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Abstract: In this note, given a matrix A ∈ Cn×n (or a general matrix polynomial P(z), z ∈ C) and
an arbitrary scalar λ0 ∈ C, we show how to define a sequence {µk}k∈N which converges to some
element of its spectrum. The scalar λ0 serves as initial term (µ0 = λ0), while additional terms are
constructed through a recursive procedure, exploiting the fact that each term µk of this sequence
is in fact a point lying on the boundary curve of some pseudospectral set of A (or P(z)). Then, the
next term in the sequence is detected in the direction which is normal to this curve at the point
µk. Repeating the construction for additional initial points, it is possible to approximate peripheral
eigenvalues, localize the spectrum and even obtain spectral enclosures. Hence, as a by-product
of our method, a computationally cheap procedure for approximate pseudospectra computations
emerges. An advantage of the proposed approach is that it does not make any assumptions on the
location of the spectrum. The fact that all computations are performed on some dynamically chosen
locations on the complex plane which converge to the eigenvalues, rather than on a large number of
predefined points on a rigid grid, can be used to accelerate conventional grid algorithms. Parallel
implementation of the method or use in conjunction with randomization techniques can lead to
further computational savings when applied to large-scale matrices.

Keywords: pseudospectra; eigenvalues; matrix polynomial; perturbation; Perron root; large-scale
matrices; approximation algorithm

1. Introduction

The theory of pseudospectra originates in numerical analysis and can be traced back
to Landau [1], Varah [2], Wilkinson [3], Demmel [4], and Trefethen [5], motivated by the
need to obtain insights into systems evolving in ways that the eigenvalues alone could
not explain. This is especially true in problems where the underlying matrices or linear
operators are non-normal or exhibit in some sense large deviations from normality. A better
understanding of such systems can be gained through the concept of pseudospectrum,
which, for a matrix A ∈ Cn×n and a positive parameter ε > 0, was introduced as the subset
of the complex plane that is bounded by the ε−1–level set of the norm of the resolvent∥∥(µI − A)−1

∥∥. A second definition stated in terms of perturbations characterizes the
elements of this set as eigenvalues of some perturbation A + E with ‖E‖ ≤ ε. In this sense,
the notion of pseudospectrum provides information that goes beyond eigenvalues, while
retaining the advantage of being a natural extension of the spectral set. In fact, for different
values of magnitude ε, pseudospectrum provides a global perspective on the effects of
perturbations; this is in stark contrast to the concept of condition number, where only the
worst-case scenario is considered.

On one hand, pseudospectrum may be used as a visualization tool to reveal informa-
tion regarding the matrix itself and the sensitivity of its eigenvalues. Applications within
numerical analysis include convergence of nonsymmetric matrix iterations [6], backward
error analysis of eigenvalue algorithms [7], and stability of spectral methods [8]. On the
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other hand, it is a versatile tool that has been used to obtain quantitative bounds on the
transient behavior of differential equations in finite time, which may deviate from the
long-term asymptotic behavior [9]. Important results involving pseudospetra have been
also been obtained in the context of spectral theory and spectral properties of banded
Toeplitz matrices [10,11]. Although emphasis has been placed on the standard eigen-
problem, attention has also been drawn to matrix pencils [12] and more general matrix
polynomials [13,14] arising in vibrating systems, control theory, etc. For a comprehensive
overview of this research field and its applications, the interested reader may refer to [15].

In this note, we propose an application of pseudospectral sets as a mean to obtain
eigenvalue estimates in the vicinity of some complex scalar. In particular, given a matrix
(or a general matrix polynomial) and a scalar λ0 ∈ C, we construct a sequence {µk}k∈N that
converges to some element of its spectrum. The scalar λ0 serves as initial term (µ0 = λ0),
while additional terms are constructed through an iterative procedure, exploiting the fact
that each term µk of this sequence is in fact a point lying on the boundary curve of some
pseudospectral set. Then, the next term in the sequence is detected in the perpendicular
direction to the tangent line at the point µk. Repeating the construction for a tuple of
initial points encircling the spectrum, several peripheral eigenvalues are approximated.
Since the pseudospectrum may be disconnected, this procedure allows the identification
of individual connected components and, as a by-product, a convenient and numerically
efficient procedure for approximate pseudospectrum computation emerges. Moreover, this
approach is clearly amenable to parallelization or randomization and can lead to significant
computational savings when applied to probems involving large–scale matrices.

Our paper is organized as follows. In Section 2, we provide the necessary theoret-
ical background on the method and provide examples for the constant matrix case. As
confirmed by numerical experiments, the method can provide a sufficiently accurate pseu-
dospectrum computation at a much-reduced computational cost, especially in cases where
the spectrum is convexly independent (i.e., each eigenvalue does not lie in the convex
hull of the others) or exhibits large eigenvalue gaps. A second application of the method
on Perron-root approximation for non–negative matrices is presented. Then, Section 3
shows how the procedure may be modified to estimate the spectrum of more general
matrix polynomials. Numerical experiments showcasing the application of the method on
damped mass–spring and gyroscopic systems conclude the paper.

