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Abstract

Consider a complex normed linear space (X , ‖ ·‖), and let χ, ψ ∈ X
with ψ 6= 0. Motivated by recent works on rectangular matrices and

on normed linear spaces, we study the Birkhoff-James ε-orthogonality

set of χ with respect to ψ, give an alternative definition for this set,

and explore its rich structure. We also introduce the Birkhoff-James

ε-orthogonality set of polynomials in one complex variable whose coef-

ficients are members of X , and survey and record extensions of results

on matrix polynomials to these vector-valued polynomials.

Key words : norm, vector-valued polynomial, Birkhoff-James orthogonality, Birkhoff-
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1 Introduction

Let (A, ‖ · ‖) (for simplicity, A) be a unital normed algebra over C, and let A∗ be

the dual space of A, i.e., the Banach space of all continuous linear functionals of A
(using the induced operator norm). The numerical range (also known as the field

of values) of an element α ∈ A is defined as

F (α) = {f(α) : f ∈ A∗, f(1) = 1, ‖f‖ = 1} . (1)
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This set has been studied extensively, and is useful in understanding matrices and

operators; see [3, 4, 15, 30] and the references therein. Stampfli and Williams [30,

Theorem 4], and later Bonsall and Duncan [4, Lemma 6.22.1], observed that the

numerical range F (α) can be written in the form

F (α) = {µ ∈ C : ‖α− λ1‖ ≥ |µ− λ|, ∀λ ∈ C} .

This means that F (α) is an infinite intersection of closed (circular) disks

D (λ, ‖α− λ1‖) = {µ ∈ C : |µ− λ| ≤ ‖α− λ1‖} , λ ∈ C,

namely,

F (α) =
⋂

λ∈C

{µ ∈ C : |µ− λ| ≤ ‖α− λ1‖} =
⋂

λ∈C

D (λ, ‖α− λ1‖) . (2)

For two elements χ and ψ of a complex normed linear space (X , ‖·‖), χ is said to

be Birkhoff-James orthogonal to ψ, denoted by χ ⊥BJ ψ, if ‖χ+ λψ‖ ≥ ‖χ‖ for all

λ ∈ C [2, 18]. This orthogonality is homogeneous, but it is neither symmetric nor

additive [18]. Moreover, for any ε ∈ [0, 1), χ is called Birkhoff-James ε-orthogonal

to ψ, denoted by χ ⊥εBJ ψ, if ‖χ + λψ‖ ≥
√
1− ε2 ‖χ‖ for all λ ∈ C [5, 8]. It

is worth mentioning that this relation is also homogeneous. In an inner product

space (X , 〈·, ·〉), with the standard orthogonality relation ⊥ , a χ ∈ X is called ε-

orthogonal to a ψ ∈ X , denoted by χ ⊥ε ψ, if |〈χ, ψ〉| ≤ ε ‖χ‖ ‖ψ‖. Furthermore,

for any ε ∈ [0, 1), χ ⊥ε ψ if and only if χ ⊥εBJ ψ [5, 8].

Inspired by (2) and the above definition of Birkhoff-James ε-orthogonality, Cho-

rianopoulos and Psarrakos [7] (for rectangular matrices), and Karamanlis and Psar-

rakos [20] (for elements of a normed linear space) introduced and studied the fol-

lowing set: For any χ, ψ ∈ X , with ψ 6= 0, and any ε ∈ [0, 1), the Birkhoff-James

ε-orthogonality set of χ with respect to ψ is defined and denoted by

F ε‖·‖(χ;ψ) = {µ ∈ C : ψ ⊥εBJ (χ− µψ)} .

The Birkhoff-James ε-orthogonality set is a direct generalization of the numerical

range, and appears to have a rich structure and interesting geometrical properties [7,

20]. In this paper, motivated by (1), we introduce a new (equivalent) definition for

the Birkhoff-James ε-orthogonality set, using continuous linear functionals. Based

on this definition, in the next section, we obtain some basic properties of the set

F ε‖·‖(χ;ψ) such as subadditivity in χ. In Section 3, we introduce the Birkhoff-

James ε-orthogonality set of vector-valued polynomials in one complex variable,

and investigate its localization in the complex plane. In Sections 4, 5 and 6, we

study the connected components of the Birkhoff-James ε-orthogonality set of vector-

valued polynomials, the boundary of this set, and the local dimension of its points,

respectively. The proof techniques are analogous to existing proofs [22, 24, 25, 27,

28], albeit modified and adapted to the new setting. The main contribution of

this effort is a concise generalization to a new concept. Furthermore, the results

indicate that the information on Birkhoff-James ε-orthogonality set is useful in

understanding vector-valued polynomials.
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2 Definition and basic properties

Consider a complex normed linear space (X , ‖ ·‖) (for simplicity, X ), and let χ, ψ ∈
X with ψ 6= 0. For any ε ∈ [0, 1), it is straightforward to see that

F ε‖·‖(χ;ψ) = {µ ∈ C : ψ ⊥εBJ (χ− µψ)} (3)

=
{
µ ∈ C : ‖ψ − λ(χ− µψ)‖ ≥

√
1− ε2 ‖ψ‖, ∀λ ∈ C

}

=

{
µ ∈ C :

∥∥∥∥ψ − 1

λ
(χ− µψ)

∥∥∥∥ ≥
√
1− ε2 ‖ψ‖, ∀λ ∈ C \ {0}

}

=

{
µ ∈ C :

1

|λ| ‖λψ − (χ− µψ)‖ ≥
√
1− ε2 ‖ψ‖, ∀λ ∈ C \ {0}

}

=
{
µ ∈ C : ‖χ− (µ− λ)ψ‖ ≥

√
1− ε2 ‖ψ‖ |λ|, ∀λ ∈ C

}

=
{
µ ∈ C : ‖χ− λψ‖ ≥

√
1− ε2 ‖ψ‖ |µ− λ|, ∀λ ∈ C

}
(4)

=
⋂

λ∈C

D
(
λ,

‖χ− λψ‖√
1− ε2 ‖ψ‖

)
. (5)

Corollary 2.2 of [18] implies that F ε‖·‖(χ;ψ) is always non-empty (see also Proposi-

tion 2.1 of [20]), and the defining formula (5) ensures that F ε‖·‖(χ;ψ) is a compact

and convex subset of C that lies in the closed disk D
(
0, ‖χ‖√

1−ε2 ‖ψ‖

)
. Moreover, it

is apparent that for any 0 ≤ ε1 < ε2 < 1, F ε1‖·‖(χ;ψ) ⊆ F ε2‖·‖(χ;ψ). The Birkhoff-

James ε-orthogonality set is a direct generalization of the standard numerical range.

In particular, for X = A, χ = α, ψ = 1 and ε = 0, we have F 0
‖·‖(α;1) = F (α); see

(2) and (5).

Remark 2.1. Let χ, ψ ∈ X be nonzero, with ψ not a scalar multiple of χ, and

consider the distance from ψ to span{χ}, dist(ψ, span{χ}) = inf
λ∈C

‖ψ − λχ‖. Then,
for any ε ∈ [0, 1), it follows

0 ∈ F ε‖·‖(χ;ψ) ⇐⇒ ψ ⊥εBJ χ
⇐⇒ ‖ψ − λχ‖ >

√
1− ε2 ‖ψ‖, ∀λ ∈ C

⇐⇒ inf
λ∈C

‖ψ − λχ‖ >

√
1− ε2 ‖ψ‖ (ψ 6∈ span{χ})

⇐⇒ dist(ψ, span{χ}) >
√
1− ε2 ‖ψ‖.

Clearly, for ε = 0, 0 ∈ F 0
‖·‖(χ;ψ) if and only if dist(ψ, span{χ}) = ‖ψ‖. More-

over, if 0 /∈ F 0
‖·‖(χ;ψ) (or equivalently, if dist(ψ, span{χ}) < ‖ψ‖), then by The-

orems 3.1 and 3.5 of [20] (see also Properties (P6) and (P8) below), there is a

unique number ε0 ∈ [0, 1) such that the origin lies on the boundary ∂F ε0‖·‖(χ;ψ)

and dist(ψ, span{χ}) =
√
1− ε02 ‖ψ‖. This number ε0 is the smallest value of the

parameter ε ∈ [0, 1) with 0 ∈ F ε‖·‖(χ;ψ).

