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1. Introduction

These lecture notes aim at providing a self-contained introduction to Lévy
processes. We start by defining Lévy processes and study a simple but very
interesting example: a Lévy jump-diffusion.

2. Definition of Lévy processes

2.1. Notation and auxiliary definitions. Let (Ω,F ,F, IP) denote a sto-
chastic basis, or filtered probability space, i.e. a probability space (Ω,F , IP)
endowed with a filtration F = (Ft)t≥0.

A filtration is an increasing family of sub-σ-algebras of F , i.e. Fs ⊂ Ft
for s ≤ t. By convention F∞ = F and F∞− =

∨
s≥0Fs.

A stochastic basis satisfies the usual conditions if it is right-continuous,
i.e. Ft = Ft+, where Ft+ =

⋂
s>tFs, and is complete, i.e. the σ-algebra F is

IP-complete and every Ft contains all IP-null sets of F .

Definition 2.1. A stochastic process X = (Xt)t≥0 has independent incre-
ments if, for any n ≥ 1 and 0 ≤ t0 ≤ t1 ≤ · · · ≤ tn, the random variables
Xt0 , Xt1 −Xt0 , . . . , Xtn −Xtn−1 are independent.

Alternatively, we say that X has independent increments if, for any 0 ≤
s < t, Xt −Xs is independent of Fs.

Definition 2.2. A stochastic process X = (Xt)t≥0 has stationary incre-
ments if, for any s, t ≥ 0, the distribution of Xt+s − Xs does not depend
on s. Alternatively, we say that X has stationary increments if, for any
0 ≤ s ≤ t, Xt −Xs is equal in distribution to Xt−s.

Definition 2.3. A stochastic process X = (Xt)t≥0 is stochastically contin-
uous if, for every t ≥ 0 and ε > 0

lim
s→t

IP(|Xs −Xt| > ε) = 0.

2.2. Definition of Lévy processes.

Definition 2.4 (Lévy process). An adapted, Rd-valued stochastic process
X = (Xt)t≥0 with X0 = 0 a.s. is called a Lévy process if:

(L1) X has independent increments,
(L2) X has stationary increments,
(L3) X is stochastically continuous.

In the sequel, we will always assume that X has càdlàg paths. The next
two results provide the justification.

Lemma 2.5. If X is a Lévy process and Y is a modification of X (i.e.
IP(Xt 6= Yt) = 0 a.s. for each t ≥ 0), then Y is a Lévy process and has the
same characteristics as X.

Proof. [App09, Lemma 1.4.8]. �

Theorem 2.6. Every Lévy process has a unique càdlàg modification that is
itself a Lévy process.

Proof. [App09, Theorem 2.1.8] or [Pro04, Theorem I.30]. �
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Figure 2.1. Sample paths of a linear drift processs (top-
left), a Brownian motion (top-right), a compound Poisson
process (bottom-left) and a Lévy jump-diffusion.

2.3. Examples. The following are some well-known examples of Lévy pro-
cesses:

• The linear drift is the simplest Lévy process, a deterministic process;
see Figure 5.3 for a sample path.
• The Brownian motion is the only non-deterministic Lévy process

with continuous sample paths; see Figure 5.3 for a sample path.
• The Poisson, the compound Poisson and the compensated (com-

pound) Poisson processes are also examples of Lévy processes; see
Figure 5.3 for a sample path of a compound Poisson process.

The sum of a linear drift, a Brownian motion and a (compound or com-
pensated) Poisson process is again a Lévy process. It is often called a “jump-
diffusion” process. We shall call it a Lévy jump-diffusion process, since there
exist jump-diffusion processes which are not Lévy processes. See Figure 5.3
for a sample path of a Lévy jump-diffusion process.

3. Toy example: a Lévy jump-diffusion

Let us study the Lévy jump-diffusion process more closely; it is the sim-
plest Lévy process we have encountered so far that contains both a diffusive
part and a jump part. We will calculate the characteristic function of the
Lévy jump-diffusion, since it offers significant insight into the structure of
the characteristic function of general Lévy processes.

Assume that the process X = (Xt)t≥0 is a Lévy jump-diffusion, i.e. a
linear deterministic process, plus a Brownian motion, plus a compensated
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compound Poisson process. The paths of this process are described by

Xt = bt+ σWt +
( Nt∑
k=1

Jk − tλβ
)
, (3.1)

where b ∈ R, σ ∈ R>0, W = (Wt)t≥0 is a standard Brownian motion,
N = (Nt)t≥0 is a Poisson process with intensity λ ∈ R>0 (i.e. IE[Nt] = λt),
and J = (Jk)k≥1 is an i.i.d. sequence of random variables with probability
distribution F and IE[Jk] = β < ∞. Here F describes the distribution of
the jumps, which arrive according to the Poisson process N . All sources of
randomness are assumed mutually independent.

The characteristic function of Xt, taking into account that all sources of
randomness are independent, is

IE
[
eiuXt

]
= IE

[
exp

(
iu
(
bt+ σWt +

Nt∑
k=1

Jk − tλκ
))]

= exp
[
iubt

]
IE
[

exp
(
iuσWt

)]
IE
[

exp
(
iu

Nt∑
k=1

Jk − iutλκ
)]

;

recalling that the characteristic functions of the normal and the compound
Poisson distributions are

IE[eiuσWt ] = e−
1
2
σ2u2t, Wt ∼ N (0, t)

IE[eiu
∑Nt

k=1 Jk ] = eλt(IE[eiuJk−1]), Nt ∼ Poi(λt)

(cf. Example 4.14 and Exercise 1), we get

= exp
[
iubt

]
exp

[
− 1

2
u2σ2t

]
exp

[
λt
(
IE[eiuJk − 1]− iuIE[Jk]

)]
= exp

[
iubt

]
exp

[
− 1

2
u2σ2t

]
exp

[
λt
(
IE[eiuJk − 1− iuJk]

)]
;

and since the distribution of Jk is F we have

= exp
[
iubt

]
exp

[
− 1

2
u2σ2t

]
exp

[
λt

∫
R

(
eiux − 1− iux

)
F (dx)

]
.

Finally, since t is a common factor, we can rewrite the above equation as

IE
[
eiuXt

]
= exp

[
t
(
iub− u2σ2

2
+

∫
R

(eiux − 1− iux)λF (dx)
)]
. (3.2)

We can make the following observations based on the structure of the char-
acteristic function of the random variable Xt from the Lévy jump-diffusion:

(O1) time and space factorize;
(O2) the drift, the diffusion and the jump parts are separated ;
(O3) the jump part decomposes to λ× F , where λ is the expected number

of jumps and F is the distribution of jump size.

One would naturally ask if these observations are true for any Lévy process.
The answer for (O1) and (O2) is yes, because Lévy processes have stationary
and independent increments. The answer for (O3) is no, because there exist
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Lévy processes with infinitely many jumps (on any compact time interval),
thus their expected number of jumps is also infinite.

Since the characteristic function of a random variable determines its dis-
tribution, (3.2) provides a characterization of the distribution of the random
variables Xt from the Lévy jump-diffusion X. We will soon see that this dis-
tribution belongs to the class of infinitely divisible distributions and that
equation (3.2) is a special case of the celebrated Lévy-Khintchine formula.

3.1. The basic connections. The next sections will be devoted to estab-
lishing the connection between the following mathematical objects:

• Lévy processes X = (Xt)t≥0

• infinitely divisible distributions ρ = L(X1)
• Lévy triplets (b, c, ν).

The following commutative diagram displays how these connections can be
proved, where LK stands for the Lévy–Khintchine formula, LI for the Lévy–
Itô decomposition, CFE for the Cauchy functional equation and SII for
stationary and independent increments.

(Xt)t≥0
SII //

CFE

%%KKKKKKKKK L(X1) = ρ
LI

oo
4<

LKt| qqqqqqqqq

qqqqqqqqq

(b, c, ν)
LI

eeKKKKKKKKK

Figure 3.2. The basic connections between Lévy processes,
infinitely divisible distributions and Lévy triplets.

Exercise 1. Let X = (Xt)t≥0 be a compound Poisson process with intensity
λ > 0 and jump distribution F , i.e.

Xt =

Nt∑
k=1

Jk,

where N = (Nt)t≥0 is a Poisson process with IE[Nt] = λt and J = (Jk)k≥0

is an i.i.d. sequence of random variables with distribution F . Show that

IE
[
eiuXt

]
= exp

λt ∫
R

(eiux − 1)F (dx)

 .

Exercise 2. Consider the setting of the previous exercise and assume that
IE[Jk] = β < ∞. Show that the compensated compound Poisson process
X = (Xt)t≥0 is a martingale, where

Xt = Xt − λβt.
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4. Infinitely Divisible distributions

4.1. Notation and auxiliary results. Let X be a random variable and
denote by IPX its law, by ϕX its characteristic function, and by MX its
moment generating function. They are related as follows:

ϕX(u) = IE
[
ei〈u,X〉

]
=

∫
Ω

ei〈u,X〉dIP =

∫
Rd

ei〈u,x〉IPX(dx) = MX(iu), (4.1)

for all u ∈ Rd.
Let ρ be a probability measure; we will denote by ρ̂ its characteristic

function (or Fourier transform), i.e.

ρ̂(u) =

∫
Rd

ei〈u,x〉ρ(dx). (4.2)

Let S ⊆ Rd, we will denote by B(S) the Borel σ-algebra of S and by
Bb(S) the space of bounded, Borel measurable functions from S to R. We

will also denote convergence in law by
d−→, weak convergence by

w−→ and

uniform convergence on compact sets by
uc−→.

We also recall some results from probability theory and complex analysis.

Proposition 4.1. Let ρ, ρn, n ∈ N, be probability measures on Rd.
(1) If ρn

w−→ ρ then ρ̂n(u)
uc−→ ρ̂(u).

(2) If ρ̂n(u) −→ ρ̂(u) for every u, then ρn
w−→ ρ.

(3) Let f, fn : Rd → C, n = 1, 2, . . . , be continuous functions such that
f(0) = fn(0) = 1 and f(u) 6= 0 and fn(u) 6= 0, for any u and any n.

If fn(u)
uc−→ f(u), then also log fn(u)

uc−→ log f(u).