2. Eigenvalues via Pseudospectra

Let the matrix A ∈ Cn×n with spectrum σ(A) = {µ ∈ C : det(µI − A) = 0}, where
det(·) denotes the determinant of a matrix. With respect to the ‖·‖2–norm, the pseudospectrum
of A is defined by

σε(A) =

{
µ ∈ C :

1
‖(µI − A)−1‖2

≤ ε

}
=
{

µ ∈ C : µ ∈ σ(A + E) for some E ∈ Cn×n with ‖E‖ ≤ ε
}

= {µ ∈ C : smin(µI − A) ≤ ε},

where smin(·) denotes the smallest singular value of a matrix and ε > 0 is the maximum
norm of admissible perturbations.

For every choice of increasing positive parameters 0 < ε1 < ε2 < ε3 < . . . , the
corresponding closed, strictly nested sequence of pseudospectra

σε1(A) ⊂ σε2(A) ⊂ σε3(A) ⊂ . . .
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is obtained. In fact, the respective boundaries satisfy the inclusions

∂σε1(A) ⊆ {µ ∈ C : smin(µI − A) = ε1}
∂σε2(A) ⊆ {µ ∈ C : smin(µI − A) = ε2}
∂σε3(A) ⊆ {µ ∈ C : smin(µI − A) = ε3}

...
...

It is also clear that, for any λ ∈ σ(A), smin(λI − A) = 0.
Our objective now is to exploit the properties of these sets to detect an eigenvalue

of A in the vicinity of a given scalar λ0 ∈ C\σ(A). This given point of interest may
be considered to lie on the boundary of some pseudospectral set, i.e., there exists some
non–negative parameter ε̂1 > 0, such that

λ0 ∈ ∂σε̂1(A) ⊆ {µ ∈ C : smin(µI − A) = ε̂1}. (1)

Indeed, points satisfying the equality smin(µI − A) = ε for some ε > 0 and lying in the
interior of σε(A) are finite in number. Thus, in the generic case, we may think of the
inclusion (1) as an equality.

We consider the real–valued function gA : C→ R+ with gA(z) = smin(zI − A). In the
process of formulating a curve-tracing algorithm for pseudospectrum computation [16],
Brühl analyzed gA(z) and, identifying C ≡ R2, noted that its differentiability is explained
by the following Theorem in [17]:

Theorem 1. Let the matrix valued function P(χ) : Rd → Cn×n be real analytic in a neighborhood
of χ0 =

(
x1

0, . . . , xd
0

)
and let σ0 a simple nonzero singular value of P(χ0) with u0, v0 its associated

left and right singular vectors, respectively.
Then, there exists a neighborhood N of χ0 on which a simple nonzero singular value σ(χ)

of P(χ) is defined with corresponding left and right singular vectors u(χ) and v(χ), respectively,
such that σ(χ0) = σ0, u(χ0) = u0, v(χ0) = v0 and the functions σ, u, v are real analytic on N .
The partial derivatives of σ(χ) are given by

∂s(χ0)

∂χj = Re
(

u∗0
∂P(χ0)

∂χj v0

)
, j = 1, . . . , d.

Hence, recalling (1) and assuming ε̂1 is a simple singular value of the matrix P(λ0) =
λ0 I − A, then

∇smin(zI − A)
∣∣
z=λ0

= (Re(v∗minumin), Im(v∗minumin)) = v∗minumin,

where umin and vmin denote the left and right singular vectors of λ0 I − A associated to
ε̂1 = smin(λ0 I − A), respectively [16] (Corollary 2.2).

On the other hand, if λ is an eigenvalue of A near λ0, it holds |λ− λ0| ≤ ε̂1. The
latter observation follows from the fact that

σε(A) ⊇ σ(A) + D(0, ε)

= {z ∈ C : dist(z, σ(A)) ≤ ε},

where D(0, ε) = {z ∈ C : |z| ≤ ε} and equality holds for normal matrices. So, the scalar

µ1 = λ0 − ε̂1 ·
∇smin(zI − A)

|∇smin(zI − A)|

∣∣∣∣∣
z=λ0

= λ0 − smin(λ0 I − A) · vmin(λ0)
∗umin(λ0)

|vmin(λ0)∗umin(λ0)|
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can be considered to be an estimate of eigenvalue λ. In particular, λ0 ∈ ∂σε̂1(A) and µ1 lies
in the interior of σε̂1(A). Moreover, the sequence

µ0 = λ0

µ1 = µ0 − smin(µ0 I − A) · vmin(µ0)
∗umin(µ0)

|vmin(µ0)∗umin(µ0)|

µ2 = µ1 − smin(µ1 I − A) · vmin(µ1)
∗umin(µ1)

|vmin(µ1)∗umin(µ1)|
...

...

µk = µk−1 − smin(µk−1 I − A) · vmin(µk−1)
∗umin(µk−1)

|vmin(µk−1)∗umin(µk−1)|
(2)

converges to λ.
The above process requires the computation of the triplet

(smin(µk I − A), umin(µk), vmin(µk))

at every point µk; see [18].
Remark. To avoid the computational burden of computing the (left and right) singular

vectors, a cheaper alternative would be to consider at each iteration (k = 0, 1, 2, . . . ) the
canonical octagon with vertices

pk,j = µk + ei(j π
4 ) · smin(µk I − A), j = 0, 1, 2, . . . 7

instead and simply compute

θk,j = smin

(
pk,j I − A

)
, j = 0, 1, 2, . . . 7.

