
KNOT INVARIANTS FOR RAIL KNOTOIDS

DIMITRIOS KODOKOSTAS AND SOFIA LAMBROPOULOU

In memory of V.F.R. Jones

Abstract. To each rail knotoid we associate two unoriented knots along with their oriented coun-
terparts, thus deriving invariants for rail knotoids based on these associations. We then translate
them to invariants of rail isotopy for rail arcs.

Introduction

In [2] we studied isotopies in R3 between rail arcs which are just arcs with endpoints on two
fixed parallel lines and which have no other point on these lines. Rail arcs were introduced in
[1]. During the isotopies we allow the endpoints to move freely on the two lines, the rails. The
way to study these isotopies was by studying the projection of the arcs on the plane of the lines
and introducing the notion of rail knotoid diagrams and their equivalence, proving that rail arc
isotopy in space is equivalent to rail knotoid diagram equivalence on the plane. We provide a small
summary of all these in the next paragraph. In §3 we provide a way of distinguishing rail knotoids
by defining analogues for rail knotoids of the normalized bracket, the Jones, the HOMFLYPT and
the Kauffman polynomials. We achieve this by assigning in §2 to each rail knotoid two well-defined
isotopy classes of knots. In §4 we translate these invariants to invariants of space isotopy of rail
arcs. In the last paragraph we comment on the connection of the rail knotoids to the usual knotoids
which were first introduced in [3].

1. A summary on rail arcs and rail knotoids

We consider the space R3 equipped with two parallel lines `1, `2. We call as rail arc any connected,
embedded simple arc c in R3 with one endpoint on `1 and the other on `2 and otherwise missing
the rails at all (see Figure 1). If we call `1, `2 as first and second rail respectivey, then we can
consider a natural orientation on any such arc c from the endpoint on `1 to the endpoint on `2, in
which case we call the enpoints as leg and head respectively. Although matters of orientation for
rail arcs will not be of out-most importance in what follows, we shall keep this terminology in all
cases whenever referring to the end points.

We call two rail arcs c1, c2 as rail isotopic, whenever there exists an isotopy of R3 taking one onto
the other so that each rail maps onto itself (but not necessarily pointwise) throughout the isotopy.
In particular, this implies that at each time throughout the isotopy, the image of the arc is a rail
arc, and each endpoint remains on the same rail with the freedom to move up and down on it. We
call such an isotopy as a rail isotopy in R3.

Rail isotopy between p.l. rail arcs can be effected via a finite sequence of triangle moves in
space as on Figure 2: a rail arc is modified so that it either replaces an edge AB by two new edges
AC,CB, or vice versa, where the triangle ABC of the move does not intersect the arc or the rails at
any other point. We also allow modifications via moves which slide the initial or final point of the

2010 Mathematics Subject Classification. 57M27, 57M25.
Key words and phrases. rail arc, rail isotopy, rail knotoid diagram, rail equivalence, rail knotoid, knot, knot

invariant.
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Figure 1. A rail arc c in R3 with its endpoints on the rails `1, `2.
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Figure 2. A triangle move between rail arcs c, c′ in R3.

arc on its rail, which means we allow replacement of an edge MX with an edge MX ′, where X,X ′

lie on the same rail and the triangle MXX ′ has no other common points with the rail other than
the segment XX ′. Here we think of the arcs and maps as piecewise linear but due to the usual p.l.
approximation theorems for the analogous smooth objects, our results hold in the smooth category
as well.

It is natural to expect that rail isotopy can be described by some kind of equivalence among
modifications of the projections of the rail arcs on a fixed plane. To this end, we choose to project
the rail arcs on the plane π defined by the rails `1, `2, assuming without any loss of generality that
the arcs are in a generic position with respect to π. For any such projection cpr of some rail arc
c, we keep track of the over/under data at double points of the projection with itself and with the
rails. In this way we get what we call a rail knotoid diagram cpr on π, whose endpoints are on the
rails (the leg on `1 and the head on `2). In general, we call as a planar rail knotoid diagram or just
rail knotoid diagram, any arc on π with endpoints on the rails and in general position with respect
to them, with additional over/under data on its intersections with itself and the rails, except for
its endpoints.

