
Lecture notes

version 2014.3.2



Chapter 1

Finite-type arithmetic

Higher types and higher-type entities (functionals) constitute a natural, and
constructive, way of extending the expressive power of arithmetic without in-
creasing its proof-theoretic strength. They also provide the syntactic means to
express the effective information contained in proofs of arithmetical statements.

As a foundation for our subsequent proof-theoretic considerations, we present
a basic theory HAω of intuitionistic finite-type arithmetic, together with an
extensional variant E-HAω and an intensional one I-HAω.

Based in part on Troelstra and van Dalen (1988).

1.1 Syntax

1.1.1 The language of finite-type arithmetic

The following types are present:

1. An atomic type N (the type of natural numbers),

2. a type σ × τ for any two types σ and τ (product types),

3. a type τσ for any two types σ and τ (function types).

Notation. (τσ)
ρ

is simplified to τρσ, and τ~σ is governed by a similar convention;
hence, τσ

ρ

denotes the other alternative.

Terms, and their types, are generated by

0. There is an inexhaustible supply (infinite set) of variables of each type.

1. 0 is a term of type N ; for any term t of type N , St is a term of type N .

2. For any terms t of type τ , u of type τNτ and v of type N , Rtuv is a term
of type τ .

3. For any terms tl and tr of types τl and τr, 〈tl, tr〉 is a term of type τl × τr.

4. For any term t of type τl × τr, pst is a term of type τs, for s ∈ {l, r}.

5. For any variable x of type σ and term t of type τ , λx t is a term of type
τσ.

1



6. For any terms t of type τσ and u of type σ, tu is a term of type τ .

Notation. Lists of variables/terms are conveniently abbreviated ~x, ~t etc., with
the aid of the following conventions (where ~t ≡ t1, . . . , tn and ~u ≡ u1, . . . , um):

t~u ≡ tu1 · · ·um ≡ (· · · (tu1) · · · )um,
~t~u ≡ t1~u, . . . , tn~u,

λx1, . . . , xm t ≡ λx1 · · ·λxm t,

λ~x ~t ≡ λ~x t1, . . . , λ~x tn.

Prime (or atomic) formulae are equations t = u between terms of the same
type. Formulae are formed from prime formulae by means of &, →, ∀, and ∃.
We will use the following abbreviations:

1 ≡ S0,

⊥ ≡ 0 = 1,

¬φ ≡ φ→ ⊥,
t 6= u ≡ ¬(t = u),

φ ∨ ψ ≡ ∃z ((z = 0→ φ) & (z 6= 0→ ψ)).

1.1.2 Axioms and rules of inference

Besides the usual (natural deduction or other) axioms and rules of intuitionistic
first-order logic for the logical constants present in the system, we have rules
for equality

t = t

t = u φ(t)

φ(ut)
,

β-conversion

Rtu0 = t RtuSv = uvRtuv
,

pi〈tl, tr〉 = ti
, i ∈ {l, r},

(λx t)u = t[x := u]
,

and induction

φ(0) ∀x
[
φ(x)→ φ(Sx)

]
φ(v)

.

The above axioms and rules constitute HAω. Occasionally, we will be inter-
ested in the following variants of this theory. Extensional finite-type arithmetic,
E-HAω, is obtained from HAω by the addition of the extensionality rules

plt = plu prt = pru

t = u

2



for t, u of product type, and

∀x (tx = ux)

t = u
, x /∈ FV(t, u)

for t, u of function type. Intensional finite-type arithmetic, I-HAω, augments
the language of HAω with equality functionals Eτ , one for each type τ , subject
to

Eτ tu = 0↔ t = u Eτ tu = 1↔ t 6= u
.

Classical (or Peano) finite-type arithmetic PAω is the extension of HAω by the
principle of the excluded middle

(PEM)¬¬φ→ φ
.

1.2 Exercises

1. Show that equality at type N is decidable, i.e., x = y ∨ x 6= y.

2. Using your preferred logical formalism, show that if

`HAω φ,

then

`HAω φ[x := t].