Proof. For (1) and (2) see [Shi96, p. 325], for (3) see [Sat99, Lemma 7.7]. �

Theorem 4.2 (Lévy continuity theorem). Let (ρn)n∈N be probability mea-
sures on Rd whose characteristic functions ρ̂n(u) converge to some function
ρ̂n(u), for all u, where ρ̂ is continuous at 0. Then, ρ̂ is the characteristic

function of a probability distribution ρ and ρn
d−→ ρ.

Proof. [Dud02, Theorem 9.8.2] �

4.2. Convolution. Let µ, ρ be two probability measures on Rd. We define
the convolution of µ and ρ as

(µ ∗ ρ)(A) =

∫
Rd

∫
Rd

1A(x+ y)µ(dx)ρ(dy), (4.3)

for each A ∈ B(Rd).
Denote by A − x := {y − x : y ∈ A}, then we have that 1A(x + y) =

1A−x(y) = 1A−y(x), and Fubini’s theorem yields

(µ ∗ ρ)(A) =

∫
Rd

µ(A− x)ρ(dx) =

∫
Rd

ρ(A− y)µ(dy). (4.4)

Proposition 4.3. The convolution of two probability measures is again a
probability measure.
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Proof. [App09, Proposition 1.2.1]. �

Definition 4.4. We define the n-fold convolution of a measure ρ as

ρ∗n = ρ ∗ · · · ∗ ρ︸ ︷︷ ︸
n times

. (4.5)

We say that the measure ρ has a convolution n-th root if there exists a
measure ρn such that

ρ = (ρn)∗n. (4.6)

In the sequel we will make use of the following results.

Proposition 4.5. Let ρ1, ρ2, be Borel probability measures on Rd and let
f ∈ Bb(Rd), then∫

Rd

f(y)(ρ1 ∗ ρ2)(dy) =

∫
Rd

∫
Rd

f(x+ y)ρ1(dx)ρ2(dy). (4.7)

Proof. [App09, Proposition 1.2.2(1)]. �

Corollary 4.6. Let X1, X2 be independent random variables with marginals
ρ1, ρ2. Then, for any f ∈ Bb(Rd)

IE[f(X1 +X2)] =

∫
Rd

f(x)(ρ1 ∗ ρ2)(dx). (4.8)

In particular, for the indicator function we get

IP(X1 +X2 ∈ A) = IE[1A(X1 +X2)] = (ρ1 ∗ ρ2)(A), (4.9)

where A ∈ B(Rd).

Proof. Direct consequences of independence and Proposition 4.5. �

4.3. Infinite divisibility. We start by defining infinitely divisible random
variables and then provide some properties of their probability distributions
and characteristic functions.

Definition 4.7. A random variable X is infinitely divisible if, for all n ∈ N,

there exist i.i.d. random variables X
(n)
1 , . . . , X

(n)
n such that

X
d
= X

(n)
1 + · · ·+X(n)

n . (4.10)

The next result provides some insight into the structure of infinitely di-
visible distributions.

Proposition 4.8. The following are equivalent:

(1) X is infinitely divisible;
(2) IPX has a convolution n-th root that is itself the law of a random

variable, for all n ∈ N;
(3) ϕX has an n-th root that is itself the characteristic function of a

random variable, for all n ∈ N.
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Proof. (1)⇒ (2) Since X is infinitely divisible, we have for any A ∈ B(Rd)

IPX(A) = IP(X ∈ A) = IP(X
(n)
1 + · · ·+X(n)

n ∈ A)

= (IP
X

(n)
1

∗ · · · ∗ IP
X

(n)
n

)(A) (by independence and (4.9))

= (IPX(n) ∗ · · · ∗ IPX(n))(A) (by identical laws)

= (IPX(n))∗n(A). (4.11)

(2)⇒ (3) Since IPX has a convolution n-th root, we have

ϕX(u) =

∫
Rd

ei〈u,x〉IPX(dx) =

∫
Rd

ei〈u,x〉(IPX(n) ∗ · · · ∗ IPX(n))(dx)

=

∫
Rd

. . .

∫
Rd

ei〈u,x1+···+xn〉IPX(n)(dx1) . . . IPX(n)(dxn) (Prop. 4.5)

=

n∏
i=1

∫
Rd

ei〈u,xi〉IPX(n)(dxi) (by independence)

=
n∏
i=1

ϕX(n)(u) =
(
ϕX(n)(u)

)n
. (4.12)

(3) ⇒ (1) Choose X
(n)
1 , . . . , X

(n)
n to be independent copies of a given r.v.

X(n). Since the characteristic function has an n-th root, we get

IE
[
ei〈u,X〉

]
= ϕX(u)

=
(
ϕX(n)(u)

)n
=

n∏
i=1

ϕ
X

(n)
i

(u)

= IE
[
e
i
〈
u,X

(n)
1 +···+X(n)

n

〉]
(by independence), (4.13)

and the result follows, since the characteristic function deteremines the law
of a random variable. �

These results motivate us to give the following more general definition of
infinite divisibility.

Definition 4.9. A probability measure ρ is infinitely divisible if, for all
n ∈ N, there exists another probability measure ρn such that

ρ = ρn ∗ · · · ∗ ρn︸ ︷︷ ︸
n times

. (4.14)

Proposition 4.10. A probability measure ρ is infinitely divisible if and only
if, for all n ∈ N, there exists another probability measure ρn such that

ρ̂(u) =
(
ρ̂n(u)

)n
. (4.15)

Proof. Similar to the proof of Proposition 4.8, thus left as an exercise. �

Next, we will discuss some properties of infinitely divisible distributions,
in particular that they are closed under convolutions and weak limits.

Lemma 4.11. If µ, ρ are infinitely divisible probability measures then µ ∗ ρ
is also infinitely divisible.
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Proof. Since µ and ρ are infinitely divisible, we know that for any n ∈ N it
holds

µ = (µn)∗n and ρ = (ρn)∗n. (4.16)

Hence, from the commutativity of the convolution we get that

µ ∗ ρ = (µn)∗n ∗ (ρn)∗n = (µn ∗ ρn)∗n. �

Lemma 4.12. If ρ is infinitely divisible then ρ̂(u) 6= 0 for any u ∈ Rd.

Proof. Since ρ is infinitely divisible, we know that for every n ∈ N there
exists a measure ρn such that ρ̂ = (ρ̂n)n. Using [Sat99, Prop. 2.5(v)] we have

that |ρ̂n(u)|2 = |ρ̂(u)|2/n is a characteristic function. Define the function

ϕ(u) = lim
n→∞

|ρ̂n(u)|2 = lim
n→∞

|ρ̂(u)|2/n =

{
1, if ρ̂(u) 6= 0

0, if ρ̂(u) = 0.

Since ρ̂(0) = 1 and ρ̂ is a continuous function, we get that ϕ(u) = 1 in a
neighborhood of 0. Now, using Lévy’s continuity theorem we get that ϕ(u)
is a continuous function, thus ϕ(u) = 1 for all u ∈ Rd. Hence ρ̂(u) 6= 0 for
any u ∈ Rd. �

Lemma 4.13. If (ρk)k≥0 is a sequence of infinitely divisible distributions

and ρk
w−→ ρ, then ρ is also infinitely divisible.

Proof. Since ρk
w−→ ρ as k → ∞ we get from Proposition 4.1(1) that

ρ̂k(z)
uc−→ ρ̂(z) and ρ̂ is the characteristic function of the probability measure

ρ. In order to prove the claim, it suffices to show that ρ̂1/n is well-defined
and the characteristic function of a probability measure. Then, the trivial

equality ρ̂(z) = (ρ̂(z)n)1/n yields that ρ is infinitely divisible.
Since ρ̂k and ρ̂ are characteristic functions, we know that they are con-

tinuous and ρ̂k(0) = ρ̂(0) = 1 for every k. Moreover, ρ̂k is the characteristic
function of an infinitely divisible distribution, thus from Lemma 4.12 we get
that ρ̂k(u) 6= 0 for any k, u. One can also show that ρ̂(u) 6= 0 for every u, see
[Sat99, Lemma 7.8]. Therefore, we can apply Proposition 4.1(3) and we get

that log ρ̂k(u)
uc−→ log ρ̂(u), hence also ρ̂k(u)1/n uc−→ ρ̂(u)1/n, for every n, as

k →∞. We have that ρ̂
1/n
k is a continuous function, and using the uniform

convergence to ρ̂1/n, we can conclude that this is also continuous (around

zero). Now, an application of Lévy’s continuity theorem yields that ρ̂1/n is
the characteristic function of a probability distribution. �

4.4. Examples. Below we present some examples of infinitely divisible dis-
tributions. In particular, using Proposition 4.8 we can easily show that the
normal, the Poisson and the exponential distributions are infinitely divisible.
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Example 4.14 (Normal distribution). Let X ∼ N (µ, σ2), then we have

ϕX(u) = exp

(
iuµ− 1

2
u2σ2

)
= exp

(
n
[
iu
µ

n
− 1

2
u2σ

2

n

])
(4.17)

=

(
exp

[
iu
µ

n
− 1

2
u2σ

2

n

])n
=
(
ϕX(n)(u)

)n
,

where X(n) ∼ N (µn ,
σ2

n ).

Example 4.15 (Poisson distribution). Let X ∼ Poi(λ), then we have

ϕX(u) = exp
(
λ(eiu − 1)

)
=

(
exp

[λ
n

(eiu − 1)
])n

(4.18)

=
(
ϕX(n)(u)

)n
,

where X(n) ∼ Poi(λn).

Example 4.16 (Exponential distribution). Let X ∼ Exp(λ), then we have

ϕX(u) =

(
1− iu

λ

)−1

=

[(
1− iu

λ

)− 1
n

]n
(4.19)

=
(
ϕX(n)(u)

)n
,

where X(n) ∼ Γ( 1
n , λ).

Remark 4.17. Other examples of infinitely divisible distributions are the
geometric, the negative binomial, the Cauchy and the strictly stable distri-
butions. Counter-examples are the uniform and the binomial distributions.

Exercise 3. Show that the law of the random variable

Xt = bt+ σWt +

Nt∑
k=1

Jk, (t ≥ 0, fixed) (4.20)

is infinitely divisible, without using Proposition 4.8.

