi (P(2):¢) —a

(P13) If R(2) = x02™ + x12™ 1 4+ -+ + Xm—12 + Xm = 2™P(271) is the reverse
vector-valued polynomial of P(z), then

Wi (R 9)\ {0} = {ne €+ pt e Wi (P(2)i0) \ {0}}.

10



(P14) If there exists a continuous linear functional f € L.(¢) such that f(xm) =
f(xm=1) =+ = f(x0) =0, then W|T.|| (P(2);9) =C.

For the remainder of the paper, it is necessary to introduce the following radii.

Definition 3.2. Let y,¢ € X, with ¢ nonzero. For any e € [0,1), the Birkhoff-
James e-orthogonality inner radius of x with respect to 1 is defined as

7/:6”.||(X§1/)) = min{|z| = FHE'H(X”/})},

and the Birkhoff-James e-orthogonality outer radius of x with respect to v is defined
as

iy ) = max |2 = € B (vi0) (s %ﬂnw) .
Theorem 3.1. (For rectangular matrix polynomials, see Theorem 12 in [7], and
for the standard numerical range of square matrix polynomials, see Theorem 2.3
in [24].) Let P(z) be a vector-valued polynomial as in (6), ¢ € [0,1), and ¥ € X
be a nonzero vector such that Fy | (xm;¥) # {0}. Then, the set WHEV”(P(Z)H/}) is
bounded if and only if 0 & FlT'H(Xm;U))'

Proof. Let 0 & FIT-II (Xm;®), or equivalently, 7/"\5”,” (Xm;®) > 0. We will obtain
that W, (P(2);%) is bounded; in particular, we will prove that Wi (P(z);¢) €
D (0, M), where

max i) (i3 ¥)

0y
?ﬁ'l\ (Xm? 1/’)

M=1+ (8)

Since M > 1, we consider a scalar 1 € Wi, (P(2);¢) with || > 1. Then, there
exists a continuous linear functional f € L.(4) such that

FO)E™ + f(Xm—1)u™ ™ 4+ )+ f(xo) =0
As a consequence,

m—1 X m
Eo Foan ;0 |F O] b

POl S 17 Gom
(xj39) ™ =1

™ =

max rﬁ,H
0<j<m—1

= If(an)‘ |/L| —1
Vi=e? ||y
£ L.
ogﬁ%aﬁf_l TH.”(XJM/J) ™ =1
7/"\8“.” (Xm;¥) lul =1 '
Thus,
e . e .
W—1< Og?g%(_l T (XJJ/’) ™ =1 ogﬁ%%_lrll-ll (vaw)
M| — 9
ST R ) W S 7 G ¥)
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and hence, |u| < M.

For the converse, we assume that Wi, (P(z);¢) is bounded and 0 € F}f | (Xm; ).
Then there is a continuous linear functional f € L.(¢) such that f(xm) = 0.
Since Wi, (P(2);9) # C, Property (Pi4) implies that f(x;s) # 0 for some s €
{0,1,2,...,m — 1}. Moreover, since F”?”(Xm;w) # {0}, there exists a sequence
of continuous linear functionals {f1, f2,...} C Lc(¢) such that f;(xm) # 0, j =

1,2,...,and fj(xm) — 0 as j — +oo. We consider now the scalar polynomials
Fi(P(2)) = [i(xm)2™ + fi(xm-1)2"" + -+ fi00)2 + fi(xo), J=1,2,...
fj(Xs)

It is clear that

7 — 00 as j — —+oo; this is a contradiction because we
i\Xm
have assumed that WHE.H(P(Z)”/)) is bounded, and hence, all the roots and the

elementary symmetric functions of the scalar polynomials f;(P(z)), j = 1,2,...,
are bounded. |

Theorem 3.2. (For the standard numerical range of square matrix polynomials,
see Theorem 3.1 in [27].) Consider a nonzero vector ¢ € X, an € € [0,1), and the
vector-valued polynomial P(z) = V2™ + Xm-12"" 4+ x12+ X0 (i-€-, Xm = V).
Then, for every p € Wi, (P(z);4), it holds

i (xos ¥)
[l- A9 B
< lpl €1 ),
7 (xo;¥) + max 75 (x;;) < b < +0<IJI£%§71TH'H(XJ7¢)
Il 1< 6m I

Proof. Since Fyi (¢;¢) = {1} does not contain the origin, the set W (P(2);¢) is
bounded.