We call two rail knotoid diagrams on π as rail equivalent whenever one can be obtained from the
other via a finite sequence of the usual Reidemester moves Ω1, Ω2, Ω3, along with the slide moves
and planar isotopy moves or just planar isotopies of π, all defined locally as in Figure 3 with the
provisions explained in the caption and where the moves involving the rails are given in separate
subfigures for more clarity. We call these moves as rail knotoid moves.

Equivalence between rail knotoid diagrams as defined, is an equivalence relation in the set of all
planar rail knotoid diagrams. We call the equivalence classes simply as planar rail knotoids or just
rail knotoids. If we wish we can consider rail knotoids as oriented, with their orientation being the
leg to head orientation in any one of their representatives.

In [2] we proved that our aforementioned expectation about rail isotopy indeed holds:
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Figure 3. Red lines denote rails and dots denote vertices. For clarity, the moves
involving rails were given in separate figures. The moving part in Ω3 moves can be
on top, on bottom or in the middle, and similarly for the rail. The moving part and
the rail in slide moves can be on top or on bottom, and the moving part can be on
the left or the right of the rail. The moving part in planar isotopy 3 moves can be
on top or bottom and the disappearing vertex on the left or right of the fixed part.

Theorem. Two rail arcs in R3 are rail isotopic iff their rail knotoid diagram projections on the
plane π of the rails are rail equivalent. In other words, rail isotopy in R3 corresponds to rail
equivalence on π (rail arcs are isotopic iff they correspond to the same rail knotoid).

2. Defining knots corresponding to rail knotoids

Let κ be a rail knotoid. We are going to define and correspond to κ two unoriented knots as well
as their oriented versions. We start with some representative rail knotoid diagram K for κ and we
first define K’s over and under companion loops as follows:

Definition 1. Let K be a rail knotoid diagram. We call as over companion loop Ko of K, respec-
tively under companion loop Ku of K, any loop in space whose knot projection on the plane π of
the rails is described as follows (see Figure 4):

• Knot projection of Ko: (1) a line segment with its endpoints on the rails and vertical
to them, put high up enough so that it does not mess with K, (2) one segment on each
rail joining the corresponding endpoint of the vertical segment with the leg or the head
respectively, (3) the rail knotoid diagram K with the over/under data of K at the crossing
points with the segments projecting on the rails.
• Knot projection of Ku: as for Ko, only now we place the vertical segment in (1) low down

enough so that it does not mess with K.

We denote the oriented versions of the chosen loops Ko,Ku as Ko+,Ko−,Ku+,Ku− where the
+ sign indicates the orientation induced by the rail knotoid and the − sign indicates the opposite.
We call these as oriented over or under companion loops of K respectively.

For a given rail knotoid diagram K, we have the freedom by the above definition to consider
many distinct companion loops. Two choices Ko1,Ko2 of Ko differ only on their three line segments
added to K and by the definition the three segments of Ko1 can be isotoped on π to coincide with
those of Ko2 avoiding the diagram K. Similarly for two choices of Ku. Thus:
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Figure 4. A rail knotoid diagram K and a choice of over and under companion
loops Ko,Ku.

Lemma 1. For a given rail knotoid diagram K, the companion loops Ko,Ku are uniquely defined
up to isotopy in space.

Even stronger, it holds that the isotopy classes of the companion loops Ko,Ku remain invariant
for equivalent rail knotoid diagrams:

Lemma 2. If K1,K2 are equivalent rail knotoid diagrams, then any choices of (K1)o, (K2)o are
isotopic in space and similarly for (K1)u, (K2)u.

