Lecture notes

version 2014.3.2

Chapter 1

Finite-type arithmetic

Higher types and higher-type entities (functionals) constitute a natural, and constructive, way of extending the expressive power of arithmetic without increasing its proof-theoretic strength. They also provide the syntactic means to express the effective information contained in proofs of arithmetical statements.

As a foundation for our subsequent proof-theoretic considerations, we present a basic theory \mathbf{HA}^{ω} of intuitionistic finite-type arithmetic, together with an extensional variant \mathbf{E} - \mathbf{HA}^{ω} and an intensional one \mathbf{I} - \mathbf{HA}^{ω} .

Based in part on Troelstra and van Dalen (1988).

1.1 Syntax

1.1.1 The language of finite-type arithmetic

The following types are present:

- 1. An atomic type \mathcal{N} (the type of natural numbers),
- 2. a type $\sigma \times \tau$ for any two types σ and τ (product types),
- 3. a type τ^{σ} for any two types σ and τ (function types).

Notation. $(\tau^{\sigma})^{\rho}$ is simplified to $\tau^{\rho\sigma}$, and $\tau^{\vec{\sigma}}$ is governed by a similar convention; hence, $\tau^{\sigma^{\rho}}$ denotes the other alternative.

Terms, and their types, are generated by

- 0. There is an inexhaustible supply (infinite set) of variables of each type.
- 1. **0** is a term of type \mathcal{N} ; for any term t of type \mathcal{N} , St is a term of type \mathcal{N} .
- 2. For any terms t of type τ , u of type $\tau^{\mathcal{N}\tau}$ and v of type \mathcal{N} , **R**tuv is a term of type τ .
- 3. For any terms t_l and t_r of types τ_l and τ_r , $\langle t_l, t_r \rangle$ is a term of type $\tau_l \times \tau_r$.
- 4. For any term t of type $\tau_l \times \tau_r$, $\boldsymbol{p}_s t$ is a term of type τ_s , for $s \in \{l, r\}$.
- 5. For any variable x of type σ and term t of type τ , $\lambda x t$ is a term of type τ^{σ} .

6. For any terms t of type τ^{σ} and u of type σ , tu is a term of type τ .

Notation. Lists of variables/terms are conveniently abbreviated \vec{x} , \vec{t} etc., with the aid of the following conventions (where $\vec{t} \equiv t_1, \ldots, t_n$ and $\vec{u} \equiv u_1, \ldots, u_m$):

$$t\vec{u} \equiv tu_1 \cdots u_m \equiv (\cdots (tu_1) \cdots) u_m$$
$$\vec{t}\vec{u} \equiv t_1 \vec{u}, \dots, t_n \vec{u},$$
$$\lambda x_1, \dots, x_m \ t \equiv \lambda x_1 \cdots \lambda x_m \ t,$$
$$\lambda \vec{x} \ \vec{t} \equiv \lambda \vec{x} \ t_1, \dots, \lambda \vec{x} \ t_n.$$

Prime (or atomic) formulae are equations t = u between terms of the same type. Formulae are formed from prime formulae by means of $\&, \to, \forall$, and \exists . We will use the following abbreviations:

$$\mathbf{1} \equiv \mathbf{S0},$$

$$\perp \equiv \mathbf{0} = \mathbf{1},$$

$$\neg \phi \equiv \phi \to \bot,$$

$$t \neq u \equiv \neg (t = u),$$

$$\phi \lor \psi \equiv \exists z ((z = \mathbf{0} \to \phi) \& (z \neq \mathbf{0} \to \psi)).$$

1.1.2 Axioms and rules of inference

Besides the usual (natural deduction or other) axioms and rules of intuitionistic first-order logic for the logical constants present in the system, we have rules for *equality*

$$\label{eq:t_t_t_t_t_t_t_t_t_t_t_t} \boxed{\begin{array}{c} t = u & \phi(t) \\ \phi(ut) \end{array}} \; ,$$

 β -conversion

$$\overline{\mathbf{R}tu\mathbf{0} = t} \qquad \overline{\mathbf{R}tu\mathbf{S}v = uvRtuv} ,$$

$$\overline{\mathbf{p}_i \langle t_l, t_r \rangle = t_i} , \quad i \in \{l, r\},$$

$$\overline{(\lambda x \ t)u = t[x := u]} ,$$

and induction

$$\frac{\phi(\mathbf{0}) \qquad \forall x \left[\phi(x) \to \phi(\mathbf{S}x)\right]}{\phi(v)}$$

.

The above axioms and rules constitute \mathbf{HA}^{ω} . Occasionally, we will be interested in the following variants of this theory. *Extensional finite-type arithmetic*, **E-HA**^{ω}, is obtained from **HA**^{ω} by the addition of the *extensionality rules*

$$\frac{\boldsymbol{p}_l t = \boldsymbol{p}_l u \quad \boldsymbol{p}_r t = \boldsymbol{p}_r u}{t = u}$$

for t, u of product type, and

$$\frac{\forall x (tx = ux)}{t = u}, \quad x \notin FV(t, u)$$

for t, u of function type. Intensional finite-type arithmetic, $\mathbf{I}-\mathbf{HA}^{\omega}$, augments the language of \mathbf{HA}^{ω} with equality functionals \mathbf{E}_{τ} , one for each type τ , subject to

$$E_{\tau}tu = \mathbf{0} \leftrightarrow t = u$$
 $E_{\tau}tu = \mathbf{1} \leftrightarrow t \neq u$

