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P.G.Appleby and N.Kadianakis

Introduction

In recent years there have been a number of papers concerned with
the formulation of classical mechanics in a way which does not as-
sume a privileged reference frame. In place of an Aristotelian
space-time these theories assume a Euclidean space-time M incorpo-
rating the principle of absolute simultaneity, with a three-dimen-
sional Euclidean metric in each instantaneous space. This space-
time may be represented mathematically as an affine bundle (M,R,T),
where T: M - R is a proper time function, and the structure group

of isometries of a Euclidean three-space.

Studies of Newtonian gravitation in a Euclidean space-time
[Trantman, 1 ] indicate that a classical space-time should also
incorporare an inertial principle, whereby inertial framesvcén be
distinguished from rotating frames. Appleby [ 2 ] has shown that
this can be achieved by endowing the event world with a principal
bundle structure in which the structure group is the group of tran-
slations of a Euclidean vector space. In an inertial space-time,
local inertial frames characterise a class of local covariant diffe-
rentiations which are compatible with the principal bundle structure.
In this paper we consider the more general class of local covariant
differentions which are compatible with the affine bunéle structue
of Euclidean space-time, and show that they characterise local rota-
ting frames. Global rotating frames are then characterised.by secti=-
ons of the buﬂdle of local rotating frames. We also show that non-
rigid local frames may be characterised by a class of local covari-

ant differentiations satisfying a weaker compatibility condition.

We use these non-rigid local frames to classify the global connec-

tions of arbitrary motions in space-time.



1. Euclidean Space-Time

In this section we review the basic features of Euclidean space-
time (3)

Definition 1. A Euclidean spase-time is an affine bundle (M,T,T),

there M is a 4-dimensional differentiable manifold, T is a 1-di-
mensional totally ordered Euclidean space and the structure group
of the bundle is the group of isometries of a 3-dimensional Eucli-
dean space E. The projection map t: M -+ T, called the time, cha-
racterises the principle of absolute simultaneity. The fibers

M, = { x€M : T(x)=t }, t€T

are 3-dimensional affine Euclidean spaces called instantaneous

spaces. The 1-form
T=Dt : TM~»>» IR, u~> T.u

is called the world space normal .For each u € TM.we call t.u the

.

time value of u. If tT.u > 0 we say that u is time- like. If T.u=0

we say that u is space- like. For each x € M the set of space-like

vectors in TxM may be identified with the translation space Vt of

the instantaneous space M where t=1(x) .However, translation spa-

tl
ces at different instants t can not be identified. The set U Vt

teT
forms a vector bundle over T associated with the affine bundle
(M, T,t). Through the canonical injection

®Pve) » P ™
teT ;

the bundle of Pth order space-like tensors on M may be identified
with a subset of the bundle of Pth order contravariant tensors

The space metric tensor of M is the space-like tensor field g on

M whose value at each x€M is the metric tensor of the Euclidean

space Mr The set of space-like vector fields on M is denoted

,(X').
by VM
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A world - lime in M is a cross- section of the bundle (M,T,T) ,

that is, a differentiable curve E:T - M such that T (E(t))=t. The
velocity of E is the time-like vector field E=TE. Obviously
‘1.§=1. A world line in M represents the trajectory of a particle

in a frame independent way. The motion of a continuum (or simply

a motion) is represented by a flow ¢ : RxM > M, (s,x) - ms(x) '

3
such that for each seé R , @ is a diffeomorphism of M with
t(ws(x))=r(x)+s . If ¢ is the associated vector field, then T.0=1.

We call ¢ the velocity of the continuum. Generally, vector fields

o with T.o=1 are ccalled velocity fields. We write J'M for the set

of velocity fields.

Finally we note that the metric tensor g does not result in a uni-
que covariant derivative on M. Nevertheless there exists a unique
covariant derivative on the fibers, that 1s, applied only on space-

like vector fields:

d

v —ax Yxeav
—-X

: VM x VM > V_ LV =

| ¢ v 2l

(x)

such that Vg = 0. This fact allous the introduction of various com-
patible covariant derivaties on M, whose restriction on space-like
fields will coincide with v.

