
Lecture notes

version 2014.2.12



Chapter 1

Finite-type arithmetic

Higher types and higher-type entities (functionals) constitute a natural, and
constructive, way of extending the expressive power of arithmetic without in-
creasing its proof-theoretic strength. They also provide the syntactic means to
express the effective information contained in proofs of arithmetical statements.

As a foundation for our subsequent proof-theoretic considerations, we present
a basic theory HAω of intuitionistic finite-type arithmetic, together with an
extensional variant E-HAω and an intensional one I-HAω.

1.1 Syntax

The language of finite-type arithmetic The following types are present:

1. An atomic type N (the type of natural numbers),

2. a type σ × τ for any two types σ and τ (product types),

3. a type τσ for any two types σ and τ (function types).

Notation. (τσ)
ρ

is simplified to τρσ, and τ~σ is governed by a similar conven-
tion; hence, τσ

ρ

denotes the other alternative.

Terms, and their types, are generated by

0. There is an inexhaustible supply (infinite set) of variables of each type.

1. 0 is a term of type N ; for any term t of type N , St is a term of type N .

2. For any terms t of type τ , u of type τNτ and v of type N , Rtuv is a term
of type τ .

3. For any terms tl and tr of types τl and τr respectively, 〈tl, tr〉 is a term of
type τl × τr.

4. For any term t of type τl × τr, pst is a term of type τs, for s ∈ {l, r}.

1



5. For any variable x of type σ and term t of type τ , λx t is a term of type
τσ.

6. For any terms t of type τσ and u of type σ, tu is a term of type τ .

Prime (or atomic) formulae are equations t = u between terms of the same
type. Formulae are formed from prime formulae by means of &, →, ∀, and ∃.

Axioms and rules of inference Besides the usual (natural deduction or
other) rules for the logical constants present in the system, we have rules for
equality

t = t

t = u φ(t)

φ(u)
,

β-conversion

Rtu0 = t Rtu(Sv) = uvRtuv

pi〈tl, tr〉 = ti
, i ∈ {l, r}

(λx t)u = t[x := u]
,

and induction

φ(0) ∀x
[
φ(x)→ φ(Sx)

]
φ(v)

.

The above axioms and rules constitute HAω. We will also be interested in a
number of extensions of this theory. Extensional finite-type arithmetic, E-HAω,
is obtained from HAω by the addition of the extensionality rules

plt = plu prt = pru

t = u

for t, u of product type, and

∀x (tx = ux)

t = u
, x /∈ FV(t, u)

for t, u of function type. Intensional finite-type arithmetic, I-HAω, augments
the language of HAω with equality functionals Eτ , one for each type τ , subject
to

Eτ tu = 0↔ t = u Eτ tu = 1↔ t 6= u
.

Classical (or Peano) finite-type arithmetic PAω is the extension of HAω by the
principle of the excluded middle

(PEM)¬¬φ→ φ
.

2



1.2 Semantics

(to be written)

1.3 Exercises

1. Define addition and multiplication with the aid of primitive recursion.

2. Using your preferred logical formalism, show that if

`HAω φ,

then

`HAω φ[x := t].

3. Prove that extensionality is equivalent to the set of equations

〈plt,prt〉 = t, t of product type,

λx (tx) = t, t of function type, x /∈ FV(t).
(η)

4. Extensional equality t =e u between terms t, u of the same type is induc-
tively defined by

t =e u ≡

 t = u t, u of atomic type,
plt =e plu & prt =e pru t, u of product type,

∀x (tx =e ux) t, u of function type.

Show that extensionality is equivalent to the schema

t =e u↔ t = u,

and conclude that, in E-HAω, equality at higher types is reducible to
equality between terms of type N .

5. (Closure of HAω under mutual primitive recursion.) Let ~τ ≡ τ1, . . . , τn
be a list of types, ~t a list of terms of types ~τ (i.e., each ti has type τi) and
~u a list of terms of types ~τN~τ (i.e., each ui has type τi

Nτ1...τn). Construct
terms ~r ≡ ~r(z), z fresh, with the properties

~r(0) = ~t,

~r(Sv) = ~uv~r(v).

3



Chapter 2

Modified realizability

The term realizability refers to any one of a family of translations that may be
seen as formalizations of the BHK interpretation of the logical constants; for a
more complete description of the BHK interpretation, the reader may consult
Troelstra and van Dalen (1988).

Modified realizability is a variant of realizability where the realizing objects
are functionals. This notion of realizability is well adapted to the study of typed
theories; it will be our first, and simplest, example of term extraction.

