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ABSTRACT

We propose a justification of Ewald’s method of obtaining rapidly conver-
gent series for the Green’s function of the 3-dimensional Helmholtz equation.
Our point of view enables us to extend the method to Green’s functions for
the Helmholtz equation in certain domains of Rd, with quite general bound-
ary conditions.
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1 Introduction

In 1921 P. P. Ewald published a sensational paper (see [1]). He presented
a method that was used to transform the slowly convergent series of the
Green’s function of the 3-d Helmholtz equation, with Floquet (e.g. periodic)
boundary conditions in the x and y directions, to a series that converges very
rapidly.

Ewald’s method gives spectacular computational results and hence it has
been used extensively by physicist, engineers, and numerical analysts (as an
example, see [2]). However, it is not transparent at all. The reader is usually
left with the impression that it works by coincidence. The method is based
on the formula

eiKR

R
=

1√
π

∫ ∞

−∞
exp

(
−R2z2 +

K2

4z2

)
dz,

which somehow comes “out of the blue”.
In this note we propose a point of view that sheds some understanding

to the underlying structure of Ewald’s approach. This enables us to easily
extend his method to any dimension and a variety of boundary conditions.

2 A Rapidly Convergent Series for the Green’s Function

Let L be a self-adjoint operator on the space L2(D), where D is a domain
in Rd, such that inf σ(L) = λ0, where σ(L) is the spectrum of L. If λ is a
complex number with <{λ} < λ0, then

(L− λ)−1 =

∫ ∞

0

eλte−tLdt.

In terms of integral kernels, the above equation can be written as

G(x, y; λ) =

∫ ∞

0

eλtp(t, x, y)dt, (1)

where G(x, y; λ) is the Green’s function and p(t, x, y) the heat kernel asso-
ciated to L (thus, the Green’s function is the Laplace transform of the heat
kernel, viewed as a function of t). The integral in (1) converges if

<{λ} < λ0

and diverges if <{λ} > λ0 (if <{λ} = λ0, convergence is possible). On the
other hand, G(x, y; λ) is analytic in λ, on C \ σ(L).

If L = −∆, acting on Rd (hence σ(L) = [0,∞); L is the “free” d-
dimensional negative Laplacian operator), then its heat kernel is
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p(t, x, y) =
1

(4πt)d/2
exp

(
−|x− y|2

4t

)
.

Let Γd(x, y; λ) be the corresponding Green’s function, i.e. the integral kernel
of (L− λ)−1. Then (1) gives

Γd(x, y; λ) =

∫ ∞

0

1

(4πt)d/2
exp

(
λt− |x− y|2

4t

)
dt

def
= Γd(|x− y| ; λ)

(2)

(Γd(x, x; λ) = ∞, if d ≥ 2). By deforming the contour of the above integral,
we can get Γd(x, y; λ), for <{λ} ≥ 0, but one can do even better, since
Γd(|x− y| ; λ) can be computed explicitly. If d = 1, it is easy to see (by
solving the associated ordinary differential equation for Γ1) that

Γ1(x, y; λ) = Γ1(|x− y| ; λ) =
e−

√−λ|x−y|

2
√−λ

.

Furthermore, from (2) one observes that

d

dλ
Γd(R; λ) =

1

4π
Γd−2(R; λ).

From this equation one can compute Γd(x, y; λ) for all odd dimensions d:

Γ3(x, y; λ) =
e−

√−λ|x−y|

4π |x− y| , etc.

If d is even, Γd(x, y; λ) is not an elementary function. One can find the radial
solutions of the equation

−∆u = λu + δ(x), x ∈ Rd,

to conclude that (for all d)

Γd(x, y; λ) =
1

(2π)d/2
(−λ)(d/4)−(1/2) |x− y|1−(d/2) K(d/2)−1

(√
−λ |x− y|

)
,

where Kν (·) is the modified Bessel function of the 2nd kind, of order ν.
Finally, we notice that Γd(R; λ) decays exponentially, as R → ∞. This is
easy to establish if d is odd, whereas, if d is even, one can, for example, use
(2) to get the estimate

|Γd(R; λ)| < |Γd+1(R; λ)|+ |Γd−1(R; λ)|
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(alternatively, one can do asymptotic analysis, as |x− y| → ∞, to the inte-
gral in (2)).

Now consider the domain D in Rd

D = (0, b1)× · · · × (0, br)× Rd−r

(r is some integer between 1 and d), and let Lα = −∆ act on D with α-
Floquet-Bloch boundary conditions. This means that there are numbers
α1, ..., αr such that, for u to be in the domain of Lα, we must have

u(x1, ..., bj, ..., xd) = eiαjbju(x1, ..., 0, ..., xd),
∇u(x1, ..., bj, ..., xd) = eiαjbj∇u(x1, ..., 0, ..., xd),

(3)

for all j = 1, ..., r. Without loss of generality we assume that

− π

bj

< αj ≤ π

bj

, j = 1, ..., r.

