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121 THE RIEMANN HYPOTHESIS AND
THE GROWTH OF M(x)

Let dM be the Stieltjes measure such that the formula
.u(n)
(1) C(S) Z (Res>1)
[(1) of Section 5.6] takes the form

C() f xrdM(x) (Res> 1).

Then M(x) = [} dM is a step function which is zero at x = 0, which is con
stant except at positive integers, and which has a jump of u(r) at n. As usual,
the value of M at a jump is by definition {M(n — &) + M(n -+ )] = > "]
1) + tu@). Integration by parts gives for Re s > 1

w5 = |- dbem M) — [T M) dx)
= }(1_1’110o X*M(X) + s J: M(x)x—=-! dx:|

= S lro M(x)x*"tdx
0

because the obvious inequality | M(x)| < x implies that x~*M(x) — 0 as
x — oo and that [; M(x)x™*~! dx converges, both provided Re s > 1. Now
if M(x) grows less rapidly than x* for some g > 0, then this integral for 1/{(s)
converges for all s in the halfplane {Re(a — s) < 0} = {Re s > a}, and therc
fore, by analytic continuation, the function 1/{(s) is analytic in this halfplanc.
Since 1/{(s) has poles on the line Re s = 1, this shows that M(x) does not



grow less rapidly than x* for any a < %. Moreover, it shows that in order to
prove the Riemann hypothesis, it would suffice to prove that M(x) grows less
rapidly than x"/¥*¢ for all ¢ > 0. Littlewood in his 1912 note[L12] on the three
circles theorem proved that this sufficient condition for the Riemann hypo-
thesis is also necessary; that is, he proved the following theorem.

Theorem The Riemann hypothesis is equivalent to the statement that
for every e > O the function M(x)x~(/2)-¢ approaches zero as x — oo.

Proof It was shown above that the second statement implies the Riemann
hypothesis. Assume now that the Riemann hypothesis is true. Then Back-
lund’s proof in Section 9.4 shows [using the Riemann hypothesis to conclude
that F(s) = {(s)] that for every ¢ > 0, § > 0, and o, > 1 there is a T, such
that |log {(c + it)| < dlog ¢ whenever t > T, and 4 4+ ¢ < ¢ < 7,. Since
|log {(s)| is bounded on the halfplane {Re s > g}, this implies that on the
quarterplane {s = o + it: ¢ = % + &, t > T,} there is a constant K such
that | 1/{(s)| << K¢°. This is the essential step of the proof. Littlewood omits
the remainder of the proof, stating merely that it follows from known theo-
rems. One way of completing the proof is as follows.

The estimates (2) and (3) of Section 3.3 show that the error in the approx-
imation

M) = 3 pe) ~ 5 [ [ 55 u0(£) ] %
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12.3 DENJOY’S PROBABILISTIC INTERPRETATION OF THE
RIEMANN HYPOTHESIS

One of the things which makes the Riemann hypothesis so difficult is the
fact that there is no plausibility argument, no hint of a reason, however un-
rigorous, why it should be true. This fact gives some importance to Denjoy’s
probabilistic interpretation of the Riemann hypothesis which, though it is
quite absurd when considered carefully, gives a fleeting glimmer of plausibil-
ity to the Riemann hypothesis.

Suppose an unbiased coin is flipped a large number of times, say N times.
By the de Moivre-Laplace limit theorem the probability that the number of
heads deviates by less than KN!/2 from the expected number of 1N is nearly
equal to (%570, exp(—nx?) dx in the sense that the limit of these proba-
bilities as N — oo is equal to this integral. Thus if the total number of heads
is subtracted from the total number of tails, the probability that the resulting
number is less than 2KN'/? in absolute value is nearly equal to 2[*<""
exp(—nx?) dx, and therefore the probability that it is less than N(/2+¢ for
some fixed & > 0 is nearly 2 [}°*”"" exp(—nx?) dx. The fact that this ap-
proaches 1 as N— oo can be regarded as saying that with probability one

the number of heads minus the number of tails grows less rapidly than N{'/2)*,



Consider now a very large square-free integer », that is, a very large in-
teger n with u(n) = 0. Then u(n) = J4-1. It is perhaps plausible to say that
u(n) is plus or minus one “with equal probability” because » will normally
have a large number of factors (the density of primes 1/log x approaches
zero) and there seems to be no reason why either an even or an odd number
of factors would be more likely. Moreover, by the same principle it is perhaps
plausible to say that successive evaluations of u(n) = 4-1 are “independent”
since knowing the value of u(n) for one n would not seem to give anyt in-
formation about its values for other values of n. But then the evaluation of
M(x) would be like flipping a coin once for each square-free integer less than
x and subtracting the number of heads from the number of tails. It was shown
above that for any given ¢ > 0 the outcome of this experiment for a larget
number of flips is, with probability nearly one, less than the number of flips
raised to the power 4 ¢ and a fortiori less than x{!/?*¢, Thus these probabi-



listic assumptions about the values of u(») lead to the conclusion, ludicrous
as it seems, that M(x) = O(x'/2'*#) with probability one and hence that the

Riemann hypothesis is true with probability one!
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DiscretePlot[{Marton[n], Merton[n]}, {n, 1, 10000}, PlotRange » {-300, 300}]
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