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Chapter 1

Finite-type arithmetic

Higher types and higher-type entities (functionals) constitute a natural, and
constructive, way of extending the expressive power of arithmetic without in-
creasing its proof-theoretic strength. They also provide the syntactic means to
express the effective information contained in proofs of arithmetical statements.

As a foundation for our subsequent proof-theoretic considerations, we present
a basic theory HA® of intuitionistic finite-type arithmetic, together with an
extensional variant E-HA® and an intensional one I-HA®.

Based in part on Troelstra and van Dalen (1988).

1.1 Syntax

1.1.1 The language of finite-type arithmetic
The following types are present:
1. An atomic type N (the type of natural numbers),
2. a type o x 7 for any two types o and 7 (product types),
3. a type 77 for any two types o and 7 (function types).

Notation. (79)° is simplified to 777, and 77 is governed by a similar convention;
hence, 7°° denotes the other alternative.

Terms, and their types, are generated by
0. There is an inexhaustible supply (infinite set) of variables of each type.
1. 0is a term of type A; for any term t of type N, St is a term of type N.

2. For any terms t of type 7, u of type V7 and v of type N, Rtuv is a term
of type 7.

3. For any terms ¢; and ¢, of types 7; and 7., (¢;,¢,.) is a term of type 7; X 7.
4. For any term t of type 7; X 74, p,t is a term of type 75, for s € {I,r}.

5. For any variable x of type ¢ and term t of type 7, Ax t is a term of type

7.



6. For any terms t of type 77 and u of type o, tu is a term of type 7.

Notation. Lists of variables/terms are conveniently abbreviated &, i ete., with
the aid of the following conventions (where t = t1,...,t, and @ = uy, ..., Up):

T =tug U = (- (Tug) -+ ),

til = td, ..., ty,
ALY, ooy Ton = AT ATy, €,
ML= AT ty,..., ATty

Prime (or atomic) formulae are equations ¢ = u between terms of the same
type. Formulae are formed from prime formulae by means of &, —, V, and 3.
We will use the following abbreviations:

1= .50,

1l=0=1,

—p=¢— 1,
t£u=-(t=u),

PV =3Fz((2=0— @) & (2 # 0 = Y)).

1.1.2 Axioms and rules of inference

Besides the usual (natural deduction or other) axioms and rules of intuitionistic
first-order logic for the logical constants present in the system, we have rules
for equality

t=u  o(t)
=1 olut)
B-conversion
Rtu0 =t RtuSv = uwvRtuv
, ie{lr}

and induction

¢(0)  Va[¢(x) = §(Sz)]
¢(v)
The above axioms and rules constitute HA®. Occasionally, we will be inter-

ested in the following variants of this theory. Eztensional finite-type arithmetic,
E-HAY, is obtained from HA® by the addition of the eztensionality rules

pit =pu Pt =p.u
t=u




for ¢, u of product type, and

Vo (tx = ux) 2 ¢ V()
t=u

for t,u of function type. Intensional finite-type arithmetic, I-HA®, augments

the language of HA® with equality functionals E ., one for each type 7, subject

to

Etu=0&t=u Etu=1<t#u

Classical (or Peano) finite-type arithmetic PA® is the extension of HA® by the
principle of the excluded middle

1.2 Exercises

1. Show that equality at type N is decidable, i.e., x =y V x # y.
2. Using your preferred logical formalism, show that if
Faa ¢,
then
Faae oz :=1].

3. Prove that extensionality is equivalent to the set of equations

(pit,p,ty =t, t of product type,

() Az (tz) =t, tof function type, z ¢ FV(¢).

4. Extensional equality ¢t =, u between terms ¢, u of the same type is induc-
tively defined by

t=u t, u of atomic type,
t=cu=<¢ pit =cpu&pt=cp,u t,uof product type,
Va (to =, ux) t, u of function type.

Show that extensionality is equivalent to the schema
t=cu+t=u,

and conclude that, in E-HA®, atomic formulae are equivalent to purely
universal formulae involving equality at type N only.

5. (Closure of HA® under mutual primitive recursion.) Let 7 = 7y,..., 7,
be a list of types, t a list of terms of types 7 (i.e., each ¢; has type 7;) and
@ a list of terms of types 7N7 (i.e., each u; has type TiNTl“'T"). Construct

terms 7 = 7(z), z fresh, with the properties
7(0) =1,

7(Sv) = wvr(v).