We remark that in the remainder of the paper, the zero vector is always con-

sidered as a scalar multiple of ψ.

3



Let χ, ψ ∈ X with ψ 6= 0. Next, for convenience, we summarize the results

of [20] (see also [6, 7] for rectangular matrices), describing basic properties of the

Birkhoff-James ε-orthogonality set.

(P1) For any a, b ∈ C and any ε ∈ [0, 1), F ε‖·‖(aχ+ bψ;ψ) = aF ε‖·‖(χ;ψ) + b.

(P2) For any nonzero b ∈ C and any ε ∈ [0, 1), F ε‖·‖(χ; bψ) =
1
b
F ε‖·‖(χ;ψ).

(P3) If χ is a nonzero element of X , then for any ε ∈ [0, 1),
{
µ−1 ∈ C : µ ∈ F ε‖·‖(χ;ψ), |µ| ≥

‖χ‖
‖ψ‖

}
⊆ F ε‖·‖(ψ;χ).

(P4) Let ‖ · ‖α and ‖ · ‖β be two equivalent norms acting in X , i.e., there exist

two real numbers C, c > 0 such that c ‖ζ‖α ≤ ‖ζ‖β ≤ C ‖ζ‖α for all

ζ ∈ X . Then for any ε ∈ [0, 1), it holds that F ε‖·‖α
(χ;ψ) ⊆ F ε

′

‖·‖β
(χ;ψ), where

ε′ =
√
1− c2(1−ε2)

C2 .

(P5) χ = aψ for some a ∈ C if and only if F ε‖·‖(χ;ψ) = {a} for every ε ∈ [0, 1).

(P6) If χ is not a scalar multiple of ψ, then for any 0 ≤ ε1 < ε2 < 1, F ε1‖·‖(χ;ψ)

lies in the interior of F ε2‖·‖(χ;ψ).

(P7) If χ is not a scalar multiple of ψ, then for any ε ∈ (0, 1), F ε‖·‖(χ;ψ) has a

non-empty interior.

(P8) If χ is not a scalar multiple of ψ, then for any bounded region Ω ⊂ C, there

is an εΩ ∈ [0, 1) such that Ω ⊆ F εΩ‖·‖(χ;ψ). (This means that if χ is not a

scalar multiple of ψ, then F ε‖·‖(χ;ψ) can be arbitrarily large for ε sufficiently

close to 1.)

(P9) Let µ0 ∈ F ε‖·‖(χ;ψ) for some ε ∈ [0, 1).

(i) The scalar µ0 lies on the boundary ∂F ε‖·‖(χ;ψ) if and only if

inf
λ∈C

{
‖χ− λψ‖ −

√
1− ε2 ‖ψ‖ |µ0 − λ|

}
= 0.

(ii) If ε > 0, then µ0 ∈ ∂F ε‖·‖(χ;ψ) if and only if

min
λ∈C

{
‖χ− λψ‖ −

√
1− ε2 ‖ψ‖ |µ0 − λ|

}
= 0,

or equivalently, if and only if ‖χ− λ0ψ‖ =
√
1− ε2 ‖ψ‖ |µ0 − λ0| for

some λ0 ∈ C.

(P10) For any ε ∈ (0, 1),

Int
[
F ε‖·‖(χ;ψ)

]
=

{
µ ∈ C : ‖χ− λψ‖ >

√
1− ε2 ‖ψ‖ |µ− λ|, ∀λ ∈ C

}
.

(P11) If the norm ‖ · ‖ is induced by an inner product 〈·, ·〉, then for any ε ∈ [0, 1),

F ε‖·‖(χ;ψ) = D
( 〈χ, ψ〉

‖ψ‖2 ,

∥∥∥∥χ− 〈χ, ψ〉
‖ψ‖2 ψ

∥∥∥∥
ε√

1− ε2 ‖ψ‖

)
.

4



Figure 1: The sets F 0.5

‖·‖1
(χ;ψ) (left), F 0.65

‖·‖1
(χ;ψ) (middle), and F 0.5

‖·‖1
(χ −

3ψ; 2ψ) (right).

Example 2.1. Consider the 2×4 complex matrices χ =

[
1 2 3 4

2 + i 0 −i −11 i

]

and ψ =

[
1 1 0 0

0 −1 −1 1

]
. The Birkhoff-James ε-orthogonality sets F 0.5

‖·‖1
(χ;ψ),

F 0.65
‖·‖1

(χ;ψ) and F 0.5
‖·‖1

(χ − 3ψ; 2ψ) =
1

2
F 0.5
‖·‖1

(χ;ψ) − 3

2
are estimated by the un-

shaded regions in the left, middle and right parts of Figure 2, respectively. Each

estimation results from having drawn 1000 circles of the form ∂D
(
λ, ‖χ−λψ‖√

1−ε2 ‖ψ‖

)
;

see the defining formula (5). The compactness and the convexity of the sets are

apparent, and Properties (P1), (P2), (P6) and (P7) are verified.

Let X ∗ denote the dual space of X , i.e., the complex normed linear space of all

continuous linear functionals of X (using the induced operator norm).

Definition 2.1. Let χ, ψ ∈ X with ψ 6= 0. For any ε ∈ [0, 1), define the sets

Lε(ψ) =
{
f ∈ X ∗ : f(ψ) =

√
1− ε2 ‖ψ‖ and ‖f‖ 6 1

}

and

Ωε(χ;ψ) =

{
f(χ)√

1− ε2 ‖ψ‖
: f ∈ Lε(ψ)

}
.

Lemma 2.1. For any nonzero vector ψ ∈ X and any ε ∈ [0, 1), the set Lε(ψ) is

non-empty, closed and convex.

Proof. Consider an element χ ∈ X which is not a scalar multiple of ψ. From

Corollary 2.1 in [20], the Birkhoff-James ε-orthogonality set F ε‖·‖(χ;ψ) is not empty.

So, there exists at least one complex number µ in the set F ε‖·‖(χ;ψ). In the 2-

dimensional vector subspace Y = span{χ, ψ}, we define the linear functional f0 ∈
Y∗ such that

f0(z1χ+ z2ψ) = z1µ
√
1− ε2 ‖ψ‖+ z2

√
1− ε2 ‖ψ‖, z1, z2 ∈ C.

5



Then f0(χ) = µ
√
1− ε2 ‖ψ‖ and f0(ψ) =

√
1− ε2 ‖ψ‖. Since µ ∈ F ε‖·‖(χ;ψ), we

have that for every λ ∈ C,

‖χ− λψ‖ >

√
1− ε2 ‖ψ‖ |µ− λ|

= |
√
1− ε2 ‖ψ‖µ−

√
1− ε2 ‖ψ‖λ |

= |f0(χ)− λf0(ψ)|
= |f0(χ− λψ)|,

and ‖f0‖ 6 1 (as a continuous linear functional defined in the 2-dimensional sub-

space Y). Applying the Hahn-Banach extension theorem, there is an extension of

f0, say f ∈ X ∗, such that

f(χ) = µ
√
1− ε2 ‖ψ‖, f(ψ) =

√
1− ε2 ‖ψ‖ and ‖f‖ = ‖f0‖ 6 1.

Then, f ∈ Lε(ψ), and the set Lε(ψ) is non-empty.

For the closedness of the set Lε(ψ), it is enough to see that the set X ∗\Lε(ψ)
is open. Indeed, if a linear functional f ∈ X ∗ does not belong to Lε(ψ), then

f(ψ) 6=
√
1− ε2 ‖ψ‖ or ‖f‖ > 1.

Consequently, by the continuity of the norm, there is a neighborhood Gf ⊂ X ∗ of

f such that for any g ∈ Gf ,

g(ψ) 6=
√
1− ε2 ‖ψ‖ or ‖g‖ > 1,

and so Gf ⊂ X ∗\Lε(ψ).

Finally, for the convexity, we consider two linear functionals f, g ∈ Lε(ψ). It is

easy to see that for any t ∈ [0, 1],

[(1− t)f + t g](ψ) = (1− t)f(ψ) + t g(ψ) =
√
1− ε2 ‖ψ‖

and

‖(1− t)f + t g‖ 6 (1 − t)‖f‖+ t ‖g‖ 6 1,

and hence, (1− t)f + t g lies in Lε(ψ).

