Generalized (or Confluent) Vandermonde Determinants

Vassilis G. Papanicolaou

Department of Mathematics National Technical University of Athens Zografou Campus 157 80 Athens, GREECE papanico@math.ntua.gr

Abstract

We present an explicit computation of some determinants which can be considered as generalizations of the Vandermonde determinant. The result is not new [1]. As an application we compute the Wronskian of the standard solutions of the general linear homogeneous ordinary differential equation with constant coefficients, whose associated characteristic equation has repeated roots.

Keywords. (Generalized or confluent) Vandermonde determinant; linear homogeneous ordinary differential equation with constant coefficients; Wronskian.

2010 AMS Mathematics Classification. 15A15; 34A30; 34A05.

1 The calculation of generalized (or confluent) Vandermonde determinants

It is well known that

$$\begin{vmatrix} 1 & 1 & \cdots & 1 \\ x_1 & x_2 & \cdots & x_{\nu} \\ x_1^2 & x_2^2 & \cdots & x_{\nu}^2 \\ \vdots & \vdots & \ddots & \vdots \\ x_1^{\nu-1} & x_2^{\nu-1} & \cdots & x_{\nu}^{\nu-1} \end{vmatrix} = \prod_{1 \le j < k \le \nu} (x_k - x_j),$$
(1.1)

where the left-hand side of (1.1) is the so-called $\nu \times \nu$ Vandermonde determinant. The justification of equation (1.1) is relatively easy. One can use, e.g., induction on ν or, alternatively, one can first notice that the sides of (1.1) have to be equal up to a constant factor c_{ν} , since both sides are polynomials in the variables x_1, \ldots, x_{ν} of the same degree and having the same one-degree factors. Then, the evaluation of c_{ν} can be done by, say, comparing coefficients of some monomial.

Definition. Let A and α be integers with $A \ge \alpha \ge 1$. The $A \times \alpha$ (generalized) Vandermonde block is the matrix

$$B(x; A \times \alpha) = (c_{jk})_{\substack{1 \le j \le A \\ 1 \le k \le \alpha}}, \quad \text{where} \quad c_{jk} := \binom{j-1}{k-1} x^{j-k}, \quad (1.2)$$

with the convention that $\binom{j-1}{k-1} = 0$ for j < k. Notice that $B(x; A \times \alpha)$ is a square matrix only if $A = \alpha$, and in this case its determinant is 1.

Next, let $\alpha_1, \ldots, \alpha_m$ be strictly positive integers and

$$A = \alpha_1 + \dots + \alpha_m \,. \tag{1.3}$$

Putting the blocks $B(x_1; A \times \alpha_1), \ldots, B(x_m; A \times \alpha_m)$ side by side we form the $A \times A$ (square) matrix

$$M(x_1, \dots, x_m; \alpha_1, \dots, \alpha_m) := [B(x_1; A \times \alpha_1) \cdots B(x_m; A \times \alpha_m)].$$
(1.4)

Then, we consider its determinant

$$F(x_1, \dots, x_m; \alpha_1, \dots, \alpha_m) := \det M(x_1, \dots, x_m; \alpha_1, \dots, \alpha_m), \tag{1.5}$$

namely

$$F(x_1,\ldots,x_m;\alpha_1,\ldots,\alpha_m)$$

$$= \begin{vmatrix} 1 & 0 & \cdots & 0 & \cdots & 1 & \cdots & 0 \\ x_1 & 1 & \cdots & 0 & \cdots & x_m & \cdots & 0 \\ x_1^2 & 2x_1 & \cdots & 0 & \cdots & x_m^2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\ x_1^{A-2} & (A-2)x_1^{A-3} & \cdots & \binom{A-2}{\alpha_{1}-1}x_1^{A-1-\alpha_1} & \cdots & x_m^{A-2} & \cdots & \binom{A-2}{\alpha_m-1}x_m^{A-1-\alpha_m} \\ x_1^{A-1} & (A-1)x_1^{A-2} & \cdots & \binom{A-1}{\alpha_{1}-1}x_1^{A-\alpha_1} & \cdots & x_m^{A-1} & \cdots & \binom{A-1}{\alpha_m-1}x_m^{A-\alpha_m} \\ (1.6)$$

