Ewald’s Method Revisited: Rapidly Convergent Series
Representations of Certain Green’s Functions

Vassilis G. Papanicolaou!

Suggested Running Head: Ewald’s Method Revisited

Complete Mailing Address of “Contact” Author (for office purposes):

Vassilis G. Papanicolaou

Department of Mathematics and Statistics
Wichita State University

Wichita, KS 67260-0033

tel. (316) 978-3936

FAX (316) 978-3748

E-mail: papanico@cs.twsu.edu

!Department of Mathematics and Statistics, Wichita State University, Wichita,
KS 67260-0033



ABSTRACT

We propose a justification of Ewald’s method of obtaining rapidly conver-
gent series for the Green’s function of the 3-dimensional Helmholtz equation.
Our point of view enables us to extend the method to Green’s functions for
the Helmholtz equation in certain domains of R¢, with quite general bound-
ary conditions.
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1 Introduction

In 1921 P. P. Ewald published a sensational paper (see [1]). He presented
a method that was used to transform the slowly convergent series of the
Green’s function of the 3-d Helmholtz equation, with Floquet (e.g. periodic)
boundary conditions in the x and y directions, to a series that converges very
rapidly.

Ewald’s method gives spectacular computational results and hence it has
been used extensively by physicist, engineers, and numerical analysts (as an
example, see [2]). However, it is not transparent at all. The reader is usually
left with the impression that it works by coincidence. The method is based

on the formula
eiKR 1 o] 5 5 K2
T:ﬁ/_mexp(—ﬁ’z +@)d2,

which somehow comes “out of the blue”.

In this note we propose a point of view that sheds some understanding
to the underlying structure of Ewald’s approach. This enables us to easily
extend his method to any dimension and a variety of boundary conditions.

2 A Rapidly Convergent Series for the Green’s Function

Let L be a self-adjoint operator on the space L?(D), where D is a domain
in RY, such that inf o(L) = Ay, where o(L) is the spectrum of L. If X is a
complex number with R {A\} < Xg, then

(L—X)""= / eMetdt.
0

In terms of integral kernels, the above equation can be written as

G(z,y; ) = / eMp(t, z,y)dt, (1)
0

where G(x,y; \) is the Green’s function and p(t,z,y) the heat kernel asso-
ciated to L (thus, the Green’s function is the Laplace transform of the heat
kernel, viewed as a function of ¢). The integral in (1) converges if

3%{)\} < )\0

and diverges if ®{\} > A¢ (if R{\} = Ao, convergence is possible). On the
other hand, G(x,y; A) is analytic in A\, on C\ o(L).

If L = —A, acting on R? (hence (L) = [0,00); L is the “free” d-
dimensional negative Laplacian operator), then its heat kernel is
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L [z — yf*
ta,y) = ——0s ——— ).
p(t, z,y) (am) P P ( yn

Let I'y(z,y; A) be the corresponding Green’s function, i.e. the integral kernel
of (L —X\)"". Then (1) gives

Cy(z,y; ) = /000 W exp ()\t — o)

(Cy(z, x; A) = 00, if d > 2). By deforming the contour of the above integral,
we can get y(x,y; N), for R{A} > 0, but one can do even better, since
Cy(|x — y|;A) can be computed explicitly. If d = 1, it is easy to see (by
solving the associated ordinary differential equation for I';) that

z -y’

)dﬁngw—th

o~V Aa—y|

@y ) =T =yl = =

Furthermore, from (2) one observes that

d 1
ard(R, )\) - Erd_Q(R, A)

From this equation one can compute ['y(z,y; A) for all odd dimensions d:

o~V Aa—y|

Ls(z,y; A) ete.

T dnfe—y|’

If d is even, I'4(x, y; A) is not an elementary function. One can find the radial
solutions of the equation

—Au = \u+ 0(z), r € RY

to conclude that (for all d)
1 _ _
La(z,y; A) = W (—)\)(d/4) . o —y|! e K(af2)-1 (V —Alz - y|) ,

where K, () is the modified Bessel function of the 2nd kind, of order v.
Finally, we notice that I';(R; \) decays exponentially, as R — oo. This is
easy to establish if d is odd, whereas, if d is even, one can, for example, use
(2) to get the estimate

[Ta(R; A)| < [Taga (B; A)] + [Pa1(B; A)]



(alternatively, one can do asymptotic analysis, as |x — y| — oo, to the inte-
gral in (2)).