Acovariant derivative D on M allous us to measure the acceleration
D¢ ¢® and the velocity gradiant Dv ® of a motion ¢ . If such a
covariant derivative is compatible with the structure oé space-time
M, we will call it a "frame". Our object is to classily the compa-
tible covariant derivatives on M in a way in which frames are clas-
sified in classical Mechanics, according to their relative spin and

their relative acceleration. We consider "local frames" first and

then generalise to "global frames" in the next sections.
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2. TLocal Euclidean Frames

Definition 2. Let JM be the set of vector fields on M

A local Euclidean frame at x € M is a symmetric local covariant

differentiation at x € M

Y: JMx JM > T,M, (p,O0) = YDp o

which is compatible with the structure of M in the sense that

2]

YD T =0 , Dg=20 . (2.1)

YDY u = VY u , u, v e VM (2.2)
T-Dg v =20 r c €' JM ‘ (2.3)
1.D, 0 =0 ’ ceJm . (2.4)

Equation (2.2) says that YD coincides with V when restricted to
space-like vector fields , Equation (2.3) says ihat covariaq} deri-
vatives of space-like vector fields, are space-like, and from (2.4)

we deduce that accelerations are space-like vector fields.

Let y be a local Euclidean frame at x. If o € J'M, then we call

the space-like vector

A(oc) = D_ o (2.5)
Y y ©

the acceleration of o with respect to y . The map

A:JM > v c > Ao ‘
3 £ Y()

will be called the acceleration map of y. Further , the second

-

order space-like tensor

L(o) : Vt > Vt’ L(o)v = Dv o, t=t(x) (2.6)

Y Y Y =

is called the gradient of o with respect to vy ,
2
The map L : J!M » x V., will simmilarly be called the gradient
Y
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map of y. We show the following.

Proposition 1. A local Euclidean frame y is completely defined

by either one of the following

(1) The acceleration map %.

(ii) The gradient map % , and the value of % for just one o,that
is, the space-like vector a%(o).

Proof. (i) We note that for any 0,0 € € J'M there exists a space-

like vector field v such that p=o+v.

Thus we have

— v
YDD P —YDO o+ ZYDY o+ [ o,v].+ v,- (2.7)

where |o,v| is the usual Lie bracket.

Therefore when A is given the frame y can be completely defined
Y

by the following:

D o = A(o)l

Y (0] Y ¢

B - —L — — —_— ‘

YDY o= - {A (o+v) A(o) [o,v] V_Z} (2.8)
D u=V_u.

yov 2 v =

(ii) Equation (2.7) can be written as

B(0) = B(o) + 2 IYJ(o)y + [o,v] + Y (2.9)

Therefore ¢ is known for every velocity field o (and hence vy is
defined) if and only if % is known for one velocity field and %

»

is given for any o. ‘

Next we show that although the second order tensor %(o) is de-
fined by (2.6) in terms of the frame y , its symmetric part

—%[ %(o) + %(O)T ] is independent of vy.

Proposition 2: For any local Euclidean frame y and any velocity

field ©



L(c) + L' (o) = § g (2.10)
Y Y

‘where £ c 9 is the Lie derivative of the space metric g relative
to o .
Proof. For any u, v € VM their inner product is a function

u.v : M ~ R But

= . vV + . §
yPg (u-¥)= u. D, v.,D, u (,Dg @) (u,v)
=u. Do+ v. Do +u. £v +v. £ u

= u.L(o)v+tv.L(o)u + u. £ v + v.E U
-y - Ty = - c~ e

I

[ %(0)+ %T(O) J (u,v)+ u. £ v+v.£ u

Since we also have

vDg (u.v)= £ (u.v)=u. £ v +yv. £ u+(E g lu,v),

(2.10) follous.

‘From proposition 2 it follous that a local Euélidem frame is com-
pletely defined by %(o) for one o € J!'M and the second order anti-
symmetric space-like tensor

_1 _ .7
5(0) =— [ %(0) % (o) ] (2.11)

We call 5(0) the spin of o with respect to y . The map

5 : JIIM > AZVt « O > 5(0) is called accordingly, the spin map of Y.

»
[ 4
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3. Relative spin an Relative acceleration

Although we have defined, in the previous paragraph,the conéept

of spin 5(0) of any velocity field (and consequently any motion ¢)
relative to a local frame y , we can not assign a spin to y itself,
in an absolute way. In order to do this one needs extra structure
on the space-time manifold M, which will correspond to an additio-
nal physical principle. Nevertheless we can define the spin of a

local frame y relative to another local frame vy~ . We first show.