Classical (or Peano) finite-type arithmetic \mathbf{PA}^{ω} is the extension of \mathbf{HA}^{ω} by the principle of the excluded middle

$$- - - - \phi \rightarrow \phi (\mathbf{PEM}) \ .$$

1.2 Exercises

- 1. Show that equality at type \mathcal{N} is decidable, i.e., $x = y \lor x \neq y$.
- 2. Using your preferred logical formalism, show that if

$$\vdash_{\mathbf{HA}^{\omega}} \phi,$$

 then

$$\vdash_{\mathbf{HA}^{\boldsymbol{\omega}}} \phi[x := t].$$

3. Prove that extensionality is equivalent to the set of equations

(
$$\eta$$
) $\langle \boldsymbol{p}_l t, \boldsymbol{p}_r t \rangle = t, \quad t \text{ of product type,} \\ \lambda x (tx) = t, \quad t \text{ of function type, } x \notin FV(t).$

4. Extensional equality $t =_e u$ between terms t, u of the same type is inductively defined by

$$t =_e u \equiv \begin{cases} t = u & t, u \text{ of atomic type,} \\ \mathbf{p}_l t =_e \mathbf{p}_l u \& \mathbf{p}_r t =_e \mathbf{p}_r u & t, u \text{ of product type,} \\ \forall x (tx =_e ux) & t, u \text{ of function type.} \end{cases}$$

Show that extensionality is equivalent to the schema

$$t =_e u \leftrightarrow t = u,$$

and conclude that, in \mathbf{E} - \mathbf{HA}^{ω} , atomic formulae are equivalent to purely universal formulae involving equality at type \mathcal{N} only.

5. (Closure of $\mathbf{HA}^{\boldsymbol{\omega}}$ under *mutual primitive recursion*.) Let $\vec{\tau} \equiv \tau_1, \ldots, \tau_n$ be a list of types, \vec{t} a list of terms of types $\vec{\tau}$ (i.e., each t_i has type τ_i) and \vec{u} a list of terms of types $\vec{\tau}^{\mathcal{N}\vec{\tau}}$ (i.e., each u_i has type $\tau_i^{\mathcal{N}\tau_1...\tau_n}$). Construct terms $\vec{r} \equiv \vec{r}(z)$, z fresh, with the properties

$$\vec{r}(\mathbf{0}) = \vec{t},$$

$$\vec{r}(\mathbf{S}v) = \vec{u}v\vec{r}(v).$$

Chapter 2

Modified realizability

The name *realizability* refers to any one of a family of translations that may be seen as formalizations of the BHK interpretation of the logical constants; for a more complete description of the BHK interpretation, the reader may consult Troelstra and van Dalen (1988).

Modified realizability is a variant of realizability introduced in Kreisel (1959) for the purpose of showing that Markov's principle is not derivable in intuitionistic logic. It could as well be called *typed realizability* because it uses functionals instead of numbers as realizing objects. This notion of realizability is well adapted to the study of typed theories; it will be our first, and simplest, example of term extraction.

2.1 Definition

To each formula ϕ in the language of finite-type arithmetic we associate its *modified realizability interpretation* ϕ^{mr} , which is a formula of the form

 $\exists \vec{x} \phi_{\rm mr}(\vec{x})$

with the same free variables as ϕ , where $\phi_{mr}(\vec{x})$ (\vec{x} modified realizes ϕ , alternative notation: $\vec{x}\mathbf{mr}\phi$) is an \exists -free formula and \vec{x} a possibly empty list of variables. The associations ()_{mr} and ()^{mr} are defined by the following induction:

For
$$\phi$$
 atomic, $\phi^{\mathrm{mr}} \equiv \phi$,
 $(\phi \& \psi)^{\mathrm{mr}} \equiv \exists \vec{x}, \vec{y} [\phi_{\mathrm{mr}}(\vec{x}) \& \psi_{\mathrm{mr}}(\vec{y})],$
 $(\phi \to \psi)^{\mathrm{mr}} \equiv \exists \vec{Y} [\forall \vec{x} (\phi_{\mathrm{mr}}(\vec{x}) \to \psi_{\mathrm{mr}}(\vec{Y}\vec{x}))],$
 $(\forall z \phi(z))^{\mathrm{mr}} \equiv \exists \vec{X} [\forall z (\phi(z)_{\mathrm{mr}}(\vec{X}z))],$
 $(\exists z \phi(z))^{\mathrm{mr}} \equiv \exists z, \vec{x} [\phi(z)_{\mathrm{mr}}(\vec{x})],$

where, in each case, the \exists -free kernel is delimited by brackets.

Remark on notation. Expressions like $\phi(v)_{mr}(\vec{x})$ are unambiguous, since the interpretation commutes with substitution:

$$\phi[z := v]_{\mathrm{mr}}(\vec{x}) \equiv \phi_{\mathrm{mr}}(\vec{x})[z := v].$$

Proposition 2.1. Let $\phi^{mr} \equiv \exists \vec{x} \phi_{mr}(\vec{x})$.

1. $\phi_{mr}(\vec{x})$ is \exists -free, and if ϕ is \exists -free, then \vec{x} is empty and $\phi^{mr} \equiv \phi_{mr} \equiv \phi$.

2. If ψ is \exists -free, then $(\exists \vec{y} \, \psi)^{\mathrm{mr}} \equiv \exists \vec{y} \, \psi$; in particular, $(\phi^{\mathrm{mr}})^{\mathrm{mr}} \equiv \phi^{\mathrm{mr}}$.

Proof. Exercise.

In the following, we are going to employ the modified realizability schema

(MR)
$$\phi^{\rm mr} \leftrightarrow \phi$$

This is not among the axioms usually considered for arithmetic; we will shortly prove its equivalence to something more familiar (??).

Theorem 2.2 (soundness). Let H be any one of HA^{ω} , $E-HA^{\omega}$, $I-HA^{\omega}$, and let $H - \exists$ be the \exists -free part of H. If $\vdash_{H+MR} \phi$, then $\vdash_{H-\exists} \phi_{mr}(\vec{t})$ for a suitable list \vec{t} of terms satisfying $FV(\vec{t}) \subseteq FV(\phi)$.

