STOCASTIC CALCULUS & APPLICATIONS
Michaelmas Term 2003

BROWNIAN MOTION

The physical Brownian motion is the movement of pollen grains suspended
in a liquid. The motion of the grains is due to the large number of collisions
with the (much smaller) liquid molecules. The physical theory, formulated by
Einstein in 1905 suggests that the motion is random, the paths are continuous,
and the displacements of the grain are stationary, Gaussian, and independent
over different time intervals. In this lecture we will construct a mathematical
model for Brownian motion, i.e. a stochastic process satisfying these properties.

Until further notice, we take T = [0, 00). We prescribe the FDD for Brown-
ian motion as follows. Suppose F = (t1,...,t) € [0,00)*. Then,

e ur is Gaussian.
o [zidur(z)=0,forali=1,... k.
o [zzjdup(z) = min{t;, t;} =:t; At;, for all 4,5 € {1,...,k}.

Exercise: Check that the family {ur} described above is consistent.(Hint: the
density of up if 0 < t; <ty < ... < t} is given by:
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with the convention g = 0,z = 0.)

By Kolmogorov’s theorem, we can define a stochastic process, as a measure
W on (RI%*) K) with the given FDD. The following elementary properties of
this process can be verified easily:

1. WH{w;w(0)=0}) =1
w(t) — w(s) is independent of w(r), so long as s,t > r.

For all ¢t > 0 we have w(t + s) —w(t) ~ N(0, s).
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If t > 0 and A is a Borel subset of R, then:

W(w(t) € A) .= W({w; w(t) € A}) = da:.
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Thus, W has all the properties of the model we want to construct except
maybe continuity of the paths. The naive approach would be to try to show
that W assigns probability 1 to continuous paths. But the set of continuous
functions is not in K. The problem is essentially that whether a function is in a



set A € K or not is determined by its values on a countable number of points,
whereas for continuity we need to know its full set of values!

Exercise: Make a rigorous proof of this argument using the monotone class
theorem to prove that if A € K, then there is a countable set D = {t1,%2,...}
and a measurable function on RY, such that:

1a(w) = Flw(t1),w(t2),--.)-

What we can hope for is showing that the set Y of continuous functions has
W -outer measure one, i.e. if A € K and A DY, then W(A) = 1. Then by the
following lemma from measure theory we can restrict our measure on the space
(Y, YNK).

Lemma: Let (X,K,W) be a probability space and let Y C X have W-outer
measure 1. Then there is a unique probability measure W' on (Y,Y N KX) such
that W'(CNY) =W(C) for all C € K.

Proof: Tt is easy to verify that YNK :={YNC; C € K} is a o-algebra. In or-
der to prove existence we need to show that W' is well defined: if ANY = BNY
for some A,B € K, then AA B C X\ Y. Since Y has outer measure 1, then
W(A A B) =0, and thus W(A) = W(B). Uniqueness is trivial since we pre-
scribe the value of the measure on the whole o-algebra.[]

The following lemma provides a criterion on whether the set of continuous
functions Y has P-outer measure one, when P is a probablity measure on (X, K).

Lemma: Y has P-outer measure one, if and only if for every bounded, count-
able set S C [0, 00) we have:

P({w; w|s is uniformly continuous}) = 1. (1)

Proof: (Note that the set of functions appearing in (1) is in K.) Necessity is
trivial since continuous functions are uniformly continuous on bounded intervals.
For sufficience suppose (1) holds and that Y C A € K. By the previous exercise,

La(w) = F(w(t),w(t2),---)

for some countable set D = t1,ts,... and a measurable function F' on RN, Let
now Sy = D N[0, N]. Then,

ﬂ{w; w|sy is uniformly continuous} C A.
N

Indeed, if a function w(-) is uniformly continuous on every Sy then it can be
extended to a continuous function w.(-) on R, such that w(t) = w.(t), for all
t € D. Then, since w. € A, we have w € A. By continuity of measure we have
PA)=1. 0O



Checking condition (1) still looks like a formidable task. However, there is
a celebrated criterion by Kolmogorov, which gives an easy to check sufficient
condition for (1) to hold.

Theorem: (Kolmogorov’s criterion) If for some constants «, 3,C > 0, we
have:

/ lw(t) — w(s)|*dP(w) < CJt — s|'*, @)

for all s,t, then (1) holds. Furthermore, the paths are a.s. y-Holder continuous
with any exponent v < 3/a.

The proof is omitted, but you can find it in your Advanced Probability notes.
Note that condition (2) only involves the 2-dimensional distributions of the pro-
cess, so it is often very easy to check as the following computation shows.

We have already seen that under the measure W we constructed earlier,
w(t) —w(s) ~ N(0,|t — s|). Therefore,
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/ w(t) — w(s)| *dW (w)

where x is a standard normal r.v. Taking a > 2 the condition in Kolmogorov’s
criterion is satisfied.

Hence, we have defined a measure (a stochastic process if you prefer) W'
on the space Y=C([0,); R), equipped with the o-algebra Y N K (note that
from an earlier exercise this is the Borel o-algebra of Y seen as a metric space
with the uniform metric). This measure is usually referred to as the Wiener
measure on R, or the 1-dimansional Brownian motion starting from 0. To make
notation simpler, from now on we will drop the prime from the Wiener measure.
We can also define a Brownian motion starting from z € R as W® = W o, 1,
where 7, is the transformation that maps w(-) = z + w(-). Multi-dimensional
Brownian motion is defined as the product of 1-dimensional ones (that is we
take independent Brownian motions on each co-ordinate). You will learn more
properties of Brownian motion in your Advanced Probability course.



