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Abstract

The cosine function is a classical tool for measuring angles in inner product spaces, and

it has various extensions to normed linear spaces. In this paper, we investigate a cosine

function for the convex angle formed by two nonzero elements of a complex normed linear

space, in connection with recent results on the Birkhoff-James approximate orthogonality

sets.
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1 Introduction

The study of angle functions and their use to designate the measure of angles have a long history, especially

in the context of inner product spaces. In the last decades, the problem of extending angle functions

to normed linear spaces in connection with the notion of orthogonality has attracted the attention of

researchers; see [2] and the references therein. To this direction, and motivated by the Birkhoff-James

orthogonality, Szostok [26] introduced the sine function s(χ, ψ) = inf
λ∈R

‖χ+ λψ‖
‖χ‖

for two nonzero elements

χ and ψ of a real normed linear space (V, ‖ · ‖). He also obtained that this function is continuous, and if

the norm ‖ ·‖ is induced by an inner product 〈·, ·〉, then s(χ, ψ) coincides with the standard sine function√
1−

(
〈χ, ψ〉
‖χ‖ ‖ψ‖

)2

. Furthermore, Chmieliński [7] observed that for any ε ∈ [0, 1),
√

1− s(χ, ψ)2 ≤ ε if

and only if s(χ, ψ) ≥
√

1− ε2, or equivalently, if and only if ‖χ + λψ‖ ≥
√

1− ε2 ‖χ‖ for all λ ∈ R,

without discussing further this concept. In this article, we consider complex normed linear spaces, and

describe and study the function
√

1− s(χ, ψ)2 in terms of the Birkhoff-James approximate orthogonality

sets, taking advantage of the geometrical properties and the rich structure of these sets.
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Recall that, if (A, ‖ · ‖) (for simplicity, A) is a unital normed algebra over C, with identity element

1, and A∗ is the dual space of A (i.e., the Banach space of all continuous linear functionals of A), then

the numerical range (also known as the field of values) of an element α ∈ A is defined and denoted by

F (α) = {f(α) : f ∈ A∗, f(1) = 1, ‖f‖ = 1}. This set has been studied extensively for decades, and it is

useful in understanding matrices and operators; see [5, 6, 15, 25] and the references therein. Stampfli and

Williams [25, Theorem 4], and later Bonsall and Duncan [6, Lemma 6.22.1], observed that the numerical

range F (α) coincides with an infinite intersection of closed (circular) disks, namely,

F (α) =
⋂
λ∈C
D (λ, ‖α− λ1‖) , (1)

where, for any scalar λ ∈ C, D (λ, ‖α− λ1‖) = {µ ∈ C : |µ− λ| ≤ ‖α− λ1‖}.

Let (X , ‖ · ‖) (for simplicity, X ) be a complex normed linear space. For two elements χ and ψ of X ,

χ is said to be Birkhoff-James orthogonal to ψ, denoted by χ ⊥BJ ψ, if ‖χ + λψ‖ ≥ ‖χ‖ for all λ ∈ C
[4, 16]. This orthogonality is homogeneous, but it is neither symmetric nor additive [16]. Furthermore,

for any ε ∈ [0, 1), χ is said to be Birkhoff-James ε-orthogonal to ψ, denoted by χ ⊥εBJ ψ, if [7, 12]

‖χ+ λψ‖ ≥
√

1− ε2 ‖χ‖, ∀ λ ∈ C. (2)

The Birkhoff-James ε-orthogonality is also homogeneous. If the norm ‖ · ‖ is induced by an inner product

〈·, ·〉, then a χ ∈ X is said to be ε-orthogonal to a ψ ∈ X , denoted by χ ⊥ε ψ, if |〈χ, ψ〉| ≤ ε ‖χ‖ ‖ψ‖;
apparently, for ε = 0, we get the standard orthogonality. Moreover, for any ε ∈ [0, 1), χ ⊥ε ψ if and only

if χ ⊥εBJ ψ [7, 12].

Motivated by (1) and (2), Chorianopoulos and Psarrakos [9] (for matrices) and Karamanlis and

Psarrakos [18] (for elements of a normed linear space) introduced and studied the following set: For any

χ, ψ ∈ X , with χ 6= 0, and any ε ∈ [0, 1), the Birkhoff-James ε-orthogonality set of ψ with respect to χ

is defined and denoted by1 Fε(ψ;χ) = {µ ∈ C : χ ⊥εBJ (ψ − µχ)} .

The Birkhoff-James ε-orthogonality set Fε(ψ;χ) is a compact and convex subset of the complex

plane, and it contains the origin if and only if χ ⊥εBJ ψ. It is a direct generalization of the numerical

range, and appears to have interesting properties [9, 18, 23] (see Section 2). Moreover, the set valued

function ε 7→ Fε(ψ;χ) is continuous with respect to the Hausdorff metric (see Proposition 2.1 below)

and increasing for χ and ψ not co-linear (see Remark 2.1 in [23]). This behaviour of Fε(ψ;χ) leads in a

natural way to a definition of a cosine for the convex angle formed by span{χ} and span{ψ} (see Sections

3 and 4); in particular, one can define a cosine as the minimum value of parameter ε ∈ [0, 1) such that

0 ∈ Fε(ψ;χ). Remarkably, this cosine function coincides with the function
√

1− s(χ, ψ)2 [7, 26].

Basic properties of the proposed cosine function are derived in Section 5, and the case of semi-inner

product spaces is considered in Section 6. The relation of the new cosine with the Phythagorean cosine

(obtained by the Phythagorean orthogonality and the law of cosines) and the isosceles cosine (obtained by

the isosceles orthogonality) is investigated in Section 7. Finally, in Section 8, the proposed cosine function

is discussed for bounded linear operators, and two characterizations of the Birkhoff-James orthogonality

of bounded linear operators are presented (extending Theorems 2.1 and 2.8 of [24] to the complex case).

1For notational convenience, in this article, we consider the set Fε(ψ;χ) instead of Fε(χ;ψ) which was intro-

duced and studied in [18, 23].
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2 Definition and basic properties of the Birkhoff-James

ε-orthogonality set

Consider a complex normed linear space (X , ‖ · ‖) (for simplicity, X ), and let χ, ψ ∈ X with χ 6= 0. For

any ε ∈ [0, 1), it is straightforward to see that [9, 18, 23]:

Fε(ψ;χ) = {µ ∈ C : χ ⊥εBJ (ψ − µχ)}

=
{
µ ∈ C : ‖χ+ λ(ψ − µχ)‖ ≥

√
1− ε2 ‖χ‖, ∀λ ∈ C

}
=

{
µ ∈ C :

∥∥∥∥χ− 1

λ
(ψ − µχ)

∥∥∥∥ ≥√1− ε2 ‖χ‖, ∀λ ∈ C \ {0}
}

=

{
µ ∈ C :

1

|λ|
‖λχ− (ψ − µχ)‖ ≥

√
1− ε2 ‖χ‖, ∀λ ∈ C \ {0}

}
=

{
µ ∈ C : ‖ψ − (µ− λ)χ‖ ≥

√
1− ε2 ‖χ‖ |λ|, ∀λ ∈ C

}
=

{
µ ∈ C : ‖ψ − λχ‖ ≥

√
1− ε2 ‖χ‖ |µ− λ|, ∀λ ∈ C

}
=

⋂
λ∈C
D
(
λ,
‖ψ − λχ‖√
1− ε2 ‖χ‖

)
. (3)

Corollary 2.2 of [16] implies that Fε(ψ;χ) is always non-empty (see also Proposition 2.1 of [18]), and

the defining formula (3) implies that Fε(ψ;χ) is a compact and convex subset of C that lies in the closed

disk D
(

0,
‖ψ‖√

1− ε2 ‖χ‖

)
. Moreover, for any 0 ≤ ε1 < ε2 < 1, Fε1(ψ;χ) ⊆ Fε2(ψ;χ). The Birkhoff-

James ε-orthogonality set is a direct generalization of the standard numerical range. In particular, for

X = A, χ = 1, ψ = α and ε = 0, we have F0(α;1) = F (α); see (1) and (3).