We have proved that for ψ 6= 0, the set Lε(ψ) is non-empty. As a consequence,

the region Ωε(χ;ψ) is non-empty. Moreover, the set Ωε(χ;ψ) coincides with the

Birkhoff-James ε-orthogonality set F ε‖·‖(χ;ψ).

Theorem 2.2. Let χ, ψ ∈ X , with ψ 6= 0. For every ε ∈ [0, 1), it holds that

Ωε(χ;ψ) = F ε‖·‖(χ;ψ).
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Proof. Let µ ∈ Ωε(χ;ψ). Then, µ =
fµ(χ)√

1− ε2 ‖ψ‖
for some linear functional fµ ∈

Lε(ψ). For every λ ∈ C, we have

√
1− ε2 ‖ψ‖ |µ− λ| =

∣∣∣∣∣
√
1− ε2 ‖ψ‖ fµ(χ)−

√
1− ε2 ‖ψ‖λ√

1− ε2 ‖ψ‖

∣∣∣∣∣
= |fµ(χ− λψ)|
6 ‖fµ‖ ‖χ− λψ‖
6 ‖χ− λψ‖.

Thus, µ ∈ F ε‖·‖(χ;ψ), and clearly, Ωε(χ;ψ) ⊆ F ε‖·‖(χ;ψ).

For the converse, we consider two cases:

(i) Suppose that χ = cψ for a constant c ∈ C. Then, by Property (P5), F
ε
‖·‖(χ;ψ) =

F ε‖·‖(cψ;ψ) = {c}. Also,

f(χ)√
1− ε2 ‖ψ‖

=
f(cψ)√

1− ε2 ‖ψ‖
=

cf(ψ)√
1− ε2 ‖ψ‖

= c, ∀ f ∈ Lε(ψ),

and hence, Ωε(cψ;ψ) = {c}.

(ii) Suppose that χ, ψ ∈ X are nonzero and linearly independent, and consider a

scalar µ ∈ F ε‖·‖(χ;ψ). By the proof of Lemma 2.1, there exists a continuous linear

functional fµ ∈ Lε(ψ) such that fµ(χ) = µ
√
1− ε2 ‖ψ‖. Thus, µ ∈ Ωε(χ;ψ), and

the proof is complete.

The above alternative definition of the Birkhoff-James ε-orthogonality set yields

readily the subadditivity of F ε‖·‖(χ;ψ) in χ, which is necessary for the proofs of our

results in Sections 5 and 6.

Proposition 2.3. Let χ1, χ2, ψ ∈ X , with ψ 6= 0. Then, it holds that

F ε‖·‖(χ1 + χ2;ψ) ⊆ F ε‖·‖(χ1;ψ) + F ε‖·‖(χ2;ψ).

Proof. It is easy to see that

F ε‖·‖(χ1 + χ2;ψ) = Ωε(χ1 + χ2;ψ)

=

{
f(χ1 + χ2)√
1− ε2 ‖ψ‖

: f ∈ Lε(ψ)

}

=

{
f(χ1)√

1− ε2 ‖ψ‖
+

f(χ2)√
1− ε2 ‖ψ‖

: f ∈ Lε(ψ)

}

⊆
{

f(χ1)√
1− ε2 ‖ψ‖

: f ∈ Lε(ψ)

}
+

{
g(χ2)√

1− ε2 ‖ψ‖
: g ∈ Lε(ψ)

}

= Ωε(χ1;ψ) + Ωε(χ2;ψ)

= F ε‖·‖(χ1;ψ) + F ε‖·‖(χ2;ψ).
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Figure 2: The sets F 0.4

‖·‖1
(χ1;ψ) (left), F

0.4

‖·‖1
(χ2;ψ) (middle), and F 0.4

‖·‖1
(χ1 +

χ2;ψ) (right).

Example 2.2. Consider the sequences χ1 =

{
1,

1

2− i
,

1

(2 − i)2
,

1

(2− i)3
, . . .

}
,

χ2 =

{
1,

1

1− 2i
,

1

(1− 2i)2
,

1

(1− 2i)3
, . . .

}
and ψ =

{
1,

1

1 + i
,

1

(1 + i)2
,

1

(1 + i)3
, . . .

}

of the complex normed linear space ℓ1. The Birkhoff-James ε-orthogonality sets

F 0.4
‖·‖1

(χ1;ψ), F
0.4
‖·‖1

(χ2;ψ) and F
0.4
‖·‖1

(χ1 + χ2;ψ) are estimated by the unshaded re-

gions in the left, middle and right parts of Figure 2, respectively. Each estimation

results from having drawn 500 circles; see the defining formula (5). The compactness

and the convexity of the sets, Property (P7), and the subadditivity of Proposition

2.3 are verified.

Proposition 2.4. Let χ, ψ ∈ X , with ψ 6= 0, χ not a scalar multiple of ψ, and

ε ∈ [0, 1). If µ ∈ ∂F ε‖·‖(χ;ψ), then for every continuous linear functional fµ ∈ Lε(ψ)

such that µ =
fµ(χ)√
1−ε2 ‖ψ‖ , it holds that ‖fµ‖ = 1.

Proof. Let µ ∈ ∂F ε‖·‖(χ;ψ). Then, by Property (P9),

inf
λ∈C

{
‖χ− λψ‖ −

√
1− ε2‖ψ‖ |µ− λ|

}
= 0.

For every fµ ∈ Lε(ψ) with µ =
fµ(χ)√
1−ε2 ‖ψ‖ , we have

0 = inf
λ∈C

{
‖χ− λψ‖ −

∣∣∣∣∣
√
1− ε2 ‖ψ‖ fµ(χ)−

√
1− ε2 ‖ψ‖λ√

1− ε2 ‖ψ‖

∣∣∣∣∣

}

= inf
λ∈C

{‖χ− λψ‖ − |fµ(χ)− λfµ(ψ)|}

= inf
λ∈C

{‖χ− λψ‖ − |fµ(χ− λψ)|}

= − sup
λ∈C

{|fµ(χ− λψ)| − ‖χ− λψ‖}

= − sup
λ∈C

{ |fµ(χ− λψ)|
‖χ− λψ‖ − 1

}
,

and we conclude that ‖fµ‖ = 1.
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Proposition 2.5. Let χ, ψ ∈ X , with ψ 6= 0, χ not a scalar multiple of ψ, and

ε ∈ [0, 1). Then, it holds that

max
{
Reµ : µ ∈ F ε‖·‖(χ;ψ)

}
6 inf

a>0

1

a

{ ‖ψ + aχ‖√
1− ε2 ‖ψ‖

− 1

}
.

Proof. Consider a continuous linear functional f ∈ Lε(ψ). Then, for any a > 0, we

have

f(χ)√
1− ε2 ‖ψ‖

=
1

a

[
f(ψ + aχ− ψ)√

1− ε2 ‖ψ‖

]

=
1

a

[
f(ψ + aχ)√
1− ε2 ‖ψ‖

− f(ψ)√
1− ε2 ‖ψ‖

]

=
1

a

[
f(ψ + aχ)√
1− ε2 ‖ψ‖

− 1

]
.

Hence,

Re
f(χ)√

1− ε2 ‖ψ‖
= Re

1

a

[
f(ψ + aχ)√
1− ε2 ‖ψ‖

− 1

]
=

1

a

[
Re

f(ψ + aχ)√
1− ε2 ‖ψ‖

− 1

]
,

and consequently,

Re
f(χ)√

1− ε2 ‖ψ‖
+

1

a
=

1

a
Re

f(ψ + aχ)√
1− ε2 ‖ψ‖

6
1

a

[ |f(ψ + aχ)|√
1− ε2 ‖ψ‖

]
.

Thus, for any a > 0,

Re
f(χ)√

1− ε2 ‖ψ‖
6

1

a

[ |f(ψ + aχ)|√
1− ε2 ‖ψ‖

− 1

]
6

1

a

[ ‖ψ + aχ‖√
1− ε2 ‖ψ‖

− 1

]
,

and the proof is complete.

3 Vector-valued polynomials

Consider a vector-valued polynomial

P (z) = χmz
m + χm−1z

m−1 + · · ·+ χ1z + χ0, (6)

with vector coefficients χi ∈ X (i = 0, 1, . . . ,m), χm 6= 0, and a scalar variable

z ∈ C. Vector-valued polynomials appear in the approximation of vector-valued

functions [1, 29]. Moreover, special cases of vector-valued polynomials such as

square matrix polynomials [9, 10, 11, 19, 21], rectangular matrix polynomials [9, 19]

and operator polynomials [12, 17, 23, 26], appear in many applications like systems

of differential-algebraic equations, linear system theory, control theory, vibration

analysis of structural systems, and acoustics.