Let p € Wy (P(z);%). By definition, there exists a continuous linear functional

f € Le(y) such that f()u™ + f(Xm-1)u™ " + -+ f(x1)u + f(x0) = 0. Since
the lower bound of the theorem is less than or equal to 1, for the first inequality,
we may assume that || < 1. Then, we have that

fxo) = = (fOu™ + fF(Xm-0)u™ "+ + fFlx1)n)

or
|F(x0)| = |F )™ + F(Xm—1)™F + -+ F(xa)ul.
Hence,
. LF )™ + fOm—D)p™ 4 -+ Fxa)ul
7"||.||(X0ﬂ/)) < m”wn
< LFO )™ 4 1 Oem=0) | ™ 4 -+ [ f ) ]

VI—22 ||y
] .
T ] 1958m i (G Y,

which yields the first inequality.

The upper bound of the theorem coincides with the upper bound M in (8), and
the proof is complete. O
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Suppose that the norm || - || is induced by an inner product (-,-). Then by
Property (P11) (see also Proposition 5.1 in [20]), the Birkhoff-James e-orthogonality
set of x with respect to ¥ # 0 is a closed disk, namely,

- (r ) X H : )
Fe () = X = '
Fi6v) = (W A T TER By

Let P(z) be a vector-valued polynomial as in (6), € € [0,1), and ¢ € X be a nonzero
vector such that Fif (Xm; ) # {0}. Then, by (7), we have

Wi (P(z);y) = {peC:¢ Ly, P(u)}
= {peC:y L7 P}
{neC: [(Pu), )| <cellyl [P}
{peC: [(P(w),d))* <9IPIP(w]*}
= {peC: (P(p), ), P(n) < 20[I*(P(n), P(1))}

= QueC: O X' o)W, > xai?) <EBIIPO - xan', > xin)
i=0 j=0 i=0 j=0

m
= queC: Z Xio V)@ ) T — 2912 (W' <0
1,j=0 i,j7=0

10 10
8 8r
6 61

0.27

Imaginary Axis
o
Imaginary Axis

N o

)
-10 5 0 5 10 :
Real Axis Real Axis

Figure 3: Birkhoff-James e-orthogonality sets of P(z) (left part) and R(z)
(right part).

Example 3.1. Consider the four-dimensional quadratic vector-valued polynomial

1 i 2
0 1 —3
P@= s |# ] o5 |*1| o1 |
1 0 —1
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its reverse vector-valued polynomial

2 i 1
-3 -1 0
R _ 2
(2) 01 " T los | " | o0s |
_j 0 i

]T For the euclidean norm (which is

and the vector ¥ = [ 0.6 0 0.9 0.2
induced by the standard inner product), we have drawn the boundaries of the e-
orthogonality sets W|T~|\2(P(Z);w)’ e = 0.3,0.5,0.7,0.73, and W|‘|5_”2(R(z);w), €=
0.2,0.25,0.26,0.265,0.27, in the left and the right part of Figure 3, respectively. As
expecting by Theorem 3.1, the origin lies in WIT'HZ(P(Z);l/}) (or equivalently, the
origin lies in F}7, (xo;%)) if and only if W, (R(2);¢) is unbounded.

4 Connected components

In this section, we study the connected components of the Birkhoff-James e-orthogonality
set Wi, (P(z);1), when this set is bounded. The following lemma is necessary for
our analysis.

Lemma 4.1. Let P(z) be a vector-valued polynomial as in (6), and let L be a
non-empty, closed and convex subset of X* such that f(xm) # 0 for all f € L.
Then, the roots of the scalar polynomial f(P(2)) = f(xm)z™ + f(Xm-1)2™"1 +
-+ f(x1)z + f(xo0) are continuous with respect to f € L.