Let X ∗ denote the dual space of X , i.e., the normed linear space of all continuous linear functionals

of X (using the induced operator norm), and for any χ, ψ ∈ X , with χ 6= 0, and ε ∈ [0, 1), define the set

Lε(χ) =
{
f ∈ X ∗ : f(χ) =

√
1− ε2 ‖χ‖ and ‖f‖ ≤ 1

}
,

which is always non-empty, closed and convex [23, Lemma 2.1]. Then, it holds that [23, Theorem 2.2]

Fε(ψ;χ) =

{
f(ψ)√

1− ε2 ‖χ‖
: f ∈ Lε(χ)

}
. (4)

Let χ, ψ ∈ X with χ 6= 0. For convenience, we summarize some results of [18, 23] (see also [8, 9] for

matrices), describing basic properties of the Birkhoff-James ε-orthogonality set. We also remark that, in

the remainder of the paper, the zero vector is always considered as a scalar multiple of χ.

(P1) For any a, b ∈ C and any ε ∈ [0, 1), Fε(aψ + bχ;χ) = aFε(ψ;χ) + b.

(P2) For any nonzero b ∈ C and any ε ∈ [0, 1), Fε(ψ; bχ) =
1

b
Fε(ψ;χ).

(P3) If ψ is a nonzero element of X , then for any ε ∈ [0, 1),{
µ−1 ∈ C : µ ∈ Fε(ψ;χ), |µ| ≥ ‖ψ‖

‖χ‖

}
⊆ Fε(χ;ψ).
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(P4) Let ‖ ·‖α and ‖ ·‖β be two equivalent norms acting on X , i.e., there exist two real numbers C, c > 0

such that c ‖ζ‖α ≤ ‖ζ‖β ≤ C ‖ζ‖α for all ζ ∈ X , and denote by F
‖·‖α
ε (ψ;χ) and F

‖·‖β
ε (ψ;χ)

the corresponding Birkhoff-James ε-orthogonality sets. Then, for any ε ∈ [0, 1), it holds that

F
‖·‖α
ε (ψ;χ) ⊆ F ‖·‖βε′ (ψ;χ), where ε′ =

√
1− c2(1− ε2)

C2
.

(P5) ψ = aχ for some a ∈ C if and only if Fε(ψ;χ) = {a} for every ε ∈ [0, 1).

(P6) If ψ is not a scalar multiple of χ, then for any 0 ≤ ε1 < ε2 < 1, Fε1(ψ;χ) lies in the interior of

Fε2(ψ;χ).

(P7) If ψ is not a scalar multiple of χ, then for any ε ∈ (0, 1), Fε(ψ;χ) has a non-empty interior.

(P8) If ψ is not a scalar multiple of χ, then for any bounded region Ω ⊂ C, there is an εΩ ∈ [0, 1) such

that Ω ⊆ FεΩ(ψ;χ). (This means that if ψ is not a scalar multiple of χ, then Fε(ψ;χ) can be

arbitrarily large for ε sufficiently close to 1.)

(P9) For any ε ∈ [0, 1), a scalar µ0 ∈ Fε(ψ;χ) lies on the boundary ∂Fε(ψ;χ) if and only if

inf
λ∈C

{
‖ψ − λχ‖ −

√
1− ε2 ‖χ‖ |µ0 − λ|

}
= 0. For ε ∈ (0, 1), infimum can be replaced by minimum,

and in this case, µ0 ∈ ∂Fε(ψ;χ) if and only if ‖ψ − λ0χ‖ =
√

1− ε2 ‖χ‖ |µ0−λ0| for some λ0 ∈ C.

(P10) For any ε ∈ (0, 1),

Int [Fε(ψ;χ)] =
{
µ ∈ C : ‖ψ − λχ‖ >

√
1− ε2 ‖χ‖ |µ− λ|, ∀λ ∈ C

}
.

(P11) If the norm ‖ · ‖ is induced by an inner product 〈·, ·〉, then for any ε ∈ [0, 1),

Fε(ψ;χ) = D
(
〈ψ, χ〉
‖χ‖2

,

∥∥∥∥ψ − 〈ψ, χ〉‖χ‖2
χ

∥∥∥∥ ε√
1− ε2 ‖χ‖

)
.

(P12) For any χ, ψ1, ψ2,∈ X and ε ∈ [0, 1), it holds that Fε(ψ1 + ψ2;χ) ⊆ Fε(ψ1;χ) + Fε(ψ2;χ).

The next result was obtained for matrices in [10], and its proof can be easily applied to arbitrary

normed linear spaces. Moreover, part (a) of this proposition also follows from Property (P12) (yielding a

second direct proof of it).

Proposition 2.1. [10, Theorems 6 and 7] Let χ, ψ ∈ X with χ 6= 0, and ε ∈ [0, 1).

(a) The map ψ 7→ Fε(ψ;χ) is continuous (with respect to the Hausdorff metric).

(b) The map ε 7→ Fε(ψ;χ) is continuous (with respect to the Hausdorff metric).

3 Definition of the Birkhoff-James cosine function

Consider two nonzero vectors χ, ψ ∈ X . If they are not co-linear, then we can define the (positive)

Birkhoff-James cosine of the convex angle formed by span{χ} and span{ψ}:

cosBJ(χ, ψ) = min {ε ∈ [0, 1) : 0 ∈ Fε(ψ;χ)}
= min {ε ∈ [0, 1) : χ ⊥εBJ ψ}

= min
{
ε ∈ [0, 1) : ‖χ− λψ‖ ≥

√
1− ε2 ‖χ‖, ∀ λ ∈ C

}
.
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If χ and ψ are co-linear, then we assume that cosBJ(χ, ψ) = 1.

By the continuity and the monotonicity of the set Fε(ψ;χ) with respect to ε (see Proposition 2.1 (b)

and [23, Remark 2.1]), it follows that the smallest value of the parameter ε ∈ [0, 1), say ε0, that satisfies

0 ∈ Fε0(ψ;χ) is unique. As a consequence, the above cosine is well defined. Moreover, if cosBJ(χ, ψ) = ε0,

then we can define the associate Birkhoff-James sine by

sinBJ(χ, ψ) =

√
1− cosBJ(χ, ψ)

2
=
√

1− ε0
2.

It is clear that, in general, the Birkhoff-James cosine and sine are not symmetric functions of χ and ψ.

Proposition 3.1. Let (X , ‖ · ‖) be a complex normed linear space, and let χ, ψ ∈ X be nonzero.

(i) χ ⊥BJ ψ if and only if cosBJ(χ, ψ) = 0.

(ii) For any scalars a, b ∈ C\{0}, cosBJ(aχ, bψ) = cosBJ(χ, ψ). In particular, for a, b = ±1, cosBJ(χ, ψ) =

cosBJ(−χ, ψ) = cosBJ(−χ,−ψ) = cosBJ(χ,−ψ).

Proof. Suppose χ, ψ ∈ X with χ 6= 0.

(i) Apparently, χ ⊥BJ ψ if and only if 0 ∈ F0(ψ;χ), or equivalently, if and only if cosBJ(χ, ψ) = 0.

(ii) By Properties (P1) and (P2), it follows that Fε(bψ;αχ) =
b

a
Fε(ψ;χ). Hence, 0 ∈ Fε(bψ; aχ) if

and only if 0 ∈ b

a
Fε(ψ;χ), or equivalently, if and only if 0 ∈ Fε(ψ;χ). As a consequence, cosBJ(aχ, bψ) =

cosBJ(χ, ψ).

The definition of the Birkhoff-James cosine is compatible with the standard cosine in inner product

spaces. This follows directly from Remark 2.4 of [26]. Here, we give an independent simple proof which

is based on Property (P11) and the special shape of the Birkhoff-James ε-orthogonality set Fε(ψ;χ).

Theorem 3.2. Let (X , ‖ · ‖) be a complex normed linear space. If the norm ‖ · ‖ is induced by an inner

product 〈·, ·〉, then for any nonzero χ, ψ ∈ X ,

cosBJ(χ, ψ) =
|〈ψ, χ〉|
‖χ‖ ‖ψ‖

.