Now consider the domain D in R?
D =(0,b)) x ---x(0,b,) x R*™"

(r is some integer between 1 and d), and let L, = —A act on D with a-
Floquet-Bloch boundary conditions. This means that there are numbers
a1, ..., ;. such that, for u to be in the domain of L., we must have

Wy, ooy bjy oy 2g) = €99%u(ay, ., 0, .0 1), (3)

Vu(z1, .oy bjy ooy Tg) = €99 Vu(zy, ..., 0, ..., 74),
for all j = 1,...,r. Without loss of generality we assume that

™ ™

=1,...,r
b] b]) j Y 7T

The method of images gives that the Green’s function of L, is

Gz, y; A) = > e Ty (x +mb,y; M),

meZ”

where
a=(ay,..,a.,0,..,0) and mb = (myby,...,m;b,., 0, ..., 0)
are considered in RY. Using (2) in the above equation, we get
oy [ 5= y+ mbf’
G(z,y; \) = Z e (mb)/ ————5 XD ()\t - — | dt,
mezr 0 (4mt)" it (4)

where, for A < 0 (or, more generally, ®{\} < 0), the series converges
absolutely, provided x # y (z and y are in D).

We now show how to obtain a series representation of G(z,y;\), ©x #
y, that converges very rapidly, for all A € C\ N, where N is a discrete
(countable) set. First we write (following Ewald’s approach)

G(z,y; N) = Gi(z,y; A) + Ga(z, y; N),

where

A B |z —y 4+ mb|’
. _ —ia-(mb) _
Gi(z,y; \) E e /o —(47rt)d/2 exp ()\t yn dt, 5

mez”



00 2
Gao(z,y; \) = Z ¢~ (mb) ;ex A — m dt
2\, VY, 5 (47‘(‘t)d/2 p At ) (6)

mez"

and E is a positive number. Observe that G1(z,y; \) and Go(z,y; \) are the
integral kernels of the operators

E 00
/ e~ o=V gt and / e e Nt = (Lo — A)H e P,
0 E

respectively.

The series for Gi(x,y; \), given in (5), is already rapidly convergent,
for all A € C (as long as = # y), since its general term decays (in m) like
C'|mb| > exp (— |mb|? JAE).

In the case r = d, Go(x, y; A), being the integral kernel of (L — A) ™' e F(Ea=2)
has the eigenfunction expansion

—[|a|?+4n2|m/b|* +47wa-(m/b)—A| E
Go(z,y; A) = L Z ¢ | | g!2r(m/b)+al-(z=y)
DI “ |a|* + 4n? [m/b]” + 4w - (m/b) — A )

where |D| = bbg - - - by is the volume of D and

m/b = (my/by,...,mq/bg).

Formula (7) is valid for all A\ # |af* + 472 |m/b]> + 47wa - (m/b), ie. all
A ¢ o(L,), at which Go(z,y; A) has simple poles. The terms of the series
above decay (in m) like

C'|m/b|? exp (—4r? Im/b)? E),

for any fixed A € C\ o(L,).

Now, let us discuss the case r < d. For the series in (6) we first assume
that ® {\} < 0. In this case we can interchange summation and integration
and get

GoleyiN) = [ i o
ol y; A :/ a7 e 1T Ty m reekmbl) dt,
E (4rt) et (8)
where, for © = (21, ..., x4), we have introduced

T =T

" = (x1,...,2,,0,...,0) and T =(0,....,0, 41, ..., q).

Next (following the spirit of Ewald’s approach) we invoke a lemma.