4.5. Lévy processes have infinitely divisible laws. We close this sec-
tion by taking a glimpse of the deep connections between infinitely divis-
ible distributions and Lévy processes. In particular, we will show that if
X = (Xt)t≥0 is a Lévy process then Xt is an infinitely divisible random
variable (for all t ≥ 0).

Lemma 4.18. Let X = (Xt)t≥0 be a Lévy process. Then the random vari-
ables Xt, t ≥ 0, are infinitely divisible.

Proof. Let X = (Xt)t≥0 be a Lévy process; for any n ∈ N and any t > 0 we
trivially have that

Xt = X t
n

+ (X 2t
n
−X t

n
) + . . .+ (Xt −X (n−1)t

n

). (4.21)

The stationarity of the increments of the Lévy process yields that

X tk
n
−X t(k−1)

n

d
= X t

n
,
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for any k ≥ 1, while the independence of the increments yields that the
random variables X tk

n
−X t(k−1)

n

, k ≥ 1, are indepedent of each other. Thus,

(X tk
n
−X t(k−1)

n

)k≥1 is an i.i.d. sequence of random variables, and from Defini-

tion 4.7 we conclude that the random variable Xt is infinitely divisible. �

5. The Lévy–Khintchine representation

The next result provides a complete characterization of infinitely divisible
distributions in terms of their characteristic functions. This is the celebrated
Lévy-Khintchine formula. B. de Finetti and A. Kolmogorov were the first
to prove versions of this representation under certain assumptions. P. Lévy
and A. Khintchine indepedently proved it in the general case, the former by
analyzing the sample paths of the process and the latter by a direct analytic
method.

5.1. Statement, “if part”. We first define a Lévy measure and then state
the Lévy–Khintchine representation and prove the “if part” of the theorem.

Definition 5.1 (Lévy measure). Let ν be a Borel measure on Rd. We say
that ν is a Lévy measure if it satisfies

ν({0}) = 0 and

∫
Rd

(|x|2 ∧ 1)ν(dx) <∞. (5.1)

Remark 5.2. Since |x|2 ∧ ε ≤ |x|2 ∧ 1 for all 0 < ε ≤ 1, it follows that
ν
(
(−ε, ε)c

)
<∞ for all ε > 0. In other words, any Lévy measure becomes a

probability measure once restricted to the complement of an ε-neighborhood
of the origin (after an appropriate normalization).

Theorem 5.3 (Lévy–Khintchine). A measure ρ is infinitely divisible if and
only if there exists a triplet (b, c, ν) with b ∈ Rd, c a symmetric, non-negative
definite, d× d matrix, and ν a Lévy measure, such that

ρ̂(u) = exp

i 〈u, b〉 − 〈u, cu〉
2

+

∫
Rd

(
ei〈u,x〉 − 1− i 〈u, x〉 1D

)
ν(dx)

 . (5.2)

Here D denotes the closed unit ball in Rd, i.e. D := {|x| ≤ 1}.

Definition 5.4. We will call (b, c, ν) the Lévy or characteristic triplet of
the infinitely divisible measure ρ. We call b the drift characteristic and c the
Gaussian or diffusion characteristic.

Example 5.5. An immediate consequence of Definitions 5.1 and 5.4 and
Theorem 5.3 is that the distribution of the r.v. X1 from the Lévy jump-
diffusion is infinitely divisible with Lévy triplet(

b−
∫
Dc

xλF (dx), σ2, λ× F
)
.
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Proof of Theorem 5.3, “If” part. Let (εn)n∈N be a sequence in R, monotonic
and decreasing to zero (e.g. εn = 1

n). Define for all u ∈ Rd and n ∈ N

ρ̂n(u) = exp

(
i
〈
u, b−

∫
εn<|x|≤1

xν(dx)
〉
− 〈u, cu〉

2
+

∫
|x|>εn

(ei〈u,x〉 − 1)ν(dx)

)
.

Each ρ̂n is the characteristic function of the convolution of a normal and a
compound Poisson distribution, hence ρ̂n is the characteristic function of an
infinitely divisible probability measure ρn. We clearly have that

lim
n→∞

ρ̂n(u) = ρ̂(u).

Then, by Lévy’s continuity theorem and Lemma 4.13, ρ̂ is the characteristic
function of an infinitely divisible law, provided that ρ̂ is continuous at 0.

Now, continuity of ρ̂ at 0 boils down to the continuity of the integral term
in (5.2), i.e.

ψν(u) :=

∫
Rd

(ei〈u,x〉 − 1− i 〈u, x〉 1D(x))ν(dx)

=

∫
D

(ei〈u,x〉 − 1− i 〈u, x〉)ν(dx) +

∫
Dc

(ei〈u,x〉 − 1)ν(dx).

Using Taylor’s expansion, the Cauchy–Schwarz inequality, the definition of
the Lévy measure and dominated convergence, we get

|ψν(u)| ≤ 1

2

∫
D

| 〈u, x〉 |2ν(dx) +

∫
Dc

|ei〈u,x〉 − 1|ν(dx)

≤ |u|
2

2

∫
D

|x2|ν(dx) +

∫
Dc

|ei〈u,x〉 − 1|ν(dx)

−→ 0 as u→ 0. �

Exercise 4 (Frullani integral). (i) Consider a function f such that f ′ exists
and is continuous, and f(0), f(∞) are finite. Show that

∞∫
0

f(ax)− f(bx)

x
dx = (f(0)− f(∞)) log

(
b

a

)
,

for b > a > 0.
(ii) Consider the function f(x) = e−x and set a = α > 0 and b = β = α−z

with z < 0. Show that

exp
( ∞∫

0

(ezx − 1)
β

x
e−αxdx

)
=

1

(1− z/α)β
.

Explain why this equality remains true for z ∈ C with <z ≤ 0.

Exercise 5. Consider the Γ(α, β) distribution, described by the density

fα,β(x) =
αβ

Γ(β)
xβ−1e−αx,

concentrated on (0,∞).
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(i) Compute the characteristic function of the Γ(α, β) distribution and
show it is infinitely divisible.

(ii) Show that the Lévy triplet of the Γ(α, β) distribution is

b =

1∫
0

xν(dx), c = 0, ν(dx) = βx−1e−αxdx.

5.2. Truncation functions and uniqueness. We will now introduce trun-
cation functions and discuss about the uniqueness of the representation (5.2).

The integrand in (5.2) is integrable with respect to the Lévy measure ν
because it is bounded outside any neighborhoud of zero and

ei〈u,x〉 − 1− i 〈u, x〉 1D(x) = O(|x|2) as |x| → 0, (5.3)

for any fixed u. There are many other ways to construct an integrable in-
tegrand, and we will be particularly interested in continuous ones because
they are suitable for limit arguments. This leads to the notion of a trunca-
tion function. The following definitions are taken from [JS03] and [Sat99]
respectively.

Definition 5.6. A truncation function is a bounded function h : Rd → Rd
that satisfies h(x) = x in a neighborhood of zero.

Definition 5.7. A truncation function h′ : Rd → R is a bounded and
measurable function, satisfying

h′(x) = 1 + o(|x|), as |x| → 0, (5.4)

h′(x) = O(1/|x|), as |x| → ∞. (5.5)

Remark 5.8. The two definitions are related via h(x) = x · h′(x).

Example 5.9. The following are some well-known examples of truncation
functions:

(i) h(x) = x1D(x), typically called the canonical truncation function;
(ii) h(x) ≡ 0 and h(x) ≡ x, are also commonly used truncation functions;

note that contrary to the other two examples, these are not always
permissible choices;

(iii) h(x) = x
1+|x|2 , a continuous truncation function.

The Lévy–Khintchine representation of ρ̂ in (5.2) depends on the choice
of the truncation function. Indeed, if we use another truncation function h
instead of the canonical one, then (5.2) can be rewritten as

ρ̂(u) = exp

i 〈u, bh〉 − 〈u, cu〉
2

+

∫
Rd

(
ei〈u,x〉 − 1− i 〈u, h(x)〉

)
ν(dx)

 ,

(5.6)

with bh defined as follows:

bh = b+

∫
Rd

(
h(x)− x1D(x)

)
ν(dx). (5.7)
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Figure 5.3. Illustration of the canonical and the continuous
truncation functions from Example 5.9.

If we want to stress the dependence of the Lévy triplet on the truncation
function, we will denote it by

(bh, c, ν)h or (b, c, ν)h.

Note that diffusion characteristic c and the Lévy measure ν are invariant
with respect to the choice of the truncation function.

Remark 5.10. There is no rule about which truncation function to use,
among the permissible choices. One simply has to be consistent with ones
choice of a truncation function. That is, the same choice should be made for
the Lévy–Khintchine representation of the characteristic function, the Lévy
triplet and the path decomposition of the Lévy process.

Example 5.11. Let us revisit the Lévy jump-diffusion process (3.1). In
this example, since the Lévy measure is finite and we have assumed that
IE[Jk] < ∞, all the truncation functions of Example 5.9 are permissible.
The Lévy triplet of this process with respect to the canonical truncation
function was presented in Example 5.5. The triplets with respect to the zero
and the linear truncation functions are(

b−
∫
R
xλF (dx), σ2, λ× F

)
0

and
(
b, σ2, λ× F

)
id
.

Although the Lévy–Khintchine representation depends on the choice of
the truncation function, the Lévy triplet determines the law of the distribu-
tion uniquely (once the truncation function has been fixed).

Proposition 5.12. The representation of ρ̂ by (b, c, ν) in (5.2) is unique.

Sketch of Proof. We will outline the argument for the diffusion coefficient c;
the complete proof can be found in [Sat99, Theorem 8.1(ii)].

Let ρ̂ be expressed by (b, c, ν)according to (5.2). By Taylor’s theorem we
get that

|ei〈u,x〉 − 1− i 〈u, x〉 1D(x)| ≤ 1

2
|u|2|x|21D(x) + 21Dc(x). (5.8)

Since the exponent in (5.2) is continuous in u, we have

log ρ̂(su) = −s2 〈u, cu〉
2

+ is 〈u, b〉+

∫
Rd

(
eis〈u,x〉 − 1− is 〈u, x〉 1D(x)

)
ν(dx),
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for s ∈ R. Now, by (5.8) and dominated convergence we get

s−2 log ρ̂(su) −→ −〈u, cu〉
2

, as s→∞. (5.9)

Therefore, the diffusion coefficient c is uniquely identified by ρ. The proof for
ν is analogous, while once c, ν are uniquely determined, then b is identified
as well. �

5.3. Proof, “only if” part. The next theorem contains an essential step
in the proof of the “only if” part of the Lévy–Khintchine representation
(Theorem 5.3). We denote by C] the space of bounded continuous functions

f : Rd → R, vanishing in a neighborhood of 0.

