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T
he mathematical practice and theory
of option pricing has many surprises.
Who would have thought that to price
an option on a stock you can com-
pletely ignore the expected value of

the stock price and only consider its standard
deviation? Or that options are redundant, mean-
ing that their outcomes can be completely repli-
cated by buying and selling bonds and the un-
derlying stock? Another unexpected fact is that
there is an exact formula (or algorithm) for the
price of an option; if the quoted price differs
from the calculated price, then you can always
make a profit, called an arbitrage profit, no mat-
ter what the market does. Of course, all these re-
sults depend upon your chosen model of the
marketplace, but extensive empirical tests show
that pricing options in the usual setting based
on geometric Wiener processes and the as-
sumption of no arbitrage possibilities is rea-
sonably accurate.

Buying and Selling Risk Using Options
It is unusual for companies to do business with-
out fire insurance. By purchasing such insur-
ance, they are shifting the financial consequences
of a major fire to the insurance company. Now
increasing numbers of companies are realizing
that they need to do something similar for other
areas such as energy prices or foreign exchange
costs.

Suppose you are the financial controller of a
major airline and you expect that over the next
two years your company will be purchasing spec-
ified quantities of aviation fuel every month.
Market indicators suggest that prices will not ex-
ceed the current price by more than 5 percent.
To prepare a budget for the next two years, you
would like a guarantee that you will never have
to pay above this 5 percent ceiling. On the other
hand, you would like to be able to take advan-
tage of any lower prices over the planning pe-
riod. What financial strategies are available to
achieve this goal—and how much would they
cost?

Or imagine that because you are able to bor-
row money at 2 percent above the U.S. three-
month Treasury rate, your real concern is that
fuel costs and interest rates are both going to
go up. In addition, you really only want protec-
tion for the average cost of fuel and interest pay-
ments over the next two years. This means that
your main concern is with the average of some
type of weighted sum of fuel costs and the Trea-
sury rate. You want a strategy that reimburses
you for the amount this average is above a par-
ticular level but that does not penalize you if the
difference is negative.

The required protection in both these cases
can be obtained by using options. In the first
case, the company could purchase a string of call
options expiring at the end of each month with
strikes equal to 5 percent over the current price
of aviation fuel. These could be purchased (at
least for gasoline) on the New York Mercantile
Exchange. The option needed in the second case
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is a type of average bas-
ket option that could be
purchased from many
large financial institu-
tions.

In both these exam-
ples, the corporation al-
ready has a risk and they
are willing to pay some-
one to take over some or
all of it. But from whom
would it buy these options? Often the individ-
ual or corporation on the other side has no risk,
but they are willing to take it on for a fee. Or per-
haps they are aviation fuel producers whose risk
is opposite to that of the airline company. In the
jargon of the area, all these transactions are re-
shaping their risk profiles.

These are simplified versions of typical prob-
lems that are being tackled every day through-
out the world using powerful mathematical tools
principally from probability, stochastic calcu-
lus, differential and integral equations, statistics,
and numerical methods. Related option-based
problems occur in asset allocation and fund
management. Hence, at least for the finance in-
dustry, optional mathematics is not optional.

European and American Options
Starting with options on the purchase and sale
of tulip bulbs in Holland during the seventeenth
century, a bewildering range of types of options
(averaging, barrier, compound, digital, and other
“exotic” species) are today offered on almost
every conceivable asset and financial indicator,
including stocks, stock indices, agricultural prod-
ucts (corn, soybeans, etc.), livestock, oil and gas,
metals (copper, gold, silver, etc.), currencies
(Japanese yen, British pounds, etc.), mutual
funds, and bonds. Even options on “catastro-
phes” have recently been introduced for the
(re)insurance market by an option exchange.

The following discussion will be confined to
foreign exchange options, since most of the in-
teresting aspects of the theory can be found
there.