Lemma 1. If s > 0 and z,v € C, then

E 6—52(z+n)2—ivn — ﬁ6i72—72/482 § 6—7r2n2/52—7r7n/82+27rizn
S

nez neZ

Proof. Poisson Summation Formula (see, e.g. [3]) applied to the function
flz) = e A7 +Be, A>0, BeC

(in fact, the formula is also a theta function identity). |

The lemma implies immediately

E :€7|zrfyT+mb|2/4tfia-(mb) _
mez”

r/2
—(47Tt) eioz-(foyT)ﬂa\Qt Z e—[47r2|m/b|2+47ra-(m/b)]t+27ri(m"—y7')-(m/b)
by ---b, !

mez"

where

m/b = (my/by,...,m;/b.,0,...,0).
Thus (8) becomes
Gaz,y; A) =

etl2m(m/b)+al-(z"—y")

3 /oo oLl +am2lm /b tamac (m /o) N~z g Pjas At
by - - by E (4m)<d—”(3>

meZL”

So far we have assumed R {\} < 0. However, the terms of the series
above decay (in m) like

C|m/b| " exp (—47* m/b]° E)

for any fixed A € C. Thus, in the tail of the series, we can take A\ to be any
complex number. There seems to be a problem though with the first few
terms of the series, where we may have R {\} > |a|*+472 |m/b|*+4ma-(m/b)
(so that the corresponding integrals diverge). The following lemma shows
how to overcome this problem.

Lemma 2. Let a, ¢, F be positive constants, and n a positive integer.
For R{\} > 0 we set

> 2 dt
A :/ ef(af)\)tfc /4t—.
e E (47t)"?



Then the only singularity of f(A) on C is a branch point at A = a.

Proof. Define

F dt
f A :/ 6—(a—>\)t—02/4t .
W=, (4rt)"?

Notice that fo(\) is entire in A and

1 _
— NO=02) A=/ pg (C, S — X A) ’

27)

F) + fo(N) =

where K, (+) is the modified Bessel function of the 2nd kind, of order v.
Thus, the exact type of the branch point of f (A) at A = a is known. [

Thus, if r < d, the lemma implies that the only singularities of Gy (z, y; A),
viewed as a function of ), are branch points at A\ = |a|* + 472 |m /b|* + 47o -
(m/b). These are also the singularities of G(z,y; A). Notice that, if d—r > 2,
then G(x,y; A) stays finite at these values of .

3 The Main Result

We summarize the main result established in the previous section (see (5)
and (9)):
Theorem. Consider the domain D in R?

D =(0,b)) x ---x(0,b) x RI™"

(r is some integer between 1 and d), and let L, = —A act on D with a-
Floquet-Bloch boundary conditions (see (3)). Then, for any £ > 0, the
Green’s function G(x,y; A) of L, has the following rapidly convergent series
representation

G(z,y; \) = Gi(z,y; A) + Ga(z, y; A),

. o v —y + mb|’
. _ —ia-(mb) _
Gi(z,y; \) E e /0 —(4ﬂ)d/2 exp ()\t yn dt,

meZL"
G2<$, Y; )‘) =
ei[27r(m/b)+oz}~(xT—yr) /OO 6_[\a|2+47r2|m/b\2+47r04~(m/b)—)\]t—|fr—ﬂr|2/4t dt
oy by by E (47) (4=

where o = (o, ..., -, 0, ..., 0), mb = (mqby, ..., m,b., 0, ..., 0),
m/b= (my/by,....,m./b.,0,....,0), " = (x1, ..., 2,0, ..., 0),
and 7" = (0,...,0, 241, ..., Tq).



Remarks. (a) If n =1, then

f A :/ e—(a—)\)t—cz/élt / (a—X)s2—c? /45> ds.

It follows (differentiate with respect to v/E) that
e—cva—X

66\/(17
f) = em<
+RE?7H&<EW—M—?;E),

4/a —\

where
erfc(z) = 1—erf(z) = 1—(2/v/7) /Oz exp (—s*) ds = (2/v/7) /OO exp (—s%) ds

(a well known entire function).

Thus, if r =d — 1, then we have a more explicit representation of the
integrals in the series for Ga(z, y; A), in terms of the special function erfc(z).