For any ε ∈ [0, 1), and any nonzero vector ψ ∈ X such that F ε‖·‖(χm;ψ) 6= {0},
we can define the Birkhoff-James ε-orthogonality set of P (z) with respect to ψ.

9



Definition 3.1. Let P (z) be a vector-valued polynomial as in (6), ε ∈ [0, 1),

and ψ ∈ X be a nonzero vector such that F ε‖·‖(χm;ψ) 6= {0}. The Birkhoff-James

ε-orthogonality set of P (z) with respect to ψ is defined and denoted by

W ε
‖·‖(P (z);ψ) =

{
µ ∈ C : 0 ∈ F ε‖·‖(P (µ);ψ)

}

= {µ ∈ C : f(P (µ)) = 0, f ∈ Lε(ψ)}
=

{
µ ∈ C : f(χm)µm + f(χm−1)µ

m−1 + · · ·+ f(χ1)µ+ f(χ0) = 0, f ∈ Lε(ψ)
}

= {µ ∈ C : ψ ⊥εBJ P (µ)} (7)

=
{
µ ∈ C : ‖P (µ)− λψ‖ >

√
1− ε2 ‖ψ‖ |λ|, ∀λ ∈ C

}
.

Note that for χm 6= 0 and ε ∈ (0, 1), the condition F ε‖·‖(χm;ψ) 6= {0} is always

satisfied; see Properties (P5) and (P7).

Since the set Lε(ψ) is non-empty and closed, it follows readily thatW ε
‖·‖(P (z);ψ)

is also non-empty and closed. Moreover, for any 0 ≤ ε1 < ε2 < 1, W ε1
‖·‖(P (z);ψ) ⊆

W ε2
‖·‖(P (z);ψ).

Remark 3.1. Consider a vector-valued polynomial P (z) as in (6), a nonzero vector

ψ ∈ X with F ε‖·‖(χm;ψ) 6= {0}, and a µ ∈ C such that P (µ) is not a scalar multiple

of ψ. For any ε ∈ [0, 1),

µ ∈ W ε
‖·‖(P (z);ψ) ⇐⇒ ‖P (µ)− λψ‖ >

√
1− ε2 ‖ψ‖ |λ|, ∀λ ∈ C

⇐⇒
∥∥∥∥
1

λ
P (µ)− ψ

∥∥∥∥ >

√
1− ε2 ‖ψ‖, ∀λ ∈ C \ {0}

⇐⇒ ‖ψ − λP (µ)‖ >

√
1− ε2 ‖ψ‖, ∀λ ∈ C

⇐⇒ inf
λ∈C

‖ψ − λP (µ)‖ >

√
1− ε2 ‖ψ‖ (ψ 6∈ span{P (µ)})

⇐⇒ dist(ψ, span{P (µ)}) >
√

1− ε2 ‖ψ‖.

As in the case of F 0
‖·‖(χ;ψ), µ lies in the region W 0

‖·‖(P (z);ψ) if and only if

dist(ψ, span{P (µ)}) = ‖ψ‖. Moreover, if µ /∈ W 0
‖·‖(P (z);ψ) (or equivalently, if

dist(ψ, span{P (µ)}) < ‖ψ‖), then there is a number ε0 ∈ [0, 1) such that µ ∈
∂W ε0

‖·‖(P (z);ψ) and dist(ψ, span{P (µ)}) =
√
1− ε02 ‖ψ‖. This number ε0 can be

chosen to be the smallest value of the parameter ε ∈ [0, 1) with µ ∈W ε
‖·‖(P (z);ψ).

It is easy to verify the next three properties.

(P12) For any scalar a ∈ C\{0},W ε
‖·‖(aP (z);ψ) =W ε

‖·‖(P (z);ψ),W
ε
‖·‖(P (az);ψ) =

a−1W ε
‖·‖(P (z);ψ) and W

ε
‖·‖(P (z + a);ψ) =W ε

‖·‖(P (z);ψ)− a.

(P13) If R(z) = χ0z
m + χ1z

m−1 + · · · + χm−1z + χm = zmP (z−1) is the reverse

vector-valued polynomial of P (z), then

W ε
‖·‖(R(z);ψ) \ {0} =

{
µ ∈ C : µ−1 ∈ W ε

‖·‖(P (z);ψ) \ {0}
}
.
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(P14) If there exists a continuous linear functional f ∈ Lε(ψ) such that f(χm) =

f(χm−1) = · · · = f(χ0) = 0, then W ε
‖·‖(P (z);ψ) = C.

For the remainder of the paper, it is necessary to introduce the following radii.

Definition 3.2. Let χ, ψ ∈ X , with ψ nonzero. For any ε ∈ [0, 1), the Birkhoff-

James ε-orthogonality inner radius of χ with respect to ψ is defined as

r̂ε‖·‖(χ;ψ) = min
{
|z| : z ∈ F ε‖·‖(χ;ψ)

}
,

and the Birkhoff-James ε-orthogonality outer radius of χ with respect to ψ is defined

as

rε‖·‖(χ;ψ) = max
{
|z| : z ∈ F ε‖·‖(χ;ψ)

} (
≤ ‖χ‖√

1− ε2 ‖ψ‖

)
.

Theorem 3.1. (For rectangular matrix polynomials, see Theorem 12 in [7], and

for the standard numerical range of square matrix polynomials, see Theorem 2.3

in [24].) Let P (z) be a vector-valued polynomial as in (6), ε ∈ [0, 1), and ψ ∈ X
be a nonzero vector such that F ε‖·‖(χm;ψ) 6= {0}. Then, the set W ε

‖·‖(P (z);ψ) is

bounded if and only if 0 6∈ F ε‖·‖(χm;ψ).

Proof. Let 0 6∈ F ε‖·‖(χm;ψ), or equivalently, r̂ε‖·‖(χm;ψ) > 0. We will obtain

that W ε
‖·‖(P (z);ψ) is bounded; in particular, we will prove that W ε

‖·‖(P (z);ψ) ⊆
D (0,M), where

M = 1 +

max
06j6m−1

rε‖·‖(χj ;ψ)

r̂ε‖·‖(χm;ψ)
. (8)

Since M ≥ 1, we consider a scalar µ ∈ W ε
‖·‖(P (z);ψ) with |µ| ≥ 1. Then, there

exists a continuous linear functional f ∈ Lε(ψ) such that

f(χm)µm + f(χm−1)µ
m−1 + · · ·+ f(χ1)µ+ f(χ0) = 0.

As a consequence,

|µ|m =

∣∣∣∣∣
m−1∑
j=0

f(χj)µ
j

∣∣∣∣∣
|f(χm)| 6

m−1∑
j=0

|f(χj)| |µ|j

|f(χm)|

6

max
06j6m−1

rε‖·‖(χj ;ψ)

|f(χm)|√
1−ε2 ‖ψ‖

|µ|m − 1

|µ| − 1

6

max
06j6m−1

rε‖·‖(χj ;ψ)

r̂ε‖·‖(χm;ψ)

|µ|m − 1

|µ| − 1
.

Thus,

|µ| − 1 6

max
06j6m−1

rε‖·‖(χj ;ψ)

r̂ε‖·‖(χm;ψ)

|µ|m − 1

|µ|m 6

max
06j6m−1

rε‖·‖(χj ;ψ)

r̂ε‖·‖(χm;ψ)
,
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and hence, |µ| 6M .

For the converse, we assume thatW ε
‖·‖(P (z);ψ) is bounded and 0 ∈ F ε‖·‖(χm;ψ).

Then there is a continuous linear functional f ∈ Lε(ψ) such that f(χm) = 0.

Since W ε
‖·‖(P (z);ψ) 6= C, Property (P14) implies that f(χs) 6= 0 for some s ∈

{0, 1, 2, . . . ,m − 1}. Moreover, since F ε‖·‖(χm;ψ) 6= {0}, there exists a sequence

of continuous linear functionals {f1, f2, . . . } ⊂ Lε(ψ) such that fj(χm) 6= 0, j =

1, 2, . . . , and fj(χm) → 0 as j → +∞. We consider now the scalar polynomials

fj(P (z)) = fj(χm)zm + fj(χm−1)z
m−1 + · · ·+ fj(χ1)z + fj(χ0), j = 1, 2, . . .