Proof. Without loss of generality, we assume that the vectors χ and ψ are not co-linear. Then, by

Property (P11), for any ε ∈ [0, 1),

Fε(ψ;χ) = D
(
〈ψ, χ〉
‖χ‖2

,

∥∥∥∥ψ − 〈ψ, χ〉‖χ‖2
χ

∥∥∥∥ ε√
1− ε2 ‖χ‖

)
.

As a consequence, ε0 = min{ε : 0 ∈ Fε(ψ;χ)} if and only if

|〈ψ, χ〉|
‖χ‖2

=

∥∥∥∥ψ − 〈ψ, χ〉‖χ‖2
χ

∥∥∥∥ ε0√
1− ε2

0 ‖χ‖
,

or equivalently, if and only if

|〈ψ, χ〉| =
∥∥‖χ‖2ψ − 〈ψ, χ〉χ∥∥ ε0√

1− ε2
0 ‖χ‖

,
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or equivalently, if and only if

|〈ψ, χ〉|2 =
∥∥‖χ‖2ψ − 〈ψ, χ〉χ∥∥2 ε2

0

(1− ε2
0)‖χ‖2

,

or equivalently, if and only if

(1− ε2
0)‖χ‖2|〈ψ, χ〉|2 =

〈
‖χ‖2ψ − 〈ψ, χ〉χ, ‖χ‖2ψ − 〈ψ, χ〉χ

〉
ε2

0,

or equivalently, if and only if

(1− ε2
0)|〈ψ, χ〉|2 =

(
‖χ‖2‖ψ‖2 − |〈ψ, χ〉|2

)
ε2

0,

or equivalently, if and only if

ε0 =
|〈ψ, χ〉|
‖χ‖ ‖ψ‖

. 2

χ+ λ0ψ

0
span{ψ}

χ χ+ λψ

λ0ψ

λ0ψ

ϕ

Suppose χ, ψ ∈ X are not co-linear, and χ is not Birkhoff-James orthogonal to ψ, i.e., 0 /∈ F0(ψ;χ).

If cosBJ(χ, ψ) = ε0 ∈ (0, 1), then 0 ∈ Fε0(ψ;χ), or equivalently, ‖χ+λψ‖ ≥
√

1− ε0
2 ‖χ‖ for all λ ∈ C.

Furthermore, since ε0 > 0 and 0 ∈ ∂Fε0(ψ;χ), by Property (P9), there exists a nonzero scalar λ0 ∈ C
such that (see the above figure)

‖χ+ λψ‖ ≥ ‖χ+ λ0ψ‖ =
√

1− ε2
0 ‖χ‖, ∀ λ ∈ C,

or equivalently,

‖χ+ λ0ψ + (λ− λ0)ψ‖ ≥ ‖χ+ λ0ψ‖ =
√

1− ε2
0 ‖χ‖, ∀ λ ∈ C,

or equivalently,

(χ+ λ0ψ) ⊥BJ ψ.

As a consequence, √
1− ε2

0 =
‖χ+ λ0ψ‖
‖χ‖

= min
λ∈C

‖χ+ λψ‖
‖χ‖

= sinBJ(χ, ψ),

that is, the sine function which was introduced by Szostok [26].
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Moreover, it is clear that χ and ψ are co-linear if and only if min
λ∈C
‖χ + λψ‖ = 0, or equivalently, if

and only if sinBJ(χ, ψ) = 0, or equivalently, if and only if cosBJ(χ, ψ) = 1.

Remark 3.1. Based on the definition (4) of the Birkhoff-James ε-orthogonality set Fε(ψ;χ), we can

use continuous linear functionals to define the Birkhoff-James cosine:

cosBJ(χ, ψ) = min {ε ∈ [0, 1) : 0 ∈ Fε(ψ;χ)}
= min {ε ∈ [0, 1) : f(ψ) = 0 for some f ∈ Lε(χ)}

= min
{
ε ∈ [0, 1) : f(ψ) = 0 for some f ∈ X ∗ with f(χ) =

√
1− ε2 ‖χ‖ and ‖f‖ ≤ 1}.

If the (nonzero) vectors χ and ψ are not co-linear, and χ is not Birkhoff-James orthogonal to ψ, then

(keeping Proposition 2.4 in [23] in mind) for any ε ∈ (0, 1),

cosBJ(χ, ψ) = min {ε ∈ (0, 1) : 0 ∈ ∂Fε(ψ;χ)}

= min
{
ε ∈ (0, 1) : f(ψ) = 0 for some f ∈ X ∗ with f(χ) =

√
1− ε2 ‖χ‖ and ‖f‖ = 1

}
= min


√

1−
(
f(χ)

‖χ‖

)2

∈ (0, 1) : f ∈ X ∗ with f(ψ) = 0, f(χ) > 0 and ‖f‖ = 1

 .

An optimal continuous linear functional fχ,ψ ∈ X ∗ such that

cosBJ(χ, ψ) =

√
1−

(
fχ,ψ(χ)

‖χ‖

)2

, fχ,ψ(ψ) = 0, fχ,ψ(χ) > 0 and ‖fχ,ψ‖ = 1,

also satisfies

sinBJ(χ, ψ) =
fχ,ψ (χ)

‖χ‖
= max

f∈X∗
‖f‖=1
f(ψ)=0
f(χ)>0

f(χ)

‖χ‖
= max

f∈X∗
‖f‖=1
f(ψ)=0

|f(χ)|
‖χ‖

= min
λ∈C

‖χ+ λψ‖
‖χ‖

,

or equivalently,

fχ,ψ (χ) = max
f∈X∗
‖f‖=1
f(ψ)=0
f(χ)>0

f(χ) = max
f∈X∗
‖f‖=1
f(ψ)=0

|f(χ)| = min
λ∈C
‖χ+ λψ‖.

4 Two illustrative examples

In this section, we present two examples to give insight into the definition of the Birkhoff-James ε-

orthogonality set and the Birkhoff-James cosine. In the second example, we also describe a mechanism

that yields non-smooth points on the boundary of the Birkhoff-James ε-orthogonality set.
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Figure 1: The origin is a smooth point of the boundary ∂F√3
2

(ψ;χ).

Example 4.1. Consider the normed linear space (X , ‖·‖) = (C3, ‖·‖∞), and the unit vectors χ =

 1
2

0

1


and ψ =

 0

1

−1

. It is easy to see that

‖χ+ λψ‖∞ =

∥∥∥∥∥∥
 1

2

λ

1− λ

∥∥∥∥∥∥
∞

= max

{
1

2
, |λ|, |1− λ|

}
≥ 1

2
= ‖χ‖∞

√√√√1−

(√
3

2

)2

, ∀ λ ∈ C,

or equivalently, 0 ∈ F√3
2

(ψ;χ); see Figure 1, where F√3
2

(ψ;χ) is estimated by the unshaded region that

results from having drawn one thousand circles of the defining formula (3). For λ =
1

2
, the equality

follows, and hence, 0 ∈ ∂F√3
2

(ψ;χ). Moreover, for every ε <

√
3

2
and for λ =

1

2
, it holds

1

2
=

∥∥∥∥∥∥
 1

2
1
2
1
2

∥∥∥∥∥∥
∞

=

∥∥∥∥∥∥
 1

2 + 1
2 · 0

0 + 1
2 · 1

1 + 1
2 · (−1)

∥∥∥∥∥∥
∞

=

∥∥∥∥χ+
1

2
ψ

∥∥∥∥
∞
< ‖χ‖∞

√
1− ε2.

Thus, we conclude that

cosBJ(χ, ψ) =

√
3

2
and sinBJ(χ, ψ) =

1

2
=

min
λ∈C
‖χ+ λψ‖∞

‖χ‖∞
.

We also observe that ‖χ+λψ‖∞ =
1

2
if and only if max

{
1

2
, |λ|, |1− λ|

}
=

1

2
, or equivalently, if and only

if |λ| ≤ 1

2
and |1−λ| ≤ 1

2
. Hence, λ0 =

1

2
is the only scalar that satisfies ‖χ+λ0ψ‖∞ = min

λ∈C
‖χ+λψ‖∞.