2.1 Definition

To each formula φ in the language of finite-type arithmetic we associate its
modified realizability interpretation φmr, which is a formula of the form

∃~x φmr(~x)

with the same free variables as φ, where φmr(~x) (~xmodified realizes φ, alternative
notation: ~xmrφ) is an ∃-free formula and ~x a possibly empty list of variables.
The associations ( )mr and ( )

mr
are defined by the following induction:

For φ atomic, φmr ≡ φ,

(φ & ψ)
mr ≡ ∃~x, ~y

[
φmr(~x) & ψmr(~y)

]
,

(φ→ ψ)
mr ≡ ∃~Y

[
∀~x (φmr(~x)→ ψmr(~Y ~x))

]
,

(∀z φ(z))
mr ≡ ∃ ~X

[
∀z (φ(z)mr(

~Xz))
]
,

(∃z φ(z))
mr ≡ ∃z, ~x

[
φ(z)mr(~x)

]
,

where, in each case, the ∃-free kernel is delimited by brackets.

Remark on notation. For a (possible) dependence of a formula φ on a variable
z to be made explicit, it is customary to write φ(z) in place of φ. Then, substi-
tution of a term v for z in φ is conveniently denoted φ(v) instead of φ[z := v].

4



This may contribute a lot to readability, but it may also lead to error if sufficient
attention is not paid. Fortunately, one possible source of ambiguity is lifted as
soon as we know that modified realizability commutes with substitution, namely

φ(v)mr(~x) ≡ φ(z)mr(~x)[z := v],

and hence

φ(v)
mr ≡ φ(z)

mr
[z := v].

Proposition 2.1.1. Let φmr ≡ ∃~x φmr(~x).

1. φmr(~x) is ∃-free, and if φ is ∃-free, then ~x is empty and φmr ≡ φmr ≡ φ.

2. If ψ is ∃-free, then (∃~y ψ)
mr ≡ ∃~y ψ; in particular, (φmr)

mr ≡ φmr.

Proof. Exercise.

2.2 Soundness

In the following, we are going to employ the modified realizability schema

φmr ↔ φ.(MR)

This is not among the axioms usually considered for arithmetic; we will shortly
prove its equivalence to something more familiar (??).

Theorem 2.2.1 (soundness). Let H be any one of HAω, E-HAω, I-HAω, and
let H−∃ be H with the rules for the existential quantifier removed. If `H+MR φ,
then `H−∃ φmr(~t) for a suitable list ~t of terms satisfying FV(~t) ⊆ FV(φ).

Proof. We are going to apply induction on the proofs of H+MR, for the purpose
of which we will need the (superficially) stronger statement

If Φ `H+MR φ, then Φmr `H−∃ φmr(~t), where all free variables of ~t
are among those free in φ and the realizing variables in Φmr.

where Φ is an arbitrary (finite) set of formulae and Φmr = {φmr | φ ∈ Φ}. Of the
axioms and rules of H−∃, those that are ∃-free are self-realizing and don’t need
any further examination; this includes the “extras” of E-HAω and I-HAω. For
most of the others, a deduction will be furnished that may be combined with
the induction hypotheses in an obvious way to yield the required conclusion.
Exception: ∃-rules.

Natural deduction

φ ψ

φ & ψ
:

φmr(~t) ψmr(~u)

φmr(~t) & ψmr(~u) ≡ (φ & ψ)mr(~t, ~u)

5



φ & ψ

φ
:

(φ & ψ)mr(~t, ~u) ≡ φmr(~t) & ψmr(~u)

φmr(~t)

[φ]

ψ

φ→ ψ
:

[φmr(~x)]

ψmr(~u)

φmr(~x)→ ψmr(~u)

∀~x (φmr(~x)→ ψmr(~u))↔ (φ→ ψ)mr(λ~x ~u)

φ→ ψ φ

ψ
:

(φ→ ψ)mr(~t) ≡ ∀~x (φmr(~x)→ ψmr(~t~x))

φmr(~u)→ ψmr(~t~u) φmr(~u)

ψmr(~t~u)

φ(z)

∀z φ(z)
:

φ(z)mr(~t)

∀z (φ(z)mr(~t))↔ (∀z φ(z))mr(λz ~t)

∀z φ(z)

φ(v)
:

(∀z φ(z))mr(~t) ≡ ∀z (φ(z)mr(~tz))

φ(v)mr(~tv)

φ(v)

∃z φ(z)
: Nothing to prove; the conclusion coincides with the induction hy-

pothesis (this is because the interpretation of ∃ is “trivial”, in the sense that it
merely turns the existentially quantified variable into a realizing variable).

∃z φ(z)

[φ(z)]

ψ

ψ
: By hypothesis, there are deductions Φmr `H−∃ φ(v)mr(~t)

and Φmr, φ(z)mr(~x) `H−∃ ψmr(~u), whence Φmr `H−∃ ψmr(~u[~x := ~t]).

Equality

t = u φ(t)

φ(u)
:

t = u φ(t)mr(~v)

φ(u)mr(~v)
(using the fact that modified realizability commutes with substitution).

Induction

φ(0) ∀z (φ(z)→ φ(Sz))

φ(v)
:

φ(0)mr(~t)

∀z, ~x (φ(z)mr(~x)→ φ(Sz)mr(~uz~x))

∀z (φ(z)mr(~w(z))→ φ(Sz)mr(~uz ~w(z)))

φ(v)mr(~w(v))

6



where ~w ≡ ~w(z) is a list of terms such that

~w(0) = ~t,

~w(Sz) = ~uz ~w(z).