Thus, $F(x_1, \ldots, x_m; \alpha_1, \ldots, \alpha_m)$ is a polynomial in x_1, \ldots, x_m . For instance, if m = 3 and $(\alpha_1, \alpha_2, \alpha_3) = (2, 3, 1)$ we get

$$F(x_1, x_2, x_3; 2, 3, 1) = \begin{vmatrix} 1 & 0 & 1 & 0 & 0 & 1 \\ x_1 & 1 & x_2 & 1 & 0 & x_3 \\ x_1^2 & 2x_1 & x_2^2 & 2x_2 & 1 & x_3^2 \\ x_1^3 & 3x_1^2 & x_2^3 & 3x_2^2 & 3x_2 & x_3^3 \\ x_1^4 & 4x_1^3 & x_2^4 & 4x_2^3 & 6x_2^2 & x_3^4 \\ x_1^5 & 5x_1^4 & x_2^5 & 5x_2^4 & 10x_2^3 & x_3^5 \end{vmatrix} = (x_2 - x_1)^6 (x_3 - x_1)^2 (x_3 - x_2)^3 (x_3 - x_2)^3$$

In the case $\alpha_1 = \cdots = \alpha_A = 1$ (hence m = A), $F(x_1, \ldots, x_A; 1, \ldots, 1)$ becomes the standard Vandermonde determinant and we have

$$F(x_1, \dots, x_A; 1, \dots, 1) = \prod_{1 \le j < k \le A} (x_k - x_j).$$

On the other hand, in the extreme case m = 1 we have $\alpha_1 = A$ and

$$F(x_1; A) \equiv 1.$$

Observation. Assume $\alpha_j \geq 2$ for some $j = 1, \ldots, m$. Set

$$f(y) := F(x_1, \dots, x_{j-1}, x_j, y, x_{j+1}, \dots, x_m; \alpha_1, \dots, \alpha_{j-1}, (\alpha_j - 1), 1, \alpha_{j+1}, \dots, \alpha_m)$$
(1.8)

(thus, f(y) is a polynomial in the m+1 variables x_1, \ldots, x_m and y). Then

$$F(x_1, \dots, x_m; \alpha_1, \dots, \alpha_m) = \frac{f^{(\alpha_j - 1)}(x_j)}{(\alpha_j - 1)!}.$$
 (1.9)

For example, if we take m = 3, $(\alpha_1, \alpha_2, \alpha_3) = (2, 3, 1)$, and j = 2 we have

$$f(y) = F(x_1, x_2, y, x_3; 2, 2, 1, 1) = \begin{vmatrix} 1 & 0 & 1 & 0 & 1 & 1 \\ x_1 & 1 & x_2 & 1 & y & x_3 \\ x_1^2 & 2x_1 & x_2^2 & 2x_2 & y^2 & x_3^2 \\ x_1^3 & 3x_1^2 & x_2^3 & 3x_2^2 & y^3 & x_3^3 \\ x_1^4 & 4x_1^3 & x_2^4 & 4x_2^3 & y^4 & x_3^4 \\ x_1^5 & 5x_1^4 & x_2^5 & 5x_2^4 & y^5 & x_3^5 \end{vmatrix}$$
(1.10)

and $f''(x_2) = 2!F(x_1, x_2, x_3; 2, 3, 1)$, where $F(x_1, x_2, x_3; 2, 3, 1)$ is the determinant of (1.7).

The following proposition appears as a problem in [1]. **Proposition.** Let $m \ge 2$. Then,

$$F(x_1,\ldots,x_m;\alpha_1,\ldots,\alpha_m) = \prod_{1 \le j < k \le m} (x_k - x_j)^{\alpha_j \alpha_k}.$$
 (1.11)

Proof. We will use induction on $\max\{\alpha_1, \ldots, \alpha_m\}$, i.e. the maximum of the α_j 's. If $\alpha_1 = \cdots = \alpha_m = 1$, the left-hand side of (1.11) becomes the standard Vandermonde determinant and (1.11) holds.

