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for all n ≥ 0 . In particular, it follows that (S∞
n )n≥0 is a supermartingale. Since

S∞
n ≥ Gn P-a.s. we see that (S∞

n )− ≤ G−
n ≤ supn≥0 G−

n P-a.s. for all n ≥ 0
from where by means of (1.1.3) we see that ((S∞

n )−)n≥0 is uniformly integrable.
Thus by the optional sampling theorem (page 60) we get

S∞
n ≥ E (S∞

τ | Fn) (1.1.54)

for all τ ∈ Mn . Moreover, since S∞
k ≥ Gk P-a.s. for all k ≥ n , it follows that

S∞
τ ≥ Gτ P-a.s. for all τ ∈ Mn , and hence

E (S∞
τ | Fn) ≥ E (Gτ | Fn) (1.1.55)

for all τ ∈ Mn . Combining (1.1.54) and (1.1.55) we see by (1.1.30) that S∞
n ≥

Sn P-a.s. for all n ≥ 0 . Since the reverse inequality holds in general as shown
in (1.1.51) above, this establishes that S∞

n = Sn P-a.s. for all n ≥ 0 . From
this it also follows that τ∞

n = τn P-a.s. for all n ≥ 0 . Finally, the third identity
V ∞

n = Vn follows by the monotone convergence theorem. The proof of the theorem
is complete. !

1.2. Markovian approach

In this subsection we will present basic results of optimal stopping when the time
is discrete and the process is Markovian. (Basic definitions and properties of such
processes are given in Subsections 4.1 and 4.2.)

1. Throughout we consider a time-homogeneous Markov chain X = (Xn)n≥0

defined on a filtered probability space (Ω,F , (Fn)n≥0, Px) and taking values in
a measurable space (E,B) where for simplicity we assume that E = Rd for
some d ≥ 1 and B = B(Rd) is the Borel σ -algebra on Rd . It is assumed
that the chain X starts at x under Px for x ∈ E . It is also assumed that
the mapping x $→ Px(F ) is measurable for each F ∈ F . It follows that the
mapping x $→ Ex(Z) is measurable for each random variable Z . Finally, without
loss of generality we assume that (Ω,F) equals the canonical space (EN0 ,BN0)
so that the shift operator θn : Ω → Ω is well defined by θn(ω)(k) = ω(n+k) for
ω = (ω(k))k≥0 ∈ Ω and n, k ≥ 0 . (Recall that N0 stands for N ∪ {0} .)

2. Given a measurable function G : E → R satisfying the following condition
(with G(XN ) = 0 if N = ∞ ):

Ex

(
sup

0≤n≤N
|G(Xn)|

)
< ∞ (1.2.1)

for all x ∈ E , we consider the optimal stopping problem

V N (x) = sup
0≤τ≤N

ExG(Xτ ) (1.2.2)
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where x ∈ E and the supremum is taken over all stopping times τ of X . The
latter means that τ is a stopping time with respect to the natural filtration of X
given by FX

n = σ(Xk : 0 ≤ k ≤ n) for n ≥ 0 . Since the same results remain
valid if we take the supremum in (1.2.2) over stopping times τ with respect to
(Fn)n≥0 , and this assumption makes final conclusions more powerful (at least
formally), we will assume in the sequel that the supremum in (1.2.2) is taken over
this larger class of stopping times. Note also that in (1.2.2) we admit that N can
be +∞ as well. In this case, however, we still assume that the supremum is taken
over stopping times τ , i.e. over Markov times τ satisfying τ <∞ P-a.s. In this
way any specification of G(X∞) becomes irrelevant for the problem (1.2.2).

3. To solve the problem (1.2.2) in the case when N < ∞ we may note that
by setting

Gn = G(Xn) (1.2.3)

for n ≥ 0 the problem (1.2.2) reduces to the problem (1.1.5) where instead of P
and E we have Px and Ex for x ∈ E . Introducing the expectation in (1.2.2)
with respect to Px under which X0 = x and studying the resulting problem by
means of the mapping x %→ V N (x) for x ∈ E constitutes a profound step which
most directly aims to exploit the Markovian structure of the problem. (The same
remark applies in the theory of optimal stochastic control in contrast to classical
methods developed in calculus of variations.)

Having identified the problem (1.2.2) as the problem (1.1.5) we can apply
the method of backward induction (1.1.6)–(1.1.7) which leads to a sequence of
random variables (SN

n )0≤n≤N and a stopping time τN
n defined in (1.1.8). The

key identity is
SN

n = V N−n(Xn) (1.2.4)

for 0 ≤ n ≤ N . This will be established in the proof of the next theorem. Once
(1.2.4) is known to hold, the results of Theorem 1.2 translate immediately into
the present setting and get a more transparent form as follows.