Consider options on Australian dollars (AUD)
in terms of U.S. dollars. Purchasing a European
call option on AUD with expiration time T and
strike K gives the purchaser the right to buy one
Australian dollar at time T for a price of K dol-
lars. Let ST denote the price of one AUD (that is,
the exchange rate) at time T; if ST ≤ K , the ex-
piration value of the option is zero; if ST > K ,
the expiration value is ST −K , since the option
holder can purchase one AUD for K and imme-
diately sell it for ST. In the first case, the option
is said to expire out-of-the-money, in the second
in-the-money. Note that unless there has been
some special agreement, the holder of an option

that is expiring in-the-money does not actually
have to buy the Australian dollars (or 5,000
bushels of soybeans or 40,000 pounds of live cat-
tle!), but just receives the difference ST −K in
cash. If P is the price paid for the option, then
the final profit and loss profile is (ST −K)+ − P
as shown in Figure 1(a).

A European put option with expiration T and
strike K gives the right to sell one AUD at time
T for K dollars. Figure 1(b) shows its payoff
profile (K − ST )+ − P.

Most options traded on stock and futures
markets around the world are, however, Amer-
ican options. These are similar to their Euro-
pean cousins except that they can be exercised
at any time on or before the expiration date. As
we shall see, this introduces some intriguing
mathematical questions.

Binomial Model for Option Pricing
The paper that showed that European option
pricing could be put on a rational mathematical
basis was Black and Scholes [1] published in
1973. It was so revolutionary that the authors
had to submit it to a number of journals before
it was accepted. Although there are now nu-
merous approaches to the result, they mostly re-
quire specialized methods, including Itõ calcu-
lus and partial differential equations, and
perhaps Girsanov theory and Feynman-Kac meth-
ods.

But it is the binomial method due initially to
Sharpe [13] and substantially extended by Cox,
Ross, and Rubinstein [3] that made the theory
of option pricing accessible to everyone with
limited mathematical background. Even though
it requires only routine algebraic manipulations,
the method is still able to elucidate many of the
ideas behind the full theory. Furthermore, all the
surprising results mentioned in the opening can
be located in this approach. For these reasons
it is usually the first method presented in text-
books and finance courses; we shall follow this
trend and step through it. The binomial method
is, however, much more than a pedagogical
breakthrough, since it allows for the develop-
ment of numerical approximation methods for
a wide range of options for which there are no
known analytic solutions.

Figure 1. Profit and loss at expiration.
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The general “first approximation” assump-
tions for the mathematical theory of option pric-
ing are that there are no transaction costs and
taxes, there is a constant riskless interest rate and
dividend rate, and markets are competitive so
that there are no riskless arbitrage possibilities.
This means that if two financial portfolios have
the same values at some time in the future under
all market scenarios, then their initial values
must be equal.

The defining additional assumption for the bi-
nomial model is that in one unit ∆t of time the
market can go to just one of two states. For in-
stance, the current price S of the currency AUD
can move to either uS or dS , where d < u. Also
suppose that $1 invested in a riskless (or default-
free) U.S. bond returns $ρ (face value plus in-
terest) to the investor after time ∆t . Similarly,
suppose that such an investment of one AUD in
Australia returns η AUD at the end of the period.
This means that if the AUD moves to uS, one AUD
would generate wealth uηS . Similarly for a d
movement.

Consider a European call option on Australian
dollars with expiration time T and strike K. Sup-
pose that by some means we know that the value
of such an option is Cu if the exchange rate
moves to uS and Cd otherwise. These possible
movements are shown in Figure 2 where C, the
current value of the option, is what we wish to
determine.

To avoid arbitrage we must have dη < ρ < uη.
Suppose that we form a portfolio consisting of∆ units of AUD and an investment of $B in (risk-
less) U.S. bonds for a total value of ∆S + B . If the
market goes to uS , this portfolio is worth∆uηS + ρB ; and if it goes to dS , it is worth∆dηS + ρB. The question now is, does there exist∆ and B so that this portfolio matches the value
of the option after the movement of the market?
Clearly the answer is yes; the required values of∆ and B are the solution of the set of equations

(1) ∆uηS + ρB = Cu, ∆dηS + ρB = Cd,

namely,

(2) ∆ =
Cu − Cd
ηS(u− d)

, B =
uCd − dCu
ρ(u− d)

.