Proof. We are going to apply induction on the proofs of $\mathbf{H} + \mathbf{MR}$, for the purpose of which we will need the (superficially) stronger statement

If $\Phi \vdash_{\mathbf{H}+\mathrm{MR}} \phi$, then $\Phi_{\mathrm{mr}} \vdash_{\mathbf{H}-\exists} \phi_{\mathrm{mr}}(\vec{t})$, where all free variables of \vec{t} are among those free in ϕ and those free in Φ_{mr} .

where Φ is an arbitrary (finite) set of formulae and $\Phi_{mr} = \{\phi_{mr} \mid \phi \in \Phi\}$. Of the axioms and rules of $\mathbf{H} - \exists$, those that are \exists -free are *self-realizing* and don't need any further examination; this includes the "extras" of \mathbf{E} - $\mathbf{H}\mathbf{A}^{\boldsymbol{\omega}}$ and \mathbf{I} - $\mathbf{H}\mathbf{A}^{\boldsymbol{\omega}}$. For most of the others, a deduction will be furnished that may be combined with the induction hypotheses in an obvious way to yield the required conclusion. Exception: \exists -rules.

Natural deduction

$$\begin{array}{cccc} & \underbrace{\phi & \underbrace{\psi}}{\phi & \underbrace{\psi}} : & \underbrace{\phi_{\mathrm{mr}}(t) & \underbrace{\psi_{\mathrm{mr}}(\vec{u})}{\phi_{\mathrm{mr}}(\vec{t}) & \underbrace{\psi_{\mathrm{mr}}(\vec{u})}{\phi_{\mathrm{mr}}(\vec{t}) & \underbrace{\psi_{\mathrm{mr}}(\vec{u})}{\phi_{\mathrm{mr}}(\vec{t}) & \underbrace{\psi_{\mathrm{mr}}(\vec{u})}{\phi_{\mathrm{mr}}(\vec{t})} \\ \hline \\ & \underbrace{\phi & \underbrace{\psi}}{\phi} : & \underbrace{(\phi & \underbrace{\psi})_{\mathrm{mr}}(\vec{t}, \vec{u}) & = \underbrace{\phi_{\mathrm{mr}}(\vec{t}) & \underbrace{\psi_{\mathrm{mr}}(\vec{u})}{\phi_{\mathrm{mr}}(\vec{t})} \\ \hline \\ & \underbrace{\phi}_{\mathrm{mr}}(\vec{u}) & \underbrace{\psi_{\mathrm{mr}}(\vec{u})}{\frac{\psi_{\mathrm{mr}}(\vec{x}) \rightarrow \psi_{\mathrm{mr}}(\vec{u})}{\forall \vec{x} & (\phi_{\mathrm{mr}}(\vec{x}) \rightarrow \psi_{\mathrm{mr}}(\vec{u}))} \\ \hline \\ & \underbrace{\phi \rightarrow \psi}{\psi} : & \underbrace{(\phi \rightarrow \psi)_{\mathrm{mr}}(\vec{t}) & = \underbrace{\forall \vec{x} & (\phi_{\mathrm{mr}}(\vec{x}) \rightarrow \psi_{\mathrm{mr}}(\vec{t}\vec{x}))}{\frac{\phi_{\mathrm{mr}}(\vec{u}) \rightarrow \psi_{\mathrm{mr}}(\vec{t}\vec{u})}{\psi_{\mathrm{mr}}(\vec{t}\vec{u})}} \\ \\ \hline \\ & \underbrace{\phi(z)}{\forall z & \phi(z)} : & \underbrace{\phi(z)_{\mathrm{mr}}(\vec{t})}{\forall z & (\phi(z)_{\mathrm{mr}}(\vec{t}))} \leftrightarrow (\forall z & \phi(z))_{\mathrm{mr}}(\lambda z & \vec{t}) \end{array}$$

$$\frac{\forall z \ \phi(z)}{\phi(v)} : \qquad \qquad (\forall z \ \phi(z))_{\rm mr}(\vec{t}) \equiv \forall z \ (\phi(z)_{\rm mr}(\vec{t}z)) \\ \phi(v)_{\rm mr}(\vec{t}v)$$

 $\frac{\phi(v)}{\exists z \phi(z)}$: Nothing to prove; the conclusion coincides with the induction hypothesis (this is because the interpretation of \exists is "trivial", in the sense that it merely converts the existentially quantified variable into a realizing variable).

 $[\phi(z)]$ $\begin{array}{c|c} \exists z \ \phi(z) & \psi \\ \hline \psi & \\ \end{array} : \text{By hypothesis, there are deductions } \Phi_{\mathrm{mr}} \vdash_{\mathbf{H}-\exists} \phi(v)_{\mathrm{mr}}(\vec{t}) \\ \text{and } \Phi_{\mathrm{mr}}, \phi(z)_{\mathrm{mr}}(\vec{x}) \vdash_{\mathbf{H}-\exists} \psi_{\mathrm{mr}}(\vec{u}), \text{ whence } \Phi_{\mathrm{mr}} \vdash_{\mathbf{H}-\exists} \psi_{\mathrm{mr}}(\vec{u}[\vec{x} := \vec{t}]). \end{array}$

Equality

$$\frac{t=u \quad \phi(t)}{\phi(u)}: \qquad \qquad \frac{t=u \quad \phi(t)_{\mathrm{mr}}(\vec{v})}{\phi(u)_{\mathrm{mr}}(\vec{v})}$$

(using the fact that modified realizability commutes with substitution).