Theorem 5.13. Let h′ : Rd → R be a continuous truncation function, i.e.
satisfying (5.4) and (5.5). Suppose that ρn, n ∈ N, are infinitely divisible
distributions on Rd and that each ρ̂n has the Lévy–Khintchine representation
with triplet (βn, cn, νn)h. Let ρ be a probability distribution on Rd. Then

ρn
w−→ ρ if and only if (i) ρ is infinitely divisible and (ii) ρ̂ has the Lévy–

Khintchine representation with triplet (β, c, ν)h, where β, c and ν satisfy the
following conditions:

(1) If f ∈ C] then

lim
n→∞

∫
Rd

f(x)νn(dx) =

∫
Rd

f(x)ν(dx). (5.10)

(2) Define the symmetric, non-negative definite matrices cn,ε via

〈u, cn,εu〉 = 〈u, cnu〉+

∫
|x|≤ε

〈u, x〉2 νn(dx). (5.11)

Then

lim
ε↓0

lim sup
n→∞

∣∣ 〈u, cn,εu〉 − 〈u, cu〉 ∣∣ = 0 for u ∈ Rd. (5.12)

(3) βn → β.

Proof. “Only If” part. Assume that ρn → ρ. Then ρ is infinitely divisible
(by Lemma . . . ) and ρ̂(u) 6= 0 for all u (by Lemma . . . ). It follows from
Lemma . . . and Proposition . . . that

log ρ̂n(u)→ log ρ̂(u) (5.13)

uniformly on any compact set.
Define the measure φn(dx) = (|x|2 ∧ 1)νn(dx), and note that φn(Rd) =∫

Rd φn(dx) <∞ by the definition of the Lévy measure. We claim that (φn)
is tight, i.e. that

sup
n
φn(Rd) <∞ and lim

l→∞
sup
n

∫
|x|>l

φn(dx) = 0; (5.14)

for a proof of the tightness of (φn) we refer to [Sat99, pp.. . . ]. Then, by
Prokhorov’s selection theorem [. . . ] there exists a subsequence (φnk

) that
converges to some finite measure φ.
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Now, define ν via: ν({0}) = 0 and ν(dx) = (|x|2 ∧ 1)−1φ(dx) on the set
{|x| > 0}. The measure φ might have a point mass at 0, but this is ignored
when defining ν. Let

g(u, x) = ei〈u,x〉 − 1− i 〈u, h(x)〉 , (5.15)

which is bounded and continuous in x, for fixed u, due to the choice of a
continuous truncation function h. We have that

log ρ̂n(u) = −1

2
〈u,Anu〉+ i 〈u, βn〉+

∫
Rd

g(u, x)νn(dx)

= −1

2
〈u,An,εu〉+ i 〈u, βn〉+ In,ε + Jn,ε, (5.16)

where

In,ε =

∫
|x|≤ε

(
g(u, x) +

1

2
〈u, x〉2

)
(|x|2 ∧ 1)−1ρn(dx) (5.17)

and

Jn,ε =

∫
|x|>ε

g(u, x)(|x|2 ∧ 1)−1ρn(dx). (5.18)

Let E := {ε > 0 :
∫
|x|=ε ρ(dx) = 0}, then

lim
k→∞

Jnk,ε =

∫
|x|>ε

g(u, x)(|x|2 ∧ 1)−1ρ(dx) (5.19)

hence

lim
E3ε↓0

lim
k→∞

Jnk,ε =

∫
Rd

g(u, x)ν(dx), (5.20)

because g ∈ C]. Furthermore,

lim
ε↓0

sup
n
|In,ε| = 0, (5.21)

since (
g(u, x) +

1

2
〈u, x〉2

)
(|x|2 ∧ 1)−1 −→x→0 0, (5.22)

by the definition of the truncation function h.
Consider the real and imaginary part in (5.16) separately, then:

lim sup
k→∞

〈u, βnk
〉 = lim inf

k→∞
〈u, βnk

〉 =⇒ βnk
−→ β, (5.23)

. . . (5.24)

It follows that ρ̂(u) has the Lévy–Khintchine representation with triplet
(β, c, ν)h and that (1), (2), (3) hold via the subsequence (ρnk

). The β, c and
ν in the triplet are unique, hence the results hold for any subsequence and
thus for the whole sequence. �

Finally, using the “only if” part of Theorem 5.13 we are ready to complete
the proof of Theorem 5.3.
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Proof of Theorem 5.3, “Only If” part. Let ρ be an infinitely divisible distri-
bution. Choose a sequence tn ↓ 0 arbitrarily, and define ρn via

ρ̂n(u) = exp
(
t−1
n

(
ρ̂(u)tn − 1

) )
= exp

t−1
n

∫
Rd\{0}

(
ei〈u,x〉 − 1

)
ρtn(dx)

 .

(5.25)

Clearly, the distribution ρn is compound Poisson and thus also infinitely
divisible. Moreover, Taylor’s expansion yields

ρ̂n(u) = exp
(
t−1
n

(
etn log ρ̂(u) − 1

))
= exp

(
t−1
n

(
tn log ρ̂(u) +O(t2n)

))
= exp

(
log ρ̂(u) +O(tn)

)
, (5.26)

for fixed u, as n→∞. Hence ρ̂n(u)→ ρ̂(u) as n→∞.
Since ρn is infinitely divisible it has the Lévy–Khintchine representa-

tion (5.2) for some triplet (bn, cn, νn)h (in this case with h ≡ 0). However,

ρ̂n(u) −→ ρ̂(u) implies that ρn
w−→ ρ, by Proposition 4.1. Hence, using

Theorem 5.13 yields that ρ̂ has the Lévy–Khintchine representation with
some triplet (b, c, ν)h. Now, we can rewrite this as (5.1) and the result is
proved. �

Corollary 5.14. Every infinitely divisible distribution is the limit of a se-
quence of compound Poisson distributions.

5.4. The Lévy–Khintchine formula for Lévy processes. In section 4.5
we showed that for any Lévy process X = (Xt)t≥0, the random variables Xt

are infinitely divisible. Next, we would like to compute the characteristic
function of Xt. Since Xt is infinitely divisible for any t ≥ 0, we know that
X1 is also infinitely divisible and has the Lévy–Khintchine representation in
terms of some triplet (b, c, ν).

Definition 5.15. We define the Lévy exponent ψ of X by

ψ(u) = i 〈u, b〉 − 〈u, cu〉
2

+

∫
R

(
ei〈u,x〉 − 1− i 〈u, x〉 1D(x)

)
ν(dx), (5.27)

where

IE
[
ei〈u,X1〉] = eψ(u). (5.28)

Theorem 5.16. Let X = (Xt)t≥0 be a Lévy process, then

IE
[
ei〈u,Xt〉] = etψ(u), (5.29)

where ψ is the Lévy exponent of X.

Proof. Define the function φu(t) = IE[ei〈u,Xt〉]. Using the independence and
stationarity of the increments we have that

φu(t+ s) = IE[ei〈u,Xt+s〉] = IE[ei〈u,Xt+s−Xs〉e〈iu,Xs〉]

= IE[ei〈u,Xt+s−Xs〉]IE[e〈iu,Xs〉] = φu(t)φu(s). (5.30)

Moreover, φu(0) = IE[ei〈u,X0〉] = 1 by definition. Since X is stochastically
continuous we can show that t 7→ φu(t) is continuous (cf. Exercise 6).
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Notice that (5.30) is Cauchy’s second functional equation. The unique
continuous solution to this equation has the form

φu(t) = etϑ(u), where ϑ : Rd → C.

Now the result follows since X1 is infinitely divisible, which yields

φu(1) = IE[ei〈u,X1〉] = eψ(u).

�

Corollary 5.17. The infinitely divisible random variable Xt has the Lévy
triplet (bt, ct, νt).

Exercise 6. Let X = (Xt)t≥0 be a stochastically continuous process. Show
that the map t 7→ ϕXt(u) is continuous for every u ∈ Rd.

Exercise 7. Let X be a Lévy process with triplet (b, c, ν). Show that −X
is also a Lévy process and determine its triplet.

6. The Lévy–Itô decomposition

In the previous sections, we showed that for any Lévy processX = (Xt)t≥0

the random variables Xt, t ≥ 0 have an infinitely divisible distribution and
determined this distribution using the Lévy–Khintchine representation. The
aim of this section is to prove an “inverse” result: starting from an infinitely
divisible distribution ρ, or equivalently from a Lévy triplet (b, c, ν), we want
to construct a Lévy process X = (Xt)t≥0 such that IPX1 = ρ.

Theorem 6.1. Let ρ be an infinitely divisible distribution with Lévy triplet
(b, c, ν), where b ∈ Rd, c ∈ Sd>0 and ν is a Lévy measure. Then, there exists a
probability space (Ω,F , IP) on which four independent Lévy processes exist,

X(1), . . . , X(4), where: X(1) is a constant drift, X(2) is a Brownian motion,
X(3) is a compound Poisson process and X(4) is a square integrable, pure
jump martingale with an a.s. countable number of jumps of magnitude less
than 1 on each finite time interval. Setting X = X(1) + · · ·+X(4), we have
that there exists a probability space on which a Lévy process X = (Xt)t≥0 is
defined, with Lévy exponent

ψ(u) = i 〈u, b〉 − 〈u, cu〉
2

+

∫
Rd

(
ei〈u,x〉 − 1− i 〈u, x〉 1D(x)

)
ν(dx) (6.1)

for all u ∈ Rd, and path, or Lévy–Itô, decomposition

Xt = bt+
√
cWt +

t∫
0

∫
Dc

xµX(ds, dx) +

t∫
0

∫
D

x(µX − νX)(ds, dx), (6.2)

where νX = Leb⊗ ν.
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6.1. Roadmap of the Proof. We first provide an informal description of
the proof, in order to motivate the mathematical tools required. Consider
the exponent in the Lévy–Khintchine formula and rewrite it as follows:

ψ(u) = ψ(1)(u) + ψ(2)(u) + ψ(3)(u) + ψ(4)(u)

= i 〈u, b〉 − 〈u, cu〉
2

+ ν(Dc)

∫
Dc

(
ei〈u,x〉 − 1

) ν(dx)

ν(Dc)

+

∫
D

(
ei〈u,x〉 − 1− i 〈u, x〉

)
ν(dx). (6.3)

Clearly ψ(1) corresponds to the characteristic exponent of a linear drift pro-
cess with rate b, ψ(2) to a Brownian motion with covariance matrix c, and
ψ(3) to a compound Poisson process with intensity λ := ν(Dc) and jump

distribution F (dx) := ν(dx)
ν(Dc)1Dc(dx).