In the sequel we set

Cn = { x ∈ E : V N−n(x) > G(x) }, (1.2.5)

Dn = { x ∈ E : V N−n(x) = G(x) } (1.2.6)

for 0 ≤ n ≤ N . We define

τD = inf { 0 ≤ n ≤ N : Xn ∈ Dn }. (1.2.7)

Finally, the transition operator T of X is defined by

TF (x) = ExF (X1) (1.2.8)

for x ∈ E whenever F : E → R is a measurable function so that F (X1) is
integrable with respect to Px for all x ∈ E .
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Theorem 1.7. (Finite horizon: The time-homogeneous case) Consider the optimal
stopping problem (1.2.2) upon assuming that the condition (1.2.1) holds. Then the
value function V n satisfies the Wald–Bellman equations

V n(x) = max(G(x), TV n−1(x)) (x ∈ E) (1.2.9)

for n = 1, . . . , N where V 0 = G . Moreover, we have:

The stopping time τD is optimal in (1.2.2). (1.2.10)
If τ∗ is an optimal stopping time in (1.2.2) then τD ≤ τ∗ Px-a.s.
for every x ∈ E.

(1.2.11)

The sequence (V N−n(Xn))0≤n≤N is the smallest supermartingale
which dominates (G(Xn))0≤n≤N under Px for x ∈ E given and fixed.

(1.2.12)

The stopped sequence (V N−n∧τD(Xn∧τD ))0≤n≤N is a martingale
under Px for every x ∈ E.

(1.2.13)

Proof. To verify (1.2.4) recall from (1.1.10) that

SN
n = Ex

(
G(XτN

n
) | Fn

)
(1.2.14)

for 0 ≤ n ≤ N . Since SN−n
k ◦ θn = SN

n+k we get that τN
n satisfies

τN
n = inf {n ≤ k ≤ N : SN

k = G(Xk) } = n + τN−n
0 ◦ θn (1.2.15)

for 0 ≤ n ≤ N . Inserting (1.2.15) into (1.2.14) and using the Markov property we
obtain

SN
n = Ex

(
G(Xn+τN−n

0 ◦θn
) | Fn

)
= Ex

(
G(XτN−n

0
) ◦ θn | Fn

)
(1.2.16)

= EXnG(XτN−n
0

) = V N−n(Xn)

where the final equality follows by (1.1.9)–(1.1.10) which imply

ExSN−n
0 = ExG(XτN−n

0
) = sup

0≤τ≤N−n
ExG(Xτ ) = V N−n(x) (1.2.17)

for 0 ≤ n ≤ N and x ∈ E . Thus (1.2.4) holds as claimed.

To verify (1.2.9) note that (1.1.7) using (1.2.4) and the Markov property
reads as follows:

V N−n(Xn) = max
(
G(Xn), Ex

(
V N−n−1(Xn+1) | Fn

))
(1.2.18)

= max
(
G(Xn), Ex

(
V N−n−1(X1) ◦ θn | Fn

))

= max
(
G(Xn), EXn

(
V N−n−1(X1)

))

= max
(
G(Xn), TV N−n−1(Xn)

)
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for all 0 ≤ n ≤ N . Letting n = 0 and using that X0 = x under Px we see that
(1.2.18) yields (1.2.9).

The remaining statements of the theorem follow directly from Theorem 1.2
above. The proof is complete. !

4. The Wald–Bellman equations (1.2.9) can be written in a more compact
form as follows. Introduce the operator Q by setting

QF (x) = max(G(x), TF (x)) (1.2.19)

for x ∈ E where F : E → R is a measurable function for which F (X1) ∈ L1(Px)
for x ∈ E . Then (1.2.9) reads as follows:

V n(x) = QnG(x) (1.2.20)

for 1 ≤ n ≤ N where Qn denotes the n -th power of Q . The recursive relations
(1.2.20) form a constructive method for finding V N when Law(X1 | Px) is known
for x ∈ E .

5. Let us now discuss the case when X is a time-inhomogeneous Markov
chain. Setting Zn = (n, Xn) for n ≥ 0 one knows that Z = (Zn)n≥0 is a time-
homogeneous Markov chain. Given a measurable function G : {0, 1, . . . , N}×E →
R satisfying the following condition:

En,x

(
sup

0≤k≤N−n
|G(n+k, Xn+k)|

)
< ∞ (1.2.1′)

for all 0 ≤ n ≤ N and x ∈ E , the optimal stopping problem (1.2.2) therefore
naturally extends as follows:

V N (n, x) = sup
0≤τ≤N−n

En,xG(n+τ, Xn+τ) (1.2.2′)

where the supremum is taken over stopping times τ of X and Xn = x under
Pn,x with 0 ≤ n ≤ N and x ∈ E given and fixed.