Induction

$$\begin{array}{c|c} \phi(\mathbf{0}) & \forall z \ (\phi(z) \to \phi(\mathbf{S}z)) \\ \hline \phi(v) & \vdots \\ \\ \phi(\mathbf{0})_{\mathrm{mr}}(\vec{t}) & \overline{\forall z, \vec{x} \ (\phi(z)_{\mathrm{mr}}(\vec{x}) \to \phi(\mathbf{S}z)_{\mathrm{mr}}(\vec{u}z\vec{x}))} \\ \hline \phi(\mathbf{0})_{\mathrm{mr}}(\vec{t}) & \overline{\forall z \ (\phi(z)_{\mathrm{mr}}(\vec{w}(z)) \to \phi(\mathbf{S}z)_{\mathrm{mr}}(\vec{u}z\vec{w}(z)))} \\ \hline \phi(v)_{\mathrm{mr}}(\vec{w}(v)) & \end{array}$$

where $\vec{w} \equiv \vec{w}(z)$ is a list of terms such that

$$ec{w}(\mathbf{0}) = ec{t},$$

 $ec{w}(\mathbf{S}z) = ec{u}zec{w}(z).$

One way to guarantee the existence of $\vec{w}(z)$ is by formulating the system with mutual primitive recursion. In the presence of product types, however, mutual primitive recursion is reducible to ordinary primitive recursion; e.g., $\vec{w}(z)$ may be constructed as follows: Assuming $\vec{t} \equiv t_1, \ldots, t_n$ and $\vec{u} \equiv u_1, \ldots, u_n$, define

$$t \equiv \langle \vec{t} \rangle \equiv \langle t_1, \dots, t_n \rangle, \\ u \equiv \lambda z, y \ \langle \vec{u} z(\vec{q} y) \rangle,$$

where $\langle \rangle$ denotes an arbitrary representation of *n*-tuples (using pairing), with corresponding projections $\vec{q}y \equiv q_1y, \ldots, q_ny$. Then, the terms

$$\vec{w}(z) \equiv \vec{q} R t u z$$

have the required properties.

MR

Since $(\phi^{\rm mr})_{\rm mr}(\vec{x}) \equiv \phi_{\rm mr}(\vec{x})$, a simple calculation yields

$$(\phi^{\mathrm{mr}} \leftrightarrow \phi)^{\mathrm{mr}} \equiv \exists \vec{X}, \vec{Y} \left[\forall \vec{x} \left(\phi_{\mathrm{mr}}(\vec{x}) \rightarrow \phi_{\mathrm{mr}}(\vec{X}\vec{x}) \right) \& \forall \vec{y} \left(\phi_{\mathrm{mr}}(\vec{y}) \rightarrow \phi_{\mathrm{mr}}(\vec{Y}\vec{y}) \right) \right]$$

hich has the trivial realizers $\lambda \vec{x} \, \vec{x}, \lambda \vec{y} \, \vec{y}$.

which has the trivial realizers $\lambda \vec{x} \cdot \vec{x}, \lambda \vec{y} \cdot \vec{y}$.

2.3 Axiomatization

Here, we are going to show that $\mathbf{HA}^{\boldsymbol{\omega}} + \mathrm{MR}$ may be axiomatized by familiar principles.

Theorem 2.3. Over HA^{ω} , the following schemata are equivalent:

- 1. MR: $\phi^{\mathrm{mr}} \leftrightarrow \phi$,
- 2. $\phi^{\rm mr} \rightarrow \phi$,
- 3. $AC + IP_{ef}^{\omega}$, where

$$\begin{array}{ll} (\mathrm{AC}) & \forall \vec{x} \ \exists \vec{y} \ \phi(\vec{x}, \vec{y}) \rightarrow \exists \vec{Y} \ \forall \vec{x} \ \phi(\vec{x}, \vec{Y} \vec{x}), \\ (\mathrm{IP}_{\mathrm{ef}}^{\omega}) & (\phi \rightarrow \exists x \ \psi) \rightarrow \exists x \ (\phi \rightarrow \psi), \quad \phi \ \exists \textit{-free.} \end{array}$$

Proof. $1. \rightarrow 2$. Obvious.

- $2. \rightarrow 3$. It suffices to show that each instance θ of one of AC and $\mathrm{IP}_{\mathrm{ef}}^{\omega}$ is modified realizable, $\vdash_{\mathbf{HA}^{\omega}} \theta^{\mathrm{mr}}$. In each case, this holds trivially, and is left as an exercise.
- $3. \rightarrow 1$. We proceed by structural induction, where $\phi^{\rm mr} \equiv \exists \vec{x} \phi_{\rm mr}(\vec{x})$ and $\psi^{\rm mr} \equiv \exists \vec{y} \psi_{\rm mr}(\vec{y})$:
 - (a) Atomic formulae are self-realizing.
 - (b)

$$(\phi \& \psi)^{\mathrm{mr}} \equiv \exists \vec{x}, \vec{y} (\phi_{\mathrm{mr}}(\vec{x}) \& \psi_{\mathrm{mr}}(\vec{y})) \leftrightarrow (\exists \vec{x} \phi_{\mathrm{mr}}(\vec{x})) \& (\exists \vec{y} \psi_{\mathrm{mr}}(\vec{y})) \equiv \phi^{\mathrm{mr}} \& \psi^{\mathrm{mr}} \leftrightarrow \phi \& \psi.$$