With these values, in the absence of arbitrage, the
value ∆S + B of the original portfolio must be equal
to the initial option price C and so

(3) C =
1
ρ

(pCu + (1− p)Cd) , where p =
ρ/η− d

u− d
.

Hence we have obtained an explicit value for the op-
tion price C, given that we know the option values
Cu and Cd.

Since we know the value of a European call op-
tion at expiration is (ST −K)+, it is routine to parti-
tion the interval [0, T ] into n equal parts to build
an n-step binomial tree for calculating the initial
price of a European call (or put) option. As before,
we just assume that at each partition point the mar-
ket can go to one of two states. Then we work back-
wards step-by-step from the known values at time
t = T by applying equation (3) to calculate the op-
tion price at each node. This results in the foreign-
exchange version of the binomial option pricing for-
mula. Figure 3 shows the n-step tree with the payoffs
and their weights. The binomial theorem is attained
by discounting the expected payoff back to the pre-
sent time.

Theorem 1. The binomial model price C of a Euro-
pean call option with expiration time T and strike
K is

C = Sη−nΦ[a;n,p′]−Kρ−nΦ[a;n,p]

where

Φ[b;m,q] =
m∑
j=b

(
m
j

)
qj (1− q)m−j ,

p =
ρ/η− d
u− d , p′ =

uη
ρ
p,

a = smallest j satisfying

ujdn−jS −K ≥ 0.

The steps of the proof show how to construct
what is called a self-financing trading strategy for
currency and bonds that replicates the behavior of
an option. The strategy starts at time t = 0 with a
mixture or portfolio of currency AUD and bonds such
that it is equal in value to the initial price of the op-
tion. Then, at each subsequent partition time, by solv-
ing equations of the form (1), it describes the quan-

Figure 2. Movements for the binomial model.
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tity of currency to sell and the
quantity of bonds to buy with
the proceeds, or vise versa, so
that, at all the partition times,
the value of the portfolio (as a
function of the exchange rate)
exactly matches the value of the
option. In particular, the portfo-
lio and the option are equal at the
expiration time T.

The binomial method is also
the most common approach of
pricing American options. Since
these are options that can be ex-
ercised at any time before their
expiration dates, at each node
the maximum of the exercise
value and the backward-induc-
tion value as computed using
equation (3) replaces this latter
value. This means, however, that
there is no closed form summa-
tion formula, with the result that
the method requires a substantial increase in
computational time.

Equivalent Martingale Measures
Even though we have obtained our goal for pric-
ing a European call option (put options can be
handled similarly) in the binomial setting, there
is still much to learn and a few puzzles to re-
solve. For example, we have obtained the value
of C without any mention of probabilities. Let’s
analyze this more carefully.

Start with the one-step case. Since
d < ρ/η < u , p defined by equation (3) satisfies
0 < p < 1. Now assign probabilities p and 1− p
to the uS and dS events respectively. (Notice that
this has nothing to do with the true or observed
probabilities of these events.) Then

C = Ẽ
(

1
ρ
C∆t

)
,

where C∆t denotes the random variable of the
option price at time t = ∆t and Ẽ the expected
value with respect to the assigned probability.

But what is this new probability? Turning to
the price of Australian dollars, the Ẽ-expected
value of an investment in a single AUD after the
time interval ∆t is ηẼ (S∆t ), where S∆t is the ran-
dom variable of the AUD price at that time. How-
ever,

ηẼ (S∆t ) = ηpuS + η(1− p)dS

= η
(ρ/η− d
u− d u +

u− ρ/η
u− d d

)
S = ρS.

In other words, under this assigned probability,
the expected value of an AUD investment after
one unit of time equals the value if the same

amount of money had been invested in local
bonds. This is referred to as risk-neutrality.