Proof. Tt is well known that the roots of a scalar polynomial are continuous func-
tions of the coeflicients of the polynomial, as long as the leading coefficient is
nonzero; see Appendix D in [14]. The vector coefficients xo, x1,...,Xm € X of
the vector-valued polynomial P(2) = X 2™ + Xm—12""1+ -+ x12 + X0 are con-
stant, and hence, the coefficients f(xo), f(x1),---,f(xm) of the scalar polynomial
f(P(z)) depend only on f € L. If {f1, fa,...} C L is a sequence of continuous
linear functionals that converges to f € L (i.e., || fx — f|| = 0, as k — 400), then
for any j =0,1,...,m, it holds

1£O) = FeO)IE < ICF = F) Ol < I = fell sl k=12,
and the proof is complete. O

Theorem 4.2. (For the standard numerical range of square matrix polynomials,
see Theorem 2.2 in [24].) Let P(z) be a vector-valued polynomial as in (6), € €
[0,1), and ¢ € X be a nonzero vector such that 0 ¢ I3 (Xm; ) (or equivalently,
Wi, (P(2); %) is bounded). Suppose that Wi, (P(2); %) hasr connected components.
If k is the minimum number of distinct zeros of the scalar polynomial f(P(z)) =
F(om)2™ 4 F Ot 1)2™ -+ F(x1)5+ [ (xo) over all | € L.(p), thenr < 5 < m.
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Proof. Consider a continuous linear functional f; € L.(¢) such that the scalar
polynomial fi(P(2)) = fi(xm)z™ + f(Xm-1)2""" + -+ fi(x1)z + fi(xo) has
exactly # (< m) distinct roots. Let also fo € Le(¢). Since 0 ¢ Ff\ (Xm; 1), both
scalars f1(xm) and fa(xm) are nonzero. Moreover, by the convexity of the set
L.(¢) and the region FHE.H(Xm;?/)) (keeping in mind that 0 ¢ F]\E.H(Xmﬂ/)))a every
continuous linear functional

g=0—=t)fi+tfs € L.(¥), te€]0,1],

satisfies the condition g;(x.,) # 0. Thus, by Lemma 4.1, the roots of the scalar
polynomial

9:(P(2)) = g:(xm)z™ + gt (Xm—1)2""" + -+ g:(x1)2 + ge(x0), t € [0,1]

are continuous functions of ¢. Hence, the & roots of the scalar polynomial f;(P(z))
are connected with continuous curves in W, (P(2); 1) with the roots of f2(P(z)).
Consequently, the number of the connected components of W”?”(P(z);dJ) is less
than or equal to k. [l

Suppose that for every continuous linear functional f € L.(¢), the scalar poly-
nomial f(P(z)) has m simple roots (this means that f(x.,) is always nonzero and
W”?” (P(z);1) is bounded). Then, these m simple roots define m continuous maps

pi: Le(¥)—>C, i=1,2,...,m. 9)

Definition 4.1. Let x,¢ € X, with ¢ # 0, and consider a complex number
we Fi, (x;%). We define the set

Sp(i) = {f € Lo(w): p= %)wn} C L.(¥).

Moreover, for the vector-valued polynomial P(z), we define the set

Spezyp() ={f € Le(¥) = f(P()) = 0} = Sp(u),4(0).

Lemma 4.3. Let x,v¥ € X, with ¢ # 0, and consider a complex number u €
Er (x;%). Then, the set Sy (1) is convez.

Proof. Consider two continuous linear functionals f1, fo € Sy (1) and a t € [0, 1].
h) = fa(X)
Vi=e?ly VI=e?||y

(tfr + (1 1) fa](x)

=K,
VI=e?|y
and tf1 + (1 —t) f2 also lies in Sy 4 (1). O

Then we have that As a consequence,
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Theorem 4.4. (For operator polynomials, see Theorem 1 in [25].) Let P(z) be
a vector-valued polynomial as in (6), € € [0,1), and p € X be a nonzero vector
such that 0 & Fi | (Xm3¥) (or equivalently, Wi, (P(2); ) is bounded). Suppose that
for every f € L.(v), the scalar polynomial f(P(2)) = f(xXm)2™ + f(xm-1)2""1 +
<4 f(x1)z + f(xo0) has exactly m simple roots. Then, Wi (P(2);%) has exactly
m connected components.

Proof. We consider the images of the root functions pi, pa, ..., pm in (9),
These sets are connected and satisfy

Wi (P(2);¢) = U Wi.
1<i<m

We need to prove that W; N W; = () for all ¢ # j.

Without loss of generality, assume that Wi MW, # (. Then there exists a yp € C
such that

p1(f1) = p = p2(f2) for some functionals f1, fo € Lo(¢).