(c)

$$\begin{split} (\phi \to \psi)^{\mathrm{mr}} &\equiv \exists \vec{Y} \,\forall \vec{x} \,(\phi_{\mathrm{mr}}(\vec{x}) \to \psi_{\mathrm{mr}}(\vec{Y}\vec{x})) \\ &\leftrightarrow \forall \vec{x} \,\exists \vec{y} \,(\phi_{\mathrm{mr}}(\vec{x}) \to \psi_{\mathrm{mr}}(\vec{y})) \\ &\leftrightarrow \forall \vec{x} \,(\phi_{\mathrm{mr}}(\vec{x}) \to \exists \vec{y} \,\psi_{\mathrm{mr}}(\vec{y})) \\ &\leftrightarrow (\exists \vec{x} \,\phi_{\mathrm{mr}}(\vec{x})) \to (\exists \vec{y} \,\psi_{\mathrm{mr}}(\vec{y})) \\ &\equiv \phi^{\mathrm{mr}} \to \psi^{\mathrm{mr}} \\ &\leftrightarrow \phi \to \psi. \end{split}$$

(d)

$$(\forall z \ \phi(z))^{\mathrm{mr}} \equiv \exists \vec{X} \ \forall z \ (\phi(z)_{\mathrm{mr}}(\vec{X}z)) \leftrightarrow \forall z \ \exists \vec{x} \ (\phi(z)_{\mathrm{mr}}(\vec{x})) \equiv \forall z \ \phi(z)^{\mathrm{mr}} \leftrightarrow \forall z \ \phi(z).$$

$$(\exists z \, \phi(z))^{\mathrm{mr}} \equiv \exists z, \vec{x} \, (\phi(z)_{\mathrm{mr}}(\vec{x})) \\ \equiv \exists z \, (\phi(z)^{\mathrm{mr}}) \\ \leftrightarrow \exists z \, \phi(z).$$

2.4 Exercises

- 1. Prove the following:
 - (a) $(\forall \vec{z} \phi(\vec{z}))^{\mathrm{mr}} \equiv \exists \vec{X} \forall \vec{z} (\phi(\vec{z})_{\mathrm{mr}}(\vec{X}\vec{z})).$
 - (b) $(\exists \vec{z} \phi(\vec{z}))^{\mathrm{mr}} \equiv \exists \vec{z}, \vec{x} (\phi(\vec{z})_{\mathrm{mr}}(\vec{x})).$
- 2. Show that modified realizability commutes with substitution,

$$\phi(v)_{\rm mr}(\vec{x}) \equiv \phi(z)_{\rm mr}(\vec{x})[z := v], \qquad (\vec{x} \text{ not free in } v).$$

- 3. Prove whatever has been left as an exercise in the text.
- 4. Expand $(\neg \neg \phi \rightarrow \phi)^{\mathrm{mr}}$ and show that it is provable in $\mathbf{PA}^{\boldsymbol{\omega}}$. Conclude that if $\vdash_{\mathbf{PA}^{\boldsymbol{\omega}}} \phi$, then $\vdash_{\mathbf{PA}^{\boldsymbol{\omega}}} \phi^{\mathrm{mr}}$ (soundness for $\mathbf{PA}^{\boldsymbol{\omega}}$).
- 5. Harrop formulae are defined by the induction
 - (a) atomic formulae are Harrop,
 - (b) if ϕ and ψ are Harrop, then $\phi \& \psi$ is Harrop,
 - (c) if ψ is Harrop, then $\phi \to \psi$ is Harrop (ϕ any formula),
 - (d) if ϕ is Harrop, then $\forall x \phi$ is Harrop.

Prove that a formula ϕ is Harrop if and only if ϕ^{mr} is \exists -free, i.e., if in $\phi^{mr} \equiv \exists \vec{x} \phi_{mr}(\vec{x}), \vec{x}$ is the empty list.

6. Show that for any instance θ of schema

 $(\mathrm{IP}^{\omega}_{\mathrm{Harrop}}) \qquad \qquad (\phi \to \exists x \, \psi) \to \exists x \, (\phi \to \psi), \qquad \phi \; \mathrm{Harrop}$

there are terms \vec{t} such that $\vdash_{\mathbf{HA}^{\omega}} \theta_{\mathrm{mr}}(\vec{t})$.

Chapter 3

Functional interpretation

This chapter is loosely based on Diller and Nahm (1974).

3.1 Definition and elementary properties

3.1.1 Bounded universal quantification

Bounded universal quantification is generally a finitistic operation on formulae, in contrast to its usual definition,

(3.1)
$$\forall x < t \ \phi(x) \equiv \forall x \ (x < t \to \phi(x)),$$

which employs unrestricted quantification. For the purpose of making sense of bounded universal quantification in quantifier-free settings below, we will treat the bounded universal quantifier as a primitive logical constant, with introduction rules

(3.2)
$$\frac{\forall z < \mathbf{0} \phi(z)}{\forall z < \mathbf{0} \phi(z)} \qquad \frac{\forall z < v \phi(z) \phi(v)}{\forall z < \mathbf{S} v \phi(z)}$$

and elimination rule

(3.3)
$$\begin{array}{c} [\phi(z)] & [\psi(z)] \\ \hline \forall z < v \ \phi(z) & \psi(\mathbf{0}) & \psi(\mathbf{S}z) \\ \hline \psi(v) & \end{array}$$

where, in the last rule, z may not occur in any open assumptions.

3.1.2 The interpretation

We let **T** be the quantifier-free fragment of \mathbf{HA}^{ω} (with the induction rule adapted as appropriate), and we define \mathbf{T}_{\wedge} to be **T** augmented with bounded universal quantifiers.