In this case, instead of (2), we can set

µk+1 = µk + ei(j0 π
4 ) · θk,j0

with j0 such that

θk,j0 = min
j=0,1,2,...,7

θk,j = min
j=0,1,2,...,7

(
smin

(
pk,j I − A

))
.

2.1. Numerical Experiments
2.1.1. Pseudospectrum Computation

The approximating sequences in (2) may be utilized to implement a computationally
cheap procedure to visualize matrix pseudospectra, at least in cases where the order of
the matrix is small or when its spectrum exhibits large eigenvalue gaps. Several related
techniques for pseudospectrum computation have appeared in the literature. These fall
largely into two categories: grid [14] and path-following algorithms [16,19–21]. Grid
algorithms begin by evaluating the function smin(zI − A) on a predefined grid on the
complex plane and lead to a graphical visualization of the boundary ∂σε(A) by plotting
the ε-contours of smin(zI − A). This approach faces two severe challenges; namely, the
requirement of a–priori information on the location of the spectrum to correctly identify
a suitable region to discretize, as well as the typically large number of grid points the
computations have to be performed upon. path-following algorithms, on the other hand,
require an initial step to detect a starting point on the curve ∂σε(A) and then proceed to
compute additional boundary points for each connected component of σε(A). The main
drawbacks of this latter approach lie in the difficulty in performing the initial step and
the need to correctly identify every connected component of σε(A) in order to repeat
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the procedure and properly trace its boundary. Moreover, cases where pseudospectrum
computation is required for a whole tuple of parameters ε drastically compromise the
efficiency of path-following algorithms.

Our approach is to use the approximating sequences (2) to decrease the number of
singular value evaluations and therefore speed up the computation of pseudospectra. The
basic steps are outlined as follows:

i. Select a tuple of initial points
{

µ
j
0

}s

j=1
∈ C encircling the spectrum; for instance, these

can be chosen on the circle {z ∈ C : |z| = ‖A‖}.
ii. Construct eigenvalue approximating sequences

{
µ

j
k

}nj

k=0
(j = 1, . . . , s), as in (2). If

ε
j
k > 0 (k = 1, . . . , nj) are such that µ

j
k ∈ ∂σ

ε
j
k
(A), the length nj of each sequence is

determined, so that smin(µ
j
nj I − A) ≤ ε0 for all j = 1, . . . , s, where ε0 is some prefixed

parameter value. In other words, ε0 indicates the tolerance with which the approached
by the constructed sequences eigenvalues should be approximated and corresponds
to the minimum parameter for which pseudospectra will be computed.

iii. Classify the sequences into distinct clusters, according to the proximity of their final
terms. This step may be performed using a k-means clustering algorithm, using a
suitable criterion to evaluate the optimal number of groups.

iv. Compute

u = min
j=1,...,s

max
j=1,...,nj

ε
j
k(> ε0) and ` = max

j=1,...,s
min

j=1,...,nj
ε

j
k(< ε0).

v. If necessary, repeat the procedure for t additional points between the centroids of the
detected clusters, constructing additional sequences, so that

min
j=s+1,...,s+t

max
j=1,...,nj

ε
j
k > u and max

j=s+1,...,s+t
min

j=1,...,nj
ε

j
k < `.

vi. Detect boundary points of σε(A) for any choice of parameters ε ∈ [`, u] along the
polygonal chains formed by the total of s + t constructed sequences of points by
interpolation.

vii. Fit closed spline curves passing through the respective sets of boundary points in
∂σε(A) for the various choices of ε ∈ [`, u] to obtain sketches of the corresponding
pseudospectra σε(A).

The proposed method successfully localizes the spectrum, initiating the procedure
with a restricted number of points. Then, singular value computations are kept to a
minimum by considering points only on the constructed sequences. Pseudospectrum
components corresponding to peripheral eigenvalues λ /∈ co(σ(A)\{λ}) not in the convex
hull of the other eigenvalues, are thus extremely easy to identify. This approach is also
well–suited to cases, where the matrix has convexly independent spectrum; i.e., when λ /∈
co(σ(A)\{λ}), for every λ ∈ σ(A). Moreover, it is clearly amenable to parallelization,
which could lead to significant computational savings in cases of large matrices.