As above one verifies that

SN
n+k = V N (n+k, Xn+k) (1.2.21)

under Pn,x for 0 ≤ n ≤ N − n . Moreover, inserting this into (1.1.7) and using
the Markov property one finds

V N (n+k, Xn+k) (1.2.22)

= max
(
G(n+k, Xn+k), En,x

(
V N (n+k+1, Xn+k+1) | Fn+k

))

= max
(
G(Zn+k), Ez

(
V N (Zn+k+1) | Fn+k

))

= max
(
G(Zn+k), Ez

(
V N (Z1) ◦ θn+k | Fn+k

))

= max
(
G(Zn+k), EZn+k

(
V N(Z1)

))
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for 0 ≤ k ≤ N − n − 1 where z = (n, x) with 0 ≤ n ≤ N and x ∈ E . Letting
k = 0 and using that Zn = z = (n, x) under Pz , one gets

V N (n, x) = max
(
G(n, x), TV N (n, x)

)
(1.2.23)

for n = N−1, . . . , 1, 0 where TV N (N−1, x) = EN−1,xG(N, XN ) and T is the
transition operator of Z given by

TF (n, x) = En,xF (n+1, Xn+1) (1.2.24)

for 0 ≤ n ≤ N and x ∈ E whenever the right-hand side in (1.2.24) is well defined
(finite).

The recursive relations (1.2.23) are the Wald–Bellman equations correspond-
ing to the time-inhomogeneous problem (1.2.2′) . Note that when X is time-
homogeneous (and G = G(x) only) we have V N (n, x) = V N−n(x) and (1.2.23)
reduces to (1.2.9). In order to present a reformulation of the property (1.2.12) in
Theorem 1.7 above we will proceed as follows.

6. The following definition plays a fundamental role in finding a solution to
the optimal stopping problem (1.2.2′) .

Definition 1.8. A measurable function F : {0, 1, . . . , N} × E → R is said to be
superharmonic if

TF (n, x) ≤ F (n, x) (1.2.25)

for all (n, x) ∈ {0, 1, . . . , N}× E .

It is assumed in (1.2.25) that TF (n, x) is well defined i.e. that F (n +
1, Xn+1) ∈ L1(Pn,x) for all (n, x) as above. Moreover, if F (n+k, Xn+k) ∈ L1(Pn,x)
for all 0 ≤ k ≤ N − n and all (n, x) as above, then one verifies directly by the
Markov property that the following stochastic characterization of superharmonic
functions holds:

F is superharmonic if and only if (F (n+k, Xn+k))0≤k≤N−n is
a supermartingale under Pn,x for all (n, x) ∈ {0, 1, . . . , N − 1}×E .

(1.2.26)

The proof of this fact is simple and will be given in a more general case following
(1.2.40) below.

Introduce the continuation set

C =
{
(n, x) ∈ {0, 1, . . . , N}× E : V (n, x) > G(n, x)

}
(1.2.27)

and the stopping set

D =
{
(n, x) ∈ {0, 1, . . . , N}× E : V (n, x) = G(n, x)

}
. (1.2.28)

Introduce the first entry time τD into D by setting

τD = inf {n ≤ k ≤ N : (n+k, Xn+k) ∈ D } (1.2.29)

under Pn,x where (n, x) ∈ {0, 1, . . . , N}× E .
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The preceding considerations may now be summarized in the following ex-
tension of Theorem 1.7.

Theorem 1.9. (Finite horizon: The time-inhomogeneous case) Consider the opti-
mal stopping problem (1.2.2′) upon assuming that the condition (1.2.1′) holds.
Then the value function V N satisfies the Wald–Bellman equations

V N (n, x) = max
(
G(n, x), TV N (n, x)

)
(1.2.30)

for n = N −1, . . . , 1, 0 where TV N (N −1, x) = EN−1,xG(N, XN ) and x ∈ E .
Moreover, we have:

The stopping time τD is optimal in (1.2.2′). (1.2.31)
If τ∗ is an optimal stopping time in (1.2.2′) then τD ≤ τ∗ Pn,x-a.s.
for every (n, x) ∈ {0, 1, . . . , N}×E.

(1.2.32)

The value function V N is the smallest superharmonic function which
dominates the gain function G on {0, 1, . . . , N}×E.

(1.2.33)

The stopped sequence
(
V N ((n+k) ∧ τD, X(n+k)∧τD

)
)
0≤k≤N−n

is
a martingale under Pn,x for every (n, x) ∈ {0, 1, . . . , N}×E.