,

The Diller-Nahm interpretation ϕ^\wedge of a formula ϕ in the language of $\mathbf{HA}^{\boldsymbol{\omega}}$ is a formula of the form

$$\exists \vec{x} \,\forall \vec{y} \,\phi_{\wedge}(\vec{x},\vec{y})$$

with the same free variables as ϕ , where $\phi_{\wedge}(\vec{x}, \vec{y})$ is a formula of \mathbf{T}_{\wedge} and \vec{x}, \vec{y} are possibly empty lists of variables. The associations ()[^] and ()_^ are inductively defined by

$$\begin{split} \phi^{\wedge} &\equiv \phi \quad \text{for } \phi \text{ an atomic formula,} \\ (\phi \& \phi')^{\wedge} &\equiv \exists \vec{x} \vec{x}' \, \forall \vec{y} \vec{y}' \left[\phi_{\wedge}(\vec{x}, \vec{y}) \& \phi'_{\wedge}(\vec{x}', \vec{y}') \right], \\ (\phi \to \phi')^{\wedge} &\equiv \begin{cases} \exists Z \vec{X} \vec{Y} \, \forall \vec{x} \vec{y} \left[\forall z < Z \vec{x} \vec{y} \, \phi_{\wedge}(\vec{x}, \vec{Y} \vec{x} \vec{y} z) \to \phi'_{\wedge}(\vec{X} \vec{x}, \vec{y}) \right], & \vec{Y} \text{ non-nil,} \\ \exists \vec{X} \, \forall \vec{x} \vec{y} \left[\phi_{\wedge}(\vec{x},) \to \phi'_{\wedge}(\vec{X} \vec{x}, \vec{y}) \right], & \text{otherwise,} \end{cases} \\ (\forall z \, \phi(z))^{\wedge} &\equiv \exists \vec{X} \, \forall \vec{y} z \left[\phi(z)_{\wedge}(\vec{X} z, \vec{y}) \right], \\ (\exists z \, \phi(z))^{\wedge} &\equiv \exists z \vec{x} \, \forall \vec{y} \left[\phi(z)_{\wedge}(\vec{x}, \vec{y}) \right]. \end{split}$$

Optionally, one may add

$$(\forall z < v \phi(z))^{\wedge} \equiv \exists \vec{X} \forall \vec{y} [\forall z < v \phi(z)_{\wedge} (\vec{X}z, \vec{y})].$$

The last clause is logically equivalent to the one obtained by expanding the left hand side using (3.1) and then translating into \mathbf{T}_{\wedge} . It sole purpose is to allow bounded universal quantification in $\mathbf{HA}^{\boldsymbol{\omega}}$ as a primitive, which serves to render \mathbf{T}_{\wedge} a subsystem of $\mathbf{HA}^{\boldsymbol{\omega}}$. Similarly, the two branches in the definition of $(\phi \rightarrow \phi')^{\wedge}$ are equivalent in case \vec{Y} is the empty list, whence the first, more general one suffices for both cases, and we will silently assume this simpler definition. With this case distinction, however, the formulae of \mathbf{T}_{\wedge} are translated onto themselves:

Proposition 3.1. Let $\phi^{\wedge} \equiv \exists \vec{x} \forall \vec{y} \phi_{\wedge}(\vec{x}, \vec{y}).$

- 1. $\phi_{\wedge}(\vec{x}, \vec{y})$ is q.f., and if ϕ is q.f., then \vec{x}, \vec{y} are empty and $\phi^{\wedge} \equiv \phi_{\wedge} \equiv \phi$.
- 2. If ψ is q.f., then $(\exists \vec{x} \forall \vec{y} \psi)^{\wedge} \equiv \exists \vec{x} \forall \vec{y} \psi$; in particular, $(\phi^{\wedge})^{\wedge} \equiv \phi^{\wedge}$.

Proof. Exercise.

3.2 Soundness & term extraction

Theorem 3.2 (soundness). If $\vdash_{HA^{\omega}} \phi$, then $\vdash_{T_{\wedge}} \phi_{\wedge}(\vec{t}, \vec{y})$ for suitable terms \vec{t} in which \vec{y} do not occur.

Proof. In the following, \vdash will denote provability in \mathbf{T}_{\wedge} . For the purpose of applying induction on \mathbf{HA}^{ω} -derivations, we will prove that if $\{\phi^i\}_{i\in I} \vdash_{\mathbf{HA}^{\omega}} \phi$, then $\{\forall w < V \ \phi^i_{\wedge}(\vec{x}^i, \vec{U}^i w)\}_{i\in I} \vdash \phi_{\wedge}(\vec{t}, \vec{y})$ for suitable terms $(V^i)_{i\in I}, (\vec{U}^i)_{i\in I}, \vec{t},$ with \vec{y} not occuring in \vec{t} .

Some preparation: In reference to the previous paragraph, let \mathcal{A} be the collection of assumption sets $\{\forall w < V \ \phi_{\wedge}^{i}(\vec{x}^{i}, \vec{U}^{i}w)\}_{i \in I}$ for all possible choices of $(V^{i})_{i \in I}, (\vec{U}^{i})_{i \in I}$. \mathcal{A} is closed under \vec{y} -substitution, i.e., $\Gamma \in \mathcal{A} \Rightarrow \Gamma[\vec{y} := \vec{u}] \in \mathcal{A}$. A slightly less trivial fact, which will be employed in the treatment of rules with several premises, is that assumptions may be merged, i.e., for $\Gamma_{1}, \Gamma_{2} \in \mathcal{A}$ there is $\Gamma \in \mathcal{A}$ satisfying $\Gamma \vdash \Gamma_{1}$ and $\Gamma \vdash \Gamma_{2}$. This is done formulawise:

Lemma 3.3. Given \vec{x} , there are terms $v(z_1, z_2), \vec{u}(\vec{y}_1, \vec{y}_2, z_1, z_2)$ satisfying

$$\forall w < v(z_1, z_2) \ \psi(\vec{u}(\vec{y}_1, \vec{y}_2, z_1, z_2)w) \vdash \forall w < z_i \ \psi(\vec{y}_i w), \quad i = 1, 2$$

for any formula $\psi(\vec{x})$.

