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Abstract

Using concepts of continuum mechanics we prove formulas for the variation of:
e Principal curvatures
e Mean and Gauss curvature
e Affine connection
e Riemann curvature tensor

of a hypersurface moving in an ambient Riemannian manifold.
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1. A brief on Continuum Mechanics

A continuum or a material body is a submanifold B of a differentiable manifold
which is viewed in an ambient Riemannian manifold (IV,g) via a reference

configuration of B, i.e: an embedding
k:B— N, M =k(B)

Deformation of the body, an embedding ¢ : M — N.
Deformation gradient

describes the deformation in a neighborhood of X € M.
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In Classical Continuum Mechanics N = R3, body M C R? with dimM = dimN.
Polar decomposition theorem (PDT): The deformation gradient is decomposed:
F(X) = R(X)U(X), (1)

where C(X) = U?(X) = FI(X)F(X) : Tx M — Tx M is symmetric, positive and
R(X) = (F" (X)) 'U(X) : Tx M — Tyx)N is orthogonal.

Principal deformations: the eigenvalues )\; > 0 of C(X).

Principal axes of deformations: the eigenvectors e; of C(X).

Then, {e;, v/\;} are the corresponding quantities of U(X) and

Uei = \/ )\iei (2)
Fei = RUez =V )\ZRe,L (3)

l.e: U shrinks or expands the principal axes and R only rotates them. Thus, the
deformation is analysed in a pure deformation U followed by a rotation R.
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Motion of the continuum: ¢; : M — N, t € R, x = ¢4(X) = ¢(X, 1),

¢o(M) = M.

Current configuration: ¢.(M) = M,.

Trajectory: of the material point X is ¢x : R — N such that ¢x (t) = ¢:(X) and
Velocity: Vx (t) = ¢x(t).

Material velocity: V(X,t) = Vx(t), Spatial velocity: v,(t) = Vi(¢; ' (x)).
Relative motion: motion relative to the present configuration M; of the body

¢e(T) = pr 0y ' My — M,

Is the flow generated by the spatial velocity v¢(x),
Relative deformation gradient:

Ft(T)(J?) = dqbt(T)(ZE) : TwMt — T¢t(7)(x)N (4)
From PDT :

Fiy(1) = Ry(1)Us(7) (5)
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Strain measures:
The tensor fields F;(7), R:(7), Uy(7) are defined along the trajectory of z
Velocity gradient: G(t) = 8Ft(T

‘T t—dv

Stretching: D(t) = 8057(7) l7=¢t, symmetric

Spin: W(t) = aRt(T)|T ¢ = Vo Ri(7), antisymmetric

From Fi(7) = Ri(7)Us(7) (5) and since R;(t)(x) = I, , Us(t) = I, ,, we get:
G=D+W (6)

Due to the complexity of the structure of new materials, modern expositions of the
subject require more general geometry and more dimensions for the body and the
space manifolds.
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2. Geometry of hypersyrfaces

(N,g,V) : n+ 1 - dimensional Riemannian manifold.
(M, g, V) oriented hypersuface of N with unit normal field n,
X (N) vector fields on N, X (M) vector fields on M

j:M — N, j(M) = M C N the canonical inclusion of M.
g(u,w) =g(Ju, Jw), Yu,w € X(M) where Jx = djx

X (M) the set of vector fields on M with values in N

If u € X(M) then u = Ju € X(M)

If w € X(N) then o j € X(M) is the restriction of % on M.

Projections :

TX - Tj(X)N — Tj(X)N, 7TX(W) =W — g(W, n)n
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Since mx (W) € Tj(X)M, it is the image under Jx of a vector w € T'x M, that is,

7x (W) = Jxw. Then define the projection
PX : Tj(X)N — TxM, JXpr = TTxW
The following relations hold between 7, P and J:

JXpX =TX :Tj(X)N — Tj(X)N,
PXJX :IX ZTxM—>TxM

PXnX =0
The Levi Civita connection V on M is

Vow = PV juJw, Yu,w € X(M)
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Shape operator: Sx : TxM — TxM, Sxu = —PxV j un

Second fundamental form: B(u,v) = g(Su,v)
Third fundamental form: 1ll(u,v)=g(Su,Sv)=B(Su,v)
Gauss curvature: K =det S,

Mean curvature: nH =trS

Gauss equation:

ViuJw = JVyw + B(u,w) - n = JV,w + g(Su,w) - n
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We often interchange linear maps with their associated tensor fields defined via the
metric tensor field g.