Proof. We will show the result for two diagrams which differ by a single rail knotoid move. Then
the result will follow for all equivalent rail knotoid diagrams as all of them follow from a given
one by a finite sequence of rail knotoid moves. We treat the case of the over companion loops
(K1)o, (K2)o, as the case for (K1)u, (K2)u is treated similarly.

So let the given rail knotoid diagrams K1,K2 differ by a single rail knotoid move. We make some
choice of (K1)o and then we choose (K2)o to be the diagram of (K1)o altered by the rail knotoid
move which transforms K1 to K2. By Lemma 1 our choices do not alter the isotopy classes of the
two companion loops.

Now, the rail knotoid move involves either none of the rails or just one of them. In the first
case, the move is a usual Reidemeister move or a planar isotopy move between the knot diagrams
(K1)o and (K2)o on π, thus the knots in space which these diagrams represent are isotopic. In the
second case, (K1)o and (K2)o are related to each other via the usual Reidemeister moves and planar
isotopy moves of knot diagrams as one can easily check: for example, Figure 5 deals with the case
of a slide move, and Figure 6 deals with an Ω1 rail knotoid move involving `1. Thus (K1)o, (K2)o
are isotopic knots in space as wanted in this case as well. �

So to each rail knotoid κ there correspond 2 isotopy classes of unoriented knots, namely the iso-
topy classes of some choice of the companion loops Ko,Ku. Orienting these knots, there correspond
to κ four isotopy classes of oriented knots.

Definition 2. We call as over and under companion knots of a rail knotoid κ, the isotopy classes
κo, κu of a choice of the unoriented loops Ko,Ku where K is any rail knotoid diagram representing
κ. We call the loops Ko,Ku as a choice of companion loops of κ.

We denote the oriented loops Ko,Ku as Ko+,Ko−,Ku+,Ku− and their corresponding isotopy
classes as κo+, κo−, κu+, κo−, where the + sign indicates the orientation induced by the rail knotoid
κ. We call Ko+,Ko−,Ku+,Ku− as a choice of oriented companion loops of κ and κo+, κo−, κu+, κo−
as oriented companion knots of κ.
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Figure 5. (a) Rail knotoid diagrams K1,K2 connected via a slide move involving
rail `1. (b) The corresponding over companion loops (K1)o, (K2)o .
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Figure 6. (a) Rail knotoid diagrams K1,K2 connected via an Ω1 move involving
rail `1. (b) The corresponding over companion loops (K1)o, (K2)o .

3. Invariants for rail knotoids

In this section we define invariants for rail knotoids regarding the equivalence relation of rail
knotoid diagrams, as well as their regular equivalence relation which we define below following the
corresponding definition of regular isotopy for knot diagrams.

Definition 3. We call two rail knotoid diagrams on the plane π as regularly equivalent whenever
one can be obtained from the other via a finite sequence of all rail moves except for Ω1 moves, that
is, by the Reidemester moves Ω2, Ω3, along with slide moves and planar isotopy moves on π.

The regular equivalence relation is clearly an equivalence relation on the set RKD of rail knotoid
diagrams and any two regularly equivalent rail diagrams are rail equivalent as well. Now we define
as expected:

Definition 4. An equivalence invariant or just an invariant of rail knotoid diagrams is a map
f : RKD → A of the rail knotoid diagrams to some set A, so that equivalent rail knotoid diagrams
correspond to the same element of A.

There is no harm considering these maps as maps f : RK → A defined on the set RK of rail
knotoids instead of the set of their diagrams, as f(κ) = f(K) where K is any rail knotoid diagram of
the rail knotoid κ. We then call f as an equivalence invariant or just an invariant of rail knotoids.
Similarly, a regular equivalence invariant or just a regular invariant of rail knotoid diagrams is a
map RKD → A of the rail knotoid diagrams to some set A, so that regularly equivalent rail knotoid
diagrams correspond to the same element of A. By abuse of language we can say that f is a regular
invariant of rail knotoids as well.