[Proof hint: Let $v(z_1, z_2) \equiv z_1 + z_2$. $\vec{u}(\vec{y}_1, \vec{y}_2, z_1, z_2)$ may be defined as

$$\vec{u}(\vec{y}_1, \vec{y}_2, z_1, z_2) \equiv \lambda w$$
 if $z_1 \div w = \mathbf{0}$ then $\vec{y}_2(w \div z_1)$ else $\vec{y}_1 w$,

or, elementarily, by

$$\vec{u}(\vec{y}_1, \vec{y}_2, z_1, \mathbf{0}) = \vec{y}_1,$$

$$\vec{u}(\vec{y}_1, \vec{y}_2, z_1, \mathbf{S}z_2) = \lambda w \text{ if } w = z_1 + z_2 \text{ then } \vec{y}_2 z_2 \text{ else } \vec{u}(\vec{y}_1, \vec{y}_2, z_1, z_2)w.$$

To the induction. We will examine the more interesting cases, leaving the verification of the other ones as a (relatively trivial) exercise.

Case
$$\phi \equiv \phi^i$$
: Take $V^i \equiv \mathbf{1}, U^i \equiv \vec{y}$ and $\vec{t} \equiv \vec{x}$

Case $\frac{\phi \quad \phi'}{\phi \& \phi'}$: Use lemma 3.3.

$$[\phi$$

Case $\frac{\phi'}{\phi \to \phi'}$: The induction hypothesis provides us with terms V, \vec{U}, \vec{t} such that $\forall w < V \phi_{\wedge}(\vec{x}, \vec{U}w) \rightarrow \phi'_{\wedge}(\vec{t}, \vec{y})$, or, equivalently,

$$(\phi \to \phi')_{\wedge} (\lambda \vec{x} \ \lambda \vec{y} \ V, \lambda \vec{x} \ \vec{t}, \lambda \vec{x} \ \lambda \vec{y} \ \vec{U}; \vec{x}, \vec{y}).$$

Case $\frac{\phi \rightarrow \phi' \quad \phi}{\phi'}$: The induction hypotheses are

(3.4)
$$\forall w < V \vec{x} \vec{y}' \phi_{\wedge}(\vec{x}, \vec{U} \vec{x} \vec{y}' \vec{w}) \rightarrow \phi_{\wedge}'(\vec{t}' \vec{x}, \vec{y}')$$

and

(3.5)
$$\phi_{\wedge}(\vec{t},\vec{y}).$$

Substituting \vec{t} for \vec{x} in (3.4) and $\vec{U}\vec{t}\vec{y}'w$ for \vec{y} in (3.5) we obtain

$$(\forall w < V \vec{t} \vec{y}' \phi_{\wedge}(\vec{t}, \vec{U} \vec{t} \vec{y}' w)) \to \phi_{\wedge}'(\vec{t}' \vec{t}, \vec{y}'),$$

$$\phi_{\wedge}(\vec{t}, \vec{U} \vec{t} \vec{y}' w).$$

To complete the argument, we need the following

Lemma 3.4. The bounded universal quantifier admits the introduction rule of the unbounded one:

$$\frac{\phi(z)}{\forall z < v \ \phi(z)} \ .$$

[Proof hint: Induction on t.]

Using the above lemma, we eventually arrive at

 $\phi'_{\wedge}(\vec{t'}\vec{t},\vec{y'}).$

Case
$$\frac{\phi(\mathbf{0}) \qquad \forall z \ (\phi(z) \to \phi(\mathbf{S}z))}{\phi(v)}$$
: The induction hypotheses are

(3.6)
$$\Gamma^{o} \vdash \phi(\mathbf{0})_{\wedge}(\vec{t}^{o}, \vec{y})$$

and

(3.7)
$$\Gamma^{s} \vdash (\forall w < Vz\vec{x}\vec{y} \ \phi(z)_{\wedge}(\vec{x}, \vec{U}z\vec{x}\vec{y}w)) \rightarrow \phi(\mathbf{S}z)_{\wedge}(\vec{t}^{s}z\vec{x}, \vec{y})$$

It is advisable to develop a general intuition regarding the existence, and form, of the witnesses \vec{t} in

(3.8)
$$\phi(v)_{\wedge}(\vec{t},\vec{y})$$

given (3.6) and (3.7), namely, $\vec{t} \equiv \vec{r}(v)$, where

$$ec{r}(\mathbf{0}) = ec{t}^o,$$

 $ec{r}(\mathbf{S}z) = ec{t}^s z ec{r}(z)$

The actual proof that these satisfy (3.8), while important to have, may be skipped at first reading.

By substituting $\vec{r}(z)$ for \vec{x} in (3.7) and replacing equals with equals we obtain

$$\Gamma^{o} \vdash \phi(\mathbf{0})_{\wedge}(\vec{r}(\mathbf{0}), \vec{y}),$$

$$\Gamma^{s}[\vec{x} := \vec{r}(z)] \vdash \forall w < Vz\vec{r}(z)\vec{y}\,\phi(z)_{\wedge}(\vec{r}(z), \vec{U}z\vec{r}(z)\vec{y}w) \to \phi(\mathbf{S}z)_{\wedge}(\vec{r}(\mathbf{S}z), \vec{y}).$$

To simplify notation, let $\Gamma' \equiv \Gamma^s[\vec{x} := \vec{r}(z)], \ \psi(z, \vec{y}) \equiv \phi(z)_{\wedge}(\vec{r}(z), \vec{y}), \ V' \equiv Vz\vec{r}(z)$ and $\vec{U}' \equiv \vec{U}z\vec{r}(z)$. Then,

