COMPUTATIONAL FINANCE

ANTONIS PAPAPANTOLEON

EXERCISE 2

Set-up. Consider the Heston stochastic volatility model (under a risk neutral measure), provided by the SDEs

$$dX_t = \left(r - \frac{1}{2}V_t\right)dt + \sqrt{V_t}dW_t, \quad X_0 = x,$$

$$dV_t = \kappa(\theta - V_t)dt + \eta\sqrt{V_t}d\overline{W}_t, \quad V_0 = v.$$
(1)

The parameters satisfy $r \in \mathbb{R}$, $\kappa, \theta, \eta \in \mathbb{R}_+$, the initial values are $x \in \mathbb{R}, v \in \mathbb{R}_+$, and the Brownian motions W, \overline{W} are correlated with parameter $\rho \in [-1, 1]$.

An Euler discretization of this SDE is provided by

$$\overline{X}_{i+1} = \overline{X}_i + \left(r - \frac{1}{2}\overline{V}_i\right)\Delta t_i + \sqrt{\overline{V}_i^+}\Delta W_i, \quad \overline{X}_0 = x,$$

$$\overline{V}_{i+1} = \overline{V}_i + \kappa(\theta - \overline{V}_i)\Delta t_i + \eta\sqrt{\overline{V}_i^+}\Delta\overline{W}_i, \quad \overline{V}_0 = v,$$
(2)

where $a^{+} = \max\{a, 0\}.$

The process (V, X) is an affine process on $\mathbb{R}_+ \times \mathbb{R}$ and the characteristic function is provided by

 $\mathbb{E}_{v,x}\left[\mathrm{e}^{u_1V_t+u_2X_t}\right] = \exp\left(\phi(t,u_1,u_2) + \psi_1(t,u_1,u_2) \cdot v + \psi_2(t,u_1,u_2) \cdot x\right), \quad (3)$ where (ϕ,ψ_1,ψ_2) are solutions of the system of Riccati equations

$$\frac{\partial}{\partial t}\phi(t, u_1, u_2) = F(\psi_1(t, u_1, u_2), \psi_2(t, u_1, u_2)), \quad \phi(0, u_1, u_2) = 0$$

$$\frac{\partial}{\partial t}\psi_1(t, u_1, u_2) = R(\psi_1(t, u_1, u_2), \psi_2(t, u_1, u_2)), \quad \psi_1(0, u_1, u_2) = u_1$$

$$\psi_2(t, u_1, u_2) = u_2,$$
(4)

with

$$F(u_1, u_2) = \kappa \theta u_1 + r u_2$$

$$R(u_1, u_2) = -\kappa u_1 - \frac{1}{2}u_2 + \frac{1}{2}u_2^2 + \frac{1}{2}\eta^2 u_1^2 + \eta \rho u_1 u_2.$$
(5)

Tasks.

(1) Solve the system of Riccati equations (4) and thus determine the characteristic function (3) of the Heston model.

(Hint: see Lemma 5.2 in Filipović & Mayerhofer "Affine diffusion processes: theory and applications".)

- (2) Compute the Fourier transform of the payoff function $f(x) = (K e^x)^+$ corresponding to the put option and determine the set \mathcal{I} where the dampened payoff function $g(x) = e^{-Rx} f(x)$ satisfies $g \in L^1(\mathbb{R})$ and $\widehat{g} \in L^1(\mathbb{R})$.
- (3) Compute the price of a European put option (K S_T)⁺, where X = log(S) is provided by (1), using Fourier methods for option pricing. (What is the range I ∩ J for R?).

ANTONIS PAPAPANTOLEON

- (4) Compare these results with the put option prices determined by the Euler-Monte-Carlo method using (2), i.e. compute the option prices with Euler-MC and the 95% confidence intervals.
- (5) Study empirically the convergence of the Euler-MC scheme.

Data.

- Spot price $S_0 = 100$, interest rate r = 0%.
- Maturity T = 5, strike prices $K = \{80, 100, 120\}$.
- Heston parameters: $\kappa = 1, \ \theta = v = 9\%, \ \eta = 1, \ \rho = -0.3.$

Submit.

- The source code (in scilab/matlab/C/...).
- A PDF file explaining how the code was developed and discussing the results (preferably written in LAT_FX).
- Submit everything per e-mail in a zip file called: Exercise_2_Name_Surname.

 $\mathbf{2}$