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A brief on Continuum Mechanics

A continuum or a material body is a submanifold B of a certain differentiable
manifold M.

Ambient space is a Riemannian manifold (5, g).

Reference configuration of B is an embedding ¢ : B — S. Write B = ¢(B) then
¢ : B — B is a diffeomprphism.

The additional geometry on B and S depends on the particular physical situation.
The points X € B are considered as material points.

A deformation of the body is an embedding ¢ : B — §.

The deformation gradient F'(X) : Tx B — Ty (x)S describes the deformation in a
neighborhood of X € B.

The embedding of the body in the space enables the measurement of physical
properties of its deformations.

The polar decomposition theorem (PDT) allows us to analyze the deformation
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near a material point X:
F(X) = R(X)U(X) (1)

where U(X) is a symmetric, positive definite, R(X) is an orthogonal transformation
such that R"(T)R(X) = I (py, R(X)R"(X) = Ig, 5 and

C(X)=U*X)=F'(X)F(X):TxB - TxB
R(X)=(F'(X))"'U(X): TxB — Tyx)S
The e;, A\; > 0 orthogonal eigenvectors and positive eigenvalues of the symmetric
operator C'(X) shall be called principal axes of deformation and principal

deformations respectively. Then, the e;, \/\; are the corresponding eigenvectors
and eigenvalue of U(X) and

Uei = vV )\iei (2)
Fei = RUez Y )\zReZ (3)

i.e: U preserves the principal directions and their orthogonality and it only shrinks or
expands their lenghts and R only rotates them. Thus, the deformation is analysed in
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a pure deformation and a rotation.

Motion of the continuum ¢, : B — S, t € R with ¢o(B) = B and write
r = ¢s(X) = d(X, ).

Current configuration: ¢,(B) = B;.

Trajectory of the material point X is the curve ¢x : R — § su ch that
dx (t) = ¢¢(X) and its velocity is Vx (t) = ¢x (¢).

In classical treatments S = R3, the body B is a 3 dimensional submanifold of it and
the operator R(X) is a rotation in R?.

Studying membranes or rods one assumes that dimB < dim.S and in this case the
PDT becomes

F(X) = R(X)J(X)U(X) (4)
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Statement of the problem

Let (/V,g) be a Riemannian manifold and j : M < N a hypersurface, j
the inclusion mapping.

Let ¢, : M x R — N be a motion of M in N with ¢g = ¢(-,0) = j and
velocity vector field v.

We study evolution equations for geometric objects on M using both
geometric and kinematical quantities.

Kinematical quantities stem from a generalized version of the classical
p.d.t. traditionally used in classical mechanics.

The above p.d.t is an adapted version of a special polar decomposition
result proved by Chi-Sing Man and H. Cohen in [6](1986) for surfaces in
R3 and used to derive evolution formulae for surfaces in [3](2009).
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Polar decomposition theorem

Theorem 1 Let V' be a finite dimensional Euclidean and F € L(V') a linear
transformation in V. Then, there exist uniquely defined transformations, an
orthogonal R € Orth(V') and a symmetric, positive definite one U € Sym™ (V)

such that the following decomposition holds

F =RU
where U? = FT'F.

"1 _

Example 2 Let F' € L(R3) with matrice Mp = | 0 2
3+v3 3-v3 0

1
U=VFI'F=——1]3-+v3 14+3V/3 0
o V3 1+3v3

0 0 2
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and

1+v3 V3-1 0|
R=FH"1t=—"11-V3 1+3 0
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Geometry of hypersyrfaces

(N,g,V) is a n+ 1 - dimensional Riemannian manifold.
(M, g, V) hypersuface in IV, unit normal n, g, V the induced metric and connection
j:M— N, j(M)= M C N natural injection J(X) = dj(X) : Tx M — T; x)N
X (M) : vector fields on M, X(M) vector fields on M with values in N.
weX(M)= Jue X(M)
weX(N)=wojeX(M)
g9(u, w) =g(Ju, Jw), g(Ju,n) =0
The normal projection along n is

TX - Tj(X)N — Tj(X)N, Wx(W) =W — E(W, n)n (8)

Since mx (W) € Tj(X)]\Ai, it is the image under Jx of a vector w € T'x M, that is,
mx (W) = Jxw. We call w the projection of W to T'x M and the map

PX :Ti(X)N — TxM, JXP)(W = TTxw (9)
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Then following relations hold between 7, P and J:

JxPx =7x : TyxyN = Ty x)N,

PxJx =1Ix :TxM — TxM

Pxnx =0
Shape operator is defined by

Sx :TxM —TxM, Sxu=—PxV joun
Second fundamental form is defined by
B(u,v) = g(Su,v)

Third fundamental form is defined by

I11(u,v) = g(Su,Sv) = B(Su,v)
Gauss and Mean curvature are:

K =detS, nH=1trS
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Gauss Equation:
ViuJw = JV,w+ B(u,w) -n = JV,w+ g(Su,w) - n
Using g to each u € X (M) and to each 1-form we associate
u’(v) = g(u, v)
g(&*,v) = €(v)
Further, to any linear map 1T : T'x M — T'x M we associate
T a,u) = a(Tu)
and using g the
T (u,v) = g(Tu,v) = T, v).
For any linear T' as before, we define

(VxT')(a,Y) = a((DxT)Y)

and
(£xTH)(,Y) = a((£xT)Y)
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For any XY, Z € X(M), hold

(VxT)Y = VxTY —TDxY,
(£xT)Y = £xTY — T£xY.

and further :
VT’ = (V;T)
£2T(X,Y) = (£2T)(X,Y) + (£29)(X, TY)
Fundamental equations for hypersurfaces
Eb(Ju, Ju, Jw, Jz) = R’ (u,v,w, z) — B(u, 2) B(v,w) + B(v, z) B(u, w)
Rb(Ju, Ju, Jw,n) = (V,B)(v,w) — (V,B)(u,w)

(VeS)u — (VuS)v = PR(Ju, Jv)n
and finally the Hessian of f € C°°(M), relative to g, is given by:

Hessf(u,w) = g (V,Vf, w).
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Kinematics

Definition 3 A motion of a M in N is a 1-parameter family of deformations ¢, ,
tel CT, le:
d: M xIT— N, =¢(X,t) = ¢s(X).

The velocity of the material point X at time ¢ is the velocity V' (X, t) of the curve
¢x : I = N, ¢x(t)=¢(X,t)ie

0,
V(X,t) = a?bx

that is, for any differentiable function g : N — R,

0

V(X7 t)(g) — a (g © ¢)(X7 t)

Velocity field is the map V(-,t): M — TN, i.e V € X(M). Spatial velocity at
r=x(X,t)isv(-,t) : My — TN, given by,

~

v(x,t):V(qg_l(x),t) e v(o(X,t),t) =V (X,1). (29)
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Gradient of w € X(IN), is defined at each x € N as the linear map

Vw:T,N - T,N, (Vw)u= V,w

while the gradient of vector field W € X (M), is defined at each € M as the linear
map

VW : TxM — TmN, (VW)Z = VJZW

For the velocity field v the map,
G(z) = dv: TyM; — TjyN, G(z)u = dv(u) = V v = Vo(Ju) (30)

is the velocity gradient of the motion.
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Variation concept

Llet a: I CR — N a C™ curve, W(t) € X(a) then define
W'(to) = V(1) W (31)

and (31) is independent of the extension.
Let ¢y : M — N with X — ¢(X,t) =z, ¢(X,0) = j(X) be a motion, then the
trajectory of X is
dx ROt — dx(t)=d(X,t) € N (32)
and its differential
F(t): TxM — T,N (33)

Let u € T'x M then W(t) = F(t)u is a vector field along the trajectory ¢x and also
n(t) can be viewed as a vector field along the same trajectory. Thus, from 31 we can
write

e F (0 = 0.7, W(ox(0) = W(H (34)
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and
0 = _ _
o7 l=ton(t) = Vom, n(¢x (1) = n(t) (35)

For ¢¢(-,7) : My — N with ¢(X,7) = ¢4 (o(X, 1), 7) let Fyr : T, My — Ty, (1IN
and the trajectory ¢¢(x) : I C R > 7 — ¢¢(x,7) € N and the spatial velocity of z is

0

Vg = E ‘T:tqbt (ZC, 7-) (36)

Each u € T, M, defines w along the trajectory ¢:(x) by
u(t) = Fy(7)u (37)

Then, by means of (34) the time rate of u under the motion is

Vo, (¢, 7)) = u(r) (38)

g\
=
[
8
\]

and similarly
n'(t) = Vom, a(¢e(z,7)) = n(7) (39)

where the unit normal fields along the trajectory at the instants ¢ and 7 are related
via the rotation mapping n(7) = R (7)n(t).
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Polar decomposition for hypersurfaces

Theorem 4 Let ¢ : M — N be a deformation of M, with ¢(X) = x. Then, at each
X € M there exists a unique orthogonal R(X) : T x)N — Tyx)N such that
F(X) = R(X)JxU(X) (40)
where U2(X) = FT(X)F(X) = FT(X)F(X) : TxM — Tx M is a positive,
symmetric and J(X) : Tx M — Tj;x)N is the differential of the canonical inclusion

j:M — N.

