Generalized (or Confluent) Vandermonde Determinants

Vassilis G. Papanicolaou
Department of Mathematics
National Technical University of Athens
Zografou Campus
15780 Athens, GREECE
papanico@math.ntua.gr

Abstract

We present an explicit computation of some determinants which can be considered as generalizations of the Vandermonde determinant. The result is not new [1]. As an application we compute the Wronskian of the standard solutions of the general linear homogeneous ordinary differential equation with constant coefficients, whose associated characteristic equation has repeated roots.

Keywords. (Generalized or confluent) Vandermonde determinant; linear homogeneous ordinary differential equation with constant coefficients; Wronskian.
2010 AMS Mathematics Classification. 15A15; 34A30; 34A05.

1 The calculation of generalized (or confluent) Vandermonde determinants

It is well known that

$$
\left|\begin{array}{cccc}
1 & 1 & \cdots & 1 \tag{1.1}\\
x_{1} & x_{2} & \cdots & x_{\nu} \\
x_{1}^{2} & x_{2}^{2} & \cdots & x_{\nu}^{2} \\
\vdots & \vdots & \ddots & \vdots \\
x_{1}^{\nu-1} & x_{2}^{\nu-1} & \cdots & x_{\nu}^{\nu-1}
\end{array}\right|=\prod_{1 \leq j<k \leq \nu}\left(x_{k}-x_{j}\right),
$$

where the left-hand side of (1.1) is the so-called $\nu \times \nu$ Vandermonde determinant. The justification of equation (1.1) is relatively easy. One can use, e.g., induction on ν or, alternatively, one can first notice that the sides of (1.1) have to be equal up to a constant factor c_{ν}, since both sides are polynomials in the variables x_{1}, \ldots, x_{ν} of the same degree and having the same one-degree factors. Then, the evaluation of c_{ν} can be done by, say, comparing coefficients of some monomial.
Definition. Let A and α be integers with $A \geq \alpha \geq 1$. The $A \times \alpha$ (generalized) Vandermonde block is the matrix

$$
\begin{equation*}
B(x ; A \times \alpha)=\left(c_{j k}\right)_{\substack{1 \leq j \leq A \\ 1 \leq k \leq \alpha}}, \quad \text { where } \quad c_{j k}:=\binom{j-1}{k-1} x^{j-k} \tag{1.2}
\end{equation*}
$$

with the convention that $\binom{j-1}{k-1}=0$ for $j<k$. Notice that $B(x ; A \times \alpha)$ is a square matrix only if $A=\alpha$, and in this case its determinant is 1 .
Next, let $\alpha_{1}, \ldots, \alpha_{m}$ be strictly positive integers and

$$
\begin{equation*}
A=\alpha_{1}+\cdots+\alpha_{m} . \tag{1.3}
\end{equation*}
$$

Putting the blocks $B\left(x_{1} ; A \times \alpha_{1}\right), \ldots, B\left(x_{m} ; A \times \alpha_{m}\right)$ side by side we form the $A \times A$ (square) matrix

$$
\begin{equation*}
M\left(x_{1}, \ldots, x_{m} ; \alpha_{1}, \ldots, \alpha_{m}\right):=\left[B\left(x_{1} ; A \times \alpha_{1}\right) \cdots B\left(x_{m} ; A \times \alpha_{m}\right)\right] . \tag{1.4}
\end{equation*}
$$

Then, we consider its determinant

$$
\begin{equation*}
F\left(x_{1}, \ldots, x_{m} ; \alpha_{1}, \ldots, \alpha_{m}\right):=\operatorname{det} M\left(x_{1}, \ldots, x_{m} ; \alpha_{1}, \ldots, \alpha_{m}\right), \tag{1.5}
\end{equation*}
$$