Let S0 = S and extend the discussion to an 
n-step binomial tree as a binomial random
process with probabilities p and 1− p at each
step. Given that we are at the k-th step, the ex-
pected value at the k + 1 step multiplied by η/ρ
will be precisely the value at the k-th step. For-
mally,

Ẽ
(
η
ρ
S(k+1)∆t |S0, S∆t , . . . , Sk∆t

)
= Sk∆t .

This is precisely the condition for the process
(η/ρ)St , t = 0,∆T,2∆T, . . ., to be a martingale,
a type of stochastic process used to describe
“fair” games. For this reason, the assigned prob-
ability structure is called an equivalent martin-
gale measure.

Theorem 1 can now be rewritten to state that
the price of a call option is the expected value
of the payoff random variable (ST −K)+ (calcu-
lated with respect to the equivalent martingale
measure) discounted to present time.

Theorem 2. Under the conditions for Theorem 1,
the price of a call option is

C = Ẽ
(
ρ−n(ST −K)+

)
We shall see that this general form reemerges

in a continuous format on the way to the Black-
Scholes theorem.

Black-Scholes Formula for Option Pricing
The mathematical theory of option pricing
started with the 1900 dissertation of Louis Bache-
lier, who used continuous-time stochastic

Figure 3. Binomial tree.
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processes to model and price options and deriva-
tives. His work was unknown for over half a cen-
tury, and it wasn’t until the work of such people
as Arrow, Debreu, Lintner, Markowitz, Merton,
Miller, Modigliani, Samuelson, Sharpe, and Tobin
that current mathematical techniques were again
applied to finance theory.

It was, however, the seminal paper by Black and
Scholes [1] that showed just how effective sto-
chastic methods could be in modeling a vital part
of applied finance, namely, the pricing of options.
The primary assumption is that the price
(St : t ∈ R+) of the underlying asset or exchange
rate follows a geometric Wiener process:

dSt = St (µdt +σdWt ) , S0 = S

where µ ∈ R, σ > 0 and (Wt : t ∈ R+) is a stan-
dard Wiener process or Brownian motion defined
on a probability space (Ω,F , P ). In addition, sup-
pose that this space is equipped with the aug-
mented filtration F = (Ft : t ∈ R+) generated by
W . All subsequent processes will be defined on
(Ω,F , F, P ), a filtered probability space.

Perhaps a reason for the ubiquity of this process
in finance theory is that markets are driven by
small upward and downward nudges through pur-
chases and sales. The size of these nudges are
roughly proportional to the price of the asset; now
assume everything is independent, let the size of
the nudges go to zero, and apply the central limit
theorem to achieve a geometric Wiener process.

Figure 4 compares the histogram of the daily re-
turns (that is, the logarithms of ratios St+∆t/St ,
where St and St+∆t represent prices on consecu-
tive trading days) of natural gas futures prices to
a normal probability density function with the
same mean and standard deviation. The natural gas
data, in common with most other markets, is het-
eroskedastic, meaning that it is more peaked or has
fatter tails than a normal distribution.

Our aim in the remainder of this section is to
indicate the main ideas for a proof of the Black-
Scholes theorem in the setting of the exchange
rate between the U.S. and Australia. An assump-

tion for the theorem is that in these countries
there are risk-free bonds paying constant contin-
uously compounded interest rates; denote the
rates by r and y respectively.

The midpoint of most of the proofs of the Black-
Scholes theorem is the establishment of a partial
differential equation relating the option price to
the input variables. This can be achieved through
constructing a self-financing trading strategy, the
continuous analog of the trading strategy de-
scribed above in the binomial setting, that precisely
replicates the effect of owning an option.