Using (40) the Fy(7) : T, My — T, N, where x. = ¢;(x¢, T) is written as

Fi(1) = Ri(7)J: U (1), (41)

where Cy(7) = UZ(1) = FL' (1) Fy(7) : T, My — T, M;, Us() is the relative right
stretch tensor and R;(7) : T,, N — T,_N is the relative rotation tensor.

17

Nikolaos Kadianakis and Fotios Travlopanos — Department Of Mathematics, National Technical University Of Athens



10th Panhellenic Geometry’s Conference — Patras, May 27-29, 2011

Kinematical tensor fields

The stretching tensor field is defined by

0 10
D(t) = EUt(’T)‘T:t = §Ect(7')‘7-:t : TxMt — TxMt .

The following formulas are true:
Culr) = 97 (r)a
2D = PG + (PG)*
Gu = (V! —v,8u) + (B!, u) + Ju(v,))n
PG =Wl —v,8
£,19 = (Voll + Vol
2D = £,,19 — 20, B
2D = Voll + voll — 20,5
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Variation concept

T-dependent geometry on M; defined by 7-dependent metric g(7) and n(7) on M..
Start with shape operator

Se(T)u = —Ft_l(T)PTth(T)un(T). (50)

for which:
Fy(1)Se(T)u = =V p,(r)un(T) (51)

and also

By () (u, w) = ge(7)(Se(7)u, w). (52)
ITL(7)(u,w) = g¢(7)(Se(7)u, Se(T)w) (53)
Ki(17) =det S¢(7),  nH(1) =1trSi(r). (54)
wi(T) (U1, . tup) = WN (Fe(T)ug, . Fp (T)Up, n(T)) (55)

where wy is the volume form on the ambient space.
When 7 = t, these quantities coincide with the already existing ones on M;.
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Basic Results

Evolution equations of the geometry of a moving hypersurface in both kinematical

and purely geometric terms.

Variation of the metric

5g = 2D° (56)

5g = 2v,B+ £ o119 (57)
Variation of the unit normal

on = —JVu, — JS v (58)

and in case the ambient manifold is Euclidean the following holds as well

on=Wn (59)
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Variation of the shape operator

(6S)u = —PGSu — PV j,0n + PR(v, Ju)n
(69)u = v,5%(u) + VoV, + (£419)u + v, PR(n, Ju)n
§Su = v,5%(u) + v, PR(n, Ju)n + VoV,
+ V.Sl = Vgl + PRIV, Ju)n

Variation of the second fundamental form

5B = (2DS +6S)’
= Hess,, (u,w)— v, I1I(u,w)+ (£,B)(u,w)

+ v, g(R(n, Ju)n, Jw)

(60)
(61)

(62)

(63)

(64)

The equations 57, 58 and 61 are generalizing the corresponding results included in

the paper [1] whereas the 56, 59 and 60 are their kinematical analogues.
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Applications
—sins
Let j: R 3 s — (coss, sins) be a curve with J = dj = and consider the
COSS
motion ) )
¢e(s) = j(s) +15'(s), do(s) =j(s) (65)
which can also be written under the form
d:(s) = j(s)+ J (g) = (coss — tsins, sins + tcoss) (66)
S

and its differential is

—sins — tcoss
F(s,t) = (67)

COSSs — tsins

Nikolaos Kadianakis and Fotios Travlopanos — Department Of Mathematics, National Technical University Of Athens 22



10th Panhellenic Geometry’s Conference — Patras, May 27-29, 2011

Then
Fi(s) = Ru(s)Ji(s)Us(s), UZ(s) = F, (s)F,(s) (68)
where
1] et ]
Ri(s) = , Ui(s) = 2 2| —gins — tcoss
) VIZH22 | —tfi(s) —fils) @)=V P+if [ t }
' ' (69)
with f;(s) = tcoss{l—sins and it becomes
R'(0) = 01 (70)
L _1 O -

and R'(0)n = dn.
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