Then both fi; and f; lie in Sp.) . (@). Moreover, it holds

Speyw) = |J {feLe@): n=p(f)},

1<i<m

i.e., Sp(z),y(p) is the union of

Si={feLe@): p=p(H} and So= |J {FeLc®): u=p(f)}.

2<i<m

Obviously, fi € S; and fo € S, and the sets S; and Sy are not empty. The sets
S and S are closed as pre-images of continuous maps. Since the set Sp.y, (1) is
convex, it is also connected, and hence, S1 NSy # (). Thus, there exists a functional
f such that p1(f) = z = p;(f) for some i > 2; this is a contradiction because we
have assumed that the roots are simple. [l

5 Boundary

Since the Birkhoff-James e-orthogonality set Wi, (P(z);¢) is closed, its boundary is
of special interest. In the following two theorems, we describe the strong connection

between a boundary point zy of WHE'H (P(z);1) and the origin as a boundary point
of the region Fyi (P(20); %)

Theorem 5.1. (For rectangular matrix polynomials, see Theorem 19 (i) in [7], and
for the standard numerical range of square matrix polynomials, see Theorem 1.1
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in [27].) Let P(z) be a vector-valued polynomial as in (6), ¢ € [0,1), and ¥ € X
be a nonzero vector such that Fj,(xm;¥) # {0}. If 20 € OW[,(P(2);4), then
0€ dFy, (P(20);%).

Proof. Since zo € OW[, (P(2);¢) € W (P(2);%), there is a continuous linear
functional fo € Lc() such that fo(P(20)) = 0. So, 0 € F, (P(20);¢), and it is
sufficient to prove that the origin does not belong to the interior of Fyf, (P (20); %)

Let {#z1,22,...} C C\ WH?H(P(Z); 1) be a sequence of complex numbers con-
verging to zg, and assume that 0 lies in the interior of FIT-II (P(z0);¢). Then,
there is a real number § > 0 such that D(0,0) € Fj,(P(20);¢). Moreover,
f5.1(P(20))
VI=eZ|y|’

contains the origin in its interior and lies in the disk

there exist f5.1, fs.2, fs.3 € L:(¢) such that the triangle with vertices

fs2(P(20)) o fo3(P(20))

a
V1—e2 |y VI=e2|y]
D(0,6/2). Continuity yields

notoo V1— €2 o] VI—e2 |y’ Y

and as a consequence, there is a positive integer ng such that 0 € FH?H (P(zp); ) for
every n > ng. Hence, for every positive integer n = no, zn € W (P(2);%); this is
a contradiction. O

For the remainder, we need to consider the vector-valued polynomial
P'(z) = mxmz™ " 4 (m = 1)xm-12""7 4 + 2022 + x1.

Theorem 5.2. (For rectangular matrix polynomials, see Theorem 19 (ii) in [7],
and for the standard numerical range of square matrix polynomials, see Theorem
2 in [22].) Let P(z) be a vector-valued polynomial as in (6), € € [0,1), and ¢ € X
be a nonzero vector such that Fj (xm;v) # {0}. Let also zo € W, (P(2);¢) such
that B, (P(20);0) # {0} and 0 ¢ F (P'(z0)50). I 0 € OFF, (P(0); ), then
Z0 € 8WH€.H(P(Z)§1/))-

Proof. Let 0 € aFHE'H(P(ZO); 1), and assume that 2o is an interior point of the set
Wi (P(2);4). Then, there exists a 6 > 0 such that D(zo,0) € Wi, (P(2);¢).
Hence, for any z € D(z,0)\{z0}, there is a f, € L.(¢) such that f,(P(z)) = 0.
Moreover,

0 = f.(P(2) = f2(P(z— 20 + 20))
= f(P(20) + (2 — 20) P'(20) + (2 — 20) R(2, 20))
= [f(P(20)) + (2 — 20) f2(P'(20) + R(2, 20)),

where R(z, z9) is a vector-valued polynomial in zg and z, such that || R(z, zo)|| — 0 as
|2 — 20| = 0. Since 0 ¢ Fyf, (P'(20); ¢), by the subadditivity of Proposition 2.3, the
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positive number § can be chosen small enough such that for every z € D(zg, 6)\{z0},

0¢ F|T.|| (P'(20) + R(z, 20); %) <g FlT'II (P'(20);4) + D <07 %) >

and
(P
2T T i) + Rz ) (10)

By the convexity of Fjf, (P'(z0) + R(z, 20);%), there exist angles 01,605,603 such
that 0 < 65 — 01 < 03 < 7 and

FJ(P'(20) + R(2,20);%) C {w € C: 01 < arg(w) < 02}, V2 € D(20,0)\{20}.