Despite the uniqueness of λ0, cosBJ(χ, ψ) =

√
3

2
6= 1

2
=
‖λ0ψ‖∞
‖χ‖∞

. This means that essentially we cannot

have a direct geometrical implementation for the Birkhoff-James cosine, as the ratio of the adjacent side

to the hypotenuse.
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Figure 2: The origin is a non-smooth point of the boundary ∂F√3
2

(ψ;χ).

Example 4.2. Consider the normed linear space (X , ‖·‖) = (C3, ‖·‖∞), and the unit vectors χ =

 1
2

0

1


and ψ =

 0
1
2

−1

. Then,

‖χ+ λψ‖∞ =

∥∥∥∥∥∥
 1

2
λ
2

1− λ

∥∥∥∥∥∥
∞

= max

{
1

2
,
|λ|
2
, |1− λ|

}
≥ 1

2
= ‖χ‖∞

√√√√1−

(√
3

2

)2

, ∀ λ ∈ C,

or equivalently, 0 ∈ F√3
2

(ψ;χ); see Figure 2, where F√3
2

(ψ;χ) is again estimated by the unshaded region.

For λ = 1, we get the equality ‖χ + ψ‖∞ =
1

2
, and thus, 0 ∈ ∂F√3

2

(ψ;χ). Moreover, for every ε <

√
3

2
and for λ = 1, we have

1

2
=

∥∥∥∥∥∥
 1

2
1
2

0

∥∥∥∥∥∥
∞

=

∥∥∥∥∥∥
 1

2 + 1 · 0
0 + 1 · 1

2

1 + 1 · (−1)

∥∥∥∥∥∥
∞

= ‖χ+ ψ‖∞ < ‖χ‖∞
√

1− ε2.

As a consequence,

cosBJ(χ, ψ) =

√
3

2
and sinBJ(χ, ψ) =

1

2
=

min
λ∈C
‖χ+ λψ‖∞

‖χ‖∞
.

We also observe that ‖χ+ λψ‖∞ =
1

2
if and only if max

{
1

2
,

∣∣∣∣λ2
∣∣∣∣ , |1− λ|} =

1

2
, or equivalently, if and

only if |λ| ≤ 1 and |1−λ| ≤ 1

2
. Hence, for every λ0 ∈ {λ ∈ C : |λ| ≤ 1}∩

{
λ ∈ C : |1− λ| ≤ 1

2

}
(i.e., for

all scalars in the intersection of the two circular disks), we get ‖χ + λ0ψ‖∞ = min
λ∈C
‖χ + λψ‖∞. For the

same scalars, the ratio
‖λ0ψ‖∞
‖χ‖∞

takes all the values in the interval
[

1
2 , 1
]
. Thus, it is no use comparing

9



cosBJ(χ, ψ) =

√
3

2
and

‖λ0ψ‖∞
‖χ‖∞

, and it is verified that we cannot have a geometric implementation for

the cosine cosBJ(χ, ψ) as we have for the sine sinBJ(χ, ψ).

Figure 3: The set F√3
2

(ψ;χ) (left), and circles with centers on the arc Θ
(
0, 1, 1

2

)
− 1 and radii equal to

1, which illustrate F√3
2

(ψ;χ) (right).

Figure 4: The set F√3
2

(ψ;χ) (left), and circles with centers on the arcs Θ
(
0, 1, 1

2

)
− 1 and

1

2

[
Θ
(
0, 1, 1

2

)
− 1
]
, which illustrate F√3

2

(ψ;χ) (right).

In this example, it is worth mentioning that

0 ∈ F√3
2

(ψ;χ) =
⋂
λ∈C
D
(
λ,
‖ψ − λχ‖∞

1
2‖χ‖∞

)
=
⋂
λ∈C
D (λ,max {|λ|, 1, 2|1 + λ|}) .

So, if Θ
(
0, 1, 1

2

)
denotes the arc of the circle C(1, 1) with center at 1 and radius equal to 1 that lies in the

disk D
(
0, 1

2

)
with center at the origin and radius equal to

1

2
, then for every λ ∈ Θ

(
0, 1, 1

2

)
− 1, it follows

max{|λ|, 1, 2|λ + 1|} = |λ| = 1. As a consequence, there is an infinite number of circles with centers on

Θ
(
0, 1, 1

2

)
−1 and radii equal to 1, which illustrate the region F√3

2

(ψ;χ) and pass through the origin (see

Figures 3 and 4). Thus, the origin is a corner of F√3
2

(ψ;χ).
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5 Properties of the Birkhoff-James cosine function

In this section, we obtain some basic properties of the Birkhoff-James cosine function. As above, we

consider a complex normed linear space X .

Proposition 5.1. The map (χ, ψ) 7→ cosBJ(χ, ψ), (χ, ψ) ∈ (X \ {0})× (X \ {0}), is continuous.

Proof. By Theorem 2.5 of [26] (which holds for complex normed linear spaces), the sine function sinBJ(χ, ψ)

is continuous. Hence, the cosine function cosBJ(χ, ψ) =
√

1− sinBJ(χ, ψ)2 is also continuous.

Remark 5.1. Suppose that the dimension of the normed linear space X is greater than or equal to three.

Then, the cosine is symmetric, i.e., cosBJ(χ, ψ) = cosBJ(ψ, χ) for all nonzero χ, ψ ∈ X , if and only if the

norm ‖ · ‖ is induced by an inner product. Indeed, if cosBJ(χ, ψ) = cosBJ(ψ, χ) for all χ, ψ ∈ X \ {0},
then cosBJ(χ, ψ) = 0 if and only if cosBJ(ψ, χ) = 0. This means that χ ⊥BJ ψ if and only if ψ ⊥BJ χ,

or equivalently, the norm ‖ · ‖ is induced by an inner product [11, 17]. The converse is obvious.

Proposition 5.2. The norm ‖ · ‖ is induced by an inner product if and only if for every nonzero vectors

χ, ψ ∈ X , it holds that

cosBJ(χ, ψ) =

∣∣‖χ‖2 + ‖ψ‖2 − ‖χ− ψ‖2
∣∣

2 ‖χ‖ ‖ψ‖
.

Proof. Let χ and ψ be any two nonzero vectors of X , and suppose

cosBJ(χ, ψ) =

∣∣‖χ‖2 + ‖ψ‖2 − ‖χ− ψ‖2
∣∣

2 ‖χ‖ ‖ψ‖
.

If χ is Birkhoff-James orthogonal to ψ, then

cosBJ(χ, ψ) =

∣∣‖χ‖2 + ‖ψ‖2 − ‖χ− ψ‖2
∣∣

2 ‖χ‖ ‖ψ‖
= 0,

or equivalently, ‖χ‖2 + ‖ψ‖2 = ‖χ − ψ‖2. This means that the Birkhoff-James orthogonality yields the

Pythagorean orthogonality, and hence, the norm ‖ · ‖ is induced by an inner product [1, 11, 22].

Conversely, if the norm ‖ ·‖ is induced by an inner product, then it is apparent that the law of cosines

holds.

Proposition 5.3. If χ, ψ ∈ X \ {0} are not co-linear, then, for any ε0 ∈ (0, 1), there are infinitely many

scalars µ0 ∈ C such that cosBJ(χ, ψ−µ0χ) = ε0. In particular, these scalars µ0 are exactly the boundary

points of the set Fε0(ψ;χ).

Proof. Consider an ε0 ∈ (0, 1). For any µ0 ∈ ∂Fε0(ψ;χ), 0 ∈ ∂Fε0(ψ − µ0χ;χ) by Property (P1), and

thus, cosBJ(χ, ψ−µ0χ) = ε0. Moreover, the set Fε0(ψ;χ) is compact and convex. So, since the vectors χ

and ψ are not co-linear, Fε0(ψ;χ) is not a singleton and has an infinite number of boundary points.