A trading strategy is a rule for buying and sell-
ing an asset. More specifically, it is a predictable
process (at : t ∈ R+) defined on (Ω,F , F, P ). (Pre-
dictability or nonanticipation is a technical re-
quirement that ensures that there can be no “clair-
voyance” involved in the strategy.) If at units are
purchased at time t and sold at time t +∆t, the
profit is

at (St+∆t − St ) + atSt (exp(y∆t)− 1)

≈ at∆St + atSty∆t,
the first term representing the profit from a change
in the price St of the asset and the second from
interest paid on the asset. Taking the limit in the
usual sense of stochastic calculus suggests defin-
ing the profit resulting from the trading strategy
as the sum ∫ t

0
au dSu + y

∫ t
0
auSu dt.

Now suppose that we have a trading strategy
(a, b) with a the strategy for AUD and b the strat-
egy for U.S. bonds where the differential equation
for bond prices is dβt = rβtdt. Such a strategy is
called self-financing if the value of the resulting
portfolio at any time equals the initial value plus
the intermediate profits or losses from following
the strategy; no extra funds are added or with-
drawn after the initial investment. The condition
for this strategy to be self-financing is that for 
each t

(4) Vt −V0 =
∫ t

0
au dSu + y

∫ t
0
auSu du +

∫ t
0
bu dβu

where Vs = asSs + bsβs.
Take as our goal to price a European option that

at time T pays g(ST ) for some measurable func-
tion g with polynomial growth. For example,
g(x) = (x−K)+ leads to a European call option. We
want to find a self-financing strategy (a, b) such
that

aTST + bTβT = g(ST ).

In this case, Vt = atSt + btβt is referred to as the
arbitrage price at time t of the option that pays
g(ST ) at time T.

If the option was traded at time t for any price
Ct other than this, then an arbitrage profit can be

Figure 4. Two years of daily natural gas futures data.
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made. For example, if d = Ct − (atSt + btβt ) > 0,
sale of the option together with implementa-
tion of the trading strategy locks in a profit of
d. As a result, the trading strategy (a, b) de-
scribes a portfolio of assets and bonds with
value Vt = atSt + btβt equal, at each time t, to the
value of the option.

Suppose that the value process Vt is of the
form Vt = f (St , τ) for 0 ≤ τ ≡ T − t ≤ T , where
f ∈ C2,1 ((0,∞)× [0, T ]). From Itõ’s lemma:

(5)

Vt − V0 =
∫ t

0
fx (Su, T − u) dSu

−
∫ t

0
fτ (Su, T − u) du

+
1
2
σ2
∫ t

0
S2
ufxx (Su, T − u) du.

Comparison of equations (4) and (5) shows that
the process (Vt ) comes from a self-financing
strategy Vt = atSt + btβt with the required value
when t = T provided f satisfies the parabolic
partial differential equation

(6)
1
2
σ2x2fxx + (r − y)xfx − rf − fτ = 0

with boundary values

(7)
f (x,0) = g(x), f (0, τ) = exp(−rτ)g(0)

for x ≥ 0, 0 ≤ τ ≤ T.
Originally Black and Scholes solved equation (6)

by transforming it to the standard heat equation,
at least when g(x) = (x−K)+ or (K − x)+. Duffie
[4] shows how it can be done using Feynman-Kac
theory. The method that currently has the widest
ramifications for financial theory is due to Har-
rison and Kreps [6] and Harrison and Pliska [7].
It uses Girsanov’s theorem to convert the un-
derlying measure P so that the discounted price
process exp(−(r − y)(T − t))S(t) becomes a mar-
tingale. In terms of expected values conditional
on knowing the exchange rate at time t , the so-
lution to equation (6) is:

Theorem 3. The arbitrage price at time t of an
option paying g(ST ) at time T is

Vt = f (St , τ) = Ẽ
(
e−rτg(ST )|St

)
= E

(
e−rτg(S̃T )|St

)
where τ = T − t and (S̃t ) is the process described
by

dS̃t = S̃t ((r − y)dt +σdWt ) , S̃0 = S.