(1.2.34)

Proof. The proof is carried out in exactly the same way as the proof of Theorem 1.7
above. The key identity linking the problem (1.2.2′) to the problem (1.1.5) is
(1.2.21). This yields (1.2.23) i.e. (1.2.30) as shown above. Note that (1.2.33) refines
(1.2.12) and follows by (1.2.26). The proof is complete. !

7. Consider the optimal stopping problem (1.2.2) when N = ∞ . Recall that
(1.2.2) reads as follows:

V (x) = sup
τ

ExG(Xτ ) (1.2.35)

where τ is a stopping time of X and Px(X0 = x) = 1 for x ∈ E .

Introduce the continuation set

C = { x ∈ E : V (x) > G(x) } (1.2.36)

and the stopping set
D = { x ∈ E : V (x) = G(x) }. (1.2.37)

Introduce the first entry time τD into D by setting

τD = inf { t ≥ 0 : Xt ∈ D }. (1.2.38)

8. The following definition plays a fundamental role in finding a solution to
the optimal stopping problem (1.2.35). Note that Definition 1.8 above may be
viewed as a particular case of this definition.

Definition 1.10. A measurable function F : E → R is said to be superharmonic if

TF (x) ≤ F (x) (1.2.39)

for all x ∈ E .
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It is assumed in (1.2.39) that TF (x) is well defined by (1.2.8) above i.e.
that F (X1) ∈ L1(Px) for all x ∈ E . Moreover, if F (Xn) ∈ L1(Px) for all n ≥ 0
and all x ∈ E , then the following stochastic characterization of superharmonic
functions holds (recall (1.2.26) above):

F is superharmonic if and only if (F (Xn))n≥0 is a supermartingale
under Px for every x ∈ E .

(1.2.40)

The proof of this equivalence relation is simple. Suppose first that F is
superharmonic. Then (1.2.39) holds for all x ∈ E and therefore by the Markov
property we get

TF (Xn) = EXn(F (X1)) = Ex(F (X1) ◦ θn | Fn) (1.2.41)

= Ex(F (Xn+1) | Fn) ≤ F (Xn)

for all n ≥ 0 proving the supermartingale property of (F (Xn))n≥0 under Px for
every x ∈ E . Conversely, if (F (Xn))n≥0 is a supermartingale under Px for every
x ∈ E , then the final inequality in (1.2.41) holds for all n ≥ 0 . Letting n = 0
and taking Ex on both sides gives (1.2.39). Thus F is superharmonic as claimed.

9. In the case of infinite horizon (i.e. when N = ∞ in (1.2.2) above) it is
not necessary to treat the time-inhomogeneous case separately from the time-
homogeneous case as we did it for clarity in the case of finite horizon (i.e. when
N < ∞ in (1.2.2) above). This is due to the fact that the state space E may be
general anyway (two-dimensional) and the passage from the time-inhomogeneous
process (Xn)n≥0 to the time-homogeneous process (n, Xn)n≥0 does not affect the
time set in which the stopping times of X take values (by altering the remaining
time).

Theorem 1.11. (Infinite horizon) Consider the optimal stopping problem (1.2.35)
upon assuming that the condition (1.2.1) holds. Then the value function V satis-
fies the Wald–Bellman equation

V (x) = max(G(x), TV (x)) (1.2.42)

for x ∈ E . Assume moreover when required below that

Px(τD < ∞) = 1 (1.2.43)

for all x ∈ E . Then we have:

The stopping time τD is optimal in (1.2.35). (1.2.44)
If τ∗ is an optimal stopping time in (1.2.35) then τD ≤ τ∗ Px-a.s. for
every x ∈ E.

(1.2.45)

The value function V is the smallest superharmonic function which
dominates the gain function G on E.

(1.2.46)

The stopped sequence (V (Xn∧τD))n≥0 is a martingale under Px for
every x ∈ E.

(1.2.47)
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Finally, if the condition (1.2.43) fails so that Px(τD = ∞) > 0 for some x ∈ E ,
then there is no optimal stopping time (with probability 1 ) in (1.2.35).

Proof. The key identity in reducing the problem (1.2.35) to the problem (1.1.29)
is

Sn = V (Xn) (1.2.48)

for n ≥ 0 . This can be proved by passing to the limit for N → ∞ in (1.2.4) and
using the result of Theorem 1.6 above. In exactly the same way one derives (1.2.42)
from (1.2.9). The remaining statements follow from Theorem 1.4 above. Note also
that (1.2.46) refines (1.1.38) and follows by (1.2.40). The proof is complete. !

Corollary 1.12. (Iterative method) Under the initial hypothesis of Theorem 1.11
we have

V (x) = lim
n→∞

QnG(x) (1.2.49)

for all x ∈ E .