3. Prove that extensionality is equivalent to the set of equations

〈plt,prt〉 = t, t of product type,

λx (tx) = t, t of function type, x /∈ FV(t).
(η)

4. Extensional equality t =e u between terms t, u of the same type is induc-
tively defined by

t =e u ≡

 t = u t, u of atomic type,
plt =e plu & prt =e pru t, u of product type,

∀x (tx =e ux) t, u of function type.

Show that extensionality is equivalent to the schema

t =e u↔ t = u,

and conclude that, in E-HAω, atomic formulae are equivalent to purely
universal formulae involving equality at type N only.

5. (Closure of HAω under mutual primitive recursion.) Let ~τ ≡ τ1, . . . , τn
be a list of types, ~t a list of terms of types ~τ (i.e., each ti has type τi) and
~u a list of terms of types ~τN~τ (i.e., each ui has type τi

Nτ1...τn). Construct
terms ~r ≡ ~r(z), z fresh, with the properties

~r(0) = ~t,

~r(Sv) = ~uv~r(v).

3



Chapter 2

Modified realizability

The name realizability refers to any one of a family of translations that may be
seen as formalizations of the BHK interpretation of the logical constants; for a
more complete description of the BHK interpretation, the reader may consult
Troelstra and van Dalen (1988).

Modified realizability is a variant of realizability introduced in Kreisel (1959)
for the purpose of showing that Markov’s principle is not derivable in intuition-
istic logic. It could as well be called typed realizability because it uses func-
tionals instead of numbers as realizing objects. This notion of realizability is
well adapted to the study of typed theories; it will be our first, and simplest,
example of term extraction.

2.1 Definition

To each formula φ in the language of finite-type arithmetic we associate its
modified realizability interpretation φmr, which is a formula of the form

∃~x φmr(~x)

with the same free variables as φ, where φmr(~x) (~xmodified realizes φ, alternative
notation: ~xmrφ) is an ∃-free formula and ~x a possibly empty list of variables.
The associations ( )mr and ( )

mr
are defined by the following induction:

For φ atomic, φmr ≡ φ,

(φ & ψ)
mr ≡ ∃~x, ~y

[
φmr(~x) & ψmr(~y)

]
,

(φ→ ψ)
mr ≡ ∃~Y

[
∀~x (φmr(~x)→ ψmr(~Y ~x))

]
,

(∀z φ(z))
mr ≡ ∃ ~X

[
∀z (φ(z)mr(

~Xz))
]
,

(∃z φ(z))
mr ≡ ∃z, ~x

[
φ(z)mr(~x)

]
,

where, in each case, the ∃-free kernel is delimited by brackets.

Remark on notation. Expressions like φ(v)mr(~x) are unambiguous, since the
interpretation commutes with substitution:

φ[z := v]mr(~x) ≡ φmr(~x)[z := v].

4



Proposition 2.1. Let φmr ≡ ∃~x φmr(~x).

1. φmr(~x) is ∃-free, and if φ is ∃-free, then ~x is empty and φmr ≡ φmr ≡ φ.

2. If ψ is ∃-free, then (∃~y ψ)
mr ≡ ∃~y ψ; in particular, (φmr)

mr ≡ φmr.

Proof. Exercise.

2.2 Soundness

In the following, we are going to employ the modified realizability schema

φmr ↔ φ.(MR)

This is not among the axioms usually considered for arithmetic; we will shortly
prove its equivalence to something more familiar (??).

Theorem 2.2 (soundness). Let H be any one of HAω, E-HAω, I-HAω, and
let H− ∃ be the ∃-free part of H. If `H+MR φ, then `H−∃ φmr(~t) for a suitable
list ~t of terms satisfying FV(~t) ⊆ FV(φ).