Also, Fyj (P(z0);¢) # {0} and 0 € OF} (P(20); ¥). Therefore, by the convexity of
FIT-II (P(z0);%), there exist angles ¢1, ¢2 such that 0 < ¢3 — ¢1 < 7 and

Fj(P(20);¢) C{w € C: ¢ <arg(w) < ¢2}.

Consequently, the angular of the right hand-side of (10) cannot take all the values
in [0,27). This is a contradiction, since the left hand-side is not constrained. O

Next, we consider the isolated points of the Birkhoff-James e-orthogonality set
Wﬁ.H(P(Z)H/J)-

Proposition 5.3. (For the standard numerical range of square matrix polynomi-
als, see Theorem 2.1 in [27].) Let P(z) be a vector-valued polynomial as in (6),
e €10,1), and ¥ € X be a nonzero vector such that 0 ¢ F‘HE.H(Xm;?/}) (or equiva-
lently, WHE'H(P(Z);w) is bounded). If zo is an isolated point of Wi (P(2);%), then
Ef (P(20);9) = {0}. If, in addition, € > 0, then P(z) = 0.

Proof. Suppose that the singleton {zo} is a connected component of Wi (P(2); ).
Then, there is a continuous linear functional fy € L.(¢) such that

fo(P(20)) = folxm) 25" + fo(xm—1)2g" " + -+ + fo(x1)z0 + fo(x0) = 0.

Since 0 ¢ Fyi(Xm; 1), the convexity of L(¢) and the continuity of the roots of
the scalar polynomial f(P(z)) with respect to f € L.() imply that the roots of
the scalar polynomial fo(P(z)) are connected to the roots of any scalar polynomial
f(P(z)), with f € Lc(4), by continuous curves in Wi, (P(z);¢) (see also the
proof of Theorem 4.2). As a consequence, for any f € L.(¢), 2o is a root of the
scalar polynomial f(P(z)). Thus, f(P(z0)) = 0 for every f € L.(¢), and hence,
Eyy (P(20);%) = {0}. Furthermore, if € > 0, then Properties (Ps) and (Pr) yield
P(zy) = 0. O
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6 Local dimension

Let Q be a closed subset of C. A recursive definition of the topological dimension
of , denoted by dim {Q}, is the following [13, 16]: If Q is an empty set, then
dim {Q} = —1. If Q is a non-empty set, then dim {Q} is the least integer number
k € {0,1,2} for which every point of Q has arbitrarily small neighborhoods in 2
whose boundaries are of topological dimension less than k. Clearly, if €2 is countable,
then dim {Q} = 0, and if Q is a (non-degenerate) curve, then dim {Q} = 1.

Consider a point zg € 2. The local dimension of zy in € is defined as the limit
hlir101+ dim {Q N D(zp,h)}, h € (0,400). In particular, the local dimension of 2y in
—

Q is equal to

0 if and only if zg is an isolated point of €2,

if and only if 2 is a non-isolated point of € which does not lie in the closure
of the interior of 2,

2 if and only if 2 lies in the closure of the interior of €2.

As in the case of the boundary, the local dimension of a point zg in WHE'H (P(z);v)
is strongly connected to the local dimension of the origin in the set FJ}, (P(z0); ).

Theorem 6.1. (For the standard numerical range of square matrix polynomials, see
Theorem 1 in [28].) Let P(z) be a vector-valued polynomial as in (6), € € [0,1), and
¥ € X be a nonzero vector such that Ff | (xm; ) # {0}. Let also zo € Wi (P(2);¢)
with local dimension in W, (P(2);v) equal to 1, such that Ff (P(z0);v) # {0},
the origin is a differentiable point ofaF”,”( (20);9) and 0 ¢ H'H( "(20);%). Then,
the local dimension of 0 in F]‘E.”(P(ZO)H/)) is 1.