It is clear that
fj(χs)

fj(χm)
→ ∞ as j → +∞; this is a contradiction because we

have assumed that W ε
‖·‖(P (z);ψ) is bounded, and hence, all the roots and the

elementary symmetric functions of the scalar polynomials fj(P (z)), j = 1, 2, . . .,

are bounded.

Theorem 3.2. (For the standard numerical range of square matrix polynomials,

see Theorem 3.1 in [27].) Consider a nonzero vector ψ ∈ X , an ε ∈ [0, 1), and the

vector-valued polynomial P (z) = ψzm+χm−1z
m−1+ · · ·+χ1z+χ0 (i.e., χm = ψ).

Then, for every µ ∈ W ε
‖·‖(P (z);ψ), it holds

r̂ε‖·‖(χ0;ψ)

r̂ε‖·‖(χ0;ψ) + max
16j6m

rε‖·‖(χj ;ψ)
6 |µ| 6 1 + max

06j6m−1
rε‖·‖(χj ;ψ).

Proof. Since F ε‖·‖(ψ;ψ) = {1} does not contain the origin, the set W ε
‖·‖(P (z);ψ) is

bounded.

Let µ ∈ W ε
‖·‖(P (z);ψ). By definition, there exists a continuous linear functional

f ∈ Lε(ψ) such that f(ψ)µm + f(χm−1)µ
m−1 + · · · + f(χ1)µ + f(χ0) = 0. Since

the lower bound of the theorem is less than or equal to 1, for the first inequality,

we may assume that |µ| < 1. Then, we have that

f(χ0) = −
(
f(ψ)µm + f(χm−1)µ

m−1 + · · ·+ f(χ1)µ
)
,

or

|f(χ0)| = |f(ψ)µm + f(χm−1)µ
m−1 + · · ·+ f(χ1)µ|.

Hence,

r̂ε‖·‖(χ0, ψ) 6
|f(ψ)µm + f(χm−1)µ

m−1 + · · ·+ f(χ1)µ|√
1− ε2 ‖ψ‖

6
|f(ψ)| |µ|m + |f(χm−1)| |µ|m−1 + · · ·+ |f(χ1)| |µ|√

1− ε2 ‖ψ‖

6
|µ|

1− |µ| max
16j6m

rε‖·‖(χj ;ψ),

which yields the first inequality.

The upper bound of the theorem coincides with the upper bound M in (8), and

the proof is complete.
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Suppose that the norm ‖ · ‖ is induced by an inner product 〈·, ·〉. Then by

Property (P11) (see also Proposition 5.1 in [20]), the Birkhoff-James ε-orthogonality

set of χ with respect to ψ 6= 0 is a closed disk, namely,

F ε‖·‖(χ;ψ) = D
( 〈χ, ψ〉

‖ψ‖2 ,

∥∥∥∥χ− 〈χ, ψ〉
‖ψ‖2 ψ

∥∥∥∥
ε√

1− ε2 ‖ψ‖

)
.

Let P (z) be a vector-valued polynomial as in (6), ε ∈ [0, 1), and ψ ∈ X be a nonzero

vector such that F ε‖·‖(χm;ψ) 6= {0}. Then, by (7), we have

W ε
‖·‖(P (z);ψ) = {µ ∈ C : ψ ⊥εBJ P (µ)}

= {µ ∈ C : ψ ⊥ε P (µ)}
= {µ ∈ C : |〈P (µ), ψ〉| ≤ ε ‖ψ‖ ‖P (µ)‖}
=

{
µ ∈ C : |〈P (µ), ψ〉|2 ≤ ε2‖ψ‖2‖P (µ)‖2

}

=
{
µ ∈ C : 〈P (µ), ψ〉〈ψ, P (µ)〉 ≤ ε2‖ψ‖2〈P (µ), P (µ)〉

}

=



µ ∈ C : 〈

m∑

i=0

χiµ
i, ψ〉〈ψ,

m∑

j=0

χjµ
j〉 ≤ ε2‖ψ‖2〈

m∑

i=0

χiµ
i,

m∑

j=0

χjµ
j〉





=



µ ∈ C :

m∑

i,j=0

〈χi, ψ〉〈ψ, χj〉µiµj − ε2‖ψ‖2
m∑

i,j=0

〈χi, χj〉µiµj ≤ 0



 .
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Figure 3: Birkhoff-James ε-orthogonality sets of P (z) (left part) and R(z)

(right part).

Example 3.1. Consider the four-dimensional quadratic vector-valued polynomial

P (z) =




1

0

0.8

i


 z

2 +




i

−1

0.5

0


 z +




2

−3

−0.1

−i


 ,
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its reverse vector-valued polynomial

R(z) =




2

−3

−0.1

−i


 z

2 +




i

−1

0.5

0


 z +




1

0

0.8

i


 ,

and the vector ψ =
[
0.6 0 0.9 0.2

]T
. For the euclidean norm (which is

induced by the standard inner product), we have drawn the boundaries of the ε-

orthogonality sets W ε
‖·‖2

(P (z);ψ), ε = 0.3, 0.5, 0.7, 0.73, and W ε
‖·‖2

(R(z);ψ), ε =

0.2, 0.25, 0.26, 0.265, 0.27, in the left and the right part of Figure 3, respectively. As

expecting by Theorem 3.1, the origin lies in W ε
‖·‖2

(P (z);ψ) (or equivalently, the

origin lies in F ε‖·‖2
(χ0;ψ)) if and only if W ε

‖·‖2
(R(z);ψ) is unbounded.

4 Connected components

In this section, we study the connected components of the Birkhoff-James ε-orthogonality

set W ε
‖·‖(P (z);ψ), when this set is bounded. The following lemma is necessary for

our analysis.

Lemma 4.1. Let P (z) be a vector-valued polynomial as in (6), and let L be a

non-empty, closed and convex subset of X ∗ such that f(χm) 6= 0 for all f ∈ L.

Then, the roots of the scalar polynomial f(P (z)) = f(χm)zm + f(χm−1)z
m−1 +

· · ·+ f(χ1)z + f(χ0) are continuous with respect to f ∈ L.

Proof. It is well known that the roots of a scalar polynomial are continuous func-

tions of the coefficients of the polynomial, as long as the leading coefficient is

nonzero; see Appendix D in [14]. The vector coefficients χ0, χ1, . . . , χm ∈ X of

the vector-valued polynomial P (z) = χmz
m+ χm−1z

m−1 + · · ·+ χ1z + χ0 are con-

stant, and hence, the coefficients f(χ0), f(χ1), . . . , f(χm) of the scalar polynomial

f(P (z)) depend only on f ∈ L. If {f1, f2, . . . } ⊂ L is a sequence of continuous

linear functionals that converges to f ∈ L (i.e., ‖fk − f‖ → 0, as k → +∞), then

for any j = 0, 1, . . . ,m, it holds

‖f(χj)− fk(χj)‖ 6 ‖(f − fk)(χj)‖ 6 ‖f − fk‖ ‖χj‖, k = 1, 2, . . . ,

and the proof is complete.

Theorem 4.2. (For the standard numerical range of square matrix polynomials,

see Theorem 2.2 in [24].) Let P (z) be a vector-valued polynomial as in (6), ε ∈
[0, 1), and ψ ∈ X be a nonzero vector such that 0 /∈ F ε‖·‖(χm;ψ) (or equivalently,

W ε
‖·‖(P (z);ψ) is bounded). Suppose thatW

ε
‖·‖(P (z);ψ) has r connected components.

If κ is the minimum number of distinct zeros of the scalar polynomial f(P (z)) =

f(χm)zm+f(χm−1)z
m−1+· · ·+f(χ1)z+f(χ0) over all f ∈ Lε(ψ), then r 6 κ 6 m.
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Proof. Consider a continuous linear functional f1 ∈ Lε(ψ) such that the scalar

polynomial f1(P (z)) = f1(χm)zm + f(χm−1)z
m−1 + · · · + f1(χ1)z + f1(χ0) has

exactly κ (6 m) distinct roots. Let also f2 ∈ Lε(ψ). Since 0 /∈ F ε‖·‖(χm;ψ), both

scalars f1(χm) and f2(χm) are nonzero. Moreover, by the convexity of the set

Lε(ψ) and the region F ε‖·‖(χm;ψ) (keeping in mind that 0 6∈ F ε‖·‖(χm;ψ)), every

continuous linear functional

gt = (1− t)f1 + tf2 ∈ Lε(ψ), t ∈ [0, 1],

satisfies the condition gt(χm) 6= 0. Thus, by Lemma 4.1, the roots of the scalar

polynomial

gt(P (z)) = gt(χm)zm + gt(χm−1)z
m−1 + · · ·+ gt(χ1)z + gt(χ0), t ∈ [0, 1]

are continuous functions of t. Hence, the κ roots of the scalar polynomial f1(P (z))

are connected with continuous curves in W ε
‖·‖(P (z);ψ) with the roots of f2(P (z)).