%f%PropOSition 3: For any two local Euclidean frames y and vy~ ,the se-

cond order antisymmetric tensor R(c) - R(o) is independent of o,
, Y Y
c € JM.
Prof : From (2.10) we have
L(o)- L(o) =— £, g + R(0)- — £_ g- R(0)
- - O
Y Y Y- Y
= R(o) - R(o) ‘
Y Y ¢

If p=o+v , v € VM, is another velocity field, then

Il

[ L(p)-L(P) Ju [ L(oty)- L(oty) ] u
Yoo Y~ Y

=_- + - + = - - (e}
y-Py O*Y = Dy O%Y = .-D,o = Dy

= [ L{o) - L(o)
[YIO Yo]g

Hence L(P)- L(P) = L(o)- L(o)

Y~ Y Y” Y
Therefore »

R(p)- R(p) = R(0)- R(O).

Y Y Y Y
Definition 3 : The second order antisymmetric space-like tensor

r = R(o) - R(o) (3.1)
Y Y

is called the spin of y relative to y~ . It is independont of r

and depends only on y and «y~.
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Let ¢ be a motion of a continuum with velocity ¢ .The velocity

gradients of ¢ relative to the frames y and y~ are then related

by L(d) = L(d)+r , equivalently
Y Y

D & +rv ’ € VM

Yy ¥

Al

1<

Y’DY ¢

From equation (2.9) we get
B |

A(P) - A(P) A(o)- A(o) + 2(L(o)- L(o)) v
el Y \a Y ' Y

1<

Al(o)- A(o) + 2 ¢
Y~ Y

(3.2)

(3.3)

Hence the difference between two local Euclidean frames y and vy

1

may be characterised by the linear map (equivalently a (1) tensor)

h: T,M ~» Vt

defined by ‘
h(o) = A(o)- A(o)

Y Y
h(v) =2r v

The third order tensor Y -y 1is then written as

-

Y-Y=-5 (z®h+ho1)
Let y and vy~ be two local Euclidean frames having
spin i.er=0. It follous from (3.3) that

A(P)- A(p) = A(o)- A(o)
Y- Y Y~ Y

That is, A(o)- A(o) is independent of o.
Y Y -

(3.4)

(3.5)

zero relative

Definition 4: For any two local Euclidean frames with zero rela-

tive spin, we call the space-like vector field
g = A!O’)‘ A(O) ’
Y Y

the acceleration of y relative to vy~

(3.6)
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When y and y~ have zero relative spin the linear map h is given

by h=£f® T , (3.7)

and therefore the third order tensor y“- y is given by
Y-y=1®1®f . (3.8)

Hence, the difference between two frames with zero relative spin;

is characterised by their relative acceleration only.
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4. Non-Rigid Local Frames

In this section we study local covariant differentiations which
satisfy weaker compatibility conditions than (2.1). In fact we
allow covariant differentiations D for which Do g # 0 , where ©

is a velocity field.

Definition 5 : A non-rigid local frame at x € M is a local cova-

riant differentiation ?

6: JMxJM - Vr(x) , (p,o0) ~» 5Dpo

which satisfies the campatibility conditions

Dt=0 , D g=0 (4.1)

& 6°v

for any space-like vector field v .

It follous that (2.2) , (2.3) and (2.4) hold for non-rigid local
frames as well. The acceleration map and the gradient map of &
are defined in the same way. Since (2.7) is true for a non-rigid

local frame, proposition 1 holds in this case 'too.

If c € J'M and v € VM, we have

g= = g :
R 6D0+Y9 s§Dg 9 * 6DY g =gDy 2 - (4.2)

g9 =D_9 i.e

Hence for any p,oc € J'M, &g

6Dp
6Do g is independent of o .

~ Definition 6 : For any non-rigid local frame & , the second order

symmetric space-like tensor

»

g =D, & + o€ am (4.3)

is called the deformation of &

We note that the space-time structure does not allow a definition
of spin for a frame, but it does allow an intrinsic definition of

its deformation (which is zero when the frame is Euclidean).
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Alfhough the symmetric part of the gradient of a velocity field

o with respect to a local Euclidean frame is independent of the
frame itself (eq.(2.i0)), the same is not true uhen the frame is
non-rigid. In fact if § is a non-rigid local frame having deforma-
tiqn g , then

. ‘
— -4 . (4.4)
Ié_.(o) + g (o) Eo g S _

Indeed since

= +
6Dc(g.\_z) u. D v + Y‘éDc u (6Dq g)(g,y)

= 4. L(o)v.+ v. L(O)u + u.£ v + VeE u.+ d(u,v)
& 6 o o c- &~
=[L@ +1%@ J@yw +u. £ v +vy. Egu + d (u,v)
& o) o 6
and
sD5(a-¥) = £ (u.v) =u. £, v +V.E_u + (£ 9) (u,¥) ,

equation (4.4) follows.

