COMPUTATIONAL FINANCE

ANTONIS PAPAPANTOLEON

Exercise

Set-up. Let the dynamics of a stock price process $S = (S_t)_{t \ge 0}$ evolve according to the Black–Scholes model, i.e.

$$S_t = S_0 \exp\left(\sigma W_t + \left(r - \frac{1}{2}\sigma^2\right)t\right), \quad S_0 > 0, \tag{1}$$

where $W = (W_t)_{t\geq 0}$ denotes a standard Brownian motion. Consider the arithmetic Asian option with payoff function

$$\left(\frac{1}{n}\sum_{i=1}^{n}S_{t_i}-K\right)^+,$$

and the (artificial) geometric Asian option with payoff function

$$\left(\left[\prod_{i=1}^{n} S_{t_i} \right]^{1/n} - K \right)^{+},$$

where $T_n = T$ denotes the maturity of the options.

Tasks.

- (1) Derive an explicit formula for the price of the geometric Asian option.
- (2) Simulate the price of the arithmetic Asian option using:
 - (plain) Monte Carlo method
 - Monte Carlo with antithetic variates
 - Monte Carlo with control variates, using the geometric Asian option as control.
- (3) Compare the results in terms of accuracy and efficiency. In particular, plot the root mean square error and the computational time as functions of the number of simulations M and compare with the theoretical convergence rate.
- (4) Finally, combine both variance reduction techniques. Is there a further effect?

Data.

- Spot price $S_0 = 100$, strike price K = 100, volatility $\sigma = 25\%$.
- Maturity T = 1, n = 365, interest rate r = 2%.

Submit.

- The source code (in scilab/matlab/C/...). The source code should include sufficient documentation.
- A PDF file explaining how the code was developed and discussing the results (preferably written in LATEX).
- Submit everything per e-mail to papapan@math.tu-berlin.de in a zip file named: Exercise_Surname_Name.
- Deadline: May 31, 2015.