The method of images gives that the Green’s function of Lα is

G(x, y; λ) =
∑

m∈Zr

e−iα·(mb)Γd(x + mb, y; λ),

where

α = (α1, ..., αr, 0, ..., 0) and mb = (m1b1, ..., mrbr, 0, ..., 0)

are considered in Rd. Using (2) in the above equation, we get

G(x, y; λ) =
∑

m∈Zr

e−iα·(mb)

∫ ∞

0

1

(4πt)d/2
exp

(
λt− |x− y + mb|2

4t

)
dt,

(4)

where, for λ < 0 (or, more generally, <{λ} < 0), the series converges
absolutely, provided x 6= y (x and y are in D).

We now show how to obtain a series representation of G(x, y; λ), x 6=
y, that converges very rapidly, for all λ ∈ C \ N , where N is a discrete
(countable) set. First we write (following Ewald’s approach)

G(x, y; λ) = G1(x, y; λ) + G2(x, y; λ),

where

G1(x, y; λ) =
∑

m∈Zr

e−iα·(mb)

∫ E

0

1

(4πt)d/2
exp

(
λt− |x− y + mb|2

4t

)
dt,

(5)
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G2(x, y; λ) =
∑

m∈Zr

e−iα·(mb)

∫ ∞

E

1

(4πt)d/2
exp

(
λt− |x− y + mb|2

4t

)
dt,

(6)

and E is a positive number. Observe that G1(x, y; λ) and G2(x, y; λ) are the
integral kernels of the operators

∫ E

0

e−t(Lα−λ)dt and

∫ ∞

E

e−t(Lα−λ)dt = (Lα − λ)−1 e−E(Lα−λ),

respectively.
The series for G1(x, y; λ), given in (5), is already rapidly convergent,

for all λ ∈ C (as long as x 6= y), since its general term decays (in m) like
C |mb|−2 exp

(− |mb|2 /4E
)
.

In the case r = d, G2(x, y; λ), being the integral kernel of (Lα − λ)−1 e−E(Lα−λ),
has the eigenfunction expansion

G2(x, y; λ) =
1

|D|
∑

m∈Zd

e−[|α|2+4π2|m/b|2+4πα·(m/b)−λ]E

|α|2 + 4π2 |m/b|2 + 4πα · (m/b)− λ
ei[2π(m/b)+α]·(x−y),

(7)

where |D| = b1b2 · · · bd is the volume of D and

m/b = (m1/b1, ..., md/bd).

Formula (7) is valid for all λ 6= |α|2 + 4π2 |m/b|2 + 4πα · (m/b), i.e. all
λ /∈ σ(Lα), at which G2(x, y; λ) has simple poles. The terms of the series
above decay (in m) like

C |m/b|−2 exp
(−4π2 |m/b|2 E

)
,

for any fixed λ ∈ C \ σ(Lα).
Now, let us discuss the case r < d. For the series in (6) we first assume

that <{λ} < 0. In this case we can interchange summation and integration
and get

G2(x, y; λ) =

∫ ∞

E

eλt−|xr−yr|2/4t

(4πt)d/2

( ∑

m∈Zr

e−|x
r−yr+mb|2/4t−iα·(mb)

)
dt,

(8)

where, for x = (x1, ..., xd), we have introduced

xr = (x1, ..., xr, 0, ..., 0) and xr = (0, ..., 0, xr+1, ..., xd).

Next (following the spirit of Ewald’s approach) we invoke a lemma.
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Lemma 1. If s > 0 and z, γ ∈ C, then

∑

n∈Z
e−s2(z+n)2−iγn =

√
π

s
eiγz−γ2/4s2

∑

n∈Z
e−π2n2/s2−πγn/s2+2πizn.

Proof. Poisson Summation Formula (see, e.g. [3]) applied to the function

f(x) = e−Ax2+Bx, A > 0, B ∈ C.

(in fact, the formula is also a theta function identity). ¥

The lemma implies immediately

∑

m∈Zr

e−|x
r−yr+mb|2/4t−iα·(mb) =

(4πt)r/2

b1 · · · br

eiα·(xr−yr)−|α|2t
∑

m∈Zr

e−[4π2|m/b|2+4πα·(m/b)]t+2πi(xr−yr)·(m/b),

where
m/b = (m1/b1, ..., mr/br, 0, ..., 0).

Thus (8) becomes
G2(x, y; λ) =

∑

m∈Zr

ei[2π(m/b)+α]·(xr−yr)

b1 · · · br

∫ ∞

E

e−[|α|2+4π2|m/b|2+4πα·(m/b)−λ]t−|xr−yr|2/4t dt

(4πt)(d−r)/2
.