Proof. It follows from (1.2.9) and Theorem 1.6 above. !
The relation (1.2.49) offers a constructive method for finding the value func-

tion V . (Note that n %→ QnG(x) is increasing on {0, 1, 2, . . .} for every x ∈ E .)

10. We have seen in Theorem 1.7 and Theorem 1.9 that the Wald–Bellman
equations (1.2.9) and (1.2.30) characterize the value function V N when the hori-
zon N is finite (i.e. these equations cannot have other solutions). This is due
to the fact that V N equals G in the “end of time” N . When the horizon N
is infinite, however, this characterization is no longer true for the Wald–Bellman
equation (1.2.42). For example, if G is identically equal to a constant c then
any other constant C larger than c will define a function solving (1.2.42). On
the other hand, it is evident from (1.2.42) that every solution of this equation is
superharmonic and dominates G . By (1.2.46) we thus see that a minimal solution
of (1.2.42) will coincide with the value function. This “minimality condition” (over
all points) can be replaced by a single condition as the following theorem shows.
From the standpoint of finite horizon such a “boundary condition at infinity” is
natural.

Theorem 1.13. (Uniqueness in the Wald–Bellman equation)
Under the hypothesis of Theorem 1.11 suppose that F : E → R is a function
solving the Wald–Bellman equation

F (x) = max(G(x), TF (x)) (1.2.50)

for x ∈ E . (It is assumed that F is measurable and F (X1) ∈ L1(Px) for all
x ∈ E .) Suppose moreover that F satisfies

E
(

sup
n≥0

F (Xn)
)

< ∞. (1.2.51)
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Then F equals the value function V if and only if the following “boundary con-
dition at infinity” holds:

lim sup
n→∞

F (Xn) = lim sup
n→∞

G(Xn) Px -a.s. (1.2.52)

for every x ∈ E . ( In this case the lim sup on the left-hand side of (1.2.52) equals
the lim inf , i.e. the sequence (F (Xn))n≥0 is convergent Px -a.s. for every x ∈ E .)

Proof. If F = V then by (1.2.46) we know that F is the smallest superharmonic
function which dominates G on E . Let us show (the fact of independent interest)
that any such function F must satisfy (1.2.52). Note that the condition (1.2.51)
is not needed for this implication.

Since F ≥ G we see that the left-hand side in (1.2.52) is evidently larger
than the right-hand side. To prove the reverse inequality, consider the function
H : E → R defined by

H(x) = Ex

(
sup
n≥0

G(Xn)
)

(1.2.53)

for x ∈ E . Then the key property of H stating that

H is superharmonic (1.2.54)

can be verified as follows. By the Markov property we have

TH(x) = ExH(X1) = Ex

(
EX1

(
sup
n≥0

G(Xn)
))

(1.2.55)

= Ex

(
Ex

(
sup
n≥0

G(Xn) ◦ θ1

∣∣ F1

))
= Ex

(
sup
n≥0

G(Xn+1)
)

≤ H(x)

for all x ∈ E proving (1.2.54). Moreover, since X0 = x under Px we see that
H(x) ≥ G(x) for all x ∈ E . Hence F (x) ≤ H(x) for all x ∈ E by assumption.
By the Markov property it thus follows that

F (Xn) ≤ H(Xn) = EXn

(
sup
k≥0

G(Xk)
)

= Ex

(
sup
k≥0

G(Xk) ◦ θn

∣∣ Fn

)
(1.2.56)

= Ex

(
sup
k≥0

G(Xk+n)
∣∣ Fn

)
≤ Ex

(
sup
l≥m

G(Xl)
∣∣ Fn

)

for any m ≤ n given and fixed where x ∈ E . The final expression in (1.2.56)
defines a (generalized) martingale for n ≥ 1 under Px which is known to converge
Px -a. s. as n → ∞ for every x ∈ E with the limit satisfying the following
inequality:

lim
n→∞

Ex

(
sup
l≥m

G(Xl)
∣∣ Fn

)
≤ Ex

(
sup
l≥m

G(Xl)
∣∣ F∞

)
= sup

l≥m
G(Xl) (1.2.57)
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where the final identity follows from the fact that supl≥m G(Xl) is F∞ -measur-
able. Letting n → ∞ in (1.2.56) and using (1.2.57) we find

lim sup
n→∞

F (Xn) ≤ sup
l≥m

G(Xl) Px -a.s. (1.2.58)

for all m ≥ 0 and x ∈ E . Letting finally m → ∞ in (1.2.58) we end up with
(1.2.52). This ends the first part of the proof.

