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OPLAX HOPF ALGEBRAS

MITCHELL BUCKLEY, TIMMY FIEREMANS, CHRISTINA VASILAKOPOULOU, AND JOOST VERCRUYSSE

Abstract. We introduce the notion of an oplax Hopf monoid in any braided monoidal bicategory,
generalizing that of a Hopf monoid in a braided monoidal category in an appropriate way. We show
that Hopf V-categories introduced in [BCV16] are a particular type of oplax Hopf monoids in the
monoidal bicategory Span|V described in [Böh17]. Finally, we introduce Frobenius V-categories as
the Frobenius objects in the same monoidal bicategory.
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1. Introduction

Over the last decades, a growing number of variations on the notion of Hopf algebra have surfaced,
and this has led to increasing investigations on the intriguing question of how these various notions are
related and can be unified in a single (categorical) framework.
Weak Hopf algebras [BNS99] were introduced to describe extensions of Von Neumann algebras as

crossed products (by an action of a weak Hopf C∗-algebra). A weak Hopf algebra is an algebra that
also has a coalgebra structure, but their compatibility as well as the antipode properties are weakened
compared to those of usual Hopf algebras. Weak Hopf algebras were one of the inspiring examples to
define Hopf algebroids [BS04], which in turn led to Hopf monads [BLV11]. Just as Hopf monads live
in the monoidal 2-category of categories, functors and natural transformations, Hopf-type objects can
be defined in any monoidal bicategory, and they have been studied in this way, see eg. [DS97; CLS10;
Str12; BL16]. In the latter, all previous mentioned Hopf-type objects (as well as a few more) are
interpreted as particular opmonoidal monads in suitable monoidal bicategories, and different classical
characterizations of Hopf algebras are recovered at an extremely high level of generality.
In a different direction, multiplier Hopf algebras [Van94] provide a generalization of Hopf algebras to

the non-unital setting. Recently, the theory of weak and multiplier Hopf algebras have been merged
[VW15; BGL15] and brought to the categorical setting [BL17].
An intermediate notion, called Hopf category, was introduced recently in [BCV16], as a linearized

version of groupoids. Just as a category can be viewed as a ‘monoid with many objects’, Hopf V-
categories are a many-object generalization (or a categorification) of Hopf algebras. They are defined as
categories enriched over comonoids (in a braided monoidal category V), that admit a suitable notion of
antipode. Moreover, a Hopf category can be ‘packed’ by taking the coproduct of its hom-objects, leading
to examples of weak (multiplier) Hopf algebras. In [Böh17], Böhm showed that Hopf V-categories fit
in the framework of [BL16], namely they can be viewed as a particular type of opmonoidal monad in
a suitably constructed monoidal bicategory denoted Span|V , where a braided monoidal category V is
viewed as a 1-object monoidal bicategory.
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For H either a classical Hopf algebra, a weak Hopf algebra, a Hopf algebroid or a Hopf category,
there are two fundamental points for its bicategorical interpretation as described above: H is always a
1-cell in the considered bicategory, and moreover its underlying monoid and comonoid structures make
use of different monoidal products (that together fit into a duoidal category structure).
In this work, we aim to provide a next step in this process of settling the notion of Hopf-type objects

in higher categories, moving from monoidal bicategories i.e. a tricategory with a single 0-cell, to braided
monoidal bicategories [Gur11] i.e. a tetracategory with a single 0-cell and a single 1-cell, see [Tri06;
Hof13]. Within such a setting, we introduce the notion of an oplax bimonoid which consists of a 0-cell
endowed with the structure of a pseudomonoid and pseudocomonoid, along with oplax compatibility
constraints between them. In the spirit of Tannaka-Krein duality, we study the relation between
monoidal structures on the category of lax pseudomodules over a pseudomonoid and oplax bimonoid
structures on this pseudomonoid.
Particular attention should be paid to the correct notion of an antipode for an oplax Hopf algebra,

which is more elaborate than what one might expect at first sight. It is no longer a convolution inverse
of the identity, but an oplax inverse, a notion inspired by firm Morita contexts. However, we still
retain the uniqueness of the antipode if it exists, and we discuss the relation between the existence of
an antipode and the bijectivity of fusion morphism for an oplax bimonoid.
A first motivating example for our new notion are groupoids which we show are oplax Hopf monoids

in the bicategory of spans. More generally, Hopf categories are a well-described class of oplax Hopf
monoids in a variation of Böhm monoidal bicategory Span|V , where now the monoidal category V is
considered as a monoidal 2-category with trivial 2-cells. We show that this monoidal bicategory has
some interesting features, in particular under some mild conditions the forgetful functor to Span is a
2-opfibration.
The conceptual advantage of our approach is that the underlying monoid and comonoid structure

of an oplax bimonoid or Hopf monoid live over the same monoidal product, which places our concept
closer to the self-dual notions of classical Hopf algebras and weak Hopf algebras, restoring this feature
for Hopf categories which was lost in their interpretation as Hopf monads in [Böh17]. In fact, the
latter description and the current one are related via a dimension shift in the following sense: a Hopf
category in [Böh17] is a 1-cell in a certain monoidal bicategory, whereas in our setting it is a 0-cell in
a (different) symmetric monoidal bicategory.
We finish the paper by describing the notion of a Frobenius pseudomonoid in Span|V , leading to

the notion of Frobenius V-category. Although both Hopf and Frobenius categories are viewed as pseu-
domonoids and pseudocomonoids in the same monoidal bicategory (albeit with different compatibility
conditions), by taking a closer look it becomes evident that the algebra and coalgebra structures for
a Hopf category are of different ‘type’, whereas for a Frobenius category both algebra and coalgebra
structure are of the same ‘type’. In the subsequent [BFVV19] we show that a Hopf V-category that is lo-
cally rigid admits the structure of a Frobenius V-category, providing a generalization of the well-known
Larson Sweedler theorem.
Our paper is structured as follows. In Section 2, we recall some known results and fix notation,

especially for monoidal bicategories and pseudo(co)monoids. In Section 3 we introduce oplax bimonoids
and oplax Hopf monoids, and prove some first results for them. Section 4 consists of some elementary
observations about the set X2 and more generally groupoids viewed as objects in Span, where they
give examples of oplax Hopf monoids and Frobenius monoids. In Section 5, we extensively describe the
symmetric monoidal bicategory Span|V and show that the forgetful functor to Span is a 2-opfibration.
In Section 6 we show that Hopf categories are oplax Hopf monoids in Span|V , as well as intermediate
structures like enriched (op)categories and morphisms between them can all be realized in that setting.
Finally, in Section 7 we study the Frobenius monoids in Span|V , which we term Frobenius V-categories.
In the appendix we list the various coherence conditions for the objects and morphisms we introduced.

2. Preliminaries

In this section, we provide some background material and fix notation and terminology for what
follows.

2.1. Bimonoids, Hopf monoids and Frobenius monoids. We assume familiarity with the theory
of (braided) monoidal categories (V ,⊗, I, α, λ, σ); see e.g. [Mac98] or [JS93]. Since any monoidal
category is monoidally equivalent to a strict monoidal category, we will assume from now on without
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loss of generality that the associativity constraint α and the unitality constraint λ are indentities. Recall
that a monoid (algebra) in V is a triple (A,m : A⊗A→ A, j : I → A) satisfying the usual associativity
and unitality constraints. Dually, a comonoid (coalgebra) in V will be denoted as (C, d, ǫ). We denote
the categories of monoids and comonoids