First inductive hypothesis: Assume that (1.11) is true for $\max\{\alpha_1, \ldots, \alpha_m\} < n$, where $n \ge 2$. We need to show that (1.11) also holds for $\max\{\alpha_1, \ldots, \alpha_m\} = n$. We will prove this by induction on $\#\{\alpha_j : \alpha_j = n\}$, namely the number of α_j 's that assume the maximum value n.

We begin by considering the case where $\alpha_i = n$ for some $i \in \{1, \ldots, m\}$ and $\max_{j \neq i} \alpha_j < n$, namely $\#\{\alpha_j : \alpha_j = n\} = 1$. Set

$$f(y) := F(x_1, \dots, x_{i-1}, x_i, y, x_{i+1}, \dots, x_m; \alpha_1, \dots, \alpha_{i-1}, (\alpha_i - 1), 1, \alpha_{i+1}, \dots, \alpha_m)$$
(1.12)

Then, since $\max\{\alpha_1, \ldots, \alpha_{i-1}, (\alpha_i - 1), 1, \alpha_{i+1}, \ldots, \alpha_m\} = n - 1$, the first inductive hypothesis implies that

$$f(y) = (y - x_i)^{n-1} \prod_{\substack{l=1\\l \neq i}}^m (y - x_l)_i^{\alpha_l} \prod_{\substack{l=1\\l \neq i}}^m (x_i - x_l)_i^{(n-1)\alpha_l} \prod_{\substack{1 \le j < k \le m\\j,k \neq i}} (x_k - x_j)^{\alpha_j \alpha_k}, \quad (1.13)$$

where for typographical convenience we have set $(y - x_l)_i := (y - x_l) \operatorname{sgn}(i - l)$ and $(x_i - x_l)_i := (x_i - x_l) \operatorname{sgn}(i - l)$. We continue by writing (1.13) in the form

$$f(y) = (y - x_i)^{n-1} f_1(y), \qquad (1.14)$$

where

$$f_1(y) := \prod_{\substack{l=1\\l\neq i}}^m (y - x_l)_i^{\alpha_l} \prod_{\substack{l=1\\l\neq i}}^m (x_i - x_l)_i^{(n-1)\alpha_l} \prod_{\substack{1 \le j < k \le m\\j,k \ne i}} (x_k - x_j)^{\alpha_j \alpha_k}.$$
 (1.15)

Now, the observation (1.9) applied to (1.12) gives

$$F(x_1, \dots, x_m; \alpha_1, \dots, \alpha_m) = \frac{f^{(n-1)}(x_i)}{(n-1)!}.$$
 (1.16)

Applying (1.16) to (1.14) yields

$$F(x_1, \dots, x_m; \alpha_1, \dots, \alpha_m) = f_1(x_i) \tag{1.17}$$

and hence, in view of (1.15) we get that $F(x_1, \ldots, x_m; \alpha_1, \ldots, \alpha_m)$ satisfies (1.11).

Second inductive hypothesis: Assume now that (1.11) is true for $\max\{\alpha_1, \ldots, \alpha_m\} = n$ and $\#\{\alpha_j : \alpha_j = n\} < p$, where $p \ge 2$. It remains to show that (1.11) is also true for $\max\{\alpha_1, \ldots, \alpha_m\} = n$ and $\#\{\alpha_j : \alpha_j = n\} = p$.

Of course, $p \leq m$ (since it is impossible to have p > m) and there are indices $1 \leq i_1 < \cdots < i_p \leq m$ such that $\alpha_{i_1} = \cdots = \alpha_{i_p} = n$ (while $\alpha_j < n$ for any index $j \notin \{i_1, \ldots, i_p\}$). Let us set

$$g(y) := F(x_1, \dots, x_{i_p-1}, x_{i_p}, y, x_{i_p+1}, \dots, x_m; \alpha_1, \dots, \alpha_{i_p-1}, (\alpha_{i_p}-1), 1, \alpha_{i_p+1}, \dots, \alpha_m)$$
(1.18)