From proposition 2 and equation (4.4) we deduce that.

Proposition 5 : A non-rigid local frame & is completely defined

by the following

. . .o _ _ .7

(1) Its spin map g : JIM - Vr(x) ’ g(o) — L g(o) % (o) ]
(ii) Its deformation tensor g

(iii) The space-like vector A(oc) for just one o € J!M.
')

Therefore, the additional information needed (compared.to a local
Euclidean frame) to specify a non-rigid local frame is the symme~
tric second order space—l%ke tensor g. If & is a non-rigid local
frame, there is a unique local Euclidean frame Y such that

A=A , R = R™ . (4.4)
Y ‘o) Y 5

We call y the associated local Euclidean frame.

It follows that L(o) =g(o) + g and therefore
Y



DVO = Dvc + dv (4.5)

for any o € J!M and V' € VM.
One can proceed and express the difference between two non-rigid _
local frames 6,6” in terms of the tensor h defined by the asso-

ciated local Euclidean frames y,y”, and the tensor d - 4
6° &

k]

<
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5. Global Frames

A global Euclidean frame in M is a mapping TI:x - I'x , which as-

sociates with each point x € M a local Euclidean frame I, at x,

X
such that if p, o are vector fields in M the mapping

C .
FDp t: M >TM , X > n?po

is a vector field on M. All the' concepts and results concerning
local Euclidean frames can be carried over to global ones. In par-
ticular one defines the acceleration and gradient maps, as the

fields Ai x > A and L : x > L respectively. It follows that

r I'¢ r 'y

one can define the spin of a global Euclidean frame.l’ relative to
a I'" as a second order antisymmetric space-like tensor field an
M, given at each x by

RX= ?50)- ?io) . (5.1)

The third order tensor field I'"- I' is then given by .

P’—P=*%-(1_5®H+H®I), (5.2)

where H is the second order tensor field for which

H(0)=§jo)— %(o) » H(V)=2Rv . (5.3)

When the frames have zero relative spin (R=0) their difference

is characterised by their relative acceleration F only, and

I'-r=x1®@r@®F

Non-rigid global ffames are introduced in the same way ésing non-
rigid local frames. Then, it follows from proposition 5 that a

non-rigid global frame A is completely de fined by: (i) its spin
map i , (i1) Its deformation g and (iii) the space-like vector

field ?ic) for just one o € J'M.
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6. Affine Connections of a Motion

In Continuum Mechanics there are ofter employed variows kinds of
derivatives that "follow" the motion. They may be seen, in this
framework, as special kinds of compatible covariant derivatives

usually called "affine connections of the motion".

Definition 7 :Let ¢ be a motion a continuum in M having velocity

¢.An affine connection of the motion ¢ 1is a non-rigid global fra-

me § such that

© =0 . (6.1)
i.e A(p)=0
Q.
From the section 5 we deduce that ! is completely defined by its

spin mép g and its deformation g

Let C® be the set of affine connections of @ . An affine connection

r € c® is called metric connec%ion of ¢ if i;_is a global Eucli-
dean frame. We write Ci for the subset of metric connections of
. Let 1 € Cg . Since ?(@) =0, is completely defined by its spin
map % .

Given an @ € C® one can construct (see section 4) a unique T € C$
such that §==R . Conversely, given a I € Cﬁ»and a second order
symmetric space-like field 4 , there is a unique & € c?® such that

R=R and d=4d
Q T Q »

Therefore, there is a 1-1 mapping

c® > c®xs’M, Q- (T, d)
m Q

Where S?M is the set of s§mmetric second order space-like tensor
fields. Further if Q ,Q7e c® correspond, through the above mapping,
to (T, g ) and ( I g’), respectively, their difference Q°- @ is
characte;ised by the tensors S’— g and T"- I' , equivalently by

the tensors d -d and R = R_- R .
Q- Q r r