The most difficult part is to handle the process with characteristic expo-
nent ψ(4). We can express this as follows:

ψ(4)(u) =

∫
D

(
ei〈u,x〉 − 1− i 〈u, x〉

)
ν(dx)

=
∑
n≥0

λn ∫
Dn

(
ei〈u,x〉 − 1

)
νn(dx)− i

〈
u, λn

∫
Dn

xνn(dx)
〉 ,

where we define the discs Dn := {2−(n+1) ≤ |x| < 2−n}, the intensities

λn := ν(Dn) and the probability measures νn(dx) := ν(dx)
λn

1Dn(dx) (see

again Remark 5.2). We can intuitively understand this as the Lévy exponent
of a superposition of compound Poisson processes with arrival rates λn and
jump distributions νn, and an additional drift term that turns these processes
into martingales. In order to convert this intuition into precise mathematical
statements, we will need results on Poisson random measures and square
integrable martingales.

6.2. Poisson random measures. Let us first consider a compound Pois-
son process with drift X = (Xt)t≥0, with

Xt = bt+

Nt∑
k=1

Jk,

where b ∈ R, N is a Poisson process with intensity λ and J = (Jk)k≥0 is
an i.i.d. sequence of random variables with distribution F . This process has
a finite number of jumps in any finite time interval, and the time between
consecutive jumps is exponentially distributed with parameter λ, the rate
of the Poisson process. Denote the jump times of X by (Tk)k≥1, and for a
set A ∈ B(R+)× B(R\{0}) define the random variable µ(A) via

µ(A) := #{k ≥ 1 : (Tk, Jk) ∈ A} =
∑
k≥1

1{(Tk,Jk)∈A}.
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The random variable µ(A) takes values in N and counts the total number of
jumps that belong to the time-space set A. The following lemma provides
some important properties of µ.

Lemma 6.2. Suppose that A1, . . . , Ak, k ≥ 1 are disjoint subsets of B(R+)×
B(R\{0}). Then µ(A1), . . . , µ(Ak) are mutually independent random vari-
ables, and for each i ∈ {1, . . . , k} the random variable µ(Ai) has a Poisson
distribution with intensity

λi = λ

∫
Ai

dt× F (dx).

Moreover, for IP-a.e. realization of X, µ : B(R+)×B(R\{0})→ N∪ {∞} is
a measure.

Exercise 8. Prove Lemma 6.2. Steps and Hints:

(i) Recall that the law of {T1, . . . , Tn} conditioned on the event {Nt = n}
has the same law as the ordered independent sample from n uniformly
distributed r.v. on [0, t].

(ii) Use (i) and the independence of Jk to show that the law of {(Tk, Jk), k =
1, . . . , n} conditioned on {Nt = n} equals the law of n independent
bivariate r.v. with common distribution t−1ds × F (dx) on [0, t] × R,
ordered in time.

(iii) Show that, for A ∈ B([0, t]) × B(R), µ(A) conditioned on {Nt = n} is
a Binomial r.v. with probability of success

∫
A t
−1ds× F (dx).

(iv) Show that

IP(µ(A1) = n1, . . . , µ(Ak) = nk|Nt = n) =
n!

n0!n1! . . . nk!

k∏
i=0

(
λi
λt

)ni

,

where n0 = n−
∑k

i=1 ni and λ0 = λt−
∑k

i=1 λi.
(v) Finally, integrate out the conditioning to show that

IP(µ(A1) = n1, . . . , µ(Ak) = nk) =

k∏
i=1

e−λi
(λi)

ni

ni!
.

The random measure introduced above is a special case of the more gen-
eral notion of a Poisson random measure, defined as follows.

Definition 6.3 (Poisson random measure). Let (E, E , ν) be a σ-finite mea-
sure space. Consider a mapping µ : E → N ∪ {∞} such that {µ(A) : A ∈ E}
is a family of random variables defined on some probability space (Ω,F , IP).
Then µ is called a Poisson random measure with intensity ν if

(1) µ is IP-a.s. a measure on (E, E);
(2) for each A ∈ E , µ(A) is Poisson distributed with parameter ν(A),

where ν(A) ∈ [0,∞];
(3) for mutually disjoint sets A1, . . . , An in E , the random variables

µ(A1), . . . , µ(An) are independent.

Remark 6.4. Note that if ν(A) = 0 then we get that IP(µ(A) = 0) = 1,
while if ν(A) =∞ then we have that IP(µ(A) =∞) = 1.
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Exercise 9. Show that every Lévy measure is a σ-finite measure on Rd\{0},
i.e. there exist sets (Ai)i∈N such that ∪iAi = Rd\{0} and ν(Ai) <∞, for all
i ∈ N.

Theorem 6.5. Let (E, E , ν) be a σ-finite measure space. Then, a Poisson
random measure µ as defined above always exists.

Proof. Step 1. Assume that ν(E) < ∞. There is a standard construction
of an infinite product space (Ω,F , IP) on which the following independent
random variables are defined:

N and {v1, v2, . . . },

such that N is Poisson distributed with intensity ν(E) and each vi has the

probability distribution ν(dx)
ν(E) . Define, for every A ∈ E

µ(A) =

N∑
i=1

1{vi∈A}, (6.4)

such that N = µ(E). For each A ∈ E and i ≥ 1, the random variables
1{vi∈A} are F-measurable, hence µ(A) is also F-measurable. Let A1, . . . , Ak
be mutually disjoint sets, then we can show that

IP(µ(A1) = n1, . . . , µ(Ak) = nk) =
k∏
i=1

e−ν(Ai)
(ν(Ai))

ni

ni!
; (6.5)

the derivation is similar to the proof of Lemma 6.2. Now, we can directly
deduce that conditions (1)–(3) in the definition of a Poisson random measure
are satisfied.

Step 2. Let ν be a σ-finite measure on (E, E). Then, there exist subsets
(Ai)i≥1 of E such that ∪iAi = E and ν(Ai) <∞. Define the measures

νi(·) := ν(· ∩Ai), i ≥ 1.

The first step yields that for each i ≥ 1 there exists a probability space
(Ωi,Fi, IPi) such that a Poisson random measure µi can be defined on
(Ai, Ei, νi), where Ei := {B ∩Ai, B ∈ E}. Now, we just have to show that

µ(·) :=
∑
i≥1

µ(· ∩Ai),

is a Poisson random measure on E with intensity ν, defined on the product
space

(Ω,F , IP) :=
⊗
i≥1

(Ωi,Fi, IPi).

. . . �

The construction of the Poisson random measure leads immediately to
the following corollaries.

Corollary 6.6. Let µ be a Poisson random measure on (E, E , ν). Then,
for every A ∈ E, we have that µ(· ∩ A) is a Poisson random measure on
(E ∩A, E ∩A, ν(· ∩A)). Moreover, if A,B ∈ E are disjoint, then the random
variables µ(· ∩A) and µ(· ∩B) are independent.
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Corollary 6.7. Let µ be a Poisson random measure on (E, E , ν). Then, the
support of µ is IP-a.s. countable. If, in addition, ν is a finite measure, then
the support of µ is IP-a.s. finite.

Corollary 6.8. Assume that the measure ν has an atom, say at the point
ε ∈ E. Then, it follows from the construction of the Poisson random measure
µ that IP(µ({ε}) ≥ 1) > 0. Conversely, if ν has no atoms then IP(µ({ε}) =
0) = 1 for all singletons ε ∈ E.

6.3. Integrals wrt Poisson random measures. Let µ be a Poisson ran-
dom measure defined on the space (E, E , ν). The fact that µ is IP-a.s. a
measure, allows us to use Lebesgue’s theory of integration and consider, for
a measurable function f : E → [0,∞),∫

E

f(x)µ(dx),

which is then a well-defined, [0,∞]-valued random variable. The same holds
true for a signed function f , which yields a [−∞,∞]-valued random variable,
provided that either f+ or f− are finite. This integral can be understood as
follows: ∫

E

f(x)µ(dx) =
∑

v∈supp(µ)

f(v) ·mv,

where mv denotes the multiplicity of points at v (e.g., if µ has no atoms
then mv = 0 for every v). Convergence of integrals with respect to Poisson
random measures and related properties are provided by the following result.

Theorem 6.9. Let µ be a Poisson random measure on (E, E , ν) and f :
E → Rd be a measurable function. Then:

(i) X =
∫
E f(x)µ(dx) is almost surely absolutely convergent if and only if∫

E

(1 ∧ |f(x)|)ν(dx) <∞. (6.6)

(ii) If (6.6) holds then

IE
[
ei〈u,X〉

]
= exp

∫
E

(
ei〈u,f(x)〉 − 1

)
ν(dx)

 . (6.7)

(iii) Moreover, if f ∈ L1(ν) then

IE[X] =

∫
E

f(x)ν(dx), (6.8)

while if f ∈ L2(ν) then

Var[X] =

∫
E

f(x)2ν(dx). (6.9)
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Proof. Theorem 2.7 in [Kyp06]. The proof follows the “usual” recipe of first
showing the result for a simple function f , then for a positive function using
monotone convergence and finally for a general function by writing it as a
difference of two positive functions. �

6.4. Poisson random measures and stochastic processes. In the se-
quel, we want to make the connection between Poisson random measures
and stochastic processes. We will work in the following σ-finite space:(

E, E , νX
)

=
(
R>0 × Rd,B(R>0)× B(Rd),Leb⊗ ν

)
where ν is a Lévy measure; see again Definition 5.1. We will denote the
Poisson random measure on this space by µX . If we consider a time-space
interval of the form [s, t] × A, s ≤ t, where A ⊂ Rd such that 0 /∈ A, then
the integral with respect to µX , denoted by∫

[s,t]

∫
A

xµX(ds, dx) =: X, (6.10)

is a compound Poisson random variable with intensity (t − s) · ν(A). This
follows directly from Theorem 6.9, while we also get that

IE
[
ei〈u,X〉

]
= exp

(
(t− s)

∫
A
xν(dx)

)
. (6.11)

Let us consider the collection of random variables t∫
0

∫
A

xµX(ds, dx)


t≥0

(6.12)

then one would naturally expect that this is a compound Poisson stochastic
process.