Conversely, suppose that F satisfies (1.2.50)–(1.2.52) and let us show that
F must then be equal to V . For this, first note that (1.2.50) implies that F is
superharmonic and that F ≥ G . Hence by (1.2.46) we see that V ≤ F . To show
that V ≥ F consider the stopping time

τDε = inf {n ≥ 0 : F (Xn) ≤ G(Xn)+ε } (1.2.59)

where ε > 0 is given and fixed. Then by (1.2.52) we see that τDε < ∞ Px -a.s.
for x ∈ E . Moreover, we claim that

(
F (XτDε∧n)

)
n≥0

is a martingale under Px

for x ∈ E . For this, note that the Markov property and (1.2.50) imply

Ex

(
F (XτDε∧n) | Fn−1

)
(1.2.60)

= Ex

(
F (Xn)I(τDε≥ n) | Fn−1

)
+ Ex

(
F (XτDε

)I(τDε< n) | Fn−1

)

= Ex

(
F (Xn) | Fn−1

)
I(τDε≥ n) + Ex

(∑n−1
k=0F (Xk)I(τDε= k) | Fn−1

)

= EXn−1

(
F (X1)

)
I(τDε ≥ n) +

∑n−1
k=0F (Xk) I(τDε = k)

= TF (Xn−1) I(τDε ≥ n) + F (XτDε
) I(τDε< n)

= F (Xn−1) I(τDε≥ n) + F (XτDε
) I(τDε< n)

= F (XτDε∧(n−1)) I(τDε≥ n) + F (XτDε∧(n−1)) I(τDε< n)

= F (XτDε∧(n−1))

for all n ≥ 1 and x ∈ E proving the claim. Hence

Ex

(
F (XτDε∧n)

)
= F (x) (1.2.61)

for all n ≥ 0 and x ∈ E . Next note that

Ex

(
F (XτDε∧n)

)
= Ex

(
F (XτDε

) I(τDε ≤ n)
)

+ Ex

(
F (Xn) I(τDε > n)

)
(1.2.62)

for all n ≥ 0 . Letting n → ∞ , using (1.2.51) and (1.2.1) with F ≥ G , we get

Ex

(
F (XτDε

)
)

= F (x) (1.2.63)

for all x ∈ E . This fact is of independent interest.
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Finally, since V is superharmonic, we find using (1.2.63) that

V (x) ≥ ExV (XτDε
) ≥ ExG(XτDε

) ≥ ExF (XτDε
) − ε = F (x) − ε (1.2.64)

for all ε > 0 and x ∈ E . Letting ε ↓ 0 we get V ≥ F as needed and the proof
is complete. !

11. Given α ∈ (0, 1] and (bounded) measurable functions g : E → R and
c : E → R+ , consider the optimal stopping problem

V (x) = sup
τ

Ex

(
ατg(Xτ ) −

τ∑

k=1

αk−1c(Xk−1)
)

(1.2.65)

where τ is a stopping time of X and Px(X0 = x) = 1 .

The value c(x) is interpreted as the cost of making the next observation of
X when X equals x . The sum in (1.2.65) by definition equals 0 when τ equals
0.

The problem formulation (1.2.65) goes back to a problem formulation due
to Bolza in classic calculus of variation (a more detailed discussion will be given
in Chapter III below). Let us briefly indicate how the problem (1.2.65) can be
reduced to the setting of Theorem 1.11 above.

For this, let X̃ = (X̃n)n≥0 denote the Markov chain X killed at rate α . It
means that the transition operator of X̃ is given by

T̃F (x) = α TF (x) (1.2.66)

for x ∈ E whenever F (X1) ∈ L1(Px) . The problem (1.2.65) then reads

V (x) = sup
τ

Ex

(
g(X̃τ ) −

τ∑

k=1

c(X̃k−1)
)

(1.2.65′)

where τ is a stopping time of X̃ and Px(X̃0 = x) = 1 .

Introduce the sequence

Ĩn = a +
n∑

k=1

c(X̃k−1) (1.2.67)

for n ≥ 1 with Ĩ0 = a in R . Then Z̃n = (X̃n, Ĩn) defines a Markov chain for
n ≥ 0 with Z̃0 = (X̃0, Ĩ0) = (x, a) under Px so that we may write Px,a instead of
Px . (The latter can be justified rigorously by passage to the canonical probability
space.) The transition operator of Z̃ = (X̃, Ĩ ) equals

T eZ F (x, a) = Ex,aF (X̃1, Ĩ1) (1.2.68)

for (x, a) ∈ E × R whenever F (X̃1, Ĩ1) ∈ L1(Px,a) .
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The problem (1.2.65′) may now be rewritten as follows:

W (x, a) = sup
τ

Ex,aG(Zτ ) (1.2.65′′)

where we set
G(z) = g(x) − a (1.2.69)

for z = (x, a) ∈ E×R . Obviously by subtracting a on both sides of (1.2.65′) we
set that

W (x, a) = V (x) − a (1.2.70)

for all (x, a) ∈ E × R .