namely

$$
F\left(x_{1}, \ldots, x_{m} ; \alpha_{1}, \ldots, \alpha_{m}\right)
$$

$$
=\left|\begin{array}{cccccccc}
1 & 0 & \cdots & 0 & \cdots & 1 & \cdots & 0 \tag{1.6}\\
x_{1} & 1 & \cdots & 0 & \cdots & x_{m} & \cdots & 0 \\
x_{1}^{2} & 2 x_{1} & \cdots & 0 & \cdots & x_{m}^{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\
x_{1}^{A-2} & (A-2) x_{1}^{A-3} & \cdots & \binom{A-2}{\alpha_{1}-1} x_{1}^{A-1-\alpha_{1}} & \cdots & x_{m}^{A-2} & \cdots & \binom{A-2}{\alpha_{m}-1} x_{m}^{A-1-\alpha_{m}} \\
x_{1}^{A-1} & (A-1) x_{1}^{A-2} & \cdots & \binom{A-1}{\alpha_{1}-1} x_{1}^{A-\alpha_{1}} & \cdots & x_{m}^{A-1} & \cdots & \binom{A-1}{\alpha_{m}-1} x_{m}^{A-\alpha_{m}}
\end{array}\right| .
$$

Thus, $F\left(x_{1}, \ldots, x_{m} ; \alpha_{1}, \ldots, \alpha_{m}\right)$ is a polynomial in x_{1}, \ldots, x_{m}. For instance, if $m=3$ and $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)=(2,3,1)$ we get
$F\left(x_{1}, x_{2}, x_{3} ; 2,3,1\right)=\left|\begin{array}{cccccc}1 & 0 & 1 & 0 & 0 & 1 \\ x_{1} & 1 & x_{2} & 1 & 0 & x_{3} \\ x_{1}^{2} & 2 x_{1} & x_{2}^{2} & 2 x_{2} & 1 & x_{3}^{2} \\ x_{1}^{3} & 3 x_{1}^{2} & x_{2}^{3} & 3 x_{2}^{2} & 3 x_{2} & x_{3}^{3} \\ x_{1}^{4} & 4 x_{1}^{3} & x_{2}^{4} & 4 x_{2}^{3} & 6 x_{2}^{2} & x_{3}^{4} \\ x_{1}^{5} & 5 x_{1}^{4} & x_{2}^{5} & 5 x_{2}^{4} & 10 x_{2}^{3} & x_{3}^{5}\end{array}\right|=\left(x_{2}-x_{1}\right)^{6}\left(x_{3}-x_{1}\right)^{2}\left(x_{3}-x_{2}\right)^{3}$.
In the case $\alpha_{1}=\cdots=\alpha_{A}=1$ (hence $m=A$), $F\left(x_{1}, \ldots, x_{A} ; 1, \ldots, 1\right)$ becomes the standard Vandermonde determinant and we have

$$
F\left(x_{1}, \ldots, x_{A} ; 1, \ldots, 1\right)=\prod_{1 \leq j<k \leq A}\left(x_{k}-x_{j}\right) .
$$

On the other hand, in the extreme case $m=1$ we have $\alpha_{1}=A$ and

$$
F\left(x_{1} ; A\right) \equiv 1 .
$$

Observation. Assume $\alpha_{j} \geq 2$ for some $j=1, \ldots, m$. Set
$f(y):=F\left(x_{1}, \ldots, x_{j-1}, x_{j}, y, x_{j+1}, \ldots, x_{m} ; \alpha_{1}, \ldots, \alpha_{j-1},\left(\alpha_{j}-1\right), 1, \alpha_{j+1}, \ldots, \alpha_{m}\right)$
(thus, $f(y)$ is a polynomial in the $m+1$ variables x_{1}, \ldots, x_{m} and y). Then

$$
\begin{equation*}
F\left(x_{1}, \ldots, x_{m} ; \alpha_{1}, \ldots, \alpha_{m}\right)=\frac{f^{\left(\alpha_{j}-1\right)}\left(x_{j}\right)}{\left(\alpha_{j}-1\right)!} \tag{1.9}
\end{equation*}
$$

For example, if we take $m=3,\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)=(2,3,1)$, and $j=2$ we have

$$
f(y)=F\left(x_{1}, x_{2}, y, x_{3} ; 2,2,1,1\right)=\left|\begin{array}{cccccc}
1 & 0 & 1 & 0 & 1 & 1 \tag{1.10}\\
x_{1} & 1 & x_{2} & 1 & y & x_{3} \\
x_{1}^{2} & 2 x_{1} & x_{2}^{2} & 2 x_{2} & y^{2} & x_{3}^{2} \\
x_{1}^{3} & 3 x_{1}^{2} & x_{2}^{3} & 3 x_{2}^{2} & y^{3} & x_{3}^{3} \\
x_{1}^{4} & 4 x_{1}^{3} & x_{2}^{4} & 4 x_{2}^{3} & y^{4} & x_{3}^{4} \\
x_{1}^{5} & 5 x_{1}^{4} & x_{2}^{5} & 5 x_{2}^{4} & y^{5} & x_{3}^{5}
\end{array}\right|
$$