For example, to any linear map T : Tx M — Tx M we associate a (0,2) tensor T”
field by setting:

T°(u,v) = g(Tu,v) (14)

It can be shown that the following hold:
VT’ = (VzT) (15)
£7T°(X,Y) = (£2T)(X,Y) + (£29)(X,TY) (16)

that is, the ” operation commutes with V but it does not with £.
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The curvature tensors R, R on M and N respectively are related by:
Rb(Ju, Ju, Jw, Jz) = R’ (u,v,w, z) — B(u, 2)B(v,w) + B(v, z) B(u, w)

Rb(Ju, Ju, Jw,n) = (Vy B)(v,w) — (V,B)(u,w)

Since S’ = B the Codazzi equation becomes

(VS)u — (VuS)v = PR(Ju, Ju)n

Finally, the Hessian of f € C'°°(M), relative to g, is :

Hessf(u,w) = g(V V[, w).
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3. Kinematics of a hypersurfaces

Definition 1 Motion of a M in N is a 1-parameter family of embeddings ¢; ,
tel CT, le:
d:MxIT— N, v=¢(X,t) = ¢s(X).

Let (ﬁt : M — My = ¢¢+(M) induced diffeomorphism, j; : My — N the canonical
injection, Ji(x) = djy(x) : To My — Tj()N, Py : Tj(o)N — T, M the projection.
The material velocity and spatial velocity are defined as before.

Relative deformation gradient

Fiy(m)(x) =dou(T)(x) : Ty, My — T, N (21)

then, by interchanging space and time derivatives we obtain the velocity gradient

OF; (1) _ 0dgy(T)

97 =t — 97 ‘T:t =dv=G (22)

Gt)(z) : Ty, My — T, N (23)
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For hypersurfaces the adapted version of the PDT ([8], [5])assumes the form

Theorem 2 Let ¢¢(7) : My — N be a motion with n(t) and n(7) the unit normals
for M; and M. respectively, the relative deformation gradient F;(7) = d¢:(7) is
decomposed as

Fi(1) = Ri(7)J:Us(7) (24)
Ri(7)n(t) = n(7) (25)

Ci(t) = UZ(7) : T,M; — T, M; relative right stretch tensor U;(7),
Ri(7):T,,N — T,_N, relative rotation tensor.

The stretching tensor field D(t) is defined by:
_ OU(7) 1 0C (1)

or =t = 2 O
Spin tensor field WW is the antisymmetric field defined by the relations:

o (9Rt(7')
07

D(t) ‘T:t . T:EMt — Ta:Mt (26)

W(t) |7-:t — vvRt (’7') (27)
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Lemma 3 Let ¢; be a motion of the hypersurface M in the Riemannian manifold N
with velocity

v =0+ van = Jo! + v,n

where v € X(M). Then

G=JD+WJ (28)
Cy(7)" = ¢;(1)g (29)
2D = PG + (PG)* (30)
Gu = (V! —v,8u) + (B!, u) + Ju(v,))n (31)
PG =Vl —v,8 (32)
L9 =(Voll + voll") (33)
2D = £.,9 — 2v, B (34)
2D = Vol + voll" — 20,8 (35)
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4. Variation of the geometrical objects of a moving hypersurface

On M; we define a geometry induced by the motion ¢:(7):

9t(7)(u, w) = g(Fe(T)u, Fy(T)w)
Fi(7)S:(T)u = —vpt(T)un(T)
By (7)(u, w) = g¢(7)(Se(1)u, w),
ITT(7) (u, w) = g+(7) (S (T)u, w)
1

Ki(7) = detSy(7), Hi(T) = EtrSt(T),

F(T)Vi(1T)(u,w) = mV g, (ryu Fr(T)w
= Ve, (ryuFt(T)w = § (VE, (ryu Fr (T)w, n(7)) n(71),
R(Jeu, Jyw)Jyz = JeRe(T)(u, w)z + g (7)(Se (), 2)Jp Se (T7)w
— ¢ (7)) (Se(T)w, 2) J: St (T)u
+{(Ve(r)uBe(7))(w, 2) = (Ve(T)wBe(7)) (1, 2) } n(T).
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Since Fy(t) = J;, this geometry coincides for ¢ = 7 with the one induced by the

Injection 3.
The variation of any of these quantities, say Q;(7), is defined by
0Q: (T
0Q = %t( ) 7=t (36)
T

Further, when a vector or tensor quantity is defined on the hypersurface but takes
values in the ambient manifold IV, then we define its variation as the covariant
derivative in the direction of the velocity field of the motion.