Lemma 6.10. Let µX be a Poisson random measure with intensity Leb⊗ ν
and assume that A ⊂ B(Rd) such that ν(A) <∞. Then

Xt =

t∫
0

∫
A

xµX(ds, dx), t ≥ 0

is a compound Poisson process with arrival rate ν(A) and jump distribution
ν(dx)
ν(A) |A.

Proof. Since ν(A) <∞, we have from Corollary 6.7 that the support of µX

is finite. Hence, we can write Xt as follows

Xt =
∑

0≤s≤t
xµX({s} ×A) =

∑
0≤s≤t

∆Xs1{∆Xs∈A},

which shows that t 7→ Xt is a càdlàg function. Let 0 ≤ s ≤ t, then the
random variable

Xt −Xs =

∫
(s,t]

∫
A

xµX(ds, dx)
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is independent from {Xu : u ≤ s}, since Poisson random measures over
disjoint sets are independent. From Theorem 6.9 we know that

IE
[
ei〈u,Xt〉] = exp

t∫
A

(ei〈u,x〉 − 1)ν(dx)

 . (6.13)

The independence of increments allows us to deduce that

IE
[
ei〈u,Xt−Xs〉] =

IE
[
ei〈u,Xt〉

]
IE
[
ei〈u,Xs〉

]
= exp

(
(t− s)

∫
A

(ei〈u,x〉 − 1)ν(dx)

)
= IE

[
ei〈u,Xt−s〉],

which yields that the increments are also stationary. Moreover, from (6.13)
we have that Xt is compound Poisson distributed with arrival rate t · ν(A)

and jump distribution ν(dx)
ν(A) |A. Finally, we have that X = (Xt)t≥0 is a com-

pound Poisson process since it is a process with stationary and independent
increments, whose increment distributions are compound Poisson. �

Lemma 6.11. Consider the setting of the previous lemma and assume that∫
A |x|ν(dx) <∞. Then

Mt =

t∫
0

∫
A

xµX(ds, dx)− t
∫
A

xν(dx), t ≥ 0 (6.14)

is a IP-martingale relative to the filtration generated by the Poisson random
measure µX

Ft := σ
(
µX(G) : G ∈ B([0, t])× B(Rd)

)
, t ≥ 0. (6.15)

If, in addition,
∫
A |x|

2ν(dx) <∞ then M is a square-integrable martingale.

Proof. The process M = (Mt)t≥0 is clearly adapted to the filtration (Ft)t≥0

generated by µX . Moreover, Theorem 6.9 together with the assumption∫
A |x|ν(dx) <∞ immediately yield that

IE|Mt| ≤ IE

 t∫
0

∫
A

|x|µX(ds, dx)

− t∫
A

|x|ν(dx) <∞.

Using that M has stationary and independent increments, which follows
directly from Lemma 6.10, we get that, for 0 ≤ s < t,

IE[Mt −Ms|Fs] = IE[Mt−s]

= IE

 t∫
s

∫
A

xµX(ds, dx)

− (t− s)
∫
A

xν(dx) = 0,

again using Theorem 6.9.
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Next, we just have to show that M is a square integrable. We have, using
the martingale property of M , the properties of the variance and Theorem
6.9 once more, that

IE
[
M2
t

]
= Var

[
Mt

]
= Var

 t∫
s

∫
A

xµX(ds, dx)


= t

∫
A

|x|2ν(dx) <∞,

which concludes the proof. �

The results of this section allow us to construct compound Poisson pro-
cesses with jumps taking values in discs of the form Dε := {ε < |x| ≤ 1}, for
any ε ∈ (0, 1). However, we cannot consider the ball D = {|x| ≤ 1}, i.e. set
ε = 0, since there exist Lévy measures such that

∫
D |x|ν(dx) = ∞. We will

thus study the limit of the martingale M in Lemma 6.11 when the jumps
belong to Dε for ε ↓ 0.

Exercise 10. Consider the measure on Rd \ {0} provided by

ν(dx) = |x|−(1+α)1{x<0}dx+ x−(1+α)1{x>0}dx,

for α ∈ (1, 2). Show that it is a Lévy measure, such that
∫
D |x|ν(dx) =∞.

6.5. Square integrable martingales. Denote by M2
T the space of right-

continuous, zero mean, square integrable martingales. This is a Hilbert space
with inner product defined by

〈M,N〉 := IE[MTNT ].

Therefore, for any Cauchy sequence Mn in M2
T there exists an element

M ∈ M2
T such that ‖Mn − M‖ → 0 as n → ∞, where ‖ · ‖ = 〈·, ·〉. A

proof of this result can be found in Section 2.4 of [Kyp06]. In the sequel,
we will make use of Doob’s martingale inequality which states that for any
M ∈M2

T it holds that

IE
[

sup
0≤s≤T

M2
s

]
≤ 4IE

[
M2
T

]
.

The following result is crucial for the proof of the Lévy–Itô decomposition.

Theorem 6.12. Consider the setting of Lemma 6.10 and recall that for any
Lévy measure

∫
|x|≤1 |x|

2ν(dx) <∞. For each ε ∈ (0, 1) define the martingale

M ε
t =

t∫
0

∫
Dε

xµX(ds, dx)− t
∫
Dε

xν(dx), (6.16)

where Dε = {ε < |x| ≤ 1}. Let F t denote the completion of
⋂
s>tFs by all the

IP-null sets. Then, there exists a square integrable martingale M = (Mt)t≥0

that satisfies:
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(i) for each T > 0, there exists a deterministic subsequence (εTn )n∈N with
εTn ↓ 0, along which

IP

(
lim
n→∞

sup
0≤s≤T

(
M εTn
s −Ms

)2
= 0

)
= 1,

(ii) it is adapted to the filtration (F t)t≥0,
(iii) it has a.s. càdlàg paths,
(iv) it has stationary and independent increments,
(v) it has an a.s. countable number of jumps on each compact time interval.

Henceforth, there exists a Lévy process M = (Mt)t≥0, which is a square inte-
grable martingale, with an a.s. countable number of jumps such that, for each
fixed T > 0, the sequence of martingales (M ε

t )0≤t≤T converges uniformly to
M on [0, T ] a.s. along a subsequence in ε.

Proof. (i) Consider a fixed T > 0 and set 0 < η < ε < 1, then

‖Mη −M ε‖ = IE
[
(Mη

T −M
ε
T )2
]

= IE

 T∫
0

∫
η<|x|≤ε

xµX(ds, dx)− T
∫

η<|x|≤ε

xν(dx)


2

= T

∫
η<|x|≤ε

x2ν(dx), (6.17)

see also Exercise 13. Since
∫
D |x|

2ν(dx) <∞, we have that

‖Mη −M ε‖ −→ 0, as ε ↓ 0, (6.18)

hence (M ε) is a Cauchy sequence on M2
T . Moreover, since M2

T is a Hilbert
space, there exists a martingale M = (Mt)0≤t≤T in M2

T such that

lim
ε↓0
‖M −M ε‖ = 0. (6.19)

Using Doob’s maximal inequality, we get that

lim
ε↓0

IE

[
sup

0≤s≤T
(M ε

s −Ms)
2

]
≤ 4 lim

ε↓0
‖M −M ε‖ = 0. (6.20)

This allows us to conclude that the limit does not depend on T , thus we
have a well-defined martingale limit M = (Mt)t≥0. In addition, (6.20) yields
that there exists a deterministic subsequence (εTn )n≥0, possibly depending
on T , such that

lim
εTn↓0

sup
0≤s≤T

(M εTn
s −Ms)

2 = 0, IP-a.s. (6.21)

(ii) Follows directly from the definition of the filtration.
(iii) We can use the following facts:

• M ε has càdlàg paths,
• M ε converges uniformly to M , IP-a.s.;
• the space of càdlàg functions is closed under the supremum metric;
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which yield immediately that M has càdlàg paths.
(iv) We have that a.s. uniform convergence along a subsequence implies also
convergence in distribution along the same subsequence. Let 0 ≤ q < r <
s < t ≤ T and u, v ∈ Rd, then using dominated convergence we get

IE
[

exp (i 〈u,Mt −Ms〉+ i 〈v,Mr −Mq〉)
]

= lim
n→∞

IE
[
exp

(
i
〈
u,M

εTn
t −M εTn

s

〉
+ i
〈
v,M εTn

r −M εTn
q

〉)]
= lim

n→∞
IE
[
exp

(
i
〈
u,M

εTn
t−s

〉)]
IE
[
exp

(
i
〈
v,M

εTn
r−q

〉)]
= IE

[
exp (i 〈u,Mt−s〉)

]
IE
[

exp (i 〈v,Mr−q〉)
]
,

which yields that M has stationary and independent increments.
(v) According to Corollary 6.7, there exist, at most, an a.s. countable number
of points in the support of the Poisson random measure µX . Moreover, since
Leb ⊗ ν has no atoms, we get that µX takes values in {0, 1} at singletons.
Hence, every discontinuity of M = (Mt)t≥0 corresponds to a single point in
the support of µX , which yields that M has an a.s. countable number of
jumps in every compact time interval. �

6.6. Proof of the Lévy–Itô decomposition. Now, we are ready to com-
plete the proof of the Lévy–Itô decomposition.

Proof of Theorem 6.1. Step 1. We first consider the processes X(1) and X(2)

with characteristic exponents

ψ(1)(u) = i 〈u, b〉 and ψ(2)(u) =
〈u, cu〉

2
, (6.22)

which correspond to a linear drift and a Brownian motion, i.e.

