Lecture notes

version 2014.2.12

Chapter 1

Finite-type arithmetic

Higher types and higher-type entities (functionals) constitute a natural, and constructive, way of extending the expressive power of arithmetic without increasing its proof-theoretic strength. They also provide the syntactic means to express the effective information contained in proofs of arithmetical statements.

As a foundation for our subsequent proof-theoretic considerations, we present a basic theory \mathbf{HA}^{ω} of intuitionistic finite-type arithmetic, together with an extensional variant \mathbf{E} - \mathbf{HA}^{ω} and an intensional one \mathbf{I} - \mathbf{HA}^{ω} .

1.1 Syntax

The language of finite-type arithmetic The following types are present:

- 1. An atomic type \mathcal{N} (the type of natural numbers),
- 2. a type $\sigma \times \tau$ for any two types σ and τ (product types),
- 3. a type τ^{σ} for any two types σ and τ (function types).

Notation. $(\tau^{\sigma})^{\rho}$ is simplified to $\tau^{\rho\sigma}$, and $\tau^{\vec{\sigma}}$ is governed by a similar convention; hence, $\tau^{\sigma^{\rho}}$ denotes the other alternative.

Terms, and their types, are generated by

- 0. There is an inexhaustible supply (infinite set) of variables of each type.
- 1. 0 is a term of type \mathcal{N} ; for any term t of type \mathcal{N} , St is a term of type \mathcal{N} .
- 2. For any terms t of type τ , u of type $\tau^{\mathcal{N}\tau}$ and v of type \mathcal{N} , $\mathbf{R}tuv$ is a term of type τ .
- 3. For any terms t_l and t_r of types τ_l and τ_r respectively, $\langle t_l, t_r \rangle$ is a term of type $\tau_l \times \tau_r$.
- 4. For any term t of type $\tau_l \times \tau_r$, $\boldsymbol{p}_s t$ is a term of type τ_s , for $s \in \{l, r\}$.

- 5. For any variable x of type σ and term t of type τ , $\lambda x t$ is a term of type τ^{σ} .
- 6. For any terms t of type τ^{σ} and u of type σ , tu is a term of type τ .

Prime (or atomic) formulae are equations t = u between terms of the same type. *Formulae* are formed from prime formulae by means of $\&, \to, \forall$, and \exists .

Axioms and rules of inference Besides the usual (natural deduction or other) rules for the logical constants present in the system, we have rules for *equality*

$$\frac{t=u \quad \phi(t)}{\phi(u)} ,$$

 β -conversion

$$\begin{array}{c} \overline{R}tu0 = t \\ \hline \hline p_i \langle t_l, t_r \rangle = t_i \end{array}, \quad i \in \{l, r\} \\ \hline \hline (\lambda x \ t)u = t[x := u] \end{array}, \end{array}$$

and induction

$$\frac{\phi(0) \qquad \forall x \left[\phi(x) \to \phi(\mathbf{S}x)\right]}{\phi(v)} \cdot$$

The above axioms and rules constitute \mathbf{HA}^{ω} . We will also be interested in a number of extensions of this theory. *Extensional finite-type arithmetic*, **E-HA** $^{\omega}$, is obtained from \mathbf{HA}^{ω} by the addition of the *extensionality rules*

$$\frac{\boldsymbol{p}_l t = \boldsymbol{p}_l u}{t = u} \frac{\boldsymbol{p}_r t = \boldsymbol{p}_r u}{t = u}$$

for t, u of product type, and

$$\frac{\forall x (tx = ux)}{t = u} , \qquad x \notin FV(t, u)$$

for t, u of function type. Intensional finite-type arithmetic, $\mathbf{I}-\mathbf{HA}^{\omega}$, augments the language of \mathbf{HA}^{ω} with equality functionals \mathbf{E}_{τ} , one for each type τ , subject to

$$E_{\tau}tu = 0 \leftrightarrow t = u$$
 $E_{\tau}tu = 1 \leftrightarrow t \neq u$

Classical (or Peano) finite-type arithmetic \mathbf{PA}^{ω} is the extension of \mathbf{HA}^{ω} by the principle of the excluded middle

$$\neg \neg \phi \rightarrow \phi$$
 (**PEM**).

1.2 Semantics

(to be written)

1.3 Exercises

- 1. Define addition and multiplication with the aid of primitive recursion.
- 2. Using your preferred logical formalism, show that if

$$\vdash_{\mathbf{HA}^{\omega}} \phi,$$

then

$$\vdash_{\mathbf{HA}^{\boldsymbol{\omega}}} \phi[x := t].$$

3. Prove that extensionality is equivalent to the set of equations

(
$$\eta$$
) $\langle \boldsymbol{p}_l t, \boldsymbol{p}_r t \rangle = t, t \text{ of product type}, \\ \lambda x (tx) = t, t \text{ of function type}, x \notin FV(t).$

4. Extensional equality $t =_e u$ between terms t, u of the same type is inductively defined by

$$t =_e u \equiv \begin{cases} t = u & t, u \text{ of atomic type,} \\ \mathbf{p}_l t =_e \mathbf{p}_l u \& \mathbf{p}_r t =_e \mathbf{p}_r u & t, u \text{ of product type,} \\ \forall x (tx =_e ux) & t, u \text{ of function type.} \end{cases}$$

Show that extensionality is equivalent to the schema

$$t =_e u \leftrightarrow t = u,$$

and conclude that, in \mathbf{E} - \mathbf{HA}^{ω} , equality at higher types is reducible to equality between terms of type \mathcal{N} .

5. (Closure of $\mathbf{HA}^{\boldsymbol{\omega}}$ under *mutual primitive recursion*.) Let $\vec{\tau} \equiv \tau_1, \ldots, \tau_n$ be a list of types, \vec{t} a list of terms of types $\vec{\tau}$ (i.e., each t_i has type τ_i) and \vec{u} a list of terms of types $\vec{\tau}^{\mathcal{N}\vec{\tau}}$ (i.e., each u_i has type $\tau_i^{\mathcal{N}\tau_1\ldots\tau_n}$). Construct terms $\vec{r} \equiv \vec{r}(z), z$ fresh, with the properties

$$\vec{r}(0) = \vec{t},$$

$$\vec{r}(Sv) = \vec{u}v\vec{r}(v).$$

Chapter 2

Modified realizability

The term *realizability* refers to any one of a family of translations that may be seen as formalizations of the BHK interpretation of the logical constants; for a more complete description of the BHK interpretation, the reader may consult Troelstra and van Dalen (1988).

Modified realizability is a variant of realizability where the realizing objects are functionals. This notion of realizability is well adapted to the study of typed theories; it will be our first, and simplest, example of term extraction.

2.1 Definition

To each formula ϕ in the language of finite-type arithmetic we associate its *modified realizability interpretation* ϕ^{mr} , which is a formula of the form

 $\exists \vec{x} \phi_{\rm mr}(\vec{x})$

with the same free variables as ϕ , where $\phi_{mr}(\vec{x})$ (\vec{x} modified realizes ϕ , alternative notation: $\vec{x}\mathbf{mr}\phi$) is an \exists -free formula and \vec{x} a possibly empty list of variables. The associations ()_{mr} and ()^{mr} are defined by the following induction:

For
$$\phi$$
 atomic, $\phi^{\mathrm{mr}} \equiv \phi$,
 $(\phi \& \psi)^{\mathrm{mr}} \equiv \exists \vec{x}, \vec{y} [\phi_{\mathrm{mr}}(\vec{x}) \& \psi_{\mathrm{mr}}(\vec{y})],$
 $(\phi \rightarrow \psi)^{\mathrm{mr}} \equiv \exists \vec{Y} [\forall \vec{x} (\phi_{\mathrm{mr}}(\vec{x}) \rightarrow \psi_{\mathrm{mr}}(\vec{Y}\vec{x}))],$
 $(\forall z \phi(z))^{\mathrm{mr}} \equiv \exists \vec{X} [\forall z (\phi(z)_{\mathrm{mr}}(\vec{X}z))],$
 $(\exists z \phi(z))^{\mathrm{mr}} \equiv \exists z, \vec{x} [\phi(z)_{\mathrm{mr}}(\vec{x})],$

where, in each case, the \exists -free kernel is delimited by brackets.

Remark on notation. For a (possible) dependence of a formula ϕ on a variable z to be made explicit, it is customary to write $\phi(z)$ in place of ϕ . Then, substitution of a term v for z in ϕ is conveniently denoted $\phi(v)$ instead of $\phi[z := v]$.

This may contribute a lot to readability, but it may also lead to error if sufficient attention is not paid. Fortunately, one possible source of ambiguity is lifted as soon as we know that *modified realizability commutes with substitution*, namely

$$\phi(v)_{\rm mr}(\vec{x}) \equiv \phi(z)_{\rm mr}(\vec{x})[z := v],$$

and hence

$$\phi(v)^{\mathrm{mr}} \equiv \phi(z)^{\mathrm{mr}}[z := v].$$

Proposition 2.1.1. Let $\phi^{\text{mr}} \equiv \exists \vec{x} \phi_{\text{mr}}(\vec{x}).$

1. $\phi_{\rm mr}(\vec{x})$ is \exists -free, and if ϕ is \exists -free, then \vec{x} is empty and $\phi^{\rm mr} \equiv \phi_{\rm mr} \equiv \phi$.

2. If ψ is \exists -free, then $(\exists \vec{y} \, \psi)^{\rm mr} \equiv \exists \vec{y} \, \psi$; in particular, $(\phi^{\rm mr})^{\rm mr} \equiv \phi^{\rm mr}$.

Proof. Exercise.

2.2 Soundness

In the following, we are going to employ the modified realizability schema

(MR)
$$\phi^{\mathrm{mr}} \leftrightarrow \phi$$

This is not among the axioms usually considered for arithmetic; we will shortly prove its equivalence to something more familiar (??).

Theorem 2.2.1 (soundness). Let H be any one of HA^{ω} , $E-HA^{\omega}$, $I-HA^{\omega}$, and let $H-\exists$ be H with the rules for the existential quantifier removed. If $\vdash_{H+MR} \phi$, then $\vdash_{H=\exists} \phi_{mr}(\vec{t})$ for a suitable list \vec{t} of terms satisfying $FV(\vec{t}) \subseteq FV(\phi)$.

Proof. We are going to apply induction on the proofs of \mathbf{H} +MR, for the purpose of which we will need the (superficially) stronger statement

If $\Phi \vdash_{\mathbf{H}+\mathrm{MR}} \phi$, then $\Phi_{\mathrm{mr}} \vdash_{\mathbf{H}-\exists} \phi_{\mathrm{mr}}(\vec{t})$, where all free variables of \vec{t} are among those free in ϕ and the realizing variables in Φ_{mr} .

where Φ is an arbitrary (finite) set of formulae and $\Phi_{mr} = \{\phi_{mr} \mid \phi \in \Phi\}$. Of the axioms and rules of $\mathbf{H} - \exists$, those that are \exists -free are *self-realizing* and don't need any further examination; this includes the "extras" of \mathbf{E} - $\mathbf{H}\mathbf{A}^{\boldsymbol{\omega}}$ and \mathbf{I} - $\mathbf{H}\mathbf{A}^{\boldsymbol{\omega}}$. For most of the others, a deduction will be furnished that may be combined with the induction hypotheses in an obvious way to yield the required conclusion. Exception: \exists -rules.

Natural deduction

$$\frac{\phi \quad \psi}{\phi \& \psi} : \qquad \qquad \frac{\phi_{\rm mr}(\vec{t}) \quad \psi_{\rm mr}(\vec{u})}{\phi_{\rm mr}(\vec{t}) \& \psi_{\rm mr}(\vec{u}) \equiv (\phi \& \psi)_{\rm mr}(\vec{t}, \vec{u})}$$

$$\frac{\phi \& \psi}{\phi} : \qquad \qquad (\phi \& \psi)_{\rm mr}(\vec{t}, \vec{u}) \equiv \frac{\phi_{\rm mr}(\vec{t}) \& \psi_{\rm mr}(\vec{u})}{\phi_{\rm mr}(\vec{t})}$$

$$\begin{array}{ccc} \underline{\phi \rightarrow \psi} & \phi \\ \hline \psi & \vdots \end{array} & \begin{array}{c} (\phi \rightarrow \psi)_{\rm mr}(\vec{t}) \equiv \forall \vec{x} \ (\phi_{\rm mr}(\vec{x}) \rightarrow \psi_{\rm mr}(\vec{t}\vec{x})) \\ \hline \phi_{\rm mr}(\vec{u}) \rightarrow \psi_{\rm mr}(\vec{t}\vec{u}) & \phi_{\rm mr}(\vec{u}) \\ \hline \psi_{\rm mr}(\vec{t}\vec{u}) & \end{array}$$

$$\frac{\phi(z)}{\forall z \ \phi(z)} : \qquad \qquad \frac{\phi(z)_{\mathrm{mr}}(\vec{t})}{\forall z \ (\phi(z)_{\mathrm{mr}}(\vec{t}))} \leftrightarrow (\forall z \ \phi(z))_{\mathrm{mr}}(\lambda z \ \vec{t})$$

$$\frac{\forall z \, \phi(z)}{\phi(v)} : \qquad \qquad (\forall z \, \phi(z))_{\rm mr}(\vec{t}) \equiv \frac{\forall z \, (\phi(z)_{\rm mr}(\vec{t}z))}{\phi(v)_{\rm mr}(\vec{t}v)}$$

 $\frac{\phi(v)}{\exists z \ \phi(z)}$: Nothing to prove; the conclusion coincides with the induction hypothesis (this is because the interpretation of \exists is "trivial", in the sense that it merely turns the existentially quantified variable into a realizing variable).

$$\begin{array}{c} [\phi(z)] \\ \hline \exists z \ \phi(z) & \psi \\ \psi \\ \end{array} : \text{By hypothesis, there are deductions } \Phi_{\mathrm{mr}} \vdash_{\mathbf{H}-\exists} \phi(v)_{\mathrm{mr}}(\vec{t}) \\ \text{and } \Phi_{\mathrm{mr}}, \phi(z)_{\mathrm{mr}}(\vec{x}) \vdash_{\mathbf{H}-\exists} \psi_{\mathrm{mr}}(\vec{u}), \text{ whence } \Phi_{\mathrm{mr}} \vdash_{\mathbf{H}-\exists} \psi_{\mathrm{mr}}(\vec{u}[\vec{x} := \vec{t}]). \end{array}$$

Equality

$$\frac{t = u \quad \phi(t)}{\phi(u)} : \qquad \qquad \frac{t = u \quad \phi(t)_{\mathrm{mr}}(\vec{v})}{\phi(u)_{\mathrm{mr}}(\vec{v})}$$

(using the fact that modified realizability commutes with substitution).

Induction

_

where $\vec{w} \equiv \vec{w}(z)$ is a list of terms such that

$$\vec{w}(0) = \vec{t},$$

 $\vec{w}(\mathbf{S}z) = \vec{u}z\vec{w}(z).$

One way to guarantee the existence of $\vec{w}(x)$ is by formulating the system with mutual primitive recursion. In the presence of product types, however, mutual primitive recursion is reducible to ordinary primitive recursion; e.g., $\vec{w}(z)$ may be constructed as follows: Assuming $\vec{t} \equiv t_1, \ldots, t_n$ and $\vec{u} \equiv u_1, \ldots, u_n$, define

where $\langle \rangle$ denotes an arbitrary representation of *n*-tuples (using pairing), and $\vec{q}y \equiv q_1y, \ldots, q_ny$ are the corresponding projections. Then,

$$\vec{w}(z) \equiv \vec{q}(\boldsymbol{Rtu}z)$$

are our desired terms.

MR

Since $(\phi^{\rm mr})_{\rm mr}(\vec{x}) \equiv \phi_{\rm mr}(\vec{x})$, a simple calculation yields

$$(\phi^{\mathrm{mr}} \leftrightarrow \phi)^{\mathrm{mr}} \equiv \exists \vec{X}, \vec{Y} \left[\forall \vec{x} \left(\phi_{\mathrm{mr}}(\vec{x}) \rightarrow \phi_{\mathrm{mr}}(\vec{X}\vec{x}) \right) \& \forall \vec{y} \left(\phi_{\mathrm{mr}}(\vec{y}) \rightarrow \phi_{\mathrm{mr}}(\vec{Y}\vec{y}) \right) \right]$$

which has the trivial realizers $\lambda \vec{x} \ \vec{x}, \lambda \vec{y} \ \vec{y}$.

which has the trivial realizers $\lambda \vec{x} \cdot \vec{x}, \lambda \vec{y} \cdot \vec{y}$.

$\mathbf{2.3}$ Axiomatization

Here, we are going to show that $\mathbf{HA}^{\omega} + \mathbf{MR}$ may be axiomatized by familiar principles.

Theorem 2.3.1. Over HA^{ω} , the following schemata are equivalent:

- 1. MR: $\phi^{\mathrm{mr}} \leftrightarrow \phi$,
- 2. $\phi^{\rm mr} \to \phi$,
- 3. $AC + IP_{ef}^{\omega}$, where

$$\begin{array}{ll} \text{(AC)} & \forall \vec{x} \, \exists \vec{y} \, \phi(\vec{x}, \vec{y}) \to \exists Y \, \forall \vec{x} \, \phi(\vec{x}, Y \vec{x}), \\ \text{(IP}_{\text{ef}}^{\omega}) & (\phi \to \exists x \, \psi) \to \exists x \, (\phi \to \psi), \quad \phi \; \exists \text{-free.} \end{array}$$

Proof. $1. \rightarrow 2.$ Obvious.

> $2. \rightarrow 3$. It suffices to show that each instance θ of one of AC and $\mathrm{IP}_{\mathrm{ef}}^{\omega}$ is modified realizable, $\vdash_{\mathbf{HA}^{\omega}} \theta^{\mathrm{mr}}$. In each case, this holds trivially, and is left as an exercise.

- $3. \rightarrow 1$. We proceed by structural induction, where $\phi^{\rm mr} \equiv \exists \vec{x} \phi_{\rm mr}(\vec{x})$ and $\psi^{\rm mr} \equiv \exists \vec{y} \psi_{\rm mr}(\vec{y})$:
 - (a) Atomic formulae are self-realizing.
 - (b)

$$(\phi \& \psi)^{\mathrm{mr}} \equiv \exists \vec{x}, \vec{y} (\phi_{\mathrm{mr}}(\vec{x}) \& \psi_{\mathrm{mr}}(\vec{y})) \leftrightarrow (\exists \vec{x} \phi_{\mathrm{mr}}(\vec{x})) \& (\exists \vec{y} \psi_{\mathrm{mr}}(\vec{y})) \equiv \phi^{\mathrm{mr}} \& \psi^{\mathrm{mr}} \leftrightarrow \phi \& \psi.$$

(c)

$$\begin{split} \left(\phi \to \psi\right)^{\mathrm{mr}} &\equiv \exists \vec{Y} \,\forall \vec{x} \left(\phi_{\mathrm{mr}}(\vec{x}) \to \psi_{\mathrm{mr}}(\vec{Y}\vec{x})\right) \\ &\leftrightarrow \forall \vec{x} \,\exists \vec{y} \left(\phi_{\mathrm{mr}}(\vec{x}) \to \psi_{\mathrm{mr}}(\vec{y})\right) \\ &\leftrightarrow \forall \vec{x} \left(\phi_{\mathrm{mr}}(\vec{x}) \to \exists \vec{y} \,\psi_{\mathrm{mr}}(\vec{y})\right) \\ &\leftrightarrow \left(\exists \vec{x} \,\phi_{\mathrm{mr}}(\vec{x})\right) \to \left(\exists \vec{y} \,\psi_{\mathrm{mr}}(\vec{y})\right) \\ &\equiv \phi^{\mathrm{mr}} \to \psi^{\mathrm{mr}} \\ &\leftrightarrow \phi \to \psi. \end{split}$$

(d)

$$(\forall z \ \phi(z))^{\mathrm{mr}} \equiv \exists \vec{X} \ \forall z \ (\phi(z)_{\mathrm{mr}}(\vec{X}z)) \leftrightarrow \forall z \ \exists \vec{x} \ (\phi(z)_{\mathrm{mr}}(\vec{x})) \equiv \forall z \ \phi(z)^{\mathrm{mr}} \leftrightarrow \forall z \ \phi(z).$$

(e)

$$(\exists z \, \phi(z))^{\mathrm{mr}} \equiv \exists z, \vec{x} \, (\phi(z)_{\mathrm{mr}}(\vec{x}))$$
$$\equiv \exists z \, (\phi(z)^{\mathrm{mr}})$$
$$\leftrightarrow \exists z \, \phi(z).$$

2.4 Exercises

- 1. Prove the following:
 - $\begin{array}{ll} (\mathrm{a}) & (\forall \vec{z} \, \phi(\vec{z}))^{\mathrm{mr}} \equiv \exists \vec{X} \, \forall \vec{z} \, (\phi(\vec{z})_{\mathrm{mr}}(\vec{X}\vec{z})). \\ (\mathrm{b}) & (\exists \vec{z} \, \phi(\vec{z}))^{\mathrm{mr}} \equiv \exists \vec{z}, \vec{x} \, (\phi(\vec{z})_{\mathrm{mr}}(\vec{x})). \end{array}$
- 2. Show that modified realizability commutes with substitution,

$$\phi(v)_{\mathrm{mr}}(\vec{x}) \equiv \phi(z)_{\mathrm{mr}}(\vec{x})[z := v], \qquad (\vec{x} \text{ not free in } v).$$

- 3. Prove whatever has been left as an exercise for you (the reader).
- 4. Expand $(\neg \neg \phi \rightarrow \phi)^{\text{mr}}$ and show that it is provable in $\mathbf{PA}^{\boldsymbol{\omega}}$. Conclude that if $\vdash_{\mathbf{PA}^{\boldsymbol{\omega}}} \phi$, then $\vdash_{\mathbf{PA}^{\boldsymbol{\omega}}} \phi^{\text{mr}}$ (soundness for $\mathbf{PA}^{\boldsymbol{\omega}}$).
- 5. Harrop formulae are defined by the induction
 - (a) atomic formulae are Harrop,
 - (b) if ϕ and ψ are Harrop, then $\phi \& \psi$ is Harrop,
 - (c) if ψ is Harrop, then $\phi \to \psi$ is Harrop (ϕ any formula),
 - (d) if ϕ is Harrop, then $\forall x \phi$ is Harrop.

Prove that a formula ϕ is Harrop if and only if ϕ^{mr} is \exists -free, i.e., if in $\phi^{mr} \equiv \exists \vec{x} \phi_{mr}(\vec{x}), \vec{x}$ is the empty list.

6. Show that for any instance θ of schema

 $(\mathrm{IP}^{\omega}_{\mathrm{Harrop}}) \qquad \qquad (\phi \to \exists x \, \psi) \to \exists x \, (\phi \to \psi), \qquad \phi \; \mathrm{Harrop}$

there are terms \vec{t} such that $\vdash_{\mathbf{HA}} \theta_{\mathrm{mr}}(\vec{t})$.

Bibliography

Troelstra, A. S. and D. van Dalen. 1988. Constructivism in Mathematics: An Introduction, North-Holland, Amsterdam. $\uparrow 4$