The problem (1.2.65′′) is of the same type as the problem (1.2.35) above
and thus Theorem 1.11 is applicable. To write down (1.2.42) more explicitly note
that

T eZ W (x, a) = Ex,aW (X̃1, Ĩ1) = Ex,a

(
V (X̃1) − Ĩ1

)
(1.2.71)

= ExV (X̃1) − a − c(x) = αTV (x) − a − c(x)

so that (1.2.42) reads

V (x) − a = max
(
g(x)− a , αTV (x)− a− c(x)

)
(1.2.72)

where we used (1.2.70), (1.2.69) and (1.2.71). Clearly a can be removed from
(1.2.72) showing finally that the Wald–Bellman equation (1.2.42) takes the follow-
ing form:

V (x) = max
(
g(x) , αTV (x) − c(x)

)
(1.2.73)

for x ∈ E . Note also that (1.2.39) takes the following form:

αTF (x) − c(x) ≤ F (x) (1.2.74)

for x ∈ E . Thus F satisfies (1.2.74) if and only if (x, a) %→ F (x) − a is super-
harmonic relative to the Markov chain Z̃ = (X̃, Ĩ) . Having (1.2.73) and (1.2.74)
set out explicitly the remaining statements of Theorem 1.11 and Corollary 1.12
are directly applicable and we shall omit further details. It may be noted above
that L = T − I is the generator of the Markov chain X . More general problems
of this type (involving also the maximum functional) will be discussed in Chapter
III below. We will conclude this section by giving an illustrative example.

12. The following example illustrates general results of optimal stopping the-
ory for Markov chains when applied to a nontrivial problem in order to determine
the value function and an optimal Markov time (in the class M̄ ).

Example 1.14. Let ξ, ξ1, ξ2, . . . be independent and identically distributed random
variables, defined on a probability space (Ω,F , P) , with Eξ < 0 . Put S0 = 0 ,
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Sn = ξ1 + · · · + ξn for n ≥ 1 ; X0 = x , Xn = x + Sn for n ≥ 1 , and M =
supn≥0 Sn . Let Px be the probability distribution of the sequence (Xn)n≥0 with
X0 = x from R . It is clear that the sequence (Xn)n≥0 is a Markov chain started
at x .

For any n ≥ 1 define the gain function Gn(x) = (x+)n where x+ =
max(x, 0) for x ∈ R , and let

Vn(x) = sup
τ∈M

ExGn(Xτ ) (1.2.75)

where the supremum is taken over the class M of all Markov (stopping) times τ
satisfying Px(τ < ∞) = 1 for all x ∈ R . Let us also denote

V̄n(x) = sup
τ∈M̄

ExGn(Xτ )I(τ < ∞) (1.2.76)

where the supremum is taken over the class M̄ of all Markov times.

The problem of finding the value functions Vn(x) and V̄n(x) is of interest
for the theory of American options because these functions represent arbitrage-free
(fair, rational) prices of “Power options” under the assumption that any exercise
time τ belongs to the class M or M̄ respectively. In the present case we have
Vn(x) = V̄n(x) for n ≥ 1 and x ∈ R , and it will be clear from what follows below
that an optimal Markov time exists in the class M̄ (but does not belong to the
class M of stopping times).

We follow [144] where the authors solved the formulated problems (see also
[119]). First of all let us introduce the notion of the Appell polynomial which will
be used in the formulation of the basic results.

Let η = η(ω) be a random variable with Eeλ|η| < ∞ for some λ > 0 .
Consider the Esscher transform

x ! eux

Eeuη
|u| ≤ λ, x ∈ R, (1.2.77)

and the decomposition
eux

Eeuη
=

∞∑

k=0

uk

k!
Q(η)

k (x). (1.2.78)

Polynomials Q(η)
k (x) are called the Appell polynomials for the random variable

η . (If E|η|n < ∞ for some n ≥ 1 then the polynomials Q(η)
k (x) are uniquely

defined for all k ≤ n .)