Under the above definition, Lemma 2 translates to:

Proposition 1. The isotopy classes of the companion loops of the rail knotoid diagrams, are
invariants of the rail knotoids.
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An immediate consequence of this Proposition is the first part of the Theorem that follows.
The second part of the Theorem is an immediate consequence of the arguments in the proof of
Lemma 2, which reveal that two regularly equivalent rail knotoid diagrams have regularly equivalent
companion loops.

Theorem 1. Every ambient isotopy invariant f : K → A of unoriented knots provides 2 invariants
fo, fu : RK → A of rail knotoids via the corresponding unoriented companion loops as fo(κ) =
f(κo), fu(κ) = f(κu) and every ambient isotopy invariant f of oriented knots f : Kor → A provides
4 invariants fo−, fo+, fu−, fu− : RK → A of rail knotoids via the corresponding oriented companion
knots, as fo±(κ) = f(κo±), fu±(κ) = f(κu±).

Similarly, every regular isotopy invariant of unoriented knot diagrams f : KD → A provides
2 regular equivalence invariants f : RKD → A of rail knotoid diagrams via the corresponding
unoriented companion loops as fo(K) = f(Ko), fu(K) = f(Ku), and every regular isotopy invariant
f : KDor → A of oriented knot diagrams provides 4 regular equivalence invariants of rail knotoid
diagrams via the corresponding oriented companion loops as fo±(K) = f(Ko±), fu±(K) = f(Ku±).

We call the above as knot type invariants, or just knot invariants for the rail knotoids. If we
care to consider only the orientation induced by the rail knotoid for the companion loops, then all
oriented invariants are reduced in number by a factor of 2.

In general, we expect the invariants of the Theorem to be distinct. As an example of how the
Theorem applies, we give a list of well-defined knot invariants for rail knotoids:

Definition 5. We define 4 versions for each of the normalized bracket, the Jones and the HOM-
FLYPT polynomials, each an oriented equivalence invariant of rail knotoids, as follows:

Xo∗(κ) := X(κo∗)

Xu∗(κ) := X(κu∗)

Jo∗(κ) := J(κo∗)

Ju∗(κ) := J(κu∗)

Ho∗(κ) := H(κo∗)

Hu∗(κ) := H(κu∗)

where ∗ ∈ {+,−} and on the right hand sides we have the usual normalized bracket, the Jones and
the HOMFLYPT polynomials for oriented knots.

We also define 2 versions of the Kauffman polynomial, each an unoriented regular equivalence
invariant of rail knotoids, as follows:

Ko(κ) := K(κo)

Ku(κ) := K(κu)

where on the right hand sides we have the usual Kauffman polynomial for knots.

The arguments in the proof of Lemma 2, imply that we can also define bracket polynomials for
rail knotoid diagram which are regular equivalence invariants:

Definition 6. For the rail knotoid diagram K we define 2 vesions of the bracket polynomial, each
a regular equivalence invariant of rail knotoid diagrams:

〈K〉o := 〈Ko〉
〈K〉u := 〈Ku〉

where on the right hand sides we have the usual bracket polynomial for a choice of a companion
loop Ko or Ku of K.
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Under a rail knotoid Ω1 move between rail knotoid diagrams, the rail bracket polynomial exhibits
the same behavior as the usual bracket polynomial, and denoting as usual by w the writhe of oriented
knots, it follows that the rail bracket polynomial is related to the rail normalized bracket and rail
Jones polynomials as described in the following Theorem:

Theorem 2. For any rail knotoid κ it holds:

Xo∗(κ) = (−A3)−w(Ko∗)〈Ko〉
Xu∗(κ) = (−A3)−w(Ku∗)〈Ku〉
Jo∗(κ) = (−t−3/4)−w(Ko∗)〈Ko〉
Ju∗(κ) = (−t−3/4)−w(Ku∗)〈Ku〉

where ∗ ∈ {+,−}, Ko,Ku are choices of the companion loops and Ko∗,Ku∗ are choices of the
oriented companion loops of any rail knotoid diagram K of the rail knotoid κ.