Consequently, the number of the connected components of W ε
‖·‖(P (z);ψ) is less

than or equal to κ.

Suppose that for every continuous linear functional f ∈ Lε(ψ), the scalar poly-

nomial f(P (z)) has m simple roots (this means that f(χm) is always nonzero and

W ε
‖·‖(P (z);ψ) is bounded). Then, these m simple roots define m continuous maps

ρi : Lε(ψ) → C, i = 1, 2, . . . ,m. (9)

Definition 4.1. Let χ, ψ ∈ X , with ψ 6= 0, and consider a complex number

µ ∈ F ε‖·‖(χ;ψ). We define the set

Sχ,ψ(µ) =

{
f ∈ Lε(ψ) : µ =

f(χ)√
1− ε2 ‖ψ‖

}
⊆ Lε(ψ).

Moreover, for the vector-valued polynomial P (z), we define the set

SP (z),ψ(µ) = {f ∈ Lε(ψ) : f(P (µ)) = 0} = SP (µ),ψ(0).

Lemma 4.3. Let χ, ψ ∈ X , with ψ 6= 0, and consider a complex number µ ∈
F ε‖·‖(χ;ψ). Then, the set Sχ,ψ(µ) is convex.

Proof. Consider two continuous linear functionals f1, f2 ∈ Sχ,ψ(µ) and a t ∈ [0, 1].

Then we have that
f1(χ)√

1− ε2 ‖ψ‖
= µ =

f2(χ)√
1− ε2 ‖ψ‖

. As a consequence,

[tf1 + (1− t)f2](χ)√
1− ε2 ‖ψ‖

= µ,

and tf1 + (1− t)f2 also lies in Sχ,ψ(µ).
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Theorem 4.4. (For operator polynomials, see Theorem 1 in [25].) Let P (z) be

a vector-valued polynomial as in (6), ε ∈ [0, 1), and ψ ∈ X be a nonzero vector

such that 0 /∈ F ε‖·‖(χm;ψ) (or equivalently, W ε
‖·‖(P (z);ψ) is bounded). Suppose that

for every f ∈ Lε(ψ), the scalar polynomial f(P (z)) = f(χm)zm + f(χm−1)z
m−1 +

· · ·+ f(χ1)z + f(χ0) has exactly m simple roots. Then, W ε
‖·‖(P (z);ψ) has exactly

m connected components.

Proof. We consider the images of the root functions ρ1, ρ2, . . . , ρm in (9),

Wi = ρi(Lε(ψ)) ⊆W ε
‖·‖(P (z);ψ), i = 1, 2, . . . ,m.

These sets are connected and satisfy

W ε
‖·‖(P (z);ψ) =

⋃

16i6m

Wi.

We need to prove that Wi ∩Wj = ∅ for all i 6= j.

Without loss of generality, assume thatW1∩W2 6= ∅. Then there exists a µ ∈ C

such that

ρ1(f1) = µ = ρ2(f2) for some functionals f1, f2 ∈ Lε(ψ).

Then both f1 and f2 lie in SP (z),ψ(µ). Moreover, it holds

SP (z),ψ(µ) =
⋃

16i6m

{f ∈ Lε(ψ) : µ = ρi(f)} ,

i.e., SP (z),ψ(µ) is the union of

S1 = {f ∈ Lε(ψ) : µ = ρ1(f)} and S2 =
⋃

26i6m

{f ∈ Lε(ψ) : µ = ρi(f)} .

Obviously, f1 ∈ S1 and f2 ∈ S2, and the sets S1 and S2 are not empty. The sets

S1 and S2 are closed as pre-images of continuous maps. Since the set SP (z),ψ(µ) is

convex, it is also connected, and hence, S1∩S2 6= ∅. Thus, there exists a functional

f such that ρ1(f) = z = ρi(f) for some i > 2; this is a contradiction because we

have assumed that the roots are simple.

5 Boundary

Since the Birkhoff-James ε-orthogonality setW ε
‖·‖(P (z);ψ) is closed, its boundary is

of special interest. In the following two theorems, we describe the strong connection

between a boundary point z0 of W ε
‖·‖(P (z);ψ) and the origin as a boundary point

of the region F ε‖·‖(P (z0);ψ).

Theorem 5.1. (For rectangular matrix polynomials, see Theorem 19 (i) in [7], and

for the standard numerical range of square matrix polynomials, see Theorem 1.1
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in [27].) Let P (z) be a vector-valued polynomial as in (6), ε ∈ [0, 1), and ψ ∈ X
be a nonzero vector such that F ε‖·‖(χm;ψ) 6= {0}. If z0 ∈ ∂W ε

‖·‖(P (z);ψ), then

0 ∈ ∂F ε‖·‖(P (z0);ψ).

Proof. Since z0 ∈ ∂W ε
‖·‖(P (z);ψ) ⊆ W ε

‖·‖(P (z);ψ), there is a continuous linear

functional f0 ∈ Lε(ψ) such that f0(P (z0)) = 0. So, 0 ∈ F ε‖·‖(P (z0);ψ), and it is

sufficient to prove that the origin does not belong to the interior of F ε‖·‖(P (z0);ψ).

Let {z1, z2, . . . } ⊂ C \W ε
‖·‖(P (z);ψ) be a sequence of complex numbers con-

verging to z0, and assume that 0 lies in the interior of F ε‖·‖(P (z0);ψ). Then,

there is a real number δ > 0 such that D(0, δ) ⊆ F ε‖·‖(P (z0);ψ). Moreover,

there exist fδ,1, fδ,2, fδ,3 ∈ Lε(ψ) such that the triangle with vertices
fδ,1(P (z0))√
1− ε2 ‖ψ‖

,

fδ,2(P (z0))√
1− ε2 ‖ψ‖

and
fδ,3(P (z0))√
1− ε2 ‖ψ‖

contains the origin in its interior and lies in the disk

D(0, δ/2). Continuity yields

lim
n→+∞

fδ,i(P (zn))√
1− ε2 ‖ψ‖

=
fδ,i(P (z0))√
1− ε2 ‖ψ‖

, i = 1, 2, 3,

and as a consequence, there is a positive integer n0 such that 0 ∈ F ε‖·‖(P (zn);ψ) for

every n > n0. Hence, for every positive integer n > n0, zn ∈ W ε
‖·‖(P (z);ψ); this is

a contradiction.

For the remainder, we need to consider the vector-valued polynomial

P ′(z) = mχmz
m−1 + (m− 1)χm−1z

m−2 + · · ·+ 2χ2z + χ1.

Theorem 5.2. (For rectangular matrix polynomials, see Theorem 19 (ii) in [7],

and for the standard numerical range of square matrix polynomials, see Theorem

2 in [22].) Let P (z) be a vector-valued polynomial as in (6), ε ∈ [0, 1), and ψ ∈ X
be a nonzero vector such that F ε‖·‖(χm;ψ) 6= {0}. Let also z0 ∈ W ε

‖·‖(P (z);ψ) such

that F ε‖·‖(P (z0);ψ) 6= {0} and 0 /∈ F ε‖·‖(P
′(z0);ψ). If 0 ∈ ∂F ε‖·‖(P (z0);ψ), then

z0 ∈ ∂W ε
‖·‖(P (z);ψ).

Proof. Let 0 ∈ ∂F ε‖·‖(P (z0);ψ), and assume that z0 is an interior point of the set

W ε
‖·‖(P (z);ψ). Then, there exists a δ > 0 such that D(z0, δ) ⊆ W ε

‖·‖(P (z);ψ).

Hence, for any z ∈ D(z0, δ)\{z0}, there is a fz ∈ Lε(ψ) such that fz(P (z)) = 0.