Notice the similarity with Theorem 2 and that the
parameter µ does not appear. The expected val-
ues in the theorem can be evaluated as

Vt =

e−rτ√
2π

∫∞
−∞
g
(
Ste(r−y− 1

2σ
2)τ+

√
τσu

)
e−u2/2du.

When g(x) = (x−K)+, this collapses to the Gar-
man-Kohlhagen [5] formula:

(8) Vt = e−yτStN(d1)− e−rτKN(d2)

where N is the cumulative normal distribution
and

d1, d2 =
log(St/K) + (r − y ± 1

2σ
2)τ

σ
√
τ

.

Figure 5 displays the value of a call option as
function of time t and the exchange rate St.
When y = 0, (8) is the standard expression for
the Black-Scholes formula for a European call op-
tion on an asset that does not pay dividends.

Finally we mention that it is a subtle question
to determine the financial implications of the as-
sumptions in this (and other) approaches to the
Black-Scholes equation in the continuous set-
ting. Since we have to deal with such math-
ematical concepts as predictable processes and
Itõ integrals, things are clearly more compli-
cated than the binomial method discussed above
where the financial assumptions were straight-
forward.

It is possible, however, to deduce the partial
differential equation (6) as a certain type of limit
of the binomial model by letting the number of
steps n tend to infinity [8]. Specifically, let
ρ = exp(rT/n) and η = exp(yT/n) . Choosing
u = exp(σ

√∆t), d = exp(−σ√∆t) and p = 1/2+
(r − y −σ2/2)

√∆t/2σ ,  where ∆t = T/n ,  the
mean and standard deviation of the discrete dis-
tribution of the binomial method converges to
those of the risk-neutral probability distribu-
tion of ST, that is of S̃T, as n →∞. At the same
time, the corresponding option value defined
by Theorem 1 will converge via the central
limit theorem to the value given by equation
(8) (see [3]).

Figure 5. European call option values as a function of t and St .



970 NOTICES OF THE AMS VOLUME 43, NUMBER 9

Using these values of the parameters, for each
n we can obtain a discrete version of the partial
differential equation (6). From there we can eas-
ily move to discrete versions of the results in this
section. For instance, a consequence of equations
(4) and (5) is that at = fx(St , T − t) which has ex-
pression (2) for ∆ as its discrete analog. By
adopting this perspective, we do not assume, for
example, that options can be replicated by trad-
ing a portfolio of assets and bonds but that this
fact follows from the no-arbitrage assumption
on the underlying tree.

American Options
Since American options allow the possibility of
early exercise, boundary conditions similar to
those described by (7) will no longer suffice.
Consider the case when g(x) = (x−K)+. It turns
out that the domain of the equation splits into
two parts: a continuation region, where it is ad-

vantageous to keep the option, and a stopping
region, where the correct strategy is to exercise
the option. The problem now falls under the
theory of partial differential equations with free
boundaries.

There is a continuous curve St = b(t) sepa-
rating these two regions that is called the opti-
mal boundary or the early exercise boundary. In
this setting, the price of the American option is
Vt = f (St , T − t), where f is the solution of equa-
tion (6) with the boundary conditions

f (x,0) = (x−K)+, f (b(t), τ) = b(t)−K,
fx(b(t), τ) = 1,

where τ = T − t . The nature of this boundary
and its relationship with the option price is an
active area of research, as is the study of how
well the marketplace recognizes the location of
the boundary and the consequences of prices
crossing it.

As mentioned above, another approach to
pricing American options is to use the binomial
model; for n around 150 to 200, the previous
values for u, d, and p give values for American
options that lie within the tolerances of the mar-
ketplace.

Other assignments for the parameters u, d, p
are possible, but Omberg [10] shows that the con-
vergence is never monotonic. The chaotic nature
of this convergence is evident from the image
on the cover. Price [11] makes use of the scat-
tering of the regions where convergence is fastest
to develop a new algorithm for pricing Ameri-
can options that is around 60 times faster than
the standard binomial method with minimal
loss of accuracy. (See the box at left.)