Proof. Since the local dimension of zg in WIT-II (P(z);1) is equal to 1, it follows that
20 € 8WH€'H (P(z);1), 2o is not an isolated point of W”?” (P(z);1), and there is a real
number 7 > 0 such that Wi, (P(2);¢) N D(z,7) € OW[ (P(2);¢). For the sake
of contradiction, assume that the local dimension of the origin in F}f | (P(20); %) is
equal to 2 (i.e., the convex set F (P(20);¢) has a non-empty interior).

By Theorem 5.1, for every z € D(z,7), it holds that 0 € 9F (P(2); ).
Moreover, the origin is a differentiable point of OFf i (P(z0);%), and hence, there
is a unique tangent line of OF (P(20);¢) at the origin, which defines a closed
half-plane #; and an open half-plane Hy = C\Hy, such that F}7 (P(20);%) C Ha.

For every p € [0,7] and @ € [0,27], zo + pe'? is either a boundary point or an
exterior point of the set W, (P(2);¢). As a consequence, for every p € [0, 7] and
6 € [0, 27], the origin is either a boundary point or an exterior point of the convex
set Fy; H( (20 + pei?); ). Moreover, it holds

P(z0 + pe¥) = P(z0) + pe'® P'(20) + pe' R(zo, pel?),
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where R(zg, pe'?) is a vector-valued polynomial in zg and pe'?, such that || R(zo, pe'?)|| —
0 as p — 0. Since 0 ¢ FH?H (P'(20); %), subadditivity implies that for small enough
r, there exists a convex cone

K(z0,7) ={2€C: 6 <arg(z) < b2, 0< by —0; <05 <7},
such that for every p € [0,7] and 6 € [0, 27],
iy (P'(20) + R(20, pe');9) € K(z0,7) \ {0}.

For suitable 6 € [0, 2],
SOFF ) (P (20) + R(z0,pe):18) € €“K(z0,1)\ {0} C Ho.
Then, for every linear functional f € L.(¢),

f(PGo+pe®)) _ f(P(z0)  pef(P(z0) + R0, pe"))
vi-egl vi-e |y Vi=e?ly] ’

where
\/ch(—%zoﬁz)m € Fi(P(20):%) CHa
and

pel® f(P'(20) + R(z0, pei?))
V1I=e2[[y

Consequently, as p takes values from 0 to 7, a part of FIT-II (P(z0 + pe'?); 1), in a
neighborhood of the origin, is moving continuously into the half-plane H,. Thus,
there is an r¢ € (0,7] such that the origin lies in the interior of Fy  (P(z0) +
ree? [P’ (20)+ R(z0, pel?)];v) = Eiy (P(z0+7ge'?);4); this contradicts the definition
of r. O

€ e%(z0,7) \ {0} C Ho.

If zo € W (P(2);9) such that Fj (P(20);¢) # {0}, then P(z) is not a scalar
multiple of . Hence, if € > 0, then the convexity of F|\€~|\(P(ZO); 1) and Property
(P7) imply that the local dimension of 0 in Fjj, (P(20);%) is equal to 2. As a
consequence, we have the following corollary.

Corollary 6.2. Let P(z) be a vector-valued polynomial as in (6), € € (0,1), and
¥ € X be a nonzero vector such that Ff (xm;1) # {0}. Let also zo be a non-
isolated boundary point of W (P(2);4) such that Ff (P(z0);%) # {0}, the origin
is a differentiable point of 85\54\(13(20)”/’) and 0 ¢ Ei, (P'(20);4). Then the local
dimension of zo in W, (P(2);%) is equal to 2.

The case € = 0 is considered in the next result.

Theorem 6.3. (For the standard numerical range of square matrix polynomials,
see Theorem 2 in [28].) Let P(z) be a vector-valued polynomial as in (6) and p € X
be a nonzero vector such that Fl?'ll (xm; ) # {0}. Let also zy be an interior point
of Wﬁ” (P(2); %) or a differentiable point of 8W|?” (P(2);%) with local dimension in
Wl?,H(P(z);z/J) equal to 2, such that F|'|3_|| (P(20); %) # {0} and 0 ¢ FI?H(P/(ZO);w)'
Then, the local dimension of the origin in F|'|3_|| (P(20); %) is equal to 2.
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Proof. 1f zp is an interior point of WI?-II (P(z);), then by Theorem 5.2, the origin
is also an interior point of F|'|3_|| (P(z0);%). In this case, the local dimension of zg in
WI?'H (P(2); ) and the local dimension of 0 in F|'|3_|| (P(29); %) are both equal to 2.