4. Connections of rail knotoids to rail arcs

As mentioned in the Introduction, rail knotoids were defined in [2] in order to study the isotopies
of rail arcs which were introduced in [1, 2]. The connection between the two is given in the Theorem
of §1, namely, two rail arcs are rail isotopic in space if and only if their rail knotoid diagrams are
equivalent, that is, if and only if the two rail arcs correspond to the same rail knotoid.

In the light of the previous section we have that the definition below refers to well-defined notions
and that the Theorem following immediately after holds automatically:

Definition 7. To each isotopy class c of rail arcs, there correspond 2 isotopy classes of unoriented
knots, namely, those of the companion loops of the corresponding to c rail knotoid κc. There also
correspond to c, 4 isotopy classes of oriented knots, namely, those of the oriented companion loops
of κc.

Let us denote the above as ca, cab for a ∈ {o, u}, b ∈ {+,−} with the obvious correspondence of
the indices with the various kinds of isotopy classes of knots.

Theorem 3. If f is an unoriented or oriented knot invariant, then there exists an invariant of the
isotopy classes of rail arcs defined as fa(c) = f(ca) or fab(c) = f(cab), depending on the kind of
knots concerning f .

5. Connections of rail knotoids to knotoids

For the rail arcs in space, there has been at least one more effort in as much as we know, to
study their rail isotopy diagrammatically [1]. This effort uses the tool of the usual planar knotoids,
whereupon one projects the rail arc on a plane p perpendicular to the rails resulting in a planar
knotoid diagram and then one translates the rail isotopy of arcs to equivalence of knotoid diagrams,
thus to knotoids, as the main result of this approach goes.

The difference of the method in [1] to ours concerns the choice of the projection plane and it
is at least conceptual. Figure 7 makes it clear that the original rail arc is encoded in significantly
different ways. It is interesting to note that the triad of sets A=(rail arc, rails, p= projection plane
perpendicular to the rails) which is of interest in the case of knotoids, is not isotopic in space to
B=(rail arc, rails, π= plane of the rails) which is of interest in the case of rail knotoids (see Figure
8). Nevertheless this is not entirely unexpected, as for example none of A,B remains ambient
isotopic invariant under the various rail isotopic choices of the rail arc c.

In the knotoid method, the invariants applied to rail isotopy come from the invariants of knotoids
and many of these are produced by the over or under completion of a knotoid diagram to a knot
by connecting the head and leg of the knotoid by an arc totally on the top or totally in the bottom
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Figure 7. A rail arc c and its corresponding knotoid and rail knotoid diagrams K1

and K2 respectively.

A = (c, `1 ∪ `2, p) B = (c, `1 ∪ `2, π)
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Figure 8. A and B are not isotopic in space.

of the knotoid diagram [1, 3]. Our over and under companion loops (see Figure 4) for rail knotoids
correspond to the the over and under closure for knotoids.

Let us also note that the obvious way to correspond a rail knotoid diagram to a knotoid diagram
by just forgetting the rails, is not a proper way to correspond equivalent classes of such diagrams
(rail knotoids and knotoids), since for example the rail knotoid of the diagram in Figure ?? is non
trivial (its over companion loop is non trivial) but the corresponding knotoid diagram when we
forget the rails represents the trivial knotoid.

It is reasonable to expect that a better understanding of the similarities and differences between
knotoids and rail knotoids will prove to be fruitful.
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K Ko K ′

Figure 9. For the pictured rail knotoid diagram K, the over companion loop Ko

is non-trivial, but the corresponding knotoid diagram K ′ obtained by forgetting the
rails is trivial.
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