Moreover,

0 = fz(P (z)) = fz(P (z − z0 + z0))

= fz(P (z0) + (z − z0)P
′(z0) + (z − z0)R(z, z0))

= fz(P (z0)) + (z − z0)fz(P
′(z0) +R(z, z0)),

whereR(z, z0) is a vector-valued polynomial in z0 and z, such that ‖R(z, z0)‖ → 0 as

|z− z0| → 0. Since 0 /∈ F ε‖·‖(P
′(z0);ψ), by the subadditivity of Proposition 2.3, the
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positive number δ can be chosen small enough such that for every z ∈ D(z0, δ)\{z0},

0 /∈ F ε‖·‖(P
′(z0) +R(z, z0);ψ)

(
⊆ F ε‖·‖(P

′(z0);ψ) +D
(
0,

‖R(z, z0)‖√
1− ε2 ‖ψ‖

))

and

z − z0 = − fz(P (z0))

fz(P ′(z0) +R(z, z0))
. (10)

By the convexity of F ε‖·‖(P
′(z0) +R(z, z0);ψ), there exist angles θ1, θ2, θ3 such

that 0 < θ2 − θ1 6 θ3 < π and

F ε‖·‖(P
′(z0) +R(z, z0);ψ) ⊂ {w ∈ C : θ1 6 arg(w) 6 θ2} , ∀ z ∈ D(z0, δ)\{z0}.

Also, F ε‖·‖(P (z0);ψ) 6= {0} and 0 ∈ ∂F ε‖·‖(P (z0);ψ). Therefore, by the convexity of

F ε‖·‖(P (z0);ψ), there exist angles φ1, φ2 such that 0 < φ2 − φ1 6 π and

F ε‖·‖(P (z0);ψ) ⊂ {w ∈ C : φ1 6 arg(w) 6 φ2} .

Consequently, the angular of the right hand-side of (10) cannot take all the values

in [0, 2π). This is a contradiction, since the left hand-side is not constrained.

Next, we consider the isolated points of the Birkhoff-James ε-orthogonality set

W ε
‖·‖(P (z);ψ).

Proposition 5.3. (For the standard numerical range of square matrix polynomi-

als, see Theorem 2.1 in [27].) Let P (z) be a vector-valued polynomial as in (6),

ε ∈ [0, 1), and ψ ∈ X be a nonzero vector such that 0 /∈ F ε‖·‖(χm;ψ) (or equiva-

lently, W ε
‖·‖(P (z);ψ) is bounded). If z0 is an isolated point of W ε

‖·‖(P (z);ψ), then

F ε‖·‖(P (z0);ψ) = {0}. If, in addition, ε > 0, then P (z0) = 0.

Proof. Suppose that the singleton {z0} is a connected component ofW ε
‖·‖(P (z);ψ).

Then, there is a continuous linear functional f0 ∈ Lε(ψ) such that

f0(P (z0)) = f0(χm)zm0 + f0(χm−1)z
m−1
0 + · · ·+ f0(χ1)z0 + f0(χ0) = 0.

Since 0 /∈ F ε‖·‖(χm;ψ), the convexity of Lε(ψ) and the continuity of the roots of

the scalar polynomial f(P (z)) with respect to f ∈ Lε(ψ) imply that the roots of

the scalar polynomial f0(P (z)) are connected to the roots of any scalar polynomial

f(P (z)), with f ∈ Lε(ψ), by continuous curves in W ε
‖·‖(P (z);ψ) (see also the

proof of Theorem 4.2). As a consequence, for any f ∈ Lε(ψ), z0 is a root of the

scalar polynomial f(P (z)). Thus, f(P (z0)) = 0 for every f ∈ Lε(ψ), and hence,

F ε‖·‖(P (z0);ψ) = {0}. Furthermore, if ε > 0, then Properties (P5) and (P7) yield

P (z0) = 0.
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6 Local dimension

Let Ω be a closed subset of C. A recursive definition of the topological dimension

of Ω, denoted by dim {Ω}, is the following [13, 16]: If Ω is an empty set, then

dim {Ω} = −1. If Ω is a non-empty set, then dim {Ω} is the least integer number

k ∈ {0, 1, 2} for which every point of Ω has arbitrarily small neighborhoods in Ω

whose boundaries are of topological dimension less than k. Clearly, if Ω is countable,

then dim {Ω} = 0, and if Ω is a (non-degenerate) curve, then dim {Ω} = 1.

Consider a point z0 ∈ Ω. The local dimension of z0 in Ω is defined as the limit

lim
h→0+

dim {Ω ∩D(z0, h)}, h ∈ (0,+∞). In particular, the local dimension of z0 in

Ω is equal to

0 if and only if z0 is an isolated point of Ω,

1 if and only if z0 is a non-isolated point of Ω which does not lie in the closure

of the interior of Ω,

2 if and only if z0 lies in the closure of the interior of Ω.

As in the case of the boundary, the local dimension of a point z0 inW
ε
‖·‖(P (z);ψ)

is strongly connected to the local dimension of the origin in the set F ε‖·‖(P (z0);ψ).

Theorem 6.1. (For the standard numerical range of square matrix polynomials, see

Theorem 1 in [28].) Let P (z) be a vector-valued polynomial as in (6), ε ∈ [0, 1), and

ψ ∈ X be a nonzero vector such that F ε‖·‖(χm;ψ) 6= {0}. Let also z0 ∈W ε
‖·‖(P (z);ψ)

with local dimension in W ε
‖·‖(P (z);ψ) equal to 1, such that F ε‖·‖(P (z0);ψ) 6= {0},

the origin is a differentiable point of ∂F ε‖·‖(P (z0);ψ) and 0 /∈ F ε‖·‖(P
′(z0);ψ). Then,

the local dimension of 0 in F ε‖·‖(P (z0);ψ) is 1.

Proof. Since the local dimension of z0 in W ε
‖·‖(P (z);ψ) is equal to 1, it follows that

z0 ∈ ∂W ε
‖·‖(P (z);ψ), z0 is not an isolated point ofW ε

‖·‖(P (z);ψ), and there is a real

number r > 0 such that W ε
‖·‖(P (z);ψ) ∩ D(z0, r) ⊆ ∂W ε

‖·‖(P (z);ψ). For the sake

of contradiction, assume that the local dimension of the origin in F ε‖·‖(P (z0);ψ) is

equal to 2 (i.e., the convex set F ε‖·‖(P (z0);ψ) has a non-empty interior).

By Theorem 5.1, for every z ∈ D(z0, r), it holds that 0 ∈ ∂F ε‖·‖(P (z);ψ).

Moreover, the origin is a differentiable point of ∂F ε‖·‖(P (z0);ψ), and hence, there

is a unique tangent line of ∂F ε‖·‖(P (z0);ψ) at the origin, which defines a closed

half-plane H1 and an open half-plane H2 = C\H1, such that F ε‖·‖(P (z0);ψ) ⊂ H1.

For every ρ ∈ [0, r] and θ ∈ [0, 2π], z0 + ρeiθ is either a boundary point or an

exterior point of the set W ε
‖·‖(P (z);ψ). As a consequence, for every ρ ∈ [0, r] and

θ ∈ [0, 2π], the origin is either a boundary point or an exterior point of the convex

set F ε‖·‖(P (z0 + ρeiθ);ψ). Moreover, it holds

P (z0 + ρeiθ) = P (z0) + ρeiθP ′(z0) + ρeiθR(z0, ρe
iθ),
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whereR(z0, ρe
iθ) is a vector-valued polynomial in z0 and ρe

iθ, such that ‖R(z0, ρeiθ)‖ →
0 as ρ → 0. Since 0 /∈ F ε‖·‖(P

′(z0);ψ), subadditivity implies that for small enough

r, there exists a convex cone

K(z0, r) = {z ∈ C : θ1 6 arg(z) 6 θ2, 0 < θ2 − θ1 6 θ3 < π} ,

such that for every ρ ∈ [0, r] and θ ∈ [0, 2π],

F ε‖·‖(P
′(z0) +R(z0, ρe

iθ);ψ) ⊂ K(z0, r) \ {0}.

For suitable θ ∈ [0, 2π],

eiθF ε‖·‖(P
′(z0) +R(z0, ρe

iθ);ψ) ⊂ eiθK(z0, r) \ {0} ⊂ H2.