(9)

So far we have assumed <{λ} < 0. However, the terms of the series
above decay (in m) like

C |m/b|−2 exp
(−4π2 |m/b|2 E

)
,

for any fixed λ ∈ C. Thus, in the tail of the series, we can take λ to be any
complex number. There seems to be a problem though with the first few
terms of the series, where we may have <{λ} ≥ |α|2+4π2 |m/b|2+4πα·(m/b)
(so that the corresponding integrals diverge). The following lemma shows
how to overcome this problem.

Lemma 2. Let a, c, E be positive constants, and n a positive integer.
For <{λ} > 0 we set

f(λ) =

∫ ∞

E

e−(a−λ)t−c2/4t dt

(4πt)n/2
.
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Then the only singularity of f(λ) on C is a branch point at λ = a.

Proof. Define

f0(λ) =

∫ E

0

e−(a−λ)t−c2/4t dt

(4πt)n/2
.

Notice that f0(λ) is entire in λ and

f(λ) + f0(λ) =
1

(2π)n/2
(a− λ)(n/4)−(1/2) c1−(n/2)K(n/2)−1

(
c
√

a− λ
)

,

where Kν (·) is the modified Bessel function of the 2nd kind, of order ν.
Thus, the exact type of the branch point of f (λ) at λ = a is known. ¥

Thus, if r < d, the lemma implies that the only singularities of G2(x, y; λ),
viewed as a function of λ, are branch points at λ = |α|2 +4π2 |m/b|2 +4πα ·
(m/b). These are also the singularities of G(x, y; λ). Notice that, if d−r > 2,
then G(x, y; λ) stays finite at these values of λ.

3 The Main Result

We summarize the main result established in the previous section (see (5)
and (9)):

Theorem. Consider the domain D in Rd

D = (0, b1)× · · · × (0, br)× Rd−r

(r is some integer between 1 and d), and let Lα = −∆ act on D with α-
Floquet-Bloch boundary conditions (see (3)). Then, for any E > 0, the
Green’s function G(x, y; λ) of Lα has the following rapidly convergent series
representation

G(x, y; λ) = G1(x, y; λ) + G2(x, y; λ),

G1(x, y; λ) =
∑

m∈Zr

e−iα·(mb)

∫ E

0

1

(4πt)d/2
exp

(
λt− |x− y + mb|2

4t

)
dt,

G2(x, y; λ) =

∑

m∈Zr

ei[2π(m/b)+α]·(xr−yr)

b1 · · · br

∫ ∞

E

e−[|α|2+4π2|m/b|2+4πα·(m/b)−λ]t−|xr−yr|2/4t dt

(4πt)(d−r)/2
,

where α = (α1, ..., αr, 0, ..., 0), mb = (m1b1, ...,mrbr, 0, ..., 0),
m/b = (m1/b1, ..., mr/br, 0, ..., 0), xr = (x1, ..., xr, 0, ..., 0),
and xr = (0, ..., 0, xr+1, ..., xd).
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Remarks. (a) If n = 1, then

f(λ) =

∫ ∞

E

e−(a−λ)t−c2/4t dt√
4πt

=
1√
π

∫ ∞

√
E

e−(a−λ)s2−c2/4s2

ds.

It follows (differentiate with respect to
√

E) that

f(λ) =
ec
√

a−λ

4
√

a− λ
erfc

(√
E (a− λ) +

c

2
√

E

)

+
e−c

√
a−λ

4
√

a− λ
erfc

(√
E (a− λ)− c

2
√

E

)
,

where

erfc(z) = 1−erf(z) = 1−(
2/
√

π
) ∫ z

0

exp
(−s2

)
ds =

(
2/
√

π
) ∫ ∞

z

exp
(−s2

)
ds

(a well known entire function).
Thus, if r = d− 1, then we have a more explicit representation of the

integrals in the series for G2(x, y; λ), in terms of the special function erfc(z).
(b) Lemma 2 implies that the representation of G2(x, y; λ), is valid for

all λ 6= |α|2 + 4π2 |m/b|2 + 4πα · (m/b), even though σ(Lα) = [λ0,∞), where
λ0 = |α|2.

(c) If we want to balance the decays of the terms of the series for
G1(x, y; λ) and for G2(x, y; λ), a reasonable choice is

E =
1

4π

[
b2
1 + b2

2 + · · ·+ b2
r

b−2
1 + b−2

2 + · · ·+ b−2
r

]1/2

.

(d) The case of Dirichlet or Neumann boundary conditions can be treated
similarly, since the corresponding Green’s function can be written as a sum
(alternating sum in the Dirichlet case) of “free” Green’s functions (method
of images) so we again have a formula very similar to (4).