The polynomials Q(η)
k (x) can be expressed through the semi-invariants κ1 ,

κ2, . . . of the random variable η . For example,
Q(η)

0 (x) = 1, Q(η)
2 (x) = (x−κ1)2 − κ2,

Q(η)
1 (x) = x − κ1, Q(η)

3 (x) = (x−κ1)3 − 3κ2(x−κ1) − κ3,
. . . (1.2.79)
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where (as is well known) the semi-invariants κ1, κ2, . . . are expressed via the
moments µ1, µ2, . . . of η :

κ1 = µ1, κ2 = µ2 − µ2
1, κ3 = 2µ3

1 − 3µ1µ2 + µ3, . . . . (1.2.80)

Let us also mention the following property of the Appell polynomials: if
E |η|n < ∞ then for k ≤ n we have

d

dx
Q(η)

k (x) = kQ(η)
k−1(x), (1.2.81)

EQ(η)
k (x+η) = xk. (1.2.82)

For simplicity of notation we will use Qk(s) to denote the polynomials
Q(M)

k (x) for the random variable M = supn≥0 Sn . Every polynomial Qk(x) has
a unique positive root a∗

k . Moreover, Qk(x) ≤ 0 for 0 ≤ x < a∗
k and Qk(x)

increases for x ≥ a∗
k .

In accordance with the characteristic property (1.2.46) recall that the value
function Vn(x) is the smallest superharmonic (excessive) function which domi-
nates the gain function Gn(x) on R . Thus, one method to find Vn(x) is to search
for the smallest excessive majorant of the function Gn(x) . In [144] this method
is realized as follows.

For every a ≥ 0 introduce the Markov time

τa = inf{n ≥ 0 : Xn ≥ a} (1.2.83)

and for each n ≥ 1 consider the new optimal stopping problem:

V̂ (x) = sup
a≥0

ExGn(Xτa)I(τa < ∞). (1.2.84)

It is clear that Gn(Xτa) = (X+
τa

)n = Xn
τa

(on the set {τa < ∞} ). Hence

V̂ (x) = sup
a≥0

ExXn
τa

I(τa < ∞). (1.2.85)

The identity (1.2.82) prompts that the following property should be valid: if
E |M |n < ∞ then

EQn(x+M)I(x+M ≥ a) = ExXn
τa

I(τa < ∞). (1.2.86)

This formula and properties of the Appell polynomials imply that

V̂ (x) = sup
a≥0

EQn(x+M)I(x+M ≥ a) = EQn(x+M)I(x+M ≥ a∗
n). (1.2.87)

From this we see that τa∗
n

is an optimal Markov time for the problem (1.2.84).
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It is clear that V̄n(x) ≥ V̂n(x) . From (1.2.87) and properties of the Appell
polynomials we obtain that V̂n(x) is an excessive majorant of the gain function
( V̂n(x) ≥ ExV̂n(X1) and V̂n(x) ≥ Gn(x) for x ∈ R ). But V̄n(x) is the smallest
excessive majorant of Gn(x) . Thus V̄n(x) ≤ V̂n(x) .

On the whole we obtain the following result (for further details see [144]):

Suppose that E (ξ+)n+1 < ∞ and a∗
n is the largest root of the equation

Qn(x) = 0 for n ≥ 1 fixed. Denote τ∗
n = inf { k ≥ 0 : Xk ≥ a∗

n } . Then the
Markov time τ∗

n is optimal:

Vn(x) = sup
τ∈M̄

Ex(X+
τ )nI(τ < ∞) = Ex

(
X+

τ∗
n

)n
I(τ < ∞). (1.2.88)

Moreover,
Vn(x) = E Qn(x+M)I(x+M ≥ a∗

n). (1.2.89)

Remark 1.15. In the cases n = 1 and n = 2 we have

a∗
1 = EM and a∗

2 = EM +
√

DM. (1.2.90)

Remark 1.16. If P(ξ = 1) = p , P(ξ = −1) = q and p < q , then M := supn≥0 Sn

(with S0 = 0 and Sn = ξ1 + · · · + ξn ) has geometric distribution:

P(M ≥ k) =
(p

q

)k
(1.2.91)

for k ≥ 0 . Hence
EM =

q

q − p
. (1.2.92)

2. Continuous time

The aim of the present section is to exhibit basic results of optimal stopping in the
case of continuous time. We first consider a martingale approach (cf. Subsection 1.1
above). This is then followed by a Markovian approach (cf. Subsection 1.2 above).

2.1. Martingale approach

1. Let G = (Gt)t≥0 be a stochastic process defined on a filtered probability space
(Ω,F , (Ft)t≥0, P) . We interpret Gt as the gain if the observation of G is stopped
at time t . It is assumed that G is adapted to the filtration (Ft)t≥0 in the sense
that each Gt is Ft -measurable. Recall that each Ft is a σ -algebra of subsets
of Ω such that Fs ⊆ Ft ⊆ F for s ≤ t . Typically (Ft)t≥0 coincides with the
natural filtration (FG

t )t≥0 but generally may also be larger. We interpret Ft as
the information available up to time t . All our decisions in regard to optimal