and $f^{\prime \prime}\left(x_{2}\right)=2!F\left(x_{1}, x_{2}, x_{3} ; 2,3,1\right)$, where $F\left(x_{1}, x_{2}, x_{3} ; 2,3,1\right)$ is the determinant of (1.7).
The following proposition appears as a problem in [1].
Proposition. Let $m \geq 2$. Then,

$$
\begin{equation*}
F\left(x_{1}, \ldots, x_{m} ; \alpha_{1}, \ldots, \alpha_{m}\right)=\prod_{1 \leq j<k \leq m}\left(x_{k}-x_{j}\right)^{\alpha_{j} \alpha_{k}} \tag{1.11}
\end{equation*}
$$

Proof. We will use induction on $\max \left\{\alpha_{1}, \ldots, \alpha_{m}\right\}$, i.e. the maximum of the α_{j} 's. If $\alpha_{1}=\cdots=\alpha_{m}=1$, the left-hand side of (1.11) becomes the standard Vandermonde determinant and (1.11) holds.
First inductive hypothesis: Assume that (1.11) is true for $\max \left\{\alpha_{1}, \ldots, \alpha_{m}\right\}<$ n, where $n \geq 2$. We need to show that (1.11) also holds for $\max \left\{\alpha_{1}, \ldots, \alpha_{m}\right\}=$ n. We will prove this by induction on $\#\left\{\alpha_{j}: \alpha_{j}=n\right\}$, namely the number of α_{j} 's that assume the maximum value n.
We begin by considering the case where $\alpha_{i}=n$ for some $i \in\{1, \ldots, m\}$ and $\max _{j \neq i} \alpha_{j}<n$, namely $\#\left\{\alpha_{j}: \alpha_{j}=n\right\}=1$. Set
$f(y):=F\left(x_{1}, \ldots, x_{i-1}, x_{i}, y, x_{i+1}, \ldots, x_{m} ; \alpha_{1}, \ldots, \alpha_{i-1},\left(\alpha_{i}-1\right), 1, \alpha_{i+1}, \ldots, \alpha_{m}\right)$.
Then, since $\max \left\{\alpha_{1}, \ldots, \alpha_{i-1},\left(\alpha_{i}-1\right), 1, \alpha_{i+1}, \ldots, \alpha_{m}\right\}=n-1$, the first inductive hypothesis implies that

$$
\begin{equation*}
f(y)=\left(y-x_{i}\right)^{n-1} \prod_{\substack{l=1 \\ l \neq i}}^{m}\left(y-x_{l}\right)_{i}^{\alpha_{l}} \prod_{\substack{l=1 \\ l \neq i}}^{m}\left(x_{i}-x_{l}\right)_{i}^{(n-1) \alpha_{l}} \prod_{\substack{1 \leq j<k \leq m \\ j, k \neq i}}\left(x_{k}-x_{j}\right)^{\alpha_{j} \alpha_{k}}, \tag{1.13}
\end{equation*}
$$

where for typographical convenience we have set $\left(y-x_{l}\right)_{i}:=\left(y-x_{l}\right) \operatorname{sgn}(i-l)$ and $\left(x_{i}-x_{l}\right)_{i}:=\left(x_{i}-x_{l}\right) \operatorname{sgn}(i-l)$. We continue by writing (1.13) in the form

$$
\begin{equation*}
f(y)=\left(y-x_{i}\right)^{n-1} f_{1}(y), \tag{1.14}
\end{equation*}
$$

where

$$
\begin{equation*}
f_{1}(y):=\prod_{\substack{l=1 \\ l \neq i}}^{m}\left(y-x_{l}\right)_{i}^{\alpha_{l}} \prod_{\substack{l=1 \\ l \neq i}}^{m}\left(x_{i}-x_{l}\right)_{i}^{(n-1) \alpha_{l}} \prod_{\substack{1 \leq j<k \leq m \\ l, k \neq i}}\left(x_{k}-x_{j}\right)^{\alpha_{j} \alpha_{k}} . \tag{1.15}
\end{equation*}
$$