Application 1. We consider a random matrix A ∈ C6×6, the sole constraint being that its
eigenvalues are distant form each other; the real and imaginary parts of its entries follow the
standardized normal distribution scaled by 104. For the proposed procedure, we select initial points{

µ
j
0

}10

j=1
⊂ {z ∈ C : |z| = ‖A‖1} and exploit the fact that the corresponding sequences

{
µ

j
k

}nj

k=0
generated as in (2) converge to some element of σ(A). The number nj of terms in each sequence

(j = 1, . . . 10) is determined, so that all values
{

smin(µ
j
nj I − A)

}10

j=1
do not exceed ε0 = 0.5. The

sequences are organized into distinct clusters, grouping together those sequences which approximate
the same element of σ(A). This grouping is performed using a k-means clustering algorithm, where
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the optimal number of clusters is evaluated via the silhouette criterion and using a distance metric
based on the sum of absolute differences between points. Since six different groups are identified,
clearly all elements of σ(A) have been sufficiently approximated by at least one of the sequences.
For an illustration, refer to Figure 1a; different colors have been used to differentiate between
polygonal chains corresponding to distinct clusters. The construction so far required 914 singular
value computations. Having calculated all parameter values ε

j
k such that µ

j
k ∈ ∂σ

ε
j
k
(A) during the

previous procedure, it is possible to interpolate between these known points along the trajectories

formed by
{

µ
j
k

}nj

k=0
(j = 1, . . . 10) to approximate boundary points of ∂σε(A) for selected values

ε > ε0 = 0.5. Since all ten trajectories converge to eigenvalues from points encircling σ(A), to
obtain better pseudospectra approximations, it is necessary to repeat the procedure for additional
suitably selected points. Hence, for each cluster we consider three additional points; see Figure 1b. In
particular, denoting c1, . . . c6 the centroids of the clusters, for each j we consider the three centroids{

cj,k

}3

k=1
which lie closest to cj and take the convex combinations

pj
k =

1
6

(
5cj + cj,k

)
, k = 1, 2, 3.

Then, additional sequences corresponding to these extra points are constructed so that the desired
parameter values of ε for which pseudospectra should be computed (in this instance, the triple of
ε = 1, 5, 10 ∈ [`, u]) may be interpolated within these trajectories, as for the ten initial ones. This
imposes an extra cost of 1170 additional singular value computations (2084 in total). The resulting
approximations of the pseudospectra components identified by the upper left corner trajectories for
ε = 1, 5, 10 are depicted in greater detail in Figure 1c; the relevant eigenvalue is indicated by “*”.

An advantage of this procedure is that it does not require some a–priori knowledge
of the initial region Ω on the complex plane where the spectrum is located. In fact, the
very nature of this specific example, whose spectrum covers a wide area Ω, would render
computations on a suitable grid impractical. Another way in which this method diverges
from conventional grid algorithms is in that the computations are performed on a dynami-
cally chosen set of points, iteratively selected as the corresponding trajectories converge to
peripheral eigenvalues and identify the relevant pseudospectrum components, rather than
on a large number of predefined points on a rigid grid.

Application 2. To demonstrate how the procedure works in cases of larger matrices, in this
application we examine the matrix A = 10−7 · Pores2, where Pores2 is a 1024× 1024 matrix from
the Harwell-Boeing sparse matrix collection [22] related to a non–symmetric computational fluid
dynamics problem. Here, the factor 10−7 is used for scaling purposes and is related to the norm–‖·‖1
order of the matrix under consideration. Initiating the procedure with 30 equidistributed points on
the circle

{
z ∈ C : |z| = 1

2‖A‖1

}
, the method required a total of 810 singular value computations

for a minimum parameter value of ε0 = 0.005; the resulting pseudospectra visualizations for
ε = 10−1, 10−1.5, 10−2 are depicted in Figure 2. For this example, we have opted not to introduce
additional points.
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(a) Trajectories of 10 sequences converging to σ(A).

(b) Additional interior points (red circles) and relevant trajectories (solid black lines).

(c) Pseudospectrum component in the upper left side for ε = 1, 5, 10.

Figure 1. Pseudospectrum computation for random A ∈ C6×6 with spectral gaps, using 10 ini-
tial points.



Mathematics 2021, 9, 1729 8 of 18

Figure 2. Pseudospectra computations for a non–symmetric sparse matrix of order 1024 from the
Harwell-Boeing collection and ε = 10−1, 10−1.5, 10−2.

Perron root computation. Applications of non–negative matrices, i.e., matrices with
exclusively non–negative real entries, abound in such diverse fields as probability theory,
dynamical systems, Internet search engines, tournament matrices etc. In this context,
the dominant eigenvalue of non–negative matrices, also referred to as Perron root, is of
central importance. Localization of the Perron root has been extensively studied in the
literature; relevant bounds can be found in [23–27]. Its computation is typically carried out
using the power method; the convergence rate of this approach depends on the relative
magnitudes of the two dominant eigenvalues. Relevant methods have appeared in [28–30],
among others. As a second application of the approximating sequences (2), the following
experiment reports an elegant way of approximating Perron roots.

Application 3. For this experiment, we considered a tuple of 50 non–negative matrices {A`}50
`=1 ⊂