Then, for every linear functional f ∈ Lε(ψ),

f(P (z0 + ρeiθ))√
1− ε2 ‖ψ‖

=
f(P (z0))√
1− ε2 ‖ψ‖

+
ρeiθf(P ′(z0) +R(z0, ρe

iθ))√
1− ε2 ‖ψ‖

,

where
f(P (z0))√
1− ε2 ‖ψ‖

∈ F ε‖·‖(P (z0);ψ) ⊂ H1

and
ρeiθf(P ′(z0) +R(z0, ρe

iθ))√
1− ε2 ‖ψ‖

∈ eiθK(z0, r) \ {0} ⊂ H2.

Consequently, as ρ takes values from 0 to r, a part of F ε‖·‖(P (z0 + ρeiθ);ψ), in a

neighborhood of the origin, is moving continuously into the half-plane H2. Thus,

there is an rθ ∈ (0, r] such that the origin lies in the interior of F ε‖·‖(P (z0) +

rθe
iθ[P ′(z0)+R(z0, ρeiθ)];ψ) = F ε‖·‖(P (z0+rθe

iθ);ψ); this contradicts the definition

of r.

If z0 ∈W ε
‖·‖(P (z);ψ) such that F ε‖·‖(P (z0);ψ) 6= {0}, then P (z0) is not a scalar

multiple of ψ. Hence, if ε > 0, then the convexity of F ε‖·‖(P (z0);ψ) and Property

(P7) imply that the local dimension of 0 in F ε‖·‖(P (z0);ψ) is equal to 2. As a

consequence, we have the following corollary.

Corollary 6.2. Let P (z) be a vector-valued polynomial as in (6), ε ∈ (0, 1), and

ψ ∈ X be a nonzero vector such that F ε‖·‖(χm;ψ) 6= {0}. Let also z0 be a non-

isolated boundary point of W ε
‖·‖(P (z);ψ) such that F ε‖·‖(P (z0);ψ) 6= {0}, the origin

is a differentiable point of ∂F ε‖·‖(P (z0);ψ) and 0 /∈ F ε‖·‖(P
′(z0);ψ). Then the local

dimension of z0 in W ε
‖·‖(P (z);ψ) is equal to 2.

The case ε = 0 is considered in the next result.

Theorem 6.3. (For the standard numerical range of square matrix polynomials,

see Theorem 2 in [28].) Let P (z) be a vector-valued polynomial as in (6) and ψ ∈ X
be a nonzero vector such that F 0

‖·‖(χm;ψ) 6= {0}. Let also z0 be an interior point

of W 0
‖·‖(P (z);ψ) or a differentiable point of ∂W 0

‖·‖(P (z);ψ) with local dimension in

W 0
‖·‖(P (z);ψ) equal to 2, such that F 0

‖·‖(P (z0);ψ) 6= {0} and 0 /∈ F 0
‖·‖(P

′(z0);ψ).

Then, the local dimension of the origin in F 0
‖·‖(P (z0);ψ) is equal to 2.
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Proof. If z0 is an interior point of W 0
‖·‖(P (z);ψ), then by Theorem 5.2, the origin

is also an interior point of F 0
‖·‖(P (z0);ψ). In this case, the local dimension of z0 in

W 0
‖·‖(P (z);ψ) and the local dimension of 0 in F 0

‖·‖(P (z0);ψ) are both equal to 2.

Let z0 ∈ ∂W 0
‖·‖(P (z);ψ). Since z0 is a differentiable point of ∂W ε

‖·‖(P (z);ψ)

and has local dimension 2 in W 0
‖·‖(P (z);ψ), there exists a φ0 ∈ [0, 2π] such that

for every φ ∈ (φ0, φ0 + π), there is an arbitrarily small rφ > 0 with z0 + rφe
iφ

lying in the interior of W 0
‖·‖(P (z);ψ). For the sake of contradiction, we assume

that the origin has local dimension 1 in F 0
‖·‖(P (z0);ψ). Then, by the convexity of

the set F 0
‖·‖(P (z0);ψ) 6= {0}, it follows that F 0

‖·‖(P (z0);ψ) is a (non-degenerate)

line segment passing through the origin.

The straight line which is defined by the line segment F 0
‖·‖(P (z0);ψ) defines

two closed half-planes H1 and H2. As in the proof of Theorem 6.1,

P (z0 + reiφ) = P (z0) + reiφP ′(z0) + reiφR(z0, re
iφ),

where ‖R(z0, reiφ)‖ → 0 as r → 0. Since 0 /∈ F 0
‖·‖(P

′(z0);ψ), for small enough r,

there exists a convex cone

K(z0, r) = {z ∈ C : θ1 6 arg(z) 6 θ2, 0 < θ2 − θ1 6 θ3 < π} ,

such that

F 0
‖·‖(P

′(z0) +R(z0, re
iφ);ψ) ⊆ K(z0, r) \ {0}.

Also, there is a θ ∈ (φ0, φ0 + π) such that the set eiθF 0
‖·‖(P

′(z0) + R(z0, re
iφ);ψ)

lies in the interior of H1 or H2. Since

F 0
‖·‖(P (z0 + rθe

iθ);ψ) ⊆ F 0
‖·‖(P (z0);ψ) + rθe

iθF 0
‖·‖(P

′(z0) +R(z0, re
iφ);ψ),

F 0
‖·‖(P (z0 + rθe

iθ);ψ) lies in the interior of H1 or H2. As a consequence, 0 /∈
F 0
‖·‖(P (z0+rθe

iθ);ψ); this is a contradiction because z0+rθe
iθ ∈ W 0

‖·‖(P (z);ψ).

Finally, we obtain that bounded Birkhoff-James ε-orthogonality sets of linear

vector-valued polynomials are simply connected.

Theorem 6.4. (For the standard numerical range of square matrix polynomials, see

Theorem 4 in [28].) Let χ1z+χ0 be a linear vector-valued polynomial, ε ∈ [0, 1), and

ψ ∈ X be a nonzero vector such that F ε‖·‖(χ1;ψ) 6= {0}. If the set W ε
‖·‖(χ1z+χ0;ψ)

is bounded, then it is simply connected.

Proof. SupposeW ε
‖·‖(χ1z+χ0;ψ) is not simply connected. Then there is a complex

number w0 /∈W ε
‖·‖(χ1z+χ0;ψ) such that for every φ ∈ [0, 2π], there exists an rφ > 0

such that w0 + rφe
iφ ∈W ε

‖·‖(χ1z+χ0;ψ). By Property (P12), for any scalar a ∈ C,

it holds that W ε
‖·‖(χ1(z + a) + χ0;ψ) =W ε

‖·‖(χ1z + χ0;ψ)− a. Thus, without loss

of generality, we may assume that w0 = 0.
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By the boundedness of W ε
‖·‖(χ1z + χ0;ψ) and the assumption that the origin

does not lie in W ε
‖·‖(χ1z + χ0;ψ), both convex sets F ε‖·‖(χ1;ψ) and F

ε
‖·‖(χ0;ψ) do

not contain the origin. As a consequence, there exist two convex cones

K1 =
{
z ∈ C : θ1 6 arg(z) 6 θ̃1, 0 < θ̃1 − θ1 6 ξ1 < π

}

and

K2 =
{
z ∈ C : θ2 6 arg(z) 6 θ̃2, 0 < θ̃2 − θ2 6 ξ2 < π

}
,

such that F ε‖·‖(χ1;ψ) lies in the interior of K1 and F ε‖·‖(χ0;ψ) lies in the in-

terior of K2. Hence, there exists a φ0 ∈ [0, 2π] such that the convex regions

F ε‖·‖(rφ0
eiφ0χ1;ψ) = rφ0

eiφ0F ε‖·‖(χ1;ψ) and F ε‖·‖(χ0;ψ) lie in the interior of the

convex cone

K0 =
{
z ∈ C : θ0 6 arg(z) 6 θ̃0, 0 < θ̃0 − θ0 6 ξ0 < π

}
,

where max{ξ1, ξ2} 6 ξ0. Therefore, by the subadditivity of Proposition 2.3, the set

F ε‖·‖(χ1rφ0
eiφ0 + χ0;ψ) ⊆ rφ0

eiφ0F ε‖·‖(χ1;ψ) + F ε‖·‖(χ0;ψ)

lies in the interior of K0, and it does not contain the origin; this is a contra-

diction.
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