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STOCHASTIC PROCESSES

There are several equivalent ways we can think of a stochastic process. We
can start with an underlying probability space (Q2,X, P) and a (real valued)
stochastic process can be defined as a collection of random variables { X (¢, w) }+eT,
indexed by a parameter set T, i.e. for each t € T, X(¢,-) is a measurable map
from (£2,%) into (R, B(R)). The parameter set usually represents time and will
often be a time interval in these lectures.

Then, we can view a stochastic process as a random function of t € T. We
equip the space X of real valued functions defined on T, (X := RT) with the
o-algebra K generated by projections {7 }te, where 7 (f) = f(¢) (the so called
Kolmogorov o-algebra). A stochastic process can be defined as a measurable
map from (2, Y) into (X, K). It is only natural to demand measurability with
respect to this o-algebra since we will be interested in answering such questions
as “what is the probability that X (t) € A?”, for Borel sets A.

Definition: A cylinder set in X is a set of the form:

C={weX;(wt),. .., wtr) € A)}, (1)

where k € N, t; € T, and A is a Borel set in R¥. Check that the totality C of
cylinder sets is an algebra of sets and that it generates K.

The mapping w — X (-,w) naturally induces a measure on (X, K), by
Q(H) = P({w; X (-,w) € H}).

As the underlying probability space is irrelevant, we can replace it by the so-
called canonical model (X,X,Q), with the choice X(-, f) = f(-), for f € X.
Hence, a third way to view a stochastic process is as a probability measure
on (X,K). This is the same as regarding a random variable as a probability
measure (its distribution) on R. This approach offers the benefit that we may
take advantage of the extra structure our probability space X has. (In most
interesting cases () is supported on a metrisable subset of X- more on that later
in the lectures).

Exercise: Let Y stand for the set of real valued continuous functions defined
on [0,1]. Recall from a course in real variables that the space Y equipped with
the distance

d(f,9) :== sup |f(z) - g()|
z€[0,1]
is a complete metric space. The metric d induces a topology on Y and let B(Y)
stand for the Borel g-algebra on Y (i.e. the o-algebra generated by the open
sets). Prove that
BY)=KNnY.



Another point of view is to focus on the finite dimensional distributions
(FDD) of the process, i.e. the distibutions of the vectors (X (¢t1,w),. .., X (tk,w)),
for all k € N, and all k-tuples F = (t1,...,%;) in T*. These can be specified
as Borel probability measures px on RF. Of course, they cannot be totally
arbitrary.

1. If F' = (t;y,-..,t; ) is a permutation of F' then

pr = prom where w(x1,...,%5) = (Tiy,-- -, Tiy)-

On the other hand,

2. if F' = (t1,...,tk, tyy1) then we must have:

pr(AxR) =pr(4),  VAeBRY).

We are interested in the extent to which we can follow the reverse procedure.
That is, prescribe the finite dimensional distributions a priori, and prove the
existence of a process with the prescribed FDD.

Definition: A family {ur}, where F' ranges over all finite (ordered) subsets of
T, is called consistent if it satisfies the conditions 1 and 2 above.

Theorem:(Kolmogorov) If {ur} is a consistent family, then there exists a prob-
ability measure P on (X, K), such that the FDD of the measure P are given by
{ur}. Hence if F = (t1,...,t), and A € B(R*) then:

P({w;(w(t1), .-, w(tr) € A}) = pr(A). (2)

Proof: We can define P on the algebra of cylinder sets C by (2). The definition
is consistent because of the consistency of the prescribed measures, and P is
finitely additive. If we could prove that P is in fact countably additive on C
then by Caratheodory’s extension theorem we could extend the definition of P
to K = o[C] and prove the assertion.

Countable additivity can be checked by proving that if {C,,},en C C, then

Co L0 = P(C,) > 0.

Suppose that C, | 0, and assume that for some € > 0, we have P(C,,) > €
for all n. Because (), are decreasing we may assume without loss of generality
(convince yourseves) that there exists a sequence t1,1s, ... such that C, are of
the form:

Cn =A{w; (W(t1),-- -, w(tn)) € An},
for some A,, € B(R"). Define F,, = (t1,...,tn)-

Now recall from a course in Real Analysis the concept of regularity. A Borel
measure p is called inner regular if for every Borel set A and every € > 0 there



exists a compact set K C A such that u(A\ K) < e. Probability Borel measures
on R? such as pr are always inner regular (because R? is o-compact.) Hence
for each of the A,, above consider a compact set K,, C A,, such that:

ME, (An \ Kn) <57

Define also the compact sets K,, C R? by:

n
=&, x R*9)
j=1
and the sets E,, C E, C C,, by:
E, ={w;(w(t1),...,w(ty)) € Ky},

with a similar definition for the tilded ones. Then,

e < P(C,) =P(E,) + P(C,\ Epn) = ur, (K. Oc \ E;))
< pr, (K )+ZP(CJ\EJ') +ZMF Aj\ Kj)
< pr,(Bn) + 5.

Thus, pr, (K,) > 0, and in particular K,, are non-empty.

Now, for each n pick a point (2},z%,...,27) € K,,. The sequence {z7}nen
is contained in the compact set K1, and therefore has a convergent subsequence
with a limit 2; € K;. Likewise, as {(27,2})}nen C K2, the aforementioned
subsequence has a further subsequence that converges to (z1,z2) € K,. We can
proceed in this fashion and construct a sequence {z, }nen, such that for every
n, (z1,...,%,) € K,. Consequently the set S := {w; w(t;) = z;, Vj € N} is
contained in N, E,, = NnE,, and hence in N,,C},, contradicting the assumption
that Cp, L 0. O

The content of the above theorem is that so long as we can prescribe con-
sistently the FDD of a stochastic process, then we can actually construct such
a stochastic process on (X, K). We will now use this theorem to construct the
Brownian motion.