Proposition 5.4. If χ, ψ ∈ X \ {0} are not co-linear, then

sinBJ(χ, χ± ψ) ≤ ‖ψ‖
‖χ‖

and cosBJ(χ, χ± ψ) ≥

√∣∣∣∣1− ‖ψ‖2‖χ‖2

∣∣∣∣.
11



Proof. Suppose cosBJ(χ, χ±ψ) = ε0 < 1. Then 0 ∈ Fε0(χ±ψ;χ), or equivalently, χ ⊥ε0BJ (χ±ψ). Thus,

‖χ+λ(χ±ψ)‖ ≥
√

1− ε0
2 ‖χ‖ for all λ ∈ C. For λ = −1, it follows ‖ψ‖ ≥

√
1− ε0

2 ‖χ‖, or equivalently,

sinBJ(χ, χ± ψ) ≤ ‖ψ‖
‖χ‖

. The second inequality is obvious.

Next we obtain that, if a triangle has two sides of the same length, then the Birkhoff-James cosines of

the corresponding angles (keeping the vectors in a specific order due to the lack of symmetry) are equal.

Proposition 5.5. If χ, ψ ∈ X \ {0} are not co-linear and satisfy ‖ψ − χ‖ = ‖ψ‖, then cosBJ(ψ, χ) =

cosBJ(ψ − χ, χ).

Proof. Assume that cosBJ(ψ, χ) = ε1 and cosBJ(ψ − χ, χ) = ε2. Then, by definition, 0 ∈ Fε1(χ, ψ), and

hence, ψ ⊥ε1BJ χ. As a consequence,

‖ψ − λχ‖ ≥
√

1− ε1
2 ‖ψ‖, ∀ λ ∈ C,

or equivalently,

‖ψ − χ− (λ− 1)χ‖ ≥
√

1− ε1
2 ‖ψ‖, ∀ λ ∈ C,

or equivalently,

‖(ψ − χ)− λχ‖ ≥
√

1− ε1
2 ‖ψ − χ‖, ∀ λ ∈ C.

Thus, ψ − χ ⊥ε1BJ χ, i.e., 0 ∈ Fε1(χ;ψ − χ), and hence,

cosBJ(ψ − χ, χ) = ε2 = min {ε ∈ [0, 1) : 0 ∈ Fε(χ;ψ − χ)} ≤ ε1 = cosBJ(ψ, χ).

Considering ψ−χ and −χ instead of ψ and χ, respectively, and keeping Proposition 3.1 (ii) in mind, one

can verify that cosBJ(ψ, χ) ≤ cosBJ(ψ − χ, χ).

Remark 5.2. If cosBJ(χ + ψ, χ − ψ) = 0 for every χ, ψ ∈ X with ‖χ‖ = ‖ψ‖ = 1, then by [1, p. 33]

and [11], it follows that the norm ‖ · ‖ is induced by an inner product; i.e., (X , ‖ · ‖) is an inner product

space if and only if the two diagonals of any rhombus are Birkhoff-James orthogonal.

Remark 5.3. Consider two nonzero vectors χ, ψ ∈ X such that χ ⊥BJ ψ, or equivalently, 0 ∈ F 0
‖·‖(ψ;χ).

Suppose also that there is a real ρ0 > 0 such that D(0, ρ0) ⊆ F 0
‖·‖(ψ;χ) (i.e., the origin lies in the interior

of F 0
‖·‖(ψ;χ)). Then, by the relation D(0, ρ0) ⊆ F 0

‖·‖(ψ;χ) =
⋂
λ∈C
D
(
λ,
‖ψ − λχ‖
‖χ‖

)
⊆ D

(
0,
‖ψ − 0χ‖
‖χ‖

)
,

it follows that ρ0 ≤
‖ψ‖
‖χ‖

, and for every λ ∈ C,
‖ψ − λχ‖
‖χ‖

≥ |λ| + ρ0. As a consequence, ρ0 ≤

inf
λ∈C

{
‖ψ − λχ‖
‖χ‖

− |λ|
}
≤ min

λ∈C

‖ψ − λχ‖
‖χ‖

=
‖ψ‖
‖χ‖

sinBJ(ψ;χ). So, if χ ⊥BJ ψ and D(0, ρ0) ⊆ F 0
‖·‖(ψ;χ),

then
‖χ‖
‖ψ‖

ρ0 ≤ sinBJ(ψ;χ) ≤ 1, or equivalently, 0 ≤ cosBJ(ψ;χ) ≤

√
1−

(
‖χ‖
‖ψ‖

ρ0

)2

.

More generally, suppose that 0 ∈ Fε(ψ;χ) for some ε ∈ [0.1), and that there is a real ρε > 0

such that D(0, ρε) ⊆ Fε(ψ;χ). Then one can similarly see that ρε ≤
‖ψ‖√

1− ε2 ‖χ‖
and cosBJ(ψ, χ) ≤√

1−
(
‖χ‖
‖ψ‖

ρε

)2

(1− ε2).
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Let ‖·‖α and ‖·‖β be two equivalent norms on a linear space X , and let C and c be two positive numbers

such that c ‖ζ‖α ≤ ‖ζ‖β ≤ C‖ζ‖α for all ζ ∈ X . By Property (P4), for any ε ∈ [0, 1), F
‖·‖α
ε (ψ;χ) ⊆

F
‖·‖β
ε′ (ψ;χ), where ε′ =

√
1− c2(1− ε2)

C2
. Moreover, denoting by cos

‖·‖α
BJ (χ, ψ) and cos

‖·‖β
BJ (χ, ψ) the

corresponding cosine functions, and by sin
‖·‖α
BJ (χ, ψ) and sin

‖·‖β
BJ (χ, ψ) the corresponding sine functions,

the following holds:

Proposition 5.6. For any nonzero vectors χ, ψ ∈ X ,

sin
‖·‖α
BJ (χ, ψ) ≤ c

C
sin
‖·‖β
BJ (χ, ψ).

Proof. Let ε1 = cos
‖·‖α
BJ (χ, ψ) and ε2 =

√
1− c2(1− ε2)

C2
. Then, 0 ∈ F ‖·‖αε1 (ψ;χ) ⊆ F

‖·‖β
ε2 (ψ;χ), and

thus, cos
‖·‖β
BJ (χ, ψ) ≤ ε2. As a consequence,

cos
‖·‖β
BJ (χ, ψ)

2
≤ 1− c2(1− ε1

2)

C2
,

or

C2(cos
‖·‖β
BJ (χ, ψ)

2
− 1) ≤ −c2

(
1− cos

‖·‖α
BJ (χ, ψ)

2)
,

or

C2(1− cos
‖·‖β
BJ (χ, ψ)

2
) ≥ c2

(
1− cos

‖·‖α
BJ (χ, ψ)

2)
,

or
C

c
≥

sin
‖·‖α
BJ (χ, ψ)

sin
‖·‖β
BJ (χ, ψ)

. 2

6 Semi-inner product

Recall that a map [·, ·] : X × X −→ C is said to be a semi-inner product if it satisfies the following

properties [13, 14, 19]:

1. [ψ,ψ] ≥ 0 for every ψ ∈ X , and [ψ,ψ] = 0 if and only if ψ = 0;

2. [aψ, χ] = a[ψ, χ] for every ψ, χ ∈ X and a ∈ C;

3. [ψ, aχ] = a[ψ, χ] for every ψ, χ ∈ X and a ∈ C;

4. [ψ + ζ, χ] = [ψ, χ] + [ζ, χ] for every ψ, ζ, χ ∈ X ;

5. |[ψ, χ]|2 ≤ [ψ,ψ] [χ, χ] for every ψ, χ ∈ X .

By Lummer [19] and Giles [14], in any normed linear space X , one can find a (not necessarily unique)

semi-inner product [·, ·] which generates the given norm ‖ · ‖, i.e., [ζ, ζ] = ‖ζ‖2 for all ζ ∈ X . This

semi-inner product is uniquely defined exactly when all the sets F0(ψ;χ) (χ 6= 0) are singletons (see the

next theorem and remark).
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Theorem 6.1. Let X be a complex normed linear space, and suppose that for every χ, ψ ∈ X with χ 6= 0,

the set F0(ψ;χ) is a singleton, say F0(ψ;χ) = {µ(ψ, χ)}. Then the map

[ψ, χ] =

{
µ(ψ, χ)‖χ‖2, if χ 6= 0,

0, if χ = 0

is a semi-inner product.