Chapter 2

Modified realizability

The name realizability refers to any one of a family of translations that may be
seen as formalizations of the BHK interpretation of the logical constants; for a
more complete description of the BHK interpretation, the reader may consult
Troelstra and van Dalen (1988).

Modified realizability is a variant of realizability introduced in Kreisel (1959)
for the purpose of showing that Markov’s principle is not derivable in intuition-
istic logic. It could as well be called typed realizability because it uses func-
tionals instead of numbers as realizing objects. This notion of realizability is
well adapted to the study of typed theories; it will be our first, and simplest,
example of term extraction.

2.1 Definition

To each formula ¢ in the language of finite-type arithmetic we associate its
modified realizability interpretation ¢™, which is a formula of the form

AT Py (Z)

with the same free variables as ¢, where ¢, (%) (& modified realizes ¢, alternative
notation: Zmre¢) is an 3-free formula and & a possibly empty list of variables.
The associations ( ) and ()™ are defined by the following induction:

For ¢ atomic, ¢™ = ¢,

¢ & )™ = 3L, [fmr (%) & Y ()]

¢ = )™ =3V [VE ($ue (&) = e (VD))
Vz ¢(2)™ = 3X [V2 ((2),(X2))],

3z ¢(2))™ = 32,7 [(2) ()]

where, in each case, the 3-free kernel is delimited by brackets.

(
( Y
( X
(

Remark on notation. Expressions like ¢(v), (Z) are unambiguous, since the
interpretation commutes with substitution:

¢lz =], (Z) = bme(Z)[2 :=].



Proposition 2.1. Let ¢™ = 3T ¢y, (T).
1. ¢me(Z) is I-free, and if ¢ is I-free, then T is empty and ¢™ = Gy = .
2. If 4 is I-free, then (IFY)™ = 3G, in particular, (¢™F)™" = ¢™.

Proof. Exercise. ]

2.2 Soundness

In the following, we are going to employ the modified realizability schema
(MR) P & .

This is not among the axioms usually considered for arithmetic; we will shortly
prove its equivalence to something more familiar (?7).

Theorem 2.2 (soundness). Let H be any one of HA*, E-HA®, I-HA® | and
let H— 3 be the 3-free part of H. If -y R &, then g3 ¢mr(f) for a suitable
list t of terms satisfying FV(t) C FV(¢).

Proof. We are going to apply induction on the proofs of H+MR, for the purpose
of which we will need the (superficially) stronger statement

If ® Fgimr @, then @ Fpp_3 ¢mr(f), where all free variables of ¢
are among those free in ¢ and those free in ®,,.

where ® is an arbitrary (finite) set of formulae and @,y = {¢, | ¢ € @}. Of the
axioms and rules of H— 3, those that are 3-free are self-realizing and don’t need
any further examination; this includes the “extras” of E-HA® and I-HA®. For
most of the others, a deduction will be furnished that may be combined with
the induction hypotheses in an obvious way to yield the required conclusion.
Exception: F-rules.

Natural deduction

¢ 1/J . ¢mr E) ¢mr( )
P&y Gunr (1) & Prne () = (¢ & ), (F, )
o&y (¢ & ) 1, (£, ) = Puae (£) & Yo (1)
¢ G (F)
(9] e
Y e ()
¢ Bene (T) — Ve (1)

VE (Pmr(F) = Y (7)) > (6 = ), (AT 0)
(& = V)1 (F) = V7 (e (F) = oo (7))

Loy 2. Gu) > Ve (7)) ()
1)
6 O e (D)
vz 4(2) V2 ($(2)n () € (V2 $(2)) e (A2 T)



V2 o(z) (72 6(2))e (F) = V2 (6(2) e (£2))
o(v) P(0) oy (F0)
ﬂ : Nothing to prove; the conclusion coincides with the induction hy-
3z ¢(2)

pothesis (this is because the interpretation of 3 is “trivial”, in the sense that it
merely converts the existentially quantified variable into a realizing variable).

[¢(2)]

7 d)(z)w v : By hypothesis, there are deductions @, Fu_3 ¢(v),.(f)
and Pur, ¢(2),,, (F) FH-3 Ve (), whence @pyy b3 Y (4[7 = {]).
Equality
t=u o) t=u  ¢(t),(0)

¢(u) P() (V)

(using the fact that modified realizability commutes with substitution).
Induction

¢(0) z (9(2) = 9(52))

(
$(v)

V2, T ($(2) 10 (T) = (52)
$(0)5,(F) V2 (3(2) e (1(2)) = 6(S2),, (
P(0) y, (W(0))

where @ = @W(z) is a list of terms such that

Ql/‘I
=
= 1
S
<
N
=

One way to guarantee the existence of w(z) is by formulating the system with
mutual primitive recursion. In the presence of product types, however, mutual
primitive recursion is reducible to ordinary primitive recursion; e.g., wW(z) may
be constructed as follows: Assuming ¢ = tq,...,t, and @ = uy, ..., un, define

t= <5 = <t17...,tn>7

where ( ) denotes an arbitrary representation of n-tuples (using pairing), with
corresponding projections ¢y = q1y, - . ., ¢py. Then, the terms

wW(z) = Rtuz
have the required properties.
MR
Since (¢™), (¥) = ¢m:(T), a simple calculation yields
(@™ e @)™ = X, Y [VZ (b (F) = brur(XE)) & VG (S () = Smr(VD)))]

which has the trivial realizers AZ Z, \y/ 4. O



2.3 Axiomatization

Here, we are going to show that HA® + MR may be axiomatized by familiar
principles.

Theorem 2.3. Over HA®, the following schemata are equivalent:
1. MR: ¢™ & ¢,
2. o™ — ¢,
3. AC+ IPg, where
(AC) Vi 37 ¢(Z, §) — IY VI ¢(Z,Y T),
(IP%) (¢ = Fx ) = Jz (¢ — V), ¢ I-free.

Proof. 1. — 2. Obvious.

2. — 3. Tt suffices to show that each instance 6 of one of AC and IPy; is
modified realizable, Fga« ™. In each case, this holds trivially, and is
left as an exercise.

3. — 1. We proceed by structural induction, where ¢™" = 3Z ¢y, (Z) and
Y= Y e (9):

(a) Atomic formulae are self-realizing.

(b)

(¢ = )™ = 3V VT (drur(@) = e (VD))
© VI 3G (e () = Yme(9))
< (37 dune (7)) = (37 e (9))
= g g

& p— ).



(32 ¢(2))™ = 32, % (#(2) .. (T))

=3z (6(2)™)
~ Jzo(2).
O
2.4 Exercises
1. Prove the following:
(a) (VZ(2)™ = 3X V2 ($(2),,,(X2))
(b) B3Z(2)™ = 32,7 (¢(2),,,(7))

. Prove whatever has been left as an exercise in the text.

. Expand (=—¢ — ¢)™" and show that it is provable in PA“. Conclude
that if Fpa« ¢, then Fppe ¢™ (soundness for PA®).

. Harrop formulae are defined by the induction

atomic formulae are Harrop,
if ¢ and v are Harrop, then ¢ & 1 is Harrop,
if ¢ is Harrop, then ¢ — 1) is Harrop (¢ any formula),

(a)
(b)
(c)
(d) if ¢ is Harrop, then Vz ¢ is Harrop.

Prove that a formula ¢ is Harrop if and only if ¢™" is 3-free, i.e., if in
O™ = 3T ¢, (L), T is the empty list.

. Show that for any instance 6 of schema

(IPﬁarrop) (¢ — dz ¢) — Jz (d) — ¢), ¢ Harrop

there are terms # such that Fya« O (£).



Chapter 3

Functional interpretation

This chapter is loosely based on Diller and Nahm (1974).

3.1 Definition and elementary properties

3.1.1 Bounded universal quantification

Bounded universal quantification is generally a finitistic operation on formulae,
in contrast to its usual definition,

(3.1) Ve<t ¢(z) =V (z <t — ¢(x)),

which employs unrestricted quantification. For the purpose of making sense of
bounded universal quantification in quantifier-free settings below, we will treat
the bounded universal quantifier as a primitive logical constant, with introduc-
tion rules

Ve<vg(z)  ¢(v)

(3.2) -
Vz2<0 ¢(z) Vz<Sv ¢(z)
and elimination rule
[9(2)] [1(2)]
Vi<vo(z)  9(0) ¥(S2)

(3.3) o00)

where, in the last rule, z may not occur in any open assumptions.

3.1.2 The interpretation

We let T be the quantifier-free fragment of HA® (with the induction rule
adapted as appropriate), and we define TA to be T augmented with bounded
universal quantifiers.

The Diller-Nahm interpretation ¢ of a formula ¢ in the language of HA®
is a formula of the form

IZVY oA (Z, 9)



with the same free variables as ¢, where ¢ (Z, ¥) is a formula of T and Z, ¢ are
possibly empty lists of variables. The associations ( )/\ and (), are inductively
defined by

¢" =¢ for ¢ an atomic formula,
(6 & ¢)" = 357 VG [¢n(&,7) & & (7, 77)],
(6= &) = { AZXY VTG [V2<Z7G oo (T, Y TY2) — ¢ (X, )], Y non-nil,
- AX VTG [pa(T,) — ¢\ (X, 7)), otherwise,
(V2 ¢(2))" = IX Viiz [$(2) , (X2, §)],
(32 0(2))" = 328V [6(2) (7, 7)].

Optionally, one may add

(Vz<v ¢(2))" = IX VJ [Va<v (2) (X2, 9)] .-

The last clause is logically equivalent to the one obtained by expanding the
left hand side using (3.1) and then translating into Ta. It sole purpose is to
allow bounded universal quantification in HA® as a primitive, which serves to
render Tx a subsystem of HA®. Similarly, the two branches in the definition
of (¢ = ¢ )/\ are equivalent in case Y is the empty list, whence the first, more
general one suffices for both cases, and we will silently assume this simpler def-
inition. With this case distinction, however, the formulae of T 5 are translated
onto themselves:

Proposition 3.1. Let ¢ = ATVY A (T, 7).

1. OA(Z, ) is q.f., and if ¢ is q.f., then T, i are empty and ¢" = pp = ¢.
2. If o is q.f., then (3ZVF )" = 32V Y; in particular, (gi)A)A = ¢".
Proof. Exercise. O

3.2 Soundness & term extraction

Theorem 3.2 (soundness). If Fga« &, then Fr, ¢(9) for suitable terms t
in which y do not occur.

Proof. In the following, F will denote provability in TA. For the purpose of
applying induction on HA“-derivations, we will prove that if {¢'};cr Fra« @,
then {Vw<V qbiA(i"i,U’iw)}iel F onlt, ) for suitable terms (V%);c;, ((ji)iel,t_:
with % not occuring in .

Some preparation: In reference to the previous paragraph, let A be the
collection of assumption sets {Vw<V ¢4 (2%, Uiw)}se; for all possible choices of
(VDier, U)er. Ais closed under #-substitution, i.e., I' € A = [[7:= @] € A.
A slightly less trivial fact, which will be employed in the treatment of rules with
several premises, is that assumptions may be merged, i.e., for I'y, 'y € A there
is ' € A satisfying I' - 'y and T' F T'y. This is done formulawise:

10



Lemma 3.3. Given Z, there are terms v(z1, 22), UW(Y1, Y=, 21, 22) satisfying
Vw<v(z1, 22) Y(U(i1, 2, 21, 22)w) F Vw<z; P(Fiw), i=1,2

for any formula ¥(Z).

[Proof hint: Let v(z1, 22) = 21 + 22. U(¥1, §a, 21, 22) may be defined as
(Y1, Yo, 21, 22) = Aw if z; ~ w = 0 then ga(w = 21) else Frw,
or, elementarily, by

ﬁ(g1752a 2170) = gla
(Y1, Ya, 21, Sz2) = Aw if w = 21 + 25 then Fhzo else W(¥1, ¥a, 21, 22)w. ]

To the induction. We will examine the more interesting cases, leaving the
verification of the other ones as a (relatively trivial) exercise.

Case ¢ = ¢': Take Vi=1,U'=jjand { = &'

/
Case ¢ ¢ : Use lemma 3.3.
¢ & ¢
4]
¢ ;-
Case ————— : The induction hypothesis provides us with terms V, U, t such
¢ — ¢
%

that Yw<V ¢a(Z, Uw) — ¢, (£,7), or, equivalently,

(6 — &) \AF NGV AT 0T \J U3, 9).

/
Case w : The induction hypotheses are
(3.4) Vw<VE] & Uz5'w) — ¢,(77,7)
and
(3.5) (ST

Substituting # for Z in (3.4) and Uij'w for § in (3.5) we obtain

To complete the argument, we need the following

Lemma 3.4. The bounded universal quantifier admits the introduction rule of
the unbounded one:

¢(2)
Vz<v ¢(z)

11



[Proof hint: Induction on ¢.]
Using the above lemma, we eventually arrive at

NGREPL
Case $(0) Vzdgzﬁ()z) — $(52)) : The induction hypotheses are
v
(3.6) I F $(0),, (8. 9)
and
(3.7) T - (Vw<Vzi§ ¢(2) (Z, Uzigw)) — ¢(Sz) , (122, 7).

It is advisable to develop a general intuition regarding the existence, and form,
of the witnesses t in

(3-8) $(v) 5 (.7

given (3.6) and (3.7), namely, £ = 7#(v), where

The actual proof that these satisfy (3.8), while important to have, may be
skipped at first reading.
By substituting 7(z) for Z in (3.7) and replacing equals with equals we obtain

' $(0),(7(0), %),

[¥[@ = 7(2)] F V<V zr(2)y ¢(2) , (72 U z(2)ijw) — &(S2),(r(82),7).
To simplify notation, let IV = T°[Z := 7(2)], ¥ (z,§) = ¢(2),(7(2),9), V' =
Vzi(z) and U’ = Uz(z). Then,

(3.9) I k(0. 9),
(3.10) I = Yw<V'f iz, U'gw) = ¢(Sz, 7).
Substituting &(z’, Sz, w’) for ¥ in (3.10) and applying Vw'<d(z’, Sz) to both
sides (¢, d to be defined later), we obtain
(3.11) Vw'<d(2',8z)[§:= &', Sz,w")] F
Vu'<d(z', 82) Yw<V'dZ, 8z, w') (2, U'dZ, Sz, w')w)
— Vw'<d(z',82) ¢¥(Sz, ¢z, Sz,w'))

(operations on sets of formulae are understood pointwise). Consecutive bounded
universal quantifiers may be condensed by means of

Lemma 3.5. Let j, ji1,j2 satisty & j;(j(z1,22)) = x; for i =1,2. Given terms
t,t' there is a term b such that

Vw<b ¢(j1w, jaw) Fr, Yw<t Vu'<t’ (w) ¢p(w, w’).

12



[As concerns the applicability of the lemma, let us mention that there are well-
known primitive recursive pairing functions, e.g. ((x + y)* + 3z + y) or 273Y.
Proof hint: Define

a(0) =0,
a(Sw') = max{a(w'), Sj(t,w')}

and

b(0) = 0,
b(Sw) = max{b(w), a(t' (w))}.
The required term is b(t).]
From the lemma we conclude that
(3.12)
I b Yw<bip(z, U2, Sz, jiw)jow) — Yw<d(z', 8z) (Sz, &7, Sz, w))
for some I'" € A and some term b. By defining
5(07 Z? w) = g’

a8, z,w) = Ue(2, Sz, jrw)jaw,

and
d(0,z) =1,
d(S7',z) =b,
(3.12) becomes
(3.13) I'"E6(S7,2) = 0(,Sz)

where

0(2',z) =Vw<d(?', 2) (2,7, z,w)).
For 2/ := v ~ Sz, (3.13) implies
(3.14) T 0(S(v = §2),2) F (v = Sz, Sz)

Letting A =T" U{v -z = S(v = Sz)} and merging Vz<v I" and I'° into one
assumption set I' € A, everything may be put together into one big deduction:

r [v=2z=S8(v=8z2)] [O(v = 2,2)]
r (0,7) "] 0(S(v =~ Sz),2)
Ve<vA  6(v=0,0) (v = Sz,8z) (8.14)
O(v ~v,v) (*)

P(v, 9) = ¢(v) A (7 (), 9)

where horizontal lines may conceal several steps. Rule (x) is a generalization
of (3.3) where multiple occurences of the same bounded universal quantifier are
eliminated at once; its validity is left to the reader (exercise 1). O

13



3.3 Exercises

1. Prove the following generalization of elimination rule (3.3):

@ [¥(2)]
Vz<v ® 1 (0) ¥(Sz)

P(v)

where @ is an arbitrary set of formulae and Vz<v ® = {Vz<v ¢ | ¢ € D}.

14
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