Let zp € BWI‘IJ-II (P(2);¥). Since 2 is a differentiable point of IW, (P(2);¢)
and has local dimension 2 in WI?-II (P(2);%), there exists a ¢y € [0,27] such that
for every ¢ € (¢o,¢o + ), there is an arbitrarily small rg > 0 with zg + 74€'?
lying in the interior of WI(\)'H(P(Z);U))' For the sake of contradiction, we assume
that the origin has local dimension 1 in F|'|3_|| (P(20);%). Then, by the convexity of

the set F|'|3_|| (P(20);%) # {0}, it follows that F|'|3_|| (P(20); %) is a (non-degenerate)

line segment passing through the origin.

The straight line which is defined by the line segment F]?.”(P(Zo);i/f) defines
two closed half-planes H; and Hs. As in the proof of Theorem 6.1,

P(zo +1e?) = P(20) +1e'®P'(20) + re'* R(20, 7€'?),

where ||R(zp,7€!?)|| — 0 as r — 0. Since 0 ¢ F|'|3_|| (P'(20); %), for small enough r,
there exists a convex cone

K(z0,7) ={2€C: 6 <arg(z) < b2, 0< by —0; <05 <7},

such that

Fl(\J'H (P'(20) + R(z0,7€'?);0) C K(z0,7) \ {0}.
Also, there is a 6 € (¢o, ¢o + 7) such that the set ¢ F} (P'(z0) + R(20,7¢');1))
lies in the interior of Hq or Hs. Since

F (P20 +19e');9) C F (P(20);9) + o€’ FY (P'(20) + R(20,7€'?); ),

Fﬁ)_” (P(z0 + 19€?);9) lies in the interior of H; or Ha. As a consequence, 0 ¢
Fp, (P(z0+7g€e'%);%); this is a contradiction because zg+7ge!? € WP (P(2);9). O

Finally, we obtain that bounded Birkhoff-James e-orthogonality sets of linear
vector-valued polynomials are simply connected.

Theorem 6.4. (For the standard numerical range of square matrix polynomials, see
Theorem 4 in [28].) Let x12+ X0 be a linear vector-valued polynomial, € € [0,1), and
¥ € X be a nonzero vector such that Ff (x1; %) # {0}. If the set Wi, (x124+ x0; %)
is bounded, then it is simply connected.

Proof. Suppose WHE,” (x12+ x0; %) is not simply connected. Then there is a complex
number wo ¢ W (X124 Xo0; ¥) such that for every ¢ € [0, 2], there exists an ry > 0
such that wq + ryel? € Wi (x12+ Xx0; ¥). By Property (P12), for any scalar a € C,
it holds that W, (x1(z +a) + x0; %) = WHE,”(Xlz + X0;%) — a. Thus, without loss
of generality, we may assume that wy = 0.
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By the boundedness of WHE'H (x1z + x0;%) and the assumption that the origin
does not lie in Wﬁ'H(XlZ + X0;v), both convex sets FIIE-II (x1;%) and FIIE-II (x0;%) do
not contain the origin. As a consequence, there exist two convex cones

IClz{ZG(C:91§arg(z)§§1,O<§1—91<§1<ﬂ'}
and N N
Ing{ze(Czb‘ggarg(z)gé‘g,0<6‘2—92<§2<7r},

such that F‘HEvH(Xl;i/)) lies in the interior of i and FIT-II (x0;%) lies in the in-

terior of Ko. Hence, there exists a ¢p € [0,27] such that the convex regions
Fiy (reo€ox151) = r%ei%Flf”(xl;z/J) and Fj | (x0; %) lie in the interior of the
convex cone

ICO:{ze(C: Gogarg(z)gao, O<§0—90<§0<ﬂ'},
where max{&1, &>} < &. Therefore, by the subadditivity of Proposition 2.3, the set
F|T.|| (X1T¢Oei¢° + X0;%) C T¢0€i¢0F|T.|| (x1;9) + F|T.|| (x05%)

lies in the interior of Ky, and it does not contain the origin; this is a contra-
diction. |
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