Proof. Using basic properties of F0(ψ;χ), one can verify the conditions of the above definition:

1. Since by (4), F0(ψ;ψ) =

{
f(ψ)

‖ψ‖
: f ∈ L0(ψ)

}
= {1}, it follows that [ψ,ψ] = ‖ψ‖2 ≥ 0, and

[ψ,ψ] = 0 if and only if ψ = 0.

2. Consider a scalar a ∈ C, and observe that a[ψ, χ] = aµ(ψ, χ)‖χ‖2 and [aψ, χ] = µ(aψ, χ)‖χ‖2,

where F0(aψ;χ) = {µ(aψ, χ)}. By Property (P1), the proof of the second condition follows readily.

3. For a = 0, the third condition holds trivially. Consider a nonzero scalar a ∈ C, and observe that

a[ψ, χ] = aµ(ψ, χ)‖χ‖2 and [ψ, aχ] = µ(ψ, aχ)‖aχ‖2 = |a|2µ(ψ, aχ)‖χ‖2, where F0(ψ; aχ) = {µ(ψ, aχ)}.

It is enough to see that aµ(ψ, χ) = |a|2µ(ψ, aχ), or equivalently, µ(ψ, aχ) =
µ(ψ, χ)

a
. The latter equality

follows directly from Property (P2).

4. For any ψ, ζ, χ ∈ X , with χ 6= 0, it holds µ(ψ+ζ, χ) =
f(ψ + ζ)

‖χ‖
=
f(ψ)

‖χ‖
+
f(ζ)

‖χ‖
= µ(ψ, χ)+µ(ζ, χ).

5. Clearly, |[ψ, χ]| = |µ(ψ, χ)| ‖χ‖2 ≤ ‖ψ‖
‖χ‖
‖χ‖2 = ‖χ‖‖ψ‖.

Apparently, the semi-inner product defined in the above theorem is an inner product if and only if

µ(ψ, χ)‖χ‖2 = µ(χ, ψ)‖ψ‖2 for every nonzero χ, ψ ∈ X .

Moreover, it is worth mentioning that Theorem 6.1 also follows by Theorem 2 in [14].

Remark 6.1. By Theorem 48 in [13] and Theorem 4.2 in [16], the Birkhoff-James orthogonality is right

additive (i.e., χ ⊥BJ ψ and χ ⊥BJ ζ yield χ ⊥BJ (ψ + ζ)) if and only if F0(ψ;χ) is a singleton for any

χ, ψ ∈ X (χ 6= 0), or equivalently, if and only if the normed linear space X is smooth.

Example 6.1. Consider the linear space C3 with the norm ‖ · ‖3, and for any vectors χ =

 χ1

χ2

χ3

 and

ψ =

 ψ1

ψ2

ψ3

, define

[ψ, χ] =


1

‖χ‖3
∑

1≤i≤3

χi|χi|ψi, if χ 6= 0,

0, if χ = 0.

Then, [ψ, χ] is a semi-inner product. Indeed, for any χ =

 χ1

χ2

χ3

 , ψ =

 ψ1

ψ2

ψ3

 , ζ =

 ζ1
ζ2
ζ3

 ∈ C3 \ {0}

and a ∈ C, the first four conditions of the definition are obtained by straightforward computations, and

14



for the fifth condition, we have:

|[ψ, χ]|
‖χ‖3

=
1

‖χ‖23

∣∣∣∣∣∣
∑

1≤i≤3

χi |χi|ψi

∣∣∣∣∣∣
≤ 1

‖χ‖23

∑
1≤i≤3

|χi| |χi| |ψi|

≤ 1

‖χ‖23

 ∑
1≤i≤3

(
|χi|2

) 3
2

 2
3
 ∑

1≤i≤3

|ψi|3
 1

3

= ‖ψ‖3,

where the last inequality follows by the Hölder inequality for p =
3

2
and q = 3.

The normed linear space (C3, ‖ · ‖3) is smooth [20, Corollary 5.5.17], and thus, the above semi-inner

product is the only semi-inner product induced by the norm ‖·‖3. Hence, it coincides with the semi-inner

product of Theorem 6.1, that is,

µ(ψ, χ)‖χ‖23 = [ψ, χ] =
1

‖χ‖3

∑
1≤i≤3

χi|χi|ψi (χ 6= 0).

As a consequence,

µ(ψ, χ) =
1

‖χ‖33

∑
1≤i≤3

χi|χi|ψi (χ 6= 0).

For the vectors χ =

 1

0

0

 and ψ =

 1

0

1

, we have χ ⊥0
BJ (ψ − χ) and µ(ψ, χ) = 1; indeed,

‖χ+ λ(ψ − χ)‖3 = (1 + |λ|3)
1
3 ≥ 1 = ‖χ‖3 for all λ ∈ C. It is also straightforward to see that

fχ(ζ) =
1

‖χ‖23

∑
1≤i≤3

χi|χi|ζi = ζ1

is a continuous linear functional in L0(χ) = {f ∈ X ∗ : f(χ) = ‖χ‖3 = 1 and ‖f‖3 = 1} and satisfies

fχ(ψ − µ(ψ, χ)χ) = fχ(ψ − χ) = 0. Hence, 1 = µ(ψ, χ) =
fχ(ψ)

fχ(χ)
=
fχ(ψ)

‖χ‖3
. Moreover,

[ψ, χ] =
1

‖χ‖3

∑
1≤i≤3

χi|χi|ψi = 1 = ‖χ‖23,

verifying Theorem 6.1.

Finally, we observe that for every scalar λ ∈ C,

‖χ+ λψ‖3 =

∥∥∥∥∥∥
 1 + λ

0

λ

∥∥∥∥∥∥
3

=
(
|1 + λ|3 + |λ|3

) 1
3

≥
3
√

2

2
=

3
√

2

2
‖χ‖3 =

√√√√√1−

1−

(
3
√

2

2

)2
 ‖χ‖3.
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For λ = − 1

2
,

∥∥∥∥χ− 1

2
ψ

∥∥∥∥
3

=

∥∥∥∥∥∥
 1

2

0

− 1
2

∥∥∥∥∥∥
3

=

(
1

8
+

1

8

) 1
3

=
3
√

2

2
=

3
√

2

2
‖χ‖3. By Property (P9), for

ε =

√√√√1−

(
3
√

2

2

)2

, 0 ∈ ∂Fε(ψ;χ), and thus, cosBJ(χ, ψ) =

√√√√1−

(
3
√

2

2

)2

= 0.776. This cosine is

different than
|[ψ, χ]|
‖ψ‖3 ‖χ‖3

=
1
3
√

2
= 0.7936, as expected by the discussion in [7].

7 Relation with other cosine functions

Inspired by the Phythagorean orthogonality and the law of cosines, in [27], Wilson introduced the P -cosine

between two non-zero vectors χ, ψ ∈ X to be

cosP (χ, ψ) =
‖χ‖2 + ‖ψ‖2 − ‖χ− ψ‖2

2‖χ‖ ‖ψ‖
;

see also [2]. Clearly, this cosine is symmetric but not homogeneous. Moreover, by Proposition 5.2, its

absolute value coincides with the Birkhoff-James cosine if and only if the norm is induced by an inner

product.

Proposition 7.1. Let χ and ψ be two nonzero vectors of a complex normed linear space X . Then,

cosP (χ, ψ) ≤ ‖ψ‖
2‖χ‖

+ cosBJ(χ, ψ)
2 ‖χ‖

2‖ψ‖
.

Proof. Without loss of generality, assume that ‖χ‖2 + ‖ψ‖2 ≥ ‖χ − ψ‖2. Let cosBJ(χ, ψ) = ε0 < 1.