X
(1)
t = bt and X

(2)
t =

√
cWt, (6.23)

defined on some probability space (Ω\,F \, IP\).
Step 2. Given a Lévy measure ν, we know from Theorem 6.5 that there ex-

ists a probability space, denoted by (Ω],F ], IP]), such that we can construct
a Poisson random measure µX on (R>0×Rd,B(R>0)×B(Rd),Leb⊗ ν). Let

us define the process X(3) = (X
(3)
t )t≥0 with

X(3) =

t∫
0

∫
Dc

xµX(ds, dx). (6.24)

Using Lemma 6.10 we can deduce that X(3) is a compound Poisson process

with intensity λ := ν(Dc) and jump distribution F (dx) := ν(dx)
ν(Dc)1Dc(dx).

Step 3. Next, from the Lévy measure ν we construct a process having only
jumps less than 1. For each 0 < ε ≤ 1, define the compensated compound

Poisson process X(4,ε) = (X
(4,ε)
t )t≥0 with

X(4,ε) =

t∫
0

∫
ε<|x|≤1

xµX(ds, dx)− t
∫

ε<|x|≤1

xν(dx). (6.25)



28 ANTONIS PAPAPANTOLEON

Using Theorem 6.9 we know that X(4,ε) has the characteristic exponent

ψ(4,ε)(u) =

∫
ε<|x|≤1

(
ei〈u,x〉 − 1− i 〈u, x〉

)
ν(dx). (6.26)

Now, according to Theorem 6.12 there exists a Lévy process, denoted by
X(4), which is a square integrable, pure jump martingale defined on (Ω],F ], IP]),
such that X(4,ε) converges to X(4) uniformly on [0, T ] along an appropriate
subsequence as ε ↓ 0. Obviously, the characteristic exponent of the latter
Lévy process is

ψ(4)(u) =

∫
|x|≤1

ei〈u,x〉 − 1− i 〈u, x〉
)
ν(dx). (6.27)

Since the sets {|x| > 1} and {|x| ≤ 1} are obviously disjoint, the processes

X(3) and X(4) are independent. Moreover, they are both independent of X(1)

and X(2), which are defined on a different probability space.
Step 4. In order to conclude the proof, we consider the product space

(Ω,F , IP) = (Ω\,F \, IP\)× (Ω],F ], IP]). (6.28)

The process X = (Xt)t≥0 with

Xt = X
(1)
t +X

(2)
t +X

(3)
t +X

(4)
t

= bt+
√
cWt +

t∫
0

∫
Dc

xµX(ds, dx) +

t∫
0

∫
D

x(µX − νX)(ds, dx), (6.29)

is defined on this space, has stationary and independent increments, càdlàg
paths, and the characteristic exponent is

ψ(u) = ψ(1)(u) + ψ(2)(u) + ψ(3)(u) + ψ(4)(u)

= i 〈u, b〉 − 〈u, cu〉
2

+

∫
Rd

(
ei〈u,x〉 − 1− i 〈u, x〉 1D(x)

)
ν(dx).

�

Remark 6.13 (Truncation function). Assume that the infinitely divisible
distribution ρ has the Lévy triplet (bh, c, ν)h relative to the truncation func-
tion h, that is, assume that the Fourier transform of ρ is given by (5.6)–(5.7)
instead of (5.2). Then, the Lévy–Itô decomposition takes the form

Xt = bht+
√
cWt +

t∫
0

∫
Rd

hc(x)µX(ds, dx) +

t∫
0

∫
Rd

h(x)(µX − νX)(ds, dx),

(6.30)

where hc(x) = x− h(x). This form of the Lévy–Itô decomposition is consis-
tent with the choice of the truncation function h; see also Remark 5.10.
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Example 6.14. Revisiting the Lévy jump-diffusion process, we can easily
see that (3.1) is the Lévy–Itô decomposition of this Lévy process for the
truncation function h(x) = x, while

Xt = b0t+ σWt +

Nt∑
k=1

Jk, (6.31)

where b0 = b− λβ is the Lévy–Itô decomposition of X relative to the trun-
cation function h(x) ≡ 0. See also Example 5.11.

Exercise 11. Suppose X,Y are two independent Lévy processes (on the
same probability space). Show that X + Y and X − Y are again Lévy pro-
cesses. Can X−Y be a Lévy process in case X and Y are not independent?

Exercise 12. Let ν be a measure on the space (E, E) and f : E → [0,∞)
be a measurable function. Then, for all u > 0, show that∫

E

(euf(x) − 1)ν(dx) <∞⇐⇒
∫
E

(1 ∧ f(x))ν(dx) <∞. (6.32)

Exercise 13. Consider the space (R>0×Rd,B(R>0)×B(Rd),Leb⊗ ν) and
denote by µX the Poisson random measure with intensity Leb ⊗ ν. Let f :
Rd → Rd such that

∫
Rd |f(x)|2ν(dx) <∞. Show that the process I = (It)t≥0

with

It =

t∫
0

∫
Rd

f(x)µX(ds, dx)− t
∫
Rd

f(x)ν(dx) (6.33)

is a square integrable martingale and prove the following simplified version
of the Itô isometry

IE
[
|It|2

]
= t

∫
Rd

|f(x)|2ν(dx). (6.34)

Exercise 14. Consider the setting of the previous exercise.
(i) Show that, for each n ≥ 2 and each t > 0,

t∫
0

∫
Rd

xnµX(ds, dx) <∞ a.s. ⇐⇒
∫
|x|>1

|x|nν(dx) <∞. (6.35)

(ii) Assuming that the previous condition holds, show that t∫
0

∫
Rd

xnµX(ds, dx)− t
∫
Rd

xnν(dx)


t≥0

(6.36)

is a martingale.
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6.7. Another approach to the basic connections. We have now proved
the basic connections between Lévy processes, infinitely divisible distribu-
tions and Lévy triplets, as announced in §3.1. The line of these proofs is
diagrammatically represented in Figure 3.2. These relations are useful for
the construction of new classes of Lévy processes and for the simulation of
Lévy processes.

Naturally, there are other ways to prove these connections. Another ap-
proach is diagrammatically represented in Figure 6.4. The steps in these

(Xt)t≥0
SII //

LI %%KKKKKKKKK L(X1) = ρ
KET

oo

(b, c, ν)

LK

88qqqqqqqqqq

Figure 6.4. Another approach to the basic connections be-
tween Lévy processes, infinitely divisible distributions and
Lévy triplets.

proofs can be summarized as follows:

(i) show that the law of Xt is infinitely divisible using the stationarity and
independence of the increments (cf. Lemma 4.18);

(ii) show that for every Lévy triplet (b, c, ν) that satisfies (5.2) the measure
ρ is infinitely divisible (cf. Theorem 5.3, “If” part);

(iii) use Kolmogorov’s extension theorem to show that for every infinitely
divisible distribution ρ, there exists a Lévy process X = (Xt)t≥0 such
that IPX1 = ρ;

(iv) prove the following version of the Lévy–Itô decomposition: every Lévy
process admits the path decomposition (6.2). A corollary of the last
result is the Lévy–Khintchine formula, cf. (5.27)-(5.29).

This line of proofs is based on the analysis of the jumps of Lévy process and
follows in spirit the analysis of the jumps of the compound Poisson process
in §6.2. We refer the interested reader to [App09] and [Pro04].

7. The Lévy measure and path properties

The properties of the path of a Lévy process can be completely charac-
terized on the basis of it’s Lévy triplet, and in particular on the properties
of the Lévy measure and the presence or absence of a Brownian component.

Throughout this section we assume that X = (Xt)t≥0 is a Lévy process
with triplet (b, c, ν).

Proposition 7.1. The paths of X = (Xt)t≥0 are a.s. continuous if and only
if ν ≡ 0.

Exercise 15. Let X be a Lévy process with Lévy measure ν.

(i) Show that for a > 0

P
(

sup
0<s≤t

|Xs −Xs−| > a
)

= 1− e−tν(R\(−a,a)).
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(ii) Prove Proposition 7.1.

Proposition 7.2. The paths of X = (Xt)t≥0 are a.s. piecewise constant if
and only if X is a compound Poisson process without drift.

Exercise 16. Prove Proposition 7.2

Definition 7.3. We say that a Lévy process X has infinite activity if the
sample paths of X have an a.s. countably infinite number of jumps on every
compact time interval [0, T ]. Otherwise we say that X has finite activity.

Proposition 7.4. (1) If ν(Rd) =∞ then X has infinite activity.
(2) If ν(Rd) <∞ then X has finite activity.

Exercise 17. Prove Proposition 7.4

Remark 7.5. By the definition of a Lévy measure, cf. Definition 5.1, we
get immediately the following equivalences:

ν(Rd) =∞ ⇐⇒ ν(D) =∞ (7.1)

ν(Rd) <∞ ⇐⇒ ν(D) <∞. (7.2)

7.1. Variation of the paths. We want to analyze the variation of the
paths of a Lévy process. We will consider a real-valued Lévy process for
simplicity, although the main result, Proposition 7.9, is valid for Rd-valued
Lévy processes.

Definition 7.6. Consider a function f : [a, b] → R. The total variation of
f over [a, b] is

TV(f) = sup
π

n∑
i=1

|f(ti)− f(ti−1)| (7.3)

where π = {a = t0 < t1 < · · · < tn = b} is a partition of the interval [a, b].

Lemma 7.7. If f : [a, b] → R is càdlàg and has finite variation on [a, b],
then

TV(f) ≥
∑
t∈[a,b]

|∆f(t)|. (7.4)

Proof. [App09, Theorem 2.3.14]. �

Definition 7.8. A stochastic process X = (Xt)t≥0 has finite variation if
the paths (Xt(ω))t≥0 have finite variation for almost all ω ∈ Ω. Otherwise,
the process has infinite variation.