Proof. We are going to apply induction on the proofs of H+MR, for the purpose
of which we will need the (superficially) stronger statement

If Φ `H+MR φ, then Φmr `H−∃ φmr(~t), where all free variables of ~t
are among those free in φ and those free in Φmr.

where Φ is an arbitrary (finite) set of formulae and Φmr = {φmr | φ ∈ Φ}. Of the
axioms and rules of H−∃, those that are ∃-free are self-realizing and don’t need
any further examination; this includes the “extras” of E-HAω and I-HAω. For
most of the others, a deduction will be furnished that may be combined with
the induction hypotheses in an obvious way to yield the required conclusion.
Exception: ∃-rules.

Natural deduction

φ ψ

φ & ψ
:

φmr(~t) ψmr(~u)

φmr(~t) & ψmr(~u) ≡ (φ & ψ)mr(~t, ~u)

φ & ψ

φ
:

(φ & ψ)mr(~t, ~u) ≡ φmr(~t) & ψmr(~u)

φmr(~t)

[φ]

ψ

φ→ ψ
:

[φmr(~x)]

ψmr(~u)

φmr(~x)→ ψmr(~u)

∀~x (φmr(~x)→ ψmr(~u))↔ (φ→ ψ)mr(λ~x ~u)

φ→ ψ φ

ψ
:

(φ→ ψ)mr(~t) ≡ ∀~x (φmr(~x)→ ψmr(~t~x))

φmr(~u)→ ψmr(~t~u) φmr(~u)

ψmr(~t~u)

φ(z)

∀z φ(z)
:

φ(z)mr(~t)

∀z (φ(z)mr(~t))↔ (∀z φ(z))mr(λz ~t)

5



∀z φ(z)

φ(v)
:

(∀z φ(z))mr(~t) ≡ ∀z (φ(z)mr(~tz))

φ(v)mr(~tv)

φ(v)

∃z φ(z)
: Nothing to prove; the conclusion coincides with the induction hy-

pothesis (this is because the interpretation of ∃ is “trivial”, in the sense that it
merely converts the existentially quantified variable into a realizing variable).

∃z φ(z)

[φ(z)]

ψ

ψ
: By hypothesis, there are deductions Φmr `H−∃ φ(v)mr(~t)

and Φmr, φ(z)mr(~x) `H−∃ ψmr(~u), whence Φmr `H−∃ ψmr(~u[~x := ~t]).

Equality

t = u φ(t)

φ(u)
:

t = u φ(t)mr(~v)

φ(u)mr(~v)
(using the fact that modified realizability commutes with substitution).

Induction

φ(0) ∀z (φ(z)→ φ(Sz))

φ(v)
:

φ(0)mr(~t)

∀z, ~x (φ(z)mr(~x)→ φ(Sz)mr(~uz~x))

∀z (φ(z)mr(~w(z))→ φ(Sz)mr(~uz ~w(z)))

φ(v)mr(~w(v))

where ~w ≡ ~w(z) is a list of terms such that

~w(0) = ~t,

~w(Sz) = ~uz ~w(z).

One way to guarantee the existence of ~w(z) is by formulating the system with
mutual primitive recursion. In the presence of product types, however, mutual
primitive recursion is reducible to ordinary primitive recursion; e.g., ~w(z) may
be constructed as follows: Assuming ~t ≡ t1, . . . , tn and ~u ≡ u1, . . . , un, define

t ≡ 〈~t〉 ≡ 〈t1, . . . , tn〉,
u ≡ λz, y 〈~uz(~qy)〉,

where 〈 〉 denotes an arbitrary representation of n-tuples (using pairing), with
corresponding projections ~qy ≡ q1y, . . . , qny. Then, the terms

~w(z) ≡ ~qRtuz

have the required properties.

MR

Since (φmr)mr(~x) ≡ φmr(~x), a simple calculation yields

(φmr ↔ φ)
mr ≡ ∃ ~X, ~Y

[
∀~x (φmr(~x)→ φmr( ~X~x)) & ∀~y (φmr(~y)→ φmr(~Y ~y))

]
which has the trivial realizers λ~x ~x, λ~y ~y.

6



2.3 Axiomatization

Here, we are going to show that HAω + MR may be axiomatized by familiar
principles.