(e) Let us take d = 3. If D = (0, b1) × (0, b2) × (0, b3) and α = (0, 0, 0),
we have

G(x, y; λ) =
1

4π

∑

m∈Z3

e−
√−λ|x−y+mb|

|x− y + mb| ,

G(x, y; λ) = G1(x, y; λ) + G2(x, y; λ),

where

G1(x, y; λ) =
∑

m∈Z3

∫ E

0

1

(4πt)3/2
exp

(
λt− |x− y + mb|2

4t

)
dt,
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and, by (7),

G2(x, y; λ) =
1

b1b2b3

∑

m∈Z3

e−(4π2|m/b|2−λ)E

4π2 |m/b|2 − λ
e2iπm·(x−y).

(f) Again, let d = 3. Observe that (by substituting t = s−2)

∫ E

0

exp

(
λt− c2

4t

)
dt

t3/2
= 2

∫ ∞

1/
√

E

e−(c2/4)s2+λ/s2

ds.

Thus, by (a) above we get

∫ E

0

exp

(
λt− c2

4t

)
dt

t3/2

=

√
π

c

[
eic

√
λerfc

(
c

2
√

E
+ i
√

λE

)
+ e−ic

√
λerfc

(
c

2
√

E
− i
√

λE

)]
.
(10)

For d = 3, the formula for G1(x, y; λ) becomes

G1(x, y; λ) =
∑

m∈Z3

e−iα·(mb)

∫ E

0

1

(4πt)3/2
exp

(
λt− |x− y + mb|2

4t

)
dt,

and therefore, by (10), the integrals in the series terms can be computed
explicitly, in terms of the function erfc(z).

(g) If D = (0, b1)×(0, b2)×R (hence d = 3 and r = 2), and α = (α1, α2, 0),
we obtain the case of the paper of Kirk Jordan et al. (see [2]). Notice that
this is the only case where the terms of both G1(x, y; λ) and G2(x, y; λ) can
be computed in terms of the function erfc(z).

(h) In the case d > 1 we have that G(x, y; λ) → ∞, as |x− y| → 0. All
the singular behavior of G(x, y; λ) is captured in the term of the series for
G1(x, y; λ) that corresponds to m = 0.

APPENDIX

The “master” formula in Ewald’s work [1],

eiKR

R
=

1√
π

∫ ∞

−∞
exp

(
−R2z2 +

K2

4z2

)
dz

(the formula is in the sense of analytic continuation with respect to K;
strictly speaking it is valid in the region <{K2} ≤ 0; alternatively we can
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take K real in the formula above and think of the integral as a contour
integral where the contour is the entire x-axis except for a small interval
containing 0 which can be replaced by a small semicircle avoiding 0—see
also [2]), can be seen as a variant of (2) for d = 3. An alternative, more
direct way to justify this formula is by applying the corollary of the (well-
known) lemma, given below, to the function

f(x) = e−x2

.

Lemma 3. If f ∈ L1(R), then
∫ ∞

−∞
f

(
x− 1

x

)
dx =

∫ ∞

−∞
f (x) dx.

Proof. By using the substitution u = −1/x we obtain

∫ ∞

0

f

(
x− 1

x

)
dx =

∫ 0

−∞
f

(
u− 1

u

)
du

u2

and ∫ 0

−∞
f

(
x− 1

x

)
dx =

∫ ∞

0

f

(
u− 1

u

)
du

u2
.

Adding up and replacing the dummy variable u by x we get
∫ ∞

−∞
f

(
x− 1

x

)
dx =

∫ ∞

−∞
f

(
x− 1

x

)
dx

x2
=

1

2

∫ ∞

−∞
f

(
x− 1

x

)(
1 +

1

x2

)
dx.

Now, the substitution u = x− 1/x gives

∫ ∞

0

f

(
x− 1

x

)(
1 +

1

x2

)
dx =

∫ 0

−∞
f

(
x− 1

x

)(
1 +

1

x2

)
dx =

∫ ∞

−∞
f (u) du

and the proof is completed. ¥
Corollary. If f ∈ L1(R), a > 0, and b ≥ 0, then

∫ ∞

−∞
f

(
ax− b

x

)
dx =

1

a

∫ ∞

−∞
f (x) dx

(thus the first integral does not depend on b).

Proof. The case b = 0 is obvious. If b > 0, the substitution u = (ab)1/2 x
gives

∫ ∞

−∞
f

(
ax− b

x

)
dx =

(
b

a

)1/2 ∫ ∞

−∞
f

[√
ab

(
u− 1

u

)]
du.
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Thus, by the previous lemma

∫ ∞

−∞
f

(
ax− b

x

)
dx =

(
b

a

)1/2 ∫ ∞

−∞
f

(
u
√

ab
)

du

and the proof is finished by substituting u = (ab)−1/2 x in the integral of the
right hand side. ¥
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