R500×500
+ with uniformly distributed entries in (0, 50). The symmetry of σε(A`) with respect to

the real axis suggests that it suffices to restrict the computations exclusively to the closed upper
half–plane. Hence, for each of the matrices A`, we initiated the construction of the sequences (2)

from equidistributed initial terms
{

µ
`,j
0

}10

j=1
⊂
{

z ∈ C : |z| = 104 · ‖A`‖1, Im(z) ≥ 0
}

(` =

1, . . . 50). As expected, the rightmost of these points formed sequences converging to the Perron
root of A`, while each of the remaining ones approximated some other peripheral eigenvalue. In
the generic case, the magnitude of the second highest eigenvalue of A` was much smaller than
the Perron root. Figure 3 is illustrative of this separation; the blue curve traces the boundary of
the numerical range of such a matrix, red points indicate its eigenvalues, while the cyan lines

correspond to the trajectories of the constructed sequences. Denoting
{

µ
`,j
k

}n`,j

k=0
(j = 1, . . . , s`)

those sequences approximating the Perron root λ` ∈ σ(A`) (` = 1, . . . , 50), then the relative error

in each iteration

∣∣∣µ`,j
k −λ`

∣∣∣
|λ` |

, k = 0, 1, . . . , min(n`,j), decreases rapidly, even though the initial points

µ
`,j
0 (j = 1, . . . , s`) were chosen to be extremely remote from σ(A`). Averages

1
`

50

∑
`=1

1
s`

s`

∑
j=1

∣∣∣µ`,j
k − λ`

∣∣∣
|λ`|

of these relative approximation errors over the tuple of matrices for the first k = 1, 2, . . . , 5 iter-
ations are demonstrated in the first column of Table 1, verifying that a reliable estimate for the
Perron root may in the generic case be obtained after the computation of as few as 3 terms in the
corresponding trajectories.
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The remaining (10− s`) sequences converge to some other peripheral eigenvalues λ`,1, . . . , λ`,s` ∈
σ(A`), reasonable approximations of which require a rather larger number of iterations, as can be seen
from the second column of Table 1 reporting.

1
`

50

∑
`=1

1
10− s`

10

∑
j=s`+1

∣∣∣µ`,j
k − λ`,j

∣∣∣∣∣∣λ`,j

∣∣∣ .

Figure 3. Indicative numerical range of 500× 500 non–negative matrix and 10 approximating trajectories.

Table 1. Relative approximation errors for Perron root and other peripheral eigenvalues of 500× 500
non–negative matrices.

# of Mean Rel. Error Mean Rel. Error
Iterations (Perron Root) (Other Eigenvalues)

1 0.0011 0.4205
2 7.0082×10−7 0.1783
3 4.4907× 10−10 0.1030
4 2.8798× 10−13 0.0680
5 9.2285× 10−16 0.0483

Application 3 suggests that any reasonable upper bound µ0 ∈ R suffices to yield reli-
able estimations for the Perron root after computation of only 2–3 terms in the sequence (2).

The previous experiment may seem excessively optimistic. Indeed, there can be
instances when the situation is much more demanding.

Application 4. The Frank matrix is well–known to have ill-conditioned eigenvalues. For this
application, we test the behavior of the proposed method on the Frank matrix of order 32, the
normalized matrix of eigenvectors of which has condition number 7.81× 1011. Figure 4 depicts the
resulting pseudospectra visualizations for ε = 0.001, 0.005, 0.01, 0.02, 0.03, initiating the procedure
from 30 points located on the upper semiellipse centered at (40, 0) with semi–major and semi–minor
axes lengths equal to 70 and 15, respectively. The depicted trajectories were constructed, so that
the final terms in each polygonal chain lie within σ0.001(A). Then, according to the distances of
the final terms of consecutive sequences, at most two additional points are introduced on the line
segment connecting these respective final terms. The necessary iterations for the construction of the
relevant sequences are reported in Table 2 for different numbers of initial points.

The approximating quality of the sequences is much compromised when compared to the
generic case, requiring many more iterations, especially for the eigenvalues with smallest real parts;
these are also the most ill-conditioned ones. In fact, the seven rightmost sequences converging to
the Perron root (refer to Figure 4) display the fastest convergence, the second group of thirteen
sequences leading to the intermediate eigenvalues being somewhat more compromised, while the
leftmost sequences naturally exhibit even more diminished approximation quality. Mean relative
approximation errors for these three groups are reported in Table 3.
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Figure 4. Pseudospectra computation for the Frank matrix of order 32 and ε = 0.001, 0.005, 0.01, 0.02,
0.03. Additional points selected between the endpoints of the initial sequences are denoted by red
circles, while eigenvalues are denoted by red stars.

Table 2. Number of iterations for different numbers of initial points (ε0 = 0.001).

# of Initial Points 10 15 30

Iterations (initial points) 11,206 18,455 35,159
Iterations (additional points) 16,116 14,872 11,883

Iterations (total) 27,322 33,327 47,042

Table 3. Relative approximation errors for Perron root and other eigenvalues of the Frank matrix of
order 32.

# of Mean Rel. Error
Mean Rel. Error Mean Rel. Error

Iterations (Perron Root) (Intermediate
Eigenvalues)

(Leftmost
Eigenvalues)

1 0.0916 0.2795 11.0866
100 0.0373 0.1507 5.7968
200 0.0192 0.1206 5.3541
300 0.0103 0.1103 5.1174
400 0.0055 0.0956 4.9582
500 0.0029 0.0843 4.8652

For the numerical experiments in this section, we have restricted ourselves to initial
points encircling the spectrum. Another option would be to use our method in tandem
with randomization techniques for the initial points selection.