Among the m + 1 numbers $\alpha_1, \ldots, \alpha_{i_p-1}, (\alpha_{i_p} - 1), 1, \alpha_{i_p+1}, \ldots, \alpha_m$, there are exactly p - 1 which are equal to n, hence the second inductive hypothesis implies that

$$g(y) = (y - x_{i_p})^{n-1} \prod_{\substack{l=1\\l \neq i_p}}^m (y - x_l)_{i_p}^{\alpha_l} \prod_{\substack{l=1\\l \neq i_p}}^m (x_{i_p} - x_l)_{i_p}^{(n-1)\alpha_l} \prod_{\substack{1 \le j < k \le m\\j, k \neq i_p}} (x_k - x_j)^{\alpha_j \alpha_k},$$
(1.19)

where, as before $(y - x_l)_{i_p} = (y - x_l) \operatorname{sgn}(i_p - l)$ and $(x_{i_p} - x_l)_{i_p} = (x_i - x_l) \operatorname{sgn}(i_p - l)$. We write (1.19) in the form

$$g(y) = (y - x_{i_p})^{n-1} g_1(y), \qquad (1.20)$$

where

$$g_1(y) := \prod_{\substack{l=1\\l\neq i_p}}^m (y - x_l)_{i_p}^{\alpha_l} \prod_{\substack{l=1\\l\neq i_p}}^m (x_{i_p} - x_l)_{i_p}^{(n-1)\alpha_l} \prod_{\substack{1 \le j < k \le m\\j,k \ne i_p}} (x_k - x_j)^{\alpha_j \alpha_k}.$$
 (1.21)

Next, the observation (1.9) applied to (1.18) gives

$$F(x_1, \dots, x_m; \alpha_1, \dots, \alpha_m) = \frac{g^{(n-1)}(x_{i_p})}{(n-1)!}.$$
(1.22)

Applying (1.22) to (1.20) yields

$$F(x_1, \dots, x_m; \alpha_1, \dots, \alpha_m) = g_1(x_{i_p}) \tag{1.23}$$

and hence, in view of (1.21) we get that $F(x_1, \ldots, x_m; \alpha_1, \ldots, \alpha_m)$ satisfies (1.11).

2 An application

Consider the differential equation

$$\frac{d^A u}{dt^A} + \sum_{k=0}^{A-1} c_k \frac{d^k u}{dt^k} = 0, \qquad (2.1)$$

where the c_k 's, k = 0, ..., A - 1 are complex constants. The characteristic equation associated to (2.1) is

$$p(r) := r^{A} + \sum_{k=0}^{A-1} c_{k} r^{k} = 0.$$
(2.2)

Let us assume that the polynomial p(r) of (2.2) can be factored as

$$p(r) = \prod_{j=1}^{m} (r - x_j)^{\alpha_j},$$
(2.3)

where x_1, \ldots, x_m are distinct complex numbers (of course, $\alpha_1 + \cdots + \alpha_m = A$). Then, it is well known that the functions

$$e^{x_1t}, te^{x_1t}, \dots, \frac{t^{\alpha_1-1}e^{x_1t}}{(\alpha_1-1)!}; \dots; e^{x_mt}, te^{x_mt}, \dots, \frac{t^{\alpha_m-1}e^{x_mt}}{(\alpha_m-1)!}$$
 (2.4)

(a total of A functions) are solutions of (2.1). Their Wronskian W(t) satisfies the Abel's formula, which in our case reads

$$W(t) = W(0) \exp(-c_{A-1}t).$$
(2.5)

Using the fact that

$$\frac{d^j}{dt^j} \left[\frac{t^k e^{xt}}{k!} \right] \bigg|_{t=0} = \binom{j}{k} x^{j-k}, \qquad j,k = 0,1,\dots$$
(2.6)

(we, again, use the convention that $\binom{j}{k} = 0$, if j < k) one obtains that

$$W(0) = F(x_1, \dots, x_m; \alpha_1, \dots, \alpha_m), \qquad (2.7)$$

where $F(x_1, \ldots, x_m; \alpha_1, \ldots, \alpha_m)$ is the generalized (or confluent) Vandermonde determinant introduced in (1.5). Hence, in view of (1.11) we have that (2.7) becomes

$$W(0) = \prod_{1 \le j < k \le m} (x_k - x_j)^{\alpha_j \alpha_k}$$
(2.8)

and, furthermore, an immediate corollary of (2.8) is the well-known fact that the functions appearing in (2.4) are linearly independent.

References

R. Horn and C. Johnson, *Topics in Matrix Analysis*, Cambridge University Press, 1991.