(b) Lemma 2 1mphes that the representation of Gy(x,y; \), is valid for
all A\ #£ |a| + 472 |m/b|* + 47 - (m/b), even though o(Ly) = [Ao, 00), where

= |af”.

( ) If we want to balance the decays of the terms of the series for

G1(z,y; A) and for Go(x,y; A), a reasonable choice is
R R R - R

Cdm b byt b2

(d) The case of Dirichlet or Neumann boundary conditions can be treated
similarly, since the corresponding Green’s function can be written as a sum
(alternating sum in the Dirichlet case) of “free” Green’s functions (method
of images) so we again have a formula very similar to (4).

(e) Let us take d = 3. If D = (0,b1) x (0,b) x (0,b3) and o = (0,0, 0),

we have
e—x/—)\|x—y+mb|

1
Gy =—S —n

G($aya )‘) = Gl(zay; )‘) + Gg(l’,y; )‘)7

where

|x—y+mb|
1z, y; A Z/ 4t3/zexp()\t

mezZ3



and, by (7),

—(4m2|m/b> =N\ E
1 € ( ) 2irm-(x—y)

Gao(z,y; )

b1b2bs s AT Im/b|” — X
(f) Again, let d = 3. Observe that (by substituting ¢t = s~2)

E 2 oo
/ exp (At - C—) % = 2/ e~ (/)N g
0 4t t 1/\/E

Thus, by (a) above we get
E 2
¢\ dt

= ﬁ {eicﬁerfc (L LY )\E) + e~V Aerfe (L — 1 )\E)} )

For d = 3, the formula for G1(x,y; \) becomes

2
o (At - w) "

Gi(z,y;\) = Z ei”‘(mb)/

mez3

E
; At

(47t)%/?
and therefore, by (10), the integrals in the series terms can be computed
explicitly, in terms of the function erfc(z).

(g) If D = (0,b1)%(0,b2) xR (hence d = 3and r = 2), and a = (g, g, 0),
we obtain the case of the paper of Kirk Jordan et al. (see [2]). Notice that
this is the only case where the terms of both G1(x,y; \) and Ga(z,y; A) can
be computed in terms of the function erfc(z).

(h) In the case d > 1 we have that G(z,y; \) — o0, as [z —y| — 0. All

the singular behavior of G(z,y; ) is captured in the term of the series for
G1(x,y; \) that corresponds to m = 0.

APPENDIX

The “master” formula in Ewald’s work [1],

6z'KR 1 o0 5 5 K2
= — exp | —R2"+ — ) dz
R NZS /_ o p< 422
(the formula is in the sense of analytic continuation with respect to K;
strictly speaking it is valid in the region R{K?} < 0; alternatively we can

10



take K real in the formula above and think of the integral as a contour
integral where the contour is the entire x-axis except for a small interval
containing 0 which can be replaced by a small semicircle avoiding 0—see
also [2]), can be seen as a variant of (2) for d = 3. An alternative, more
direct way to justify this formula is by applying the corollary of the (well-
known) lemma, given below, to the function

flz)=e"".

Lemma 3. If f € L'(R), then
[e.e] 1 (e e]
/ f(x——)dm:/ f(z)dz
—00 T —00
Proof. By using the substitution © = —1/x we obtain
> 1 0 1\ d
Lo Loty
0 X oo u/) u
0 00 1 d
[ol=)e= [ (-0) @
—00 i 0 u Uu

Adding up and replacing the dummy variable u by = we get
o 1 o 1 1 [ 1 1
/ fle—— dx:/ fle—— d_xz_/ flz—— 1+ = |dx.
. x . x) 2 2)_ x x?
Now, the substitution u = z — 1/x gives
) 1 1 0
fle—=) {1+ |de= f a:—— dr = f
0 T T —00

and the proof is completed.

Corollary. If f € L'(R), a > 0, and b > 0, then

st

(thus the first integral does not depend on b).

and

Proof. The case b= 0 is obvious. If b > 0, the substitution u = (ab)/* z

oo () Lo e o

11



Thus, by the previous lemma

[ t)r=(0) L toms

and the proof is finished by substituting v = (ab)_l/2 x in the integral of the
right hand side. [ |
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