3. Matrix Polynomials

The derivation of eigenvalue approximating sequences may be readily extended to
account for the general matrix polynomial case

P(λ) = Amλm + Am−1λm−1 + · · ·+ A1λ + A0,

where λ ∈ C and Aj ∈ Cn×n (j = 0, 1, . . . , m), with Am 6= 0. Recall that the spectrum
of P(λ) is the set of all its eigenvalues; i.e., σ(P) = {λ ∈ C : det P(λ) = 0}. For a scalar
λ0 ∈ σ(P), the nonzero solutions v0 ∈ Cn to the system P(λ0)v0 = 0 are the eigenvectors of
P(λ) corresponding to λ0.

The ε–pseudospectrum of P(λ) was introduced in [14] for a given parameter ε > 0 and
a set of nonnegative weights w ∈ Rm+1

+ as the set

σε,w(P) =
{

λ ∈ C : det P∆(λ) = 0,
∥∥∆j

∥∥ ≤ εwj, j = 0, 1, . . . , m
}

(3)
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of eigenvalues of all admissible perturbations P∆(λ) of P(λ) of the form

P∆(λ) = (Am + ∆m)λ
m + (Am−1 + ∆m−1)λ

m−1 + · · ·+ (A1 + ∆1)λ + (A0 + ∆0),

where the norms of the matrices ∆j ∈ Cn×n (j = 0, 1, . . . , m) satisfy the specified (ε, w)-
related constraints. In contrast to the constant matrix case, a whole tuple of perturbing
matrices ∆j is involved, which explains the presence of the additional parameter vector
w in the definition of σε,w(P). However, considering for some A ∈ Cn×n the pencil
P(λ) = Inλ− A, note that (3) reduces to the usual ε–pseudospectrum of the matrix A ∈ Cn×n

for the choice of w = {w0, w1} = {1, 0}, since

σε,{1,0}(P) = {λ ∈ C : det(Inλ− (A + ∆0)) = 0, ‖∆0‖ ≤ ε} = σε(A).

In the general case, the nonnegative weights
{

wj
}m

j=0 allow freedom in how perturbations
are measured; for example, in an absolute sense when w0 = w1 = · · · = wm = 1, or in a
relative sense when wj =

∥∥Aj
∥∥ (j = 0, 1, . . . , m). On the other hand, the choice ε = 0 leads

to σ0,w(P) = σ(P).
From a computational viewpoint, a more convenient characterization [14] (Lemma 2.1)

for this set is given by

σε,w(P) = {λ ∈ C : smin(P(λ)) ≤ εqw(|λ|)},

where smin(P(λ)) is the minimum singular value of the matrix P(λ) and the scalar polynomial

qw(λ) = wmλm + wm−1λm−1 + · · ·+ w1λ + w0,

is defined in terms of the weights
{

wj
}m

j=0 used in the definition (3) of σε,w(P). In fact,

since the eigenvalues of P∆(λ) are continuous with respect to the entries of its coefficient
matrices, the boundary of σε,w(P) is expressed as

∂σε,w(P) ⊆ {λ ∈ C : smin(P(λ)) = εqw(|λ|)}; (4)

the equality smin(P(λ)) = εqw(|λ|) is satisfied for some ε > 0 only for a finite number of
points λ ∈ int(σε,w(P)).

Suppose now that we want to approximate an eigenvalue of a matrix polynomial
which lies in the neighborhood of some point of interest µ0 ∈ C\σ(P) on the complex
plane. Expression (4) suggests that the derivation of a convergent sequence in Section 2
may be readily adapted for our purposes. Indeed, for every scalar µ0 ∈ C, there exists some

ε̂1 > 0, such that µ0 ∈ ∂σε̂1,w and then (4) implies ε̂1 =
smin(P(µ0))

qw(|µ0|)
. Moreover, assuming

smin(P(µ0)) is a simple singular value of the matrix P(µ0), we may invoke Theorem 1
to conclude that the function gP : C → R+ with gP(z) = smin(P(z)) is real analytic in a
neighborhood of µ0 = x0 + iy0. In fact,

∇gP(x0 + iy0) =

(
Re
(

u∗min
∂P(x0 + iy0)

∂x
vmin

)
, Re
(

u∗min
∂P(x0 + iy0)

∂y
vmin

))
,

where umin and vmin denote the left and right singular vectors of P(µ0) associated to
smin(P(µ0)) = ε̂1qw(|µ0|), respectively [13] (Corollary 4.2).

As in the constant matrix case, moving from the initial point µ0 ∈ ∂σε̂1,w towards the
interior of σε̂1,w in the normal direction to the curve ∂σε̂1,w, the scalar

µ1 = µ0 − ε̂1 ·
∇[smin(P(z))− ε̂1qw(|z|)]
|∇[smin(P(z))− ε̂1qw(|z|)]|

∣∣∣∣∣
z=x0+iy0
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with ε̂1 =
smin(P(µ0))

qw(|µ0|)
can be considered to be an estimate of some eigenvalue λ ∈ σ(P).

In this way, a convergent sequence {µk}k∈N to the eigenvalue λ ∈ σ(P) is recursively
defined with initial point µ0 and general term

µk = µk−1 −
smin(P(µk−1))

qw(|µk−1|)
· ∇[smin(P(z))− ε̂k−1qw(|z|)]
|∇[smin(P(z))− ε̂k−1qw(|z|)]|

∣∣∣∣∣
z=µk−1=xk−1+iyk−1

. (5)

Numerical Experiments

The steps outlined in Section 2.1.1 are readily modified using the sequences in (5) to
yield spectral enclosures for matrix polynomials.