Of Shoes—and Ships—and Sealing Wax
Of course, all the assumptions described above
have been relaxed, both individually and in var-
ious groupings, and a huge amount of work con-
tinues in these directions. Interest rates and
volatility can be stochastic processes, stocks
can pay discrete random dividends, trading costs
can be incorporated.

Most importantly, geometric Wiener processes
can be replaced by processes with leptokurtic re-
turns and random jumps. Restraints on short
selling and borrowing can be incorporated as re-
strictions on the quantities of the assets and
bonds used to form self-financing trading strate-
gies as described above. As well, approaches
that require risk to be measured (and then min-
imized) globally are being proposed as replace-
ments for the differential methods outlined
above in which the risk of owning an option can
be instantaneously matched at each point in
time by selling the corresponding self-financing
replicating portfolio [2].

Fractals and American Options
Most options traded in the marketplace are American-style,
meaning that they can be exercised at any time before their date
of expiration. These have no closed-form solution for their pric-
ing and analysis and so the industry usually resorts to the binomial
method described in the article. Typically 150 to 200 steps or
more are used to ensure adequate accuracy with resulting com-
putational expense. (Computational time is roughly proportional
to the square of the number of steps.) But not all data needs so
many steps.

The green areas in the images on the cover show where only
1–3 steps are necessary to get two decimal places of accuracy
moving to over 150 steps in the red areas. (The vertical axis is
time ranging from zero to six months, the horizontal is the price
of the underlying commodity ranging from 90 to 110. Different
volatilities and interest rates give different images and the final
data is mapped to a disk.)

An examination of the images suggested a new approach,
called the PB method since it “prunes” and “bends” the binomial
tree [10]. It speeds up the existing binomial method by a factor
of over 60 by making use of the scattering of the regions with
high accuracy—the green regions. Based on any initial data, the
method mathematically transforms the green stripes so that the
data will lie on one of them with the result that only a few steps
are needed to achieve the desired accuracy.

For example, in the top disk there is a blue dot in a red re-
gion indicating that to get reasonable accuracy for data corre-
sponding to this point would require approximately 150 steps.
But after applying the PB transformation, in the bottom disk the
same data lies on a green stripe so only a few steps are needed
to get the same accuracy.

Further work is proceeding to develop new methods of com-
puter visualization to process and analyze the massive amounts
of data coming from financial markets and their models rather than
just using the basic two-dimensional and three-dimensional charts.
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Another emerging direction is the imple-
mentation in financial mathematics of group
theoretic methods that formalize the existence
of various symmetries in the market [9]. Even
though still in an embryonic stage, these meth-
ods demonstrate their power in a full range of
applications, starting with the purely theoreti-
cal, where these methods restrict possible classes
of stochastic processes and provide via a prod-
uct integral of noncommutative nonlinear op-
erators a unified framework for analyzing vari-
ous exotic options, and finishing with such
applied areas as the enhancement of computa-
tional efficiency.

Despite such advances, the Black-Scholes
framework is tenacious with its simple formula
and intuitive parameters.

A further active area of research in financial
mathematics is to price options on various types
of bonds. Here the situation is more complex,
since we need to model the dynamics of the
yield curve, the curve that describes interest
rates as a function of their term or period of in-
vestment. Major contributions to the area have
been made by Black-Derman-Toy, Brace-Gatarek-
Musiela, Heath-Jarrow-Morton, Ho-Lee, Hull-
White, Jamshidian, Li-Ritchken-Sankarasubra-
manian, Miltersen-Sandmann-Sonderman and
Vasicek. Rogers [12] provides a useful overview
of the different approaches. Even though there
have been a number of developments since then,
it is safe to say that no model for yield curves
has the same dominance as that of Black-
Scholes for assets with constant interest rates.

The Black-Scholes model has provided the
risk-management and investment industries with
a substantial first course, but it has only sharp-
ened their appetites for more. It is a challenge
to the mathematics community to provide it for
them.
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