Now, the observation (1.9) applied to (1.12) gives

$$
\begin{equation*}
F\left(x_{1}, \ldots, x_{m} ; \alpha_{1}, \ldots, \alpha_{m}\right)=\frac{f^{(n-1)}\left(x_{i}\right)}{(n-1)!} . \tag{1.16}
\end{equation*}
$$

Applying (1.16) to (1.14) yields

$$
\begin{equation*}
F\left(x_{1}, \ldots, x_{m} ; \alpha_{1}, \ldots, \alpha_{m}\right)=f_{1}\left(x_{i}\right) \tag{1.17}
\end{equation*}
$$

and hence, in view of (1.15) we get that $F\left(x_{1}, \ldots, x_{m} ; \alpha_{1}, \ldots, \alpha_{m}\right)$ satisfies (1.11).

Second inductive hypothesis: Assume now that (1.11) is true for $\max \left\{\alpha_{1}, \ldots, \alpha_{m}\right\}=$ n and $\#\left\{\alpha_{j}: \alpha_{j}=n\right\}<p$, where $p \geq 2$. It remains to show that (1.11) is also true for $\max \left\{\alpha_{1}, \ldots, \alpha_{m}\right\}=n$ and $\#\left\{\alpha_{j}: \alpha_{j}=n\right\}=p$.

Of course, $p \leq m$ (since it is impossible to have $p>m$) and there are indices $1 \leq i_{1}<\cdots<i_{p} \leq m$ such that $\alpha_{i_{1}}=\cdots=\alpha_{i_{p}}=n$ (while $\alpha_{j}<n$ for any index $\left.j \notin\left\{i_{1}, \ldots, i_{p}\right\}\right)$.
Let us set
$g(y):=F\left(x_{1}, \ldots, x_{i_{p}-1}, x_{i_{p}}, y, x_{i_{p}+1}, \ldots, x_{m} ; \alpha_{1}, \ldots, \alpha_{i_{p}-1},\left(\alpha_{i_{p}}-1\right), 1, \alpha_{i_{p}+1}, \ldots, \alpha_{m}\right)$.
Among the $m+1$ numbers $\alpha_{1}, \ldots, \alpha_{i_{p}-1},\left(\alpha_{i_{p}}-1\right), 1, \alpha_{i_{p}+1}, \ldots, \alpha_{m}$, there are exactly $p-1$ which are equal to n, hence the second inductive hypothesis implies that

$$
\begin{equation*}
g(y)=\left(y-x_{i_{p}}\right)^{n-1} \prod_{\substack{l=1 \\ l \neq i_{p}}}^{m}\left(y-x_{l}\right)_{i_{p}}^{\alpha_{l}} \prod_{\substack{l=1 \\ l \neq i_{p}}}^{m}\left(x_{i_{p}}-x_{l}\right)_{i_{p}}^{(n-1) \alpha_{l}} \prod_{\substack{1 \leq j<k \leq m \\ j, k \neq i_{p}}}\left(x_{k}-x_{j}\right)^{\alpha_{j} \alpha_{k}}, \tag{1.19}
\end{equation*}
$$

where, as before $\left(y-x_{l}\right)_{i_{p}}=\left(y-x_{l}\right) \operatorname{sgn}\left(i_{p}-l\right)$ and $\left(x_{i_{p}}-x_{l}\right)_{i_{p}}=\left(x_{i}-\right.$ $\left.x_{l}\right) \operatorname{sgn}\left(i_{p}-l\right)$. We write (1.19) in the form

$$
\begin{equation*}
g(y)=\left(y-x_{i_{p}}\right)^{n-1} g_{1}(y), \tag{1.20}
\end{equation*}
$$

where

$$
\begin{equation*}
g_{1}(y):=\prod_{\substack{l=1 \\ l \neq i_{p}}}^{m}\left(y-x_{l}\right)_{i_{p}}^{\alpha_{l}} \prod_{\substack{l=1 \\ l \neq i_{p}}}^{m}\left(x_{i_{p}}-x_{l}\right)_{i_{p}}^{(n-1) \alpha_{l}} \prod_{\substack{1 \leq j<k \leq m \\ j, k \neq i_{p}}}\left(x_{k}-x_{j}\right)^{\alpha_{j} \alpha_{k}} . \tag{1.21}
\end{equation*}
$$

Next, the observation (1.9) applied to (1.18) gives

$$
\begin{equation*}
F\left(x_{1}, \ldots, x_{m} ; \alpha_{1}, \ldots, \alpha_{m}\right)=\frac{g^{(n-1)}\left(x_{i_{p}}\right)}{(n-1)!} . \tag{1.22}
\end{equation*}
$$

Applying (1.22) to (1.20) yields

$$
\begin{equation*}
F\left(x_{1}, \ldots, x_{m} ; \alpha_{1}, \ldots, \alpha_{m}\right)=g_{1}\left(x_{i_{p}}\right) \tag{1.23}
\end{equation*}
$$

and hence, in view of (1.21) we get that $F\left(x_{1}, \ldots, x_{m} ; \alpha_{1}, \ldots, \alpha_{m}\right)$ satisfies (1.11).

2 An application

Consider the differential equation

$$
\begin{equation*}
\frac{d^{A} u}{d t^{A}}+\sum_{k=0}^{A-1} c_{k} \frac{d^{k} u}{d t^{k}}=0 \tag{2.1}
\end{equation*}
$$

where the c_{k} 's, $k=0, \ldots, A-1$ are complex constants.
The characteristic equation associated to (2.1) is

$$
\begin{equation*}
p(r):=r^{A}+\sum_{k=0}^{A-1} c_{k} r^{k}=0 \tag{2.2}
\end{equation*}
$$

Let us assume that the polynomial $p(r)$ of (2.2) can be factored as

$$
\begin{equation*}
p(r)=\prod_{j=1}^{m}\left(r-x_{j}\right)^{\alpha_{j}}, \tag{2.3}
\end{equation*}
$$

where x_{1}, \ldots, x_{m} are distinct complex numbers (of course, $\alpha_{1}+\cdots+\alpha_{m}=A$). Then, it is well known that the functions

$$
\begin{equation*}
e^{x_{1} t}, t e^{x_{1} t}, \ldots, \frac{t^{\alpha_{1}-1} e^{x_{1} t}}{\left(\alpha_{1}-1\right)!} ; \ldots ; e^{x_{m} t}, t e^{x_{m} t}, \ldots, \frac{t^{\alpha_{m}-1} e^{x_{m} t}}{\left(\alpha_{m}-1\right)!} \tag{2.4}
\end{equation*}
$$

(a total of A functions) are solutions of (2.1). Their Wronskian $W(t)$ satisfies the Abel's formula, which in our case reads

$$
\begin{equation*}
W(t)=W(0) \exp \left(-c_{A-1} t\right) \tag{2.5}
\end{equation*}
$$

Using the fact that

$$
\begin{equation*}
\left.\frac{d^{j}}{d t^{j}}\left[\frac{t^{k} e^{x t}}{k!}\right]\right|_{t=0}=\binom{j}{k} x^{j-k}, \quad j, k=0,1, \ldots \tag{2.6}
\end{equation*}
$$

(we, again, use the convention that $\binom{j}{k}=0$, if $j<k$) one obtains that

$$
\begin{equation*}
W(0)=F\left(x_{1}, \ldots, x_{m} ; \alpha_{1}, \ldots, \alpha_{m}\right), \tag{2.7}
\end{equation*}
$$

where $F\left(x_{1}, \ldots, x_{m} ; \alpha_{1}, \ldots, \alpha_{m}\right)$ is the generalized (or confluent) Vandermonde determinant introduced in (1.5). Hence, in view of (1.11) we have that (2.7) becomes

$$
\begin{equation*}
W(0)=\prod_{1 \leq j<k \leq m}\left(x_{k}-x_{j}\right)^{\alpha_{j} \alpha_{k}} \tag{2.8}
\end{equation*}
$$

and, furthermore, an immediate corollary of (2.8) is the well-known fact that the functions appearing in (2.4) are linearly independent.

References

[1] R. Horn and C. Johnson, Topics in Matrix Analysis, Cambridge University Press, 1991.