Then, 0 ∈ Fε0(ψ;χ) and χ ⊥ε0BJ ψ. Hence, ‖χ− λψ‖ ≥
√

1− ε0
2 ‖χ‖ for all λ ∈ C, and thus (for λ = 1),

−‖χ− ψ‖2 ≤ −(1− ε0
2)‖χ‖2. As a consequence,

0 ≤ cosP (χ, ψ) =
‖χ‖2 + ‖ψ‖2 − ‖χ− ψ‖2

2‖χ‖ ‖ψ‖

≤ ‖χ‖2 + ‖ψ‖2 − (1− ε0
2)‖χ‖2

2‖χ‖ ‖ψ‖

=
‖ψ‖
2‖χ‖

+
cosBJ(χ, ψ)

2‖χ‖
2‖ψ‖

. 2

By the above proposition, it follows that if cosBJ(χ, ψ) = 0, then cosP (χ, ψ) ≤ ‖ψ‖
2‖χ‖

, or equivalently,

‖χ‖ ≤ ‖χ− ψ‖.

Consider now the I-cosine

cosI(χ, ψ) =
‖χ+ ψ‖2 − ‖χ− ψ‖2

4‖χ‖ ‖ψ‖
,

which follows from the isosceles orthogonality [2]. The I-cosine is also symmetric, and its absolute value

coincides with the Birkhoff-James cosine if and only if the norm is induced by an inner product [22].
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Proposition 7.2. Let χ and ψ be two nonzero vectors of a complex normed linear space X . Then,

cosI(χ, ψ) ≤ ‖χ+ ψ‖2 − ‖χ‖2

4‖χ‖ ‖ψ‖
+ cosBJ(χ, ψ)

2 ‖χ‖
4‖ψ‖

and

cosI(χ, ψ) ≥ ‖χ‖
2 − ‖χ− ψ‖2

4‖χ‖ ‖ψ‖
− cosBJ(χ, ψ)

2 ‖χ‖
4‖ψ‖

.

Proof. Let cosBJ(χ, ψ) = ε0. Then, 0 ∈ Fε0(ψ;χ) and χ ⊥ε0BJ ψ. As a consequence, ‖χ − λψ‖ ≥√
1− ε0

2 ‖χ‖ for all λ ∈ C. For λ = 1, it follows ‖χ− ψ‖2 ≥ (1− ε0
2) ‖χ‖2, and thus,

cosI(χ, ψ) =
‖χ+ ψ‖2 − ‖χ− ψ‖2

4‖χ‖ ‖ψ‖

≤ ‖χ+ ψ‖2 − (1− ε0
2)‖χ‖2

4‖χ‖ ‖ψ‖

=
‖χ+ ψ‖2 − ‖χ‖2

4‖χ‖ ‖ψ‖
+ cosBJ(χ, ψ)

2 ‖χ‖
4‖ψ‖

.

For λ = −1, it follows ‖χ+ ψ‖2 ≥ (1− ε0
2) ‖χ‖2, and hence,

cosI(χ, ψ) =
‖χ+ ψ‖2 − ‖χ− ψ‖2

4‖χ‖ ‖ψ‖

≥ (1− ε0
2)‖χ‖2 − ‖χ− ψ‖2

4‖χ‖ ‖ψ‖

=
‖χ‖2 − ‖χ− ψ‖2

4‖χ‖ ‖ψ‖
− cosBJ(χ, ψ)

2 ‖χ‖
4‖ψ‖

. 2

8 Cosines of operators

Consider two complex normed linear spaces X and Y, and let T,A : X −→ Y be two (nonzero) bounded

linear operators. Let also χ, ψ ∈ X be nonzero, and recall the following cosines:

cosBJ(Tχ, Tψ) = min {ε ∈ [0, 1) : Tχ ⊥εBJ Tψ}

= min
{
ε ∈ [0, 1) : ‖Tχ− λTψ‖ ≥

√
1− ε2 ‖Tχ‖, ∀λ ∈ C

}
,

cosBJ(Tχ,Aχ) = min {ε ∈ [0, 1) : Tχ ⊥εBJ Aχ}

= min
{
ε ∈ [0, 1) : ‖Tχ− λAχ‖ ≥

√
1− ε2 ‖Tχ‖, ∀λ ∈ C

}
,

and

cosBJ(T,A) = min {ε ∈ [0, 1) : T ⊥εBJ A}

= min
{
ε ∈ [0, 1) : ‖T − λA‖ ≥

√
1− ε2 ‖T‖, ∀λ ∈ C

}
.

Moreover, for any χ ∈ X and r ≥ 0, denote by SX (χ, r) and BX (χ, r) the sphere and the ball in X with

center at χ and radius equal to r, respectively.
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Recall that a bounded linear operator U : X −→ Y is called a δ-isometry for some δ ∈ (0, 1) if for

every χ ∈ X , (1− δ)‖χ‖ ≤ ‖Uχ‖ ≤ (1 + δ)‖χ‖. Note that if a bounded linear operator T : X −→ Y is

a scalar multiple of a 0-isometry, then the definitions imply readily that cosBJ(Tχ, Tψ) = cosBJ(χ, ψ).

For general δ-isometries, we have the following result (see also [21]).

Proposition 8.1. Let T : X −→ Y be a scalar multiple of a δ-isometry. Then, for any nonzero vectors

χ, ψ ∈ X ,

cosBJ(Tχ, Tψ) ≤

√
1−

(
1− δ
1 + δ

)2

sinBJ(χ, ψ)
2
.

Proof. Let cosBJ(χ, ψ) = ε0, and let T = cU for some δ-isometry U and c ∈ C. Then, χ ⊥ε0BJ ψ, and

hence, for every λ ∈ C,

‖Tχ− λTψ‖ = ‖T (χ− λψ)‖ = ‖cU(χ− λψ)‖
≥ |c|(1− δ)‖χ− λψ‖ ≥ |c|(1− δ)

√
1− ε0

2 ‖χ‖

≥ |c| (1− δ)
(1 + δ)

√
1− ε0

2 ‖Uχ‖ =
√

1− ρ2 ‖Tχ‖,

where ρ =

√
1−

(
1− δ
1 + δ

)2

(1− ε2
0) =

√
1−

(
1− δ
1 + δ

)2

sinBJ(χ, ψ)
2
.

Following the notation of [24], for a bounded linear operator T , we denote by MT the set of all

vectors in SX (0, 1) at which T attains its norm. For a finite dimensional Hilbert space H, Bhatia and

Šemrl [3, Theorem 1.1] proved that for any two bounded linear operators T,A : H −→ H, T ⊥BJ A if

and only if there exists a χ ∈ MT such that Tχ ⊥BJ Aχ. Next, we extend the sufficiency part of this

result.

Proposition 8.2. Let T,A : X −→ Y be two bounded linear operators, and let {χn}n∈N ⊆ SX (0, 1) be

a sequence of unit vectors such that ‖Tχn‖ −→ ‖T‖. Then, cosBJ(T,A) ≤ sup
n∈N

cosBJ(Tχn, Aχn).

Proof. Suppose that sup
n∈N

cosBJ(Tχn, Aχn) < 1, and there is an ε0 ∈ [0, 1) such that cosBJ(Tχn, Aχn) ≤

ε0 for all n ∈ N. Then, for every n ∈ N, it holds that Tχn ⊥ε0BJ Aχn, or

‖Tχn − λAχn‖ ≥
√

1− ε0
2 ‖Tχn‖, ∀ λ ∈ C,

or

‖T − λA‖ ≥
√

1− ε0
2 ‖Tχn‖, ∀ λ ∈ C.

By continuity, since ‖Tχn‖ −→ ‖T‖, it follows

‖T − λA‖ ≥
√

1− ε0
2 ‖T‖, ∀ λ ∈ C.

Hence, T ⊥ε0BJ A and cosBJ(T,A) ≤ ε0.

Corollary 8.3. Let T,A : X −→ Y be two bounded linear operators.
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(i) If MT 6= ∅, then for any χ ∈MT , cosBJ(T,A) ≤ cosBJ(Tχ,Aχ).