Theorem 2.3. Over HAω, the following schemata are equivalent:

1. MR: φmr ↔ φ,

2. φmr → φ,

3. AC + IPωef, where

∀~x ∃~y φ(~x, ~y)→ ∃~Y ∀~x φ(~x, ~Y ~x),(AC)

(φ→ ∃x ψ)→ ∃x (φ→ ψ), φ ∃-free.(IPωef)

Proof. 1.→ 2. Obvious.

2.→ 3. It suffices to show that each instance θ of one of AC and IPωef is
modified realizable, `HAω θmr. In each case, this holds trivially, and is
left as an exercise.

3.→ 1. We proceed by structural induction, where φmr ≡ ∃~x φmr(~x) and
ψmr ≡ ∃~y ψmr(~y):

(a) Atomic formulae are self-realizing.

(b)

(φ & ψ)
mr ≡ ∃~x, ~y (φmr(~x) & ψmr(~y))

↔ (∃~x φmr(~x)) & (∃~y ψmr(~y))

≡ φmr & ψmr

↔ φ & ψ.

(c)

(φ→ ψ)
mr ≡ ∃~Y ∀~x (φmr(~x)→ ψmr(~Y ~x))

↔ ∀~x ∃~y (φmr(~x)→ ψmr(~y))

↔ ∀~x (φmr(~x)→ ∃~y ψmr(~y))

↔ (∃~x φmr(~x))→ (∃~y ψmr(~y))

≡ φmr → ψmr

↔ φ→ ψ.

(d)

(∀z φ(z))
mr ≡ ∃ ~X ∀z (φ(z)mr(

~Xz))

↔ ∀z ∃~x (φ(z)mr(~x))

≡ ∀z φ(z)
mr

↔ ∀z φ(z).

7



(e)

(∃z φ(z))
mr ≡ ∃z, ~x (φ(z)mr(~x))

≡ ∃z (φ(z)
mr

)

↔ ∃z φ(z).

2.4 Exercises

1. Prove the following:

(a) (∀~z φ(~z))
mr ≡ ∃ ~X ∀~z (φ(~z)mr(

~X~z)).

(b) (∃~z φ(~z))
mr ≡ ∃~z, ~x (φ(~z)mr(~x)).

2. Show that modified realizability commutes with substitution,

φ(v)mr(~x) ≡ φ(z)mr(~x)[z := v], (~x not free in v).

3. Prove whatever has been left as an exercise in the text.

4. Expand (¬¬φ→ φ)
mr

and show that it is provable in PAω. Conclude
that if `PAω φ, then `PAω φmr (soundness for PAω).

5. Harrop formulae are defined by the induction

(a) atomic formulae are Harrop,

(b) if φ and ψ are Harrop, then φ & ψ is Harrop,

(c) if ψ is Harrop, then φ→ ψ is Harrop (φ any formula),

(d) if φ is Harrop, then ∀x φ is Harrop.

Prove that a formula φ is Harrop if and only if φmr is ∃-free, i.e., if in
φmr ≡ ∃~x φmr(~x), ~x is the empty list.

6. Show that for any instance θ of schema

(φ→ ∃x ψ)→ ∃x (φ→ ψ), φ Harrop(IPωHarrop)

there are terms ~t such that `HAω θmr(~t).

8



Chapter 3

Functional interpretation

This chapter is loosely based on Diller and Nahm (1974).

3.1 Definition and elementary properties

3.1.1 Bounded universal quantification

Bounded universal quantification is generally a finitistic operation on formulae,
in contrast to its usual definition,

∀x<t φ(x) ≡ ∀x (x < t→ φ(x)),(3.1)

which employs unrestricted quantification. For the purpose of making sense of
bounded universal quantification in quantifier-free settings below, we will treat
the bounded universal quantifier as a primitive logical constant, with introduc-
tion rules

∀z<0 φ(z)

∀z<v φ(z) φ(v)

∀z<Sv φ(z)
(3.2)

and elimination rule

∀z<v φ(z) ψ(0)

[φ(z)] [ψ(z)]

ψ(Sz)

ψ(v)
,(3.3)

where, in the last rule, z may not occur in any open assumptions.

3.1.2 The interpretation

We let T be the quantifier-free fragment of HAω (with the induction rule
adapted as appropriate), and we define T∧ to be T augmented with bounded
universal quantifiers.

The Diller-Nahm interpretation φ∧ of a formula φ in the language of HAω

is a formula of the form

∃~x ∀~y φ∧(~x, ~y)

9



with the same free variables as φ, where φ∧(~x, ~y) is a formula of T∧ and ~x, ~y are
possibly empty lists of variables. The associations ( )

∧
and ( )∧ are inductively

defined by

φ∧ ≡ φ for φ an atomic formula,

(φ & φ′)
∧ ≡ ∃~x~x′ ∀~y~y′

[
φ∧(~x, ~y) & φ′∧(~x′, ~y′)

]
,

(φ→ φ′)
∧ ≡

{
∃Z ~X~Y ∀~x~y

[
∀z<Z~x~y φ∧(~x, ~Y ~x~yz)→ φ′∧( ~X~x, ~y)

]
, ~Y non-nil,

∃ ~X ∀~x~y
[
φ∧(~x, )→ φ′∧( ~X~x, ~y)

]
, otherwise,

(∀z φ(z))
∧ ≡ ∃ ~X ∀~yz

[
φ(z)∧( ~Xz, ~y)

]
,

(∃z φ(z))
∧ ≡ ∃z~x ∀~y

[
φ(z)∧(~x, ~y)

]
.

Optionally, one may add

(∀z<v φ(z))
∧ ≡ ∃ ~X ∀~y

[
∀z<v φ(z)∧( ~Xz, ~y)

]
.

The last clause is logically equivalent to the one obtained by expanding the
left hand side using (3.1) and then translating into T∧. It sole purpose is to
allow bounded universal quantification in HAω as a primitive, which serves to
render T∧ a subsystem of HAω. Similarly, the two branches in the definition
of (φ→ φ′)

∧
are equivalent in case ~Y is the empty list, whence the first, more

general one suffices for both cases, and we will silently assume this simpler def-
inition. With this case distinction, however, the formulae of T∧ are translated
onto themselves:

Proposition 3.1. Let φ∧ ≡ ∃~x ∀~y φ∧(~x, ~y).

1. φ∧(~x, ~y) is q.f., and if φ is q.f., then ~x, ~y are empty and φ∧ ≡ φ∧ ≡ φ.

2. If ψ is q.f., then (∃~x ∀~y ψ)
∧ ≡ ∃~x ∀~y ψ; in particular, (φ∧)

∧ ≡ φ∧.

Proof. Exercise.

3.2 Soundness & term extraction

Theorem 3.2 (soundness). If `HAω φ, then `T∧ φ∧(~t, ~y) for suitable terms ~t
in which ~y do not occur.

Proof. In the following, ` will denote provability in T∧. For the purpose of
applying induction on HAω-derivations, we will prove that if {φi}i∈I `HAω φ,

then {∀w<V φi∧(~xi, ~U iw)}i∈I ` φ∧(~t, ~y) for suitable terms (V i)i∈I , (~U
i)i∈I ,~t,

with ~y not occuring in ~t.
Some preparation: In reference to the previous paragraph, let A be the

collection of assumption sets {∀w<V φi∧(~xi, ~U iw)}i∈I for all possible choices of

(V i)i∈I , (~U
i)i∈I . A is closed under ~y-substitution, i.e., Γ ∈ A ⇒ Γ[~y := ~u] ∈ A.

A slightly less trivial fact, which will be employed in the treatment of rules with
several premises, is that assumptions may be merged, i.e., for Γ1,Γ2 ∈ A there
is Γ ∈ A satisfying Γ ` Γ1 and Γ ` Γ2. This is done formulawise:

10



Lemma 3.3. Given ~x, there are terms v(z1, z2), ~u(~y1, ~y2, z1, z2) satisfying

∀w<v(z1, z2) ψ(~u(~y1, ~y2, z1, z2)w) ` ∀w<zi ψ(~yiw), i = 1, 2

for any formula ψ(~x).

[Proof hint: Let v(z1, z2) ≡ z1 + z2. ~u(~y1, ~y2, z1, z2) may be defined as

~u(~y1, ~y2, z1, z2) ≡ λw if z1
.− w = 0 then ~y2(w .− z1) else ~y1w,

or, elementarily, by

~u(~y1, ~y2, z1,0) = ~y1,

~u(~y1, ~y2, z1,Sz2) = λw if w = z1 + z2 then ~y2z2 else ~u(~y1, ~y2, z1, z2)w. ]

To the induction. We will examine the more interesting cases, leaving the
verification of the other ones as a (relatively trivial) exercise.

Case φ ≡ φi: Take V i ≡ 1, ~U i ≡ ~y and ~t ≡ ~xi.

Case
φ φ′

φ & φ′
: Use lemma 3.3.

Case

[φ]

φ′

φ→ φ′
: The induction hypothesis provides us with terms V, ~U,~t such

that ∀w<V φ∧(~x, ~Uw)→ φ′∧(~t, ~y), or, equivalently,

(φ→ φ′)∧(λ~x λ~y V , λ~x ~t, λ~x λ~y ~U ; ~x, ~y).

Case
φ→ φ′ φ

φ′
: The induction hypotheses are

∀w<V ~x~y′ φ∧(~x, ~U~x~y′ ~w)→ φ′∧(~t′~x, ~y′)(3.4)

and

φ∧(~t, ~y).(3.5)

Substituting ~t for ~x in (3.4) and ~U~t~y′w for ~y in (3.5) we obtain

(∀w<V~t~y′ φ∧(~t, ~U~t~y′w))→ φ′∧(~t′~t, ~y′),

φ∧(~t, ~U~t~y′w).

To complete the argument, we need the following

Lemma 3.4. The bounded universal quantifier admits the introduction rule of
the unbounded one:

φ(z)

∀z<v φ(z)
.

11



[Proof hint: Induction on t.]
Using the above lemma, we eventually arrive at

φ′∧(~t′~t, ~y′).

Case
φ(0) ∀z (φ(z)→ φ(Sz))

φ(v)
: The induction hypotheses are

Γo ` φ(0)∧(~to, ~y)(3.6)

and

Γs ` (∀w<V z~x~y φ(z)∧(~x, ~Uz~x~yw))→ φ(Sz)∧(~tsz~x, ~y).(3.7)

It is advisable to develop a general intuition regarding the existence, and form,
of the witnesses ~t in

φ(v)∧(~t, ~y)(3.8)

given (3.6) and (3.7), namely, ~t ≡ ~r(v), where

~r(0) = ~to,

~r(Sz) = ~tsz~r(z).

The actual proof that these satisfy (3.8), while important to have, may be
skipped at first reading.

By substituting ~r(z) for ~x in (3.7) and replacing equals with equals we obtain

Γo ` φ(0)∧(~r(0), ~y),

Γs[~x := ~r(z)] ` ∀w<V z~r(z)~y φ(z)∧(~r(z), ~Uz~r(z)~yw)→ φ(Sz)∧(~r(Sz), ~y).

To simplify notation, let Γ′ ≡ Γs[~x := ~r(z)], ψ(z, ~y) ≡ φ(z)∧(~r(z), ~y), V ′ ≡
V z~r(z) and ~U ′ ≡ ~Uz~r(z). Then,

Γo ` ψ(0, ~y),(3.9)

Γ′ ` ∀w<V ′~y ψ(z, ~U ′~yw)→ ψ(Sz, ~y).(3.10)

Substituting ~c(z′,Sz, w′) for ~y in (3.10) and applying ∀w′<d(z′,Sz) to both
sides (~c, d to be defined later), we obtain

(3.11) ∀w′<d(z′,Sz) Γ′[~y := ~c(z′,Sz, w′)] `

∀w′<d(z′,Sz) ∀w<V ′~c(z′,Sz, w′) ψ(z, ~U ′~c(z′,Sz, w′)w)

→ ∀w′<d(z′,Sz) ψ(Sz,~c(z′,Sz, w′))

(operations on sets of formulae are understood pointwise). Consecutive bounded
universal quantifiers may be condensed by means of

Lemma 3.5. Let j, j1, j2 satisty ` ji(j(x1, x2)) = xi for i = 1, 2. Given terms
t, t′ there is a term b such that

∀w<b φ(j1w, j2w) `T∧ ∀w<t ∀w′<t′(w) φ(w,w′).

12



[As concerns the applicability of the lemma, let us mention that there are well-
known primitive recursive pairing functions, e.g. 1

2 ((x + y)2 + 3x + y) or 2x3y.
Proof hint: Define

a(0) = 0,

a(Sw′) = max{a(w′),Sj(t, w′)}

and

b(0) = 0,

b(Sw) = max{b(w), a(t′(w))}.

The required term is b(t).]
From the lemma we conclude that

Γ′′ ` ∀w<b ψ(z, ~U~c(z′,Sz, j1w)j2w)→ ∀w<d(z′,Sz) ψ(Sz,~c(z′,Sz, w))

(3.12)

for some Γ′′ ∈ A and some term b. By defining

~c(0, z, w) = ~y,

~c(Sz′, z, w) = ~U~c(z′,Sz, j1w)j2w,

and

d(0, z) = 1,

d(Sz′, z) = b,

(3.12) becomes

Γ′′ ` θ(Sz′, z)→ θ(z′,Sz)(3.13)

where

θ(z′, z) ≡ ∀w<d(z′, z) ψ(z,~c(z′, z, w)).

For z′ := v .− Sz, (3.13) implies

Γ′′′, θ(S(v .− Sz), z) ` θ(v .− Sz,Sz)(3.14)

Letting ∆ ≡ Γ′′′ ∪ {v .− z = S(v .− Sz)} and merging ∀z<v Γ′′′ and Γo into one
assumption set Γ ∈ A, everything may be put together into one big deduction:

Γ
∀z<v ∆

Γ

ψ(0, ~y)

θ(v .− 0,0)

[Γ′′′]

[v .− z = S(v .− Sz)] [θ(v .− z, z)]
θ(S(v .− Sz), z)

(3.14)
θ(v .− Sz,Sz)

(∗)
θ(v .− v, v)

ψ(v, ~y) ≡ φ(v)∧(~r(v), ~y)

where horizontal lines may conceal several steps. Rule (∗) is a generalization
of (3.3) where multiple occurences of the same bounded universal quantifier are
eliminated at once; its validity is left to the reader (exercise 1).

13



3.3 Exercises

1. Prove the following generalization of elimination rule (3.3):

∀z<v Φ ψ(0)

[Φ] [ψ(z)]

ψ(Sz)

ψ(v)

where Φ is an arbitrary set of formulae and ∀z<v Φ = {∀z<v φ | φ ∈ Φ}.

14



Bibliography

Diller, J. and W. Nahm. 1974. Eine Variante zur Dialectica-Interpretation der Heyting-
Arithmetik endlicher Typen, Archiv für mathematische Logik und Grundlagenforschung 16,
49–66. ↑9
Kohlenbach, U. 2008. Applied Proof Theory: Proof Interpretations and Their Use in Math-
ematics, Springer-Verlag. ↑
Kreisel, G. 1959. Interpretation of analysis by means of constructive functionals of finite
types, Constructivity in Mathematics (A. Heyting, ed.), North-Holland, Amsterdam, 1959.
↑4
Troelstra, A. S. and D. van Dalen. 1988. Constructivism in Mathematics: An Introduction,
North-Holland, Amsterdam. ↑1, 4

15