(3.9)
$$\Gamma^{o} \vdash \psi(\mathbf{0}, \vec{y}),$$

(3.10)
$$\Gamma' \vdash \forall w < V' \vec{y} \, \psi(z, \vec{U}' \vec{y} w) \to \psi(\mathbf{S}z, \vec{y}).$$

Substituting $\vec{c}(z', Sz, w')$ for \vec{y} in (3.10) and applying $\forall w' < d(z', Sz)$ to both sides $(\vec{c}, d$ to be defined later), we obtain

$$(3.11) \quad \forall w' < d(z', \mathbf{S}z) \ \Gamma'[\vec{y} := \vec{c}(z', \mathbf{S}z, w')] \vdash \\ \forall w' < d(z', \mathbf{S}z) \ \forall w < V' \vec{c}(z', \mathbf{S}z, w') \ \psi(z, \vec{U}' \vec{c}(z', \mathbf{S}z, w')w) \\ \rightarrow \forall w' < d(z', \mathbf{S}z) \ \psi(\mathbf{S}z, \vec{c}(z', \mathbf{S}z, w')) \end{cases}$$

(operations on sets of formulae are understood pointwise). Consecutive bounded universal quantifiers may be condensed by means of

Lemma 3.5. Let j, j_1, j_2 satisty $\vdash j_i(j(x_1, x_2)) = x_i$ for i = 1, 2. Given terms t, t' there is a term b such that

$$\forall w < b \phi(j_1w, j_2w) \vdash_{T_{\wedge}} \forall w < t \forall w' < t'(w) \phi(w, w').$$

[As concerns the applicability of the lemma, let us mention that there are wellknown primitive recursive pairing functions, e.g. $\frac{1}{2}((x+y)^2+3x+y)$ or 2^x3^y . Proof hint: Define

$$a(\mathbf{0}) = \mathbf{0},$$

$$a(\mathbf{S}w') = \max\{a(w'), \mathbf{S}j(t, w')\}$$

and

$$b(\mathbf{0}) = \mathbf{0},$$

$$b(\mathbf{S}w) = \max\{b(w), a(t'(w))\}.$$

The required term is b(t).]

From the lemma we conclude that

(3.12)

$$\Gamma'' \vdash \forall w < b \, \psi(z, \vec{U}\vec{c}(z', Sz, j_1w)j_2w) \to \forall w < d(z', Sz) \, \psi(Sz, \vec{c}(z', Sz, w))$$

for some $\Gamma'' \in \mathcal{A}$ and some term b. By defining

$$\begin{split} \vec{c}(\mathbf{0},z,w) &= \vec{y}, \\ \vec{c}(\mathbf{S}z',z,w) &= \vec{U}\vec{c}(z',\mathbf{S}z,j_1w)j_2w, \end{split}$$

and

$$d(\mathbf{0}, z) = \mathbf{1},$$

$$d(\mathbf{S}z', z) = b,$$

(3.12) becomes

(3.13)

 $\Gamma'' \vdash \theta(\mathbf{S}z', z) \to \theta(z', \mathbf{S}z)$ where

$$\theta(z',z) \equiv \forall w {<} d(z',z) \, \psi(z,\vec{c}(z',z,w)).$$

For $z' := v \div Sz$, (3.13) implies

(3.14)
$$\Gamma''', \theta(\mathbf{S}(v \div \mathbf{S}z), z) \vdash \theta(v \div \mathbf{S}z, \mathbf{S}z)$$

Letting $\Delta \equiv \Gamma'' \cup \{v \div z = S(v \div Sz)\}$ and merging $\forall z < v \Gamma''$ and Γ^o into one assumption set $\Gamma \in \mathcal{A}$, everything may be put together into one big deduction:

$$\frac{\Gamma}{\forall z < v \Delta} \frac{\psi(\mathbf{0}, \vec{y})}{\theta(v \div \mathbf{0}, \mathbf{0})} \frac{[\Gamma''']}{[\Gamma''']} \frac{[v \div z = \mathbf{S}(v \div \mathbf{S}z)] [\theta(v \div z, z)]}{\theta(\mathbf{S}(v \div \mathbf{S}z), z)} (3.14)$$

$$\frac{\theta(v \div v, v)}{\psi(v, \vec{y}) \equiv} \phi(v)_{\wedge}(\vec{r}(v), \vec{y})$$

where horizontal lines may conceal several steps. Rule (*) is a generalization of (3.3) where multiple occurrences of the same bounded universal quantifier are eliminated at once; its validity is left to the reader (exercise 1).

3.3 Exercises

1. Prove the following generalization of elimination rule (3.3):

$$\begin{array}{c|c} & [\Phi] & [\psi(z)] \\ \hline \forall z < v \ \Phi & \psi(\mathbf{0}) & \psi(\mathbf{S}z) \\ \hline & \psi(v) \end{array} \end{array}$$

where Φ is an arbitrary set of formulae and $\forall z < v \Phi = \{\forall z < v \phi \mid \phi \in \Phi\}.$

Bibliography

Diller, J. and W. Nahm. 1974. Eine Variante zur Dialectica-Interpretation der Heyting-Arithmetik endlicher Typen, Archiv für mathematische Logik und Grundlagenforschung 16, 49–66. ↑9

Kohlenbach, U. 2008. Applied Proof Theory: Proof Interpretations and Their Use in Mathematics, Springer-Verlag. ↑

Kreisel, G. 1959. Interpretation of analysis by means of constructive functionals of finite types, Constructivity in Mathematics (A. Heyting, ed.), North-Holland, Amsterdam, 1959. $\uparrow 4$

Troelstra, A. S. and D. van Dalen. 1988. Constructivism in Mathematics: An Introduction, North-Holland, Amsterdam. $\uparrow 1,\, 4$