(ii) If {χn}n∈N ⊆ SX (0, 1) is a sequence of unit vectors such that ‖Tχn‖ −→ ‖T‖, and Tχn ⊥BJ Aχn
for all n ∈ N, then T ⊥BJ A.

(iii) If MT 6= ∅ and there exists a χ ∈MT such that Tχ ⊥BJ Aχ, then T ⊥BJ A.

We conclude this section (and paper) by extending two characterizations of the Birkhoff-James or-

thogonality of bounded linear operators defined on real normed linear spaces [24, Theorems 2.1 and 2.8]

(see also the references in [24]) to the complex case. For two vectors χ, ψ ∈ X and two scalars θ ∈ [0, 2π]

and ε ∈ [0, 1), we say that ψ ∈ χ(θ,ε) if ‖χ+ (eiθr)ψ‖ ≥
√

1− ε2‖χ‖ for all r ≥ 0. Apparently, for any

ε ∈ [0, 1), χ ⊥εBJ ψ if and only if ψ ∈ χ(θ,ε) for all θ ∈ [0, 2π]. If ψ ∈ χ(θ,ε) for some θ ∈ [0, 2π] and

ε ∈ [0, 1), then aψ ∈ (bχ)(θ,ε) for any a, b ≥ 0. Moreover, for every θ, φ ∈ [0, 2π] with 0 < φ ≤ θ ≤ 2π,

‖χ+ (eiθr)ψ‖ = ‖χ+ (ei(θ−φ)r)eiφψ‖, and thus, ψ ∈ χ(θ,ε) if and only if eiφψ ∈ χ(θ−φ,ε).

Lemma 8.4. Consider two vectors χ, ψ ∈ X and two scalars θ ∈ [0, 2π] and r0 > 0 such that

‖χ+ (eiθr0)ψ‖ < ‖χ‖. Then, for every r ∈ (0, r0], ‖χ+ (eiθr)ψ‖ < ‖χ‖.

Proof. By hypothesis, ‖χ+ (eiθr0)ψ‖ < ‖χ‖. For any r ∈ (0, r0], it holds that

‖χ+ (eiθr)ψ‖ =

∥∥∥∥(r0 − r
r0

)
χ+

(
r

r0

)
χ+

(
r

r0

)
(eiθr0)ψ

∥∥∥∥
≤

(
r0 − r
r0

)
‖χ‖+

(
r

r0

)
‖χ+ (eiθr0)ψ‖

<

(
r0 − r
r0

)
‖χ‖+

(
r

r0

)
‖χ‖ = ‖χ‖. 2

Proposition 8.5. Consider two vectors χ, ψ ∈ X . Then, for any θ ∈ [0, π], ψ ∈ χ(θ,0) or ψ ∈ χ(θ+π,0).

Proof. Suppose that ψ /∈ χ(θ,0) and ψ /∈ χ(θ+π,0). This means that there are two complex numbers λθ =

eiθrθ and λθ+π = ei(θ+π)rθ+π, with rθ, rθ+π > 0, such that ‖χ+λθψ‖ < ‖χ‖ and ‖χ+λθ+πψ‖ < ‖χ‖.
By Lemma 8.4, if r̂ = min{rθ, rθ+π} > 0, then for every r ∈ [−r̂, 0)∪ (0, r̂], ‖χ+(eiθr)ψ‖ < ‖χ‖ (where,

for any r ∈ [−r̂, 0) ∪ (0, r̂], −r also lies in [−r̂, 0) ∪ (0, r̂]). As a consequence,

‖χ‖ =

∥∥∥∥1

2
(χ+ (eiθr)ψ) +

1

2
(χ+ (−eiθr)ψ)

∥∥∥∥
≤ 1

2
‖χ+ (eiθr)ψ‖+

1

2
‖χ+ (−eiθr)ψ‖

<
1

2
‖χ‖+

1

2
‖χ‖ = ‖χ‖,

which is a contradiction.

Finally, we extend Theorems 2.1 and 2.8 of [24] to complex normed linear spaces.

Theorem 8.6. Consider a reflexive complex Banach space X and a complex normed linear space Y.

Let T,A : X −→ Y be two compact linear operators. Then, T ⊥BJ A if and only if, for any θ ∈ [0, 2π],

there is a vector χθ ∈MT such that Aχθ ∈ (Tχθ)
(θ,0).
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Proof. Suppose that for any θ ∈ [0, 2π], there is a vector χθ ∈MT such that Aχθ ∈ (Tχθ)
(θ,0). Then for

every θ ∈ [0, 2π] and r ≥ 0, ‖T + (reiθ)A‖ ≥ ‖(T + (reiθ)A)χθ‖ ≥ ‖Tχθ + (reiθ)Aχθ‖ ≥ ‖Tχθ‖ = ‖T‖,
i.e., T ⊥BJ A.

For the converse, we follow the arguments of the proof of Theorem 2.1 in [24], replacing the operators

T + 1
nA and T + λA (λ ≥ 0) by the operators T + 1

ne
iθA and T + (eiθr)A (r ≥ 0), respectively.

Remark 8.1. Let X be a reflexive complex Banach space and Y be a complex normed linear space. Let

also T,A : X −→ Y be two compact linear operators with cosBJ(T,A) = ε0 > 0. Then 0 ∈ ∂Fε0(A, T ),

or equivalently, there is a scalar λ0 ∈ C such that

‖T + λ0A‖ = min
λ∈C
‖T + λA‖ =

√
1− ε0

2‖T‖ = sinBJ(T,A)‖T‖.

Hence, (T +λ0A) ⊥BJ A, and by Theorem 8.6, for any θ ∈ [0, 2π], there is a vector χθ ∈MT+λ0A such

that Aχθ ∈ [(T + λ0A)χθ]
(θ,0). Equivalently, for any θ ∈ [0, 2π], there is a χθ ∈ SX (0, 1) such that for

every r > 0,

‖Tχθ + (λ0 + eiθr)Aχθ‖ ≥ ‖Tχθ + λ0Aχθ‖ = ‖T + λ0A‖ = sinBJ(T,A)‖T‖.

Theorem 8.7. Consider two complex normed linear spaces X , Y, and let T,A : X −→ Y be two

nonzero bounded linear operators. Then, T ⊥BJ A if and only if one of the following holds:

(i) There exists a sequence {χn}n∈N ⊆ SX (0, 1) such that ‖Tχn‖ −→ ‖T‖ and ‖Aχn‖ −→ 0.

(ii) For any θ ∈ [0, 2π], there is a sequence of vectors {χθ,n}n∈N ⊆ SX (0, 1) and a sequence of real

numbers {εθ,n}n∈N ⊆ (0, 1) such that

(a) εθ,n −→ 0,

(b) ‖Tχθ,n‖ −→ ‖T‖, and

(c) Aχθ,n ∈ (Tχθ,n)(θ,εθ,n) for all n ∈ N.

Proof. Suppose that (i) holds. Then for every λ ∈ C, ‖T +λA‖ ≥ ‖Tχn +λAχn‖ ≥ ‖Tχn‖− |λ| ‖Aχn‖.
For n −→ +∞, it follows ‖T + λA‖ ≥ ‖T‖, and hence, T ⊥BJ A.

Suppose that (ii) holds, and let θ ∈ [0, 2π]. Then there exist two sequences {χθ,n}n∈N ⊆ SX (0, 1)

and {εθ,n}n∈N ⊆ (0, 1) such that (a)–(c) are satisfied. Then, for every r ≥ 0, ‖T + (eiθr)A‖ ≥ ‖Tχθ,n +

(eiθr)Aχθ,n‖ ≥
√

1− εθ,n2‖Tχθ,n‖. For n −→ +∞, it follows ‖T + (eiθr)A‖ ≥ ‖T‖ for all r ≥ 0. Since

the latter inequality holds for any θ ∈ [0, 2π], T ⊥BJ A.

For the converse, we follow the arguments of the proof of Theorem 2.8 in [24], replacing the operators

T + 1
nA and T + λA (λ ≥ 0) by the operators T + 1

ne
iθA and T + (eiθr)A (r ≥ 0), respectively.
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