Application 5 ([31], Example 3). We consider the 50× 50 matrix polynomial P(λ) = A2λ2 +
A1λ + A0, where

A2 = I50, A1 = tridiag{−3, 9,−3}, A0 = tridiag{−5, 15,−5},

describing a damped mass-spring system [14,32] and set non-negative weights w = {1, 1, 1},
measuring perturbations of the coefficient matrices

{
Aj
}2

j=0 in an absolute sense. We initiate the

procedure with 15 equidistributed initial points
{

µ
j
0

}15

j=1
on the semicircle

{
z ∈ C : |z| = 15

(
= medianj=0,1,2

(∥∥Aj
∥∥

1

))
, Im(z) ≥ 0

}
and proceed to determine eigenvalue approximating sequences

{
µ

j
k

}nj

k=0
(j = 1, . . . 15) according

to (5), so that their final terms all lie in the interior of σ0.01,w(P). This computation requires
722 iterations. As in the constant matrix case, interpolation between the values of ε

j
k such that

µ
j
k ∈ ∂σ

ε
j
k ,w

(P) along the trajectories formed by
{

µ
j
k

}nj

k=0
(j = 1, . . . 15) results in approximations

of ∂σε,w(P) for ε = 0.1, 0.2, 0.3, 0.4, 0.5, as seen in Figure 5a. Note this yields a sufficiently
accurate sketch of σε,w(P) and is very competitive when compared to other methods. For instance,
Figure 5b is obtained via the procedure in [31] applied to a 400× 400 grid on the relevant region
Ω = [−20, 5]× [−15, 15]. This latter approach is far more computationally intensive, requiring
71,575 iterations to visualize σε,w(P) for the same tuple of parameters.

In case a more detailed spectral localization is desired, our method may be adapted,
as in Application 1, to identify individual pseudospectrum components. Our next ex-
periment also serves to illustrate the fact that the number of initial trajectories that are
attracted by the individual eigenvalues to form the related clusters is intimately connected
to eigenvalue sensitivity.

Application 6 ([13], Example 5.1). We consider the mass-spring system from ([13], Ex. 5.2)
defining the 3× 3 selfadjoint matrix polynomial

P(λ) = A2λ2 + A1λ + A0 =

1 0 0
0 2 0
0 0 5

λ2 +

0 0 0
0 3 −1
0 −1 6

λ +

 2 −1 0
−1 3 0
0 0 10


and set w = {1, 1, 1}. As in Application 5, computations are restricted exclusively to the closed
upper half-plane. However, the close proximity of the eigenvalues −0.08± i1.45,−0.75± i0.86,
−0.51± i1.25 (indicated by “*” in Figure 6), as well as the fact that the pair λ = −0.51± i1.25
is less sensitive than the other two, necessitates the use of many initial points. Indeed, as
demonstrated in Figure 6a, initiating the procedure with 40 equidistributed initial points on
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{
z ∈ C : |z| = min

∥∥Aj
∥∥

1, Im(z) ≥ 0
}

results in σ(P) being under-represented in the resulting
clusters. In order to correctly approximate all three elements of the spectrum on the upper half-plane
enforces the use of as many as 80 points on the selected semicircle. The length nj of each sequence{

µ
j
k

}nj

k=0
(j = 1, . . . 80) is determined, so that all values

{
smin(P(µj

nj))
}80

j=1
do not exceed the

prefixed parameter value of ε0 = 0.01; this construction involved 1162 singular value computations.
Using the squared Euclidean distance as the metric for computing the cluster evaluation criterion,
three distinct groups are correctly identified, each converging to a different eigenvalue in the closed
upper half-plane, as in Figure 6b. Note that the least sensitive eigenvalue λ = −0.51 + i1.25 ends
up attracting only one of these sequences; the corresponding group being a singleton. To correctly
sketch the boundaries of σε,w(P) for the triple of ε = 0.24, 0.48, 0.73 (>ε0 = 0.01), we introduce
six additional points for each cluster. Indeed, denoting c1, c2, c3 the centroids of the clusters, for

each cluster j = 1, 2, 3 we consider the vertices
{

pj
i

}6

i=1
of a canonical hexagon centered at cj with

maximal diameter equal to min
(∣∣cj − ci

∣∣)
i 6=j. These vertices are indicated by circles in Figure 6b

and are used as starting points to construct the additional trajectories indicated by the black lines
in Figure 6c. Note that all three selected parameters ε = 0.24, 0.48, 0.73 should be possible to
interpolate along these additional lines as well, which explains why most of these trajectories have
been extended to the opposite directions as well, modifying the definition of the sequences in (5)
in each instance accordingly. The construction of the additional sequences requires 202 singular
value computations (leading to a total of 1364 iterations), while the resulting approximations of
pseudospectra boundaries for ε = 0.24, 0.48, 0.73 are depicted in Figure 6c.