Proposition 7.9. A Lévy process X = (Xt)t≥0 with triplet (b, c, ν) has
finite variation if and only if

c = 0 and

∫
|x|≤1

|x|ν(dx) <∞. (7.5)
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Proof. Assume that c = 0, then the Lévy–Itô decomposition of the Lévy
process takes the form

Xt = bt+

t∫
0

∫
|x|>1

xµX(ds, dx) +

t∫
0

∫
|x|≤1

x(µX − νX)(ds, dx)

︸ ︷︷ ︸
=X

(4)
t

. (7.6)

We know that the first and second processses have finite variation, hence we
will concentrate on the last part. Using the definition we have

TV
(
X

(4)
t

)
= sup

π

n∑
i=1

∣∣X(4)
ti
−X(4)

ti−1

∣∣
= sup

π

n∑
i=1

∣∣∣ ti∫
ti−1

∫
|x|≤1

x(µX − νX)(ds, dx)
∣∣∣

≤ sup
π

n∑
i=1

ti∫
ti−1

∫
|x|≤1

|x|(µX − νX)(ds, dx)

=

t∫
0

∫
|x|≤1

|x|(µX − νX)(ds, dx)

=

t∫
0

∫
|x|≤1

|x|µX(ds, dx)− t
∫
|x|≤1

|x|νX(dx) <∞ a.s., (7.7)

since condition (7.5) for the Lévy measure implies that the integral with
respect to the Poisson random measure µX is well defined and a.s. finite,
cf. Theorem 6.9. Hence, we can split the integral wrt to the compensated
random measure µX − νX in two a.s. finite parts.

Conversely, assume that X has finite variation; then, we can use estima-
tion (7.4), which yields

∞ > TV(Xt) ≥
∑

0≤s≤t
|∆Xs| ≥

∑
0≤s≤t

|∆Xs|1{|∆Xs|≤1} =

t∫
0

∫
|x|≤1

|x|µX(ds, dx).

Using again Theorem 6.9, finiteness of the RHS implies that

t∫
0

∫
|x|≤1

|x|νX(ds, dx) <∞ =⇒
∫
|x|≤1

|x|ν(dx) <∞, (7.8)

which yields the second condition. The Lévy–Itô decomposition of this Lévy
process – where the jumps have finite variation – takes the form

Xt = b′t+
√
cWt +

∑
s≤t

∆Xs. (7.9)
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However, the paths of a Brownian motion have infinite variation, see e.g.
[RY99], hence X will have paths of finite variation if and only if c = 0. �

Remark 7.10. Assume that the jump part of the Lévy process X has finite
variation, i.e. ∫

|x|≤1

|x|ν(dx) <∞, (7.10)

then the Lévy–Itô decomposition of X takes the form

Xt = b0t+
√
cWt +

t∫
0

∫
Rd

xµX(ds, dx), (7.11)

and the Lévy–Khintchine formula can be written as

IE
[
ei〈u,X1〉] = exp

i 〈u, b0〉 − 〈u, cu〉
2

+

∫
Rd

(
ei〈u,x〉 − 1

)
ν(dx)

 . (7.12)

In other words, we can use the truncation function h(x) = 0 and the drift
term relative to this truncation function (denoted by b0) is related to the
drift term b in (5.2) via

b0 = b−
∫
|x|≤1

xν(dx). (7.13)

Note that this process is not necessarily a compound Poisson process, as the
activity of the process might be infinite (i.e. ν(D) =∞).

7.2. Subordinators. Subordinators are Lévy processes with increasing paths.

Proposition 7.11. Let X = (Xt)t≥0 be a real-valued Lévy process with
triplet (b, c, ν). The following are equivalent:

(1) Xt ≥ 0 a.s. for some t > 0;
(2) Xt ≥ 0 a.s. for all t > 0;
(3) The sample paths of X are a.s. non-decreasing, that is

t ≥ s =⇒ Xt ≥ Xs;
(4) The triplet (b, c, ν) satisfies: b ≥ 0, c = 0, ν(−∞, 0]) = 0 and∫ 1

0 xν(dx) <∞. In other words, X has a positive drift, no diffusion
component, and jumps are only positive and have finite variation.

Proof. . . . �

8. Elementary operations

We will study some elementary operations on Lévy processes, such as lin-
ear transformations, projections and subordination. The resulting processes
will be expressed again in terms of the corresponding Lévy exponents or
Lévy triplets.
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8.1. Linear transformations of Lévy processes. We are interested in
linear transformations and projections of Lévy processes. The following re-
sult provides a complete characterization of linear transformations of Lévy
processes in terms of their characteristic exponent and Lévy triplet.

Proposition 8.1. Let X = (Xt)t≥0 be an Rd-valued Lévy process with triplet
(b, c, ν)h. Let U be an n × d matrix with real entries (U ∈ Mnd(R)). Then,
XU = (XU

t )t≥0 with XU
t := UXt is an Rn-valued Lévy process with Lévy

triplet (bU , cU , νU )h′, where

bU = Ub+

∫
Rd

(h′(Ux)− Uh(x))ν(dx)

cU = UcU> (8.1)

νU (E) = ν({x ∈ Rd : Ux ∈ E}), E ∈ B(Rn\{0}).

Here h′(x) denotes a truncation function on Rn.

Proof. Since U defines a linear mapping from Rd to Rn, it is clear that XU

has independent and stationary increments, and is stochastically continuous;
moreover, XU

0 = 0 a.s. In other words, XU is an Rn-valued Lévy process.
We will show that νU is a Lévy measure and the integral on the RHS of

bU is finite; hence, the triplet (bU , cU , νU ) in (8.1) is indeed a Lévy triplet.
Then we will derive the characteristic function of XU

t .
Clearly νU has no mass at the origin; in addition we have that

∫
Rn

(|y|2 ∧ 1)νU (dy) =

∫
Rd

(|Ux|2 ∧ 1)ν(dx)

≤ (‖U‖2 ∨ 1)

∫
Rd

(|x|2 ∧ 1)ν(dx) <∞,

because the induced norm satisfies |Ux| ≤ ‖U‖|x| for all U ∈ Mnd(R) and
x ∈ Rd.

Next, we restrict ourselves to the canonical truncation function for sim-
plicity, i.e. h(x) = x1{|x|≤1}, and derive the following result for the integral
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on the RHS of bU :∫
Rd

|h′(Ux)− Uh(x)|ν(dx)

≤
∫
Rd

|Ux||1{|Ux|≤1}−1{|x|≤1}|ν(dx)

=

∫
Rd

|Ux||1{|Ux|≤1<|x|} − 1{|x|≤1<|Ux|}|ν(dx)

≤
∫

{|Ux|≤1<|x|}

|Ux|ν(dx) +

∫
{|x|≤1<|Ux|}

|Ux|ν(dx)

≤
∫

{|x|>1}

ν(dx) + ‖U‖
∫

{|x|≤1<‖U‖|x|}

|x|ν(dx)

≤
∫

{|x|>1}

ν(dx) + ‖U‖2
∫

{ 1
‖U‖<|x|≤1}

|x|2ν(dx) <∞.

Finally, regarding the characteristic function we have for any z ∈ Rn

IE
[
ei〈z,X

U
1 〉
]

= IE
[
ei〈z,UX1〉

]
= IE

[
ei〈U

>z,X1〉
]

= exp

(
i〈U>z, b〉 − 1

2
〈U>z, cU>z〉

+

∫
Rd

(ei〈U
>z,x〉 − 1− i〈U>z, h(x)〉)ν(dx)

)

= exp

(
i〈z, Ub〉 − 1

2
〈z, UcU>z〉

+

∫
Rd

(ei〈z,Ux〉 − 1− i〈z, Uh(x)〉)ν(dx)

)

= exp

(
i〈z, bU 〉 − 1

2
〈z, cUz〉

+

∫
Rn

(ei〈z,y〉 − 1− i〈z, h′(y)〉)νU (dy)

)
,

where bU is given by (8.1). Thus, (bU , cU , νU ) is indeed the triplet of the
Lévy process XU . �

8.2. Subordination. Subordinators are Lévy processes with a.s. non-decreasing
paths; see . . . for a complete characterization. Subordinators can be thought
of a stochastic model for the evolution of time. Subordination is the tranfor-
mation of one stochastic process to a new one through a random time-change
by an indepedent subordinator. This idea was introduced by Bochner. Note
that one can also subordinate a semigroup of linear operators to create a
new semigroup.
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In mathematical finance, subordination plays a prominent role. Many
popular Lévy modes can be constructed by subordinating Brownian motion,
e.g. VG and NIG. In that setting, one often speaks about “calendar” time
and “business” time. Subordination is also used to create multidimensional
models with dependence structure via a common time-change.

Let Y = (Yt)t≥0 be a suborinator, i.e. a Lévy process with a.s. increasing
paths. Let ψY denote the characteristic exponent of Y ; using . . . we know
that it has the form

ψY (u) = ibY u+

∫
(0,∞)

(eiux − 1)νY (dy). (8.2)

Note that IE[euYt ] <∞ for all u ≤ 0 since Y takes only non-negative values;
therefore,

∫
x>1 euyνY (dy) < ∞ for all u ≤ 0. Therefore, the characteristic

exponent of Y can be extended to an analytic function for u ≤ 0, and the
moment generating function of Yt is

IE[e〈u,Yt〉] = etφY (u) (8.3)

where

φY (u) = bY u+

∫
(0,∞)

(eux − 1)νY (dy). (8.4)

Theorem 8.2. Let X be an Rd-valued Lévy process with characteristic ex-
ponent ψX . Let Y be a subordinator with cumulant generating function φY ,
where Y is independent of X. Define the process Z = (Zt)t≥0 for each ω ∈ Ω
via

Zt(ω) = XYt(ω)(ω). (8.5)

Then, Z is a Lévy process with characteristic exponent

ψZ(u) = φY (ψX(u)). (8.6)

Proof. . . . �

Exercise 18. Show that any Lévy process with finite variation can be writ-
ten as the difference of two independent subordinators.
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[Sat99] K. Sato. Lévy Processes and Infinitely Divisible Distributions. Cambridge Uni-

versity Press, 1999.
[Shi96] A. N. Shiryaev. Probability. Springer, 2nd edition, 1996.


	1. Introduction
	2. Definition of Lévy processes
	3. Toy example: a Lévy jump-diffusion
	4. Infinitely Divisible distributions
	5. The Lévy–Khintchine representation
	6. The Lévy–Itô decomposition
	7. The Lévy measure and path properties
	8. Elementary operations
	References