As an example, if L € ?(M) define:

SL=V,L (37)

which is the time derivative along the trajectories of the motion.
Thus, for the normal n(7) given by R;(7)n(t) = n(7), its variation is

_ on(7)

on = —a;

=t = Vo, @€ X(N), n(¢(7)) = n() (38)
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5. Some older Results

Theorem 4 Let ¢; be a motion of the hypersurface M in the Riemannian manifold
N, with strain D, spin W and velocity v = v|| + v,n = Joull + v,,n where
v € X(M). Then we have the following formulas:

Variation of the metric

6g=2D"=—20,B+ £ ,g (39)

Variation of the unit normal

on=Wn=—JVuv, —JS vl (40)
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Variation of the shape operator

(6S)u = —PGSu — PV ;,Wn — PR(v, Ju)n
(69)u = v,5%(u) + VoV, + (£,19)u — v, PR(n, Ju)n

Variation of the second fundamental form

§B = (2DS +685)°
dB(u,w) = Hess,, (u,w)— v, III(u,w)+ (£, B)(u,w)

— vpg(R(n, Ju)n, Jw)

Variation of the third fundamental form

SIIT = {2SDS + S65 + 655} .

Remark 5 Equations (39), (40), (41) and (43) expressing the variation using
kinematical quantities are simpler than the rest and reduce to the corresponding
equations for surfaces in Euclidean space proved by Kadianakis (2009 ) in [4].
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5.1 New Results

Variation of principal curvatures

(Sk‘?, — g(5Sei,ez~)
= Hess,, (e;,¢€;) + vnkZ + vll(k;) — vag(PR(n, Je;)n, ;).

Variation of Gauss curvature

0K =mv, HK + v”(K) + ZKiHeSSvn(Gz‘, €;)
i=1

— Uy, Z K;g(PR(n, Je;)n, e;).
i=1

Variation of mean curvature

§H = Av,, + mv!l(H) + v, Z k? + v, Ric(n, n).
i=1
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Variation of the Levi - Civita connection

(6V)(u,w) = —PGV,w + PV j,Gw — B(u,w)PWn + PR(v, Ju)w. (50)
In geometrical terms:

(V) (u,w) = (£,1V)(u,w) — v, (V. S)w — {u(vy,)Sw + w(v,)Su}
+ B(u, w)Vv, + v, PR(n, Ju)Jw. (51)

Variation of the Riemann curvature tensor

(6R)(u,w)z = {—2DS — 65 — SY(u, 2)Sw + {2DS + 6S + S}’ (w, 2)Su
+ {(VuB)(w, z) — (VyuB)(u, 2)} PWn. (52)
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6. Special motions

We show that the above formulas capture some known results in special cases.

6.1. Parallel motion

In the case of a parallel motion (Vv,, = 0 and v/l = 0) the above equations reduce to:

6k; = vpk? — v,g(PR(n, Je;)n, €;).

K =mv, HK — v, Z K;g(PR(n, Je;)n, e;).
i=1

0H = v, Z k? + v, Ric(n,n).

1=1

6V (u, w) = —v, (Vo S)w + v, PR(n, Ju) Jw.
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If the ambient N™ 1! is Euclidean then the above relations 53 - 56 are further
simplified by ignoring the last term concerning the Riemann curvature.

In this case, parallel motion preserving certain geometric quantities of the original
hypersurface, induces restrictions on the geometry of the hypersurface.

Corollary 6 In a parallel motion of a hypersurface in Euclidean space:
e 0k; =0 then k; = 0 and consequently K = 0.
e K =0 ifand only if K =0 or M is minimal in E™*1.
e H =0 then B =0 (M totally geodesic in E™*1).

e 0V =0 if and only if S is covariantly constant (parallel).
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Note

Starting with the definition of the parallel motion:
O(X,t) = j(X) + e(t)n(X), €(0) = 0.
one can deduce the kinematical and geometric quantities:
J(I = €(t)S)(X), UX,t) = (I —€(t)S)(X),
Iys, g(t) =g — 2e(t)B + 2(t)I11,
(I - ( t)S)~S

F(X,1)
R(X, 1)
S(t) =

and then, by differentiating we get all the variations.
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6.2. Zero spin motion

A zero spin motion (or a pure strain motion) is a motion such that W = 0, then:

§Su = —DSu — PR(v, Ju)n
hence
5Su = v, 5% + (£,19)u — V,Sv!l — v, PR(n, Ju)T. (57)
and thus the variation of the principal curvature k; is given by:
0k; = vok? + 0ll(k;)) — g(Ve, SVl ;) — v,g(PR(n, Je;)7, e;) (58)

and the variation of the mean curvature is

0H = v, Z k2 + moll(H) — Ric(n,n) — divasSoll. (59)
i=1
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Fo the variation of the Gaussian curvature we get:

K =muv, HK + ”UH(K) — Z}?ig<veisv||7ei)
i=1

— ZIA(Z-g(PR(n, Jei)n,e;). (60)

Since W = 0 the variation of the Levi Civita connection becomes:

6V (u,w) = —PGV,w + PV j,Gw + PR(v, Ju)w
= (Vu.D)w + PR(v, Ju)w. (61)

and for an Euclidean ambient space:

oV (u,w) = (V,D)w. (62)
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The following characterization of pure strain motions holds:

Corollary 7 A motion is a pure strain motion if and only if the following conditions

voll = VIl Sl = —wu,,. (63)
hold true.

It is shown also that

Corollary 8 If a motion is of zero spin then the variation of its third fundamental

form vanishes
0IIl =0

(see: [14]).

This implies that:
a normal motion is a pure strain motion if and only if it is a parallel motion.
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6.3. Motions preserving the unit normal field

The previous motions are special cases of motions preserving the unit normal
field( on = 0).

It is clear that on = 0 if and only if the tangential part of the valocity and the normal
component, satisfy:

Sull = —vu,,. (64)

In case k; # 0 for all ¢+ = 1,2,...,m this gives:

iki (v )es, (65)

Further,

Corollary 9 A normal motion preserves the unit normal field if and only if is a
parallel motion.
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6.4. Infinitesimal isometries and pure spin motions

A motion is said to be infinitesimally isometric if and only if g = 0.
A motion is said to be a pure spin motion if and only if D = 0.

Since dg = 2D" it follows:

Corollary 10 A motion is an infinitesimal isometry if and only if is a pure spin

motion.
Also

Corollary 11 A hypersurface admits a normal infinitesimal isometric motion if and
only if is totally geodesic in N (see: [6]).

A hypersurface admits a tangential (v = Jvll) infinitesimal isometry if and only if v!!
is a Killing vector field for g.
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6.5. Infinitesimally area preserving motions

A motion is said to be infinitesimally area preserving if and only if 0w = 0. Since
dw = divy!l = mu, H,
it follows:

Corollary 12 A motion is infinitesimally area preserving if and only if

div !l — mu, H = 0. (66)

For a normal and a tangential motion the following hold:

Corollary 13 A normal motion is infinitesimally area preserving if and only if H = 0,
i.e: iff M is minimal in N.

A tangential motion with v = Jvll is infinitesimally area preserving if and only if v!l is

incompressible.
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7. Application

7.1. A curve moving on a surface

Let v be a curve moving, with unit speed, on 2 dimensional manifold (M, g) (a

surface).
e Geometry of ~:
g(T,T) =1, g(JT,n) =0,
VrJT =kn, Vyrn = —kJT,
VT =0, ST = kT,
B(T,T)=k, III(T,T) = k*.
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o Let v =vpJT + v,n - Kinematics of 7:
GT = (v — kv,)JT + (vrk + v )n,
PGT = (vl — kv,)T = DT,
Wn = —(kvy +v)JT, WJT = (kvp + vp)n

e Evolution equations: since Ky = g(R(JT,n)n, JT) then

09 = 2(vy — kvy)g,

on = —(kvy +v))JT,

68 = {k'vp + kv, + v + v, Ky},
ok = k'vp + kv, + v, + v, Kp.

and

<5V)(T7 T) — {7}/1/“ - (Unk)/} T.
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If the motion is normal (i.e: v = v,n), then the variation of the geodesic curvature

reduces to an ordinary Ricatti equation:
5k = k*v, + v + v, Ky, (72)

and if v,, does not depend on the point of the curve but on the evolution parameter

only( offset curves on a surface) then v! =0 and
5k = k*v, + v, Ky (73)

With no loss of the generality, suppose that v,, = 1, then we reduce further to the

Jacobi’s geodesic equation:

ok = k* + Ky. (74)
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Under the initial condition of being + a geodesic, i.e: k(0,s) = 0, and that
K = const we deduce:

k(t,s) = Knytany/ Knt, if Ky >0,

k(t,s) = —v/—Kntany/—Knt, if Ky <O0.

For example, on a sphere of radius R, for the motion of a great circle, we get:

1 t
k(t,s) = Etanﬁ.
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