(a) (b)

Figure 5. Pseudospectrum computation for a damped mass-spring system. (a) Approximate pseu-
dospectra visualization, interpolating along 15 trajectories of converging sequences. (b) Pseudospec-
tra visualization, using the modified grid algorithm in [31].
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(a) Partial spectral identification, due to close eigenvalue proximity.

(b) Complete spectral identification with increased number of initial points.

(c) Pseudospectra visualizations for ε = 0.24, 0.48, 0.73.

Figure 6. Pseudospectra computations for a vibrating system.

Application 7 ([13], Example 5.3). This experiment tests the behavior of the method on a damped
gyroscopic system described by the 100× 100 matrix polynomial

P(λ) = Mλ2 + (G + D)λ + K,
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with

M = I10 ⊗
4I10 + B + BT

6
+ 1.30

4I10 + B + BT

6
⊗ I10,

G = 1.35I10 ⊗ (B− BT) + 1.10(B− BT)⊗ I10,

D = tridiag{−0.1, 0.3,−0.1},
K = I10 ⊗ (B + BT − 2I10) + 1.20(B + BT − 2I10)⊗ I10

and B the 10× 10 nilpotent matrix having ones on its subdiagonal and zeros elsewhere. Note M, K
are positive and negative definite respectively, G is skew-symmetric, and the tridiagonal D is a
damping matrix.

Starting with 50 points on

{z ∈ C : |z| = 15(= median(‖K‖1, ‖G + D‖1, ‖M‖1)), Im(z) ≥ 0}

and then 5 additional points on the perpendicular bisector of the line segment defined by the two
centroids of the resulting clusters (indicated by the blue circles), the resulting pseudospectrum
approximation required 1212 iterations in total with ε0 = 0.002 and can be seen in the left part of
Figure 7a. The algorithm in [31] applied to a 300× 300 grid on the region Ω = [−4, 4]× [−3, 3]
required 29,110 iterations for pseudospectra visualization for the same triple ε = 0.004, 0.02, 0.1 to
obtain comparable results in Figure 7b.

(a)

(b)

Figure 7. Comparison of pseudospectra computation for a damped gyroscopic system and ε = 0.004,
0.02, 0.1. (a) Computation using 50 initial points. (b) Computation using algorithm in [31].

We conclude this section, examining the behavior of the method on a non-symmetric example.
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Application 8 ([31], Example 2). We consider the 20× 20 gyroscopic system

P(λ)= A2λ2 + A1λ + A0 = I20λ2 + i
[

I10 0
0 5I10

]
λ +


1 −1 −1 · · · −1
−1 1 −1 · · · −1

...
...

...
. . .

...
−1 −1 −1 · · · 1


and w = {1, 1, 1}. Starting with 21 points on

{z ∈ C : |z| = 25(= ‖A0‖1 + ‖A1‖1), Re(z) ≤ 0}

and ε0 = 0.001, five clusters are detected (Figure 8a) after 1140 iterations. Then, two additional
points are introduced on each of the line segments defined by the centroids of the detected clusters
(indicated by the blue circles in Figure 8b), causing the iterations to rise to the total number of
2662 in order to determine the 20 corresponding trajectories (indicated by grey lines in Figure 8c).
The corresponding visualizations in Figure 8d), obtained via [31] applied to a 400× 400 grid on the
region Ω = [−20, 20]× [−15, 10] required 88,462 iterations.

(a) (b)

(c) (d)

Figure 8. Comparison of pseudospectra computation for a gyroscopic system and ε = 0.1, 0.2, 0.4,
0.6, 0.8. (a) Cluster detection using 21 initial points. (b) Locations of additional points. (c) Pseu-
dospectra visualizations interpolating along the trajectories of 21 initial and 20 additional points.
(d) Pseudospectra visualization, using the modified grid algorithm in [31].

4. Concluding Remarks

In this note, we have shown how to define sequences which, beginning from arbitrary
complex scalars, converge to some element of the spectrum of a matrix. This approach
can be applied both to constant matrices and to more general matrix polynomials and can
be used as a means to obtain estimates for those eigenvalues that lie in the vicinity of the
initial term of the sequence. This construction is also useful when no information on the
location of the spectrum is a priori known. In such cases, repeating the construction from
arbitrary points, it is possible to detect peripheral eigenvalues, localize the spectrum and
even obtain spectral enclosures.

As an application, in this paper we used this construction to compute the pseu-
dospectrum of a matrix or a matrix polynomial. Thus, a useful technique for speeding up
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pseudospectra computations emerges, which is essential for applications. An advantage
of the proposed approach is that does not make any assumptions on the location of the
spectrum. The fact that all computations are performed on some dynamically chosen
locations on the complex plane which converge to the eigenvalues, rather than on a large
number of predefined points on a rigid grid, can be seen as improvement over conventional
grid algorithms.

Parallel implementation of the method can lead to further computational savings
when applied to large matrices. Another option would be to apply this method combined
with randomization techniques for the selection of the initial points of the sequences. In
the large-scale matrix case, this method may be helpful in obtaining a first impression of
the shape and size of pseudospectrum and even computing a rough approximation. Then,
if desired, this could be used in conjunction with local versions of the grid algorithm and
small local meshes about individual areas of interest.
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