One way to guarantee the existence of ~w(x) is by formulating the system with
mutual primitive recursion. In the presence of product types, however, mutual
primitive recursion is reducible to ordinary primitive recursion; e.g., ~w(z) may
be constructed as follows: Assuming ~t ≡ t1, . . . , tn and ~u ≡ u1, . . . , un, define

t ≡ 〈~t〉 ≡ 〈t1, . . . , tn〉,
u ≡ λz, y 〈~uz(~qy)〉,

where 〈 〉 denotes an arbitrary representation of n-tuples (using pairing), and
~qy ≡ q1y, . . . , qny are the corresponding projections. Then,

~w(z) ≡ ~q(Rtuz)

are our desired terms.

MR

Since (φmr)mr(~x) ≡ φmr(~x), a simple calculation yields

(φmr ↔ φ)
mr ≡ ∃ ~X, ~Y

[
∀~x (φmr(~x)→ φmr( ~X~x)) & ∀~y (φmr(~y)→ φmr(~Y ~y))

]
which has the trivial realizers λ~x ~x, λ~y ~y.

2.3 Axiomatization

Here, we are going to show that HAω + MR may be axiomatized by familiar
principles.

Theorem 2.3.1. Over HAω, the following schemata are equivalent:

1. MR: φmr ↔ φ,

2. φmr → φ,

3. AC + IPωef, where

∀~x ∃~y φ(~x, ~y)→ ∃~Y ∀~x φ(~x, ~Y ~x),(AC)

(φ→ ∃x ψ)→ ∃x (φ→ ψ), φ ∃-free.(IPωef)

Proof. 1.→ 2. Obvious.

2.→ 3. It suffices to show that each instance θ of one of AC and IPωef is
modified realizable, `HAω θmr. In each case, this holds trivially, and is
left as an exercise.

7



3.→ 1. We proceed by structural induction, where φmr ≡ ∃~x φmr(~x) and
ψmr ≡ ∃~y ψmr(~y):

(a) Atomic formulae are self-realizing.

(b)

(φ & ψ)
mr ≡ ∃~x, ~y (φmr(~x) & ψmr(~y))

↔ (∃~x φmr(~x)) & (∃~y ψmr(~y))

≡ φmr & ψmr

↔ φ & ψ.

(c)

(φ→ ψ)
mr ≡ ∃~Y ∀~x (φmr(~x)→ ψmr(~Y ~x))

↔ ∀~x ∃~y (φmr(~x)→ ψmr(~y))

↔ ∀~x (φmr(~x)→ ∃~y ψmr(~y))

↔ (∃~x φmr(~x))→ (∃~y ψmr(~y))

≡ φmr → ψmr

↔ φ→ ψ.

(d)

(∀z φ(z))
mr ≡ ∃ ~X ∀z (φ(z)mr(

~Xz))

↔ ∀z ∃~x (φ(z)mr(~x))

≡ ∀z φ(z)
mr

↔ ∀z φ(z).

(e)

(∃z φ(z))
mr ≡ ∃z, ~x (φ(z)mr(~x))

≡ ∃z (φ(z)
mr

)

↔ ∃z φ(z).

2.4 Exercises

1. Prove the following:

(a) (∀~z φ(~z))
mr ≡ ∃ ~X ∀~z (φ(~z)mr(

~X~z)).

(b) (∃~z φ(~z))
mr ≡ ∃~z, ~x (φ(~z)mr(~x)).

2. Show that modified realizability commutes with substitution,

φ(v)mr(~x) ≡ φ(z)mr(~x)[z := v], (~x not free in v).

8



3. Prove whatever has been left as an exercise for you (the reader).

4. Expand (¬¬φ→ φ)
mr

and show that it is provable in PAω. Conclude
that if `PAω φ, then `PAω φmr (soundness for PAω).

5. Harrop formulae are defined by the induction

(a) atomic formulae are Harrop,

(b) if φ and ψ are Harrop, then φ & ψ is Harrop,

(c) if ψ is Harrop, then φ→ ψ is Harrop (φ any formula),

(d) if φ is Harrop, then ∀x φ is Harrop.

Prove that a formula φ is Harrop if and only if φmr is ∃-free, i.e., if in
φmr ≡ ∃~x φmr(~x), ~x is the empty list.

6. Show that for any instance θ of schema

(φ→ ∃x ψ)→ ∃x (φ→ ψ), φ Harrop(IPωHarrop)

there are terms ~t such that `HAω θmr(~t).

9



Bibliography

Troelstra, A. S. and D. van Dalen. 1988. Constructivism in Mathematics: An Introduction,
North-Holland, Amsterdam. ↑4

10


	Finite-type arithmetic
	Syntax
	Semantics
	Exercises

	Modified realizability
	Definition
	Soundness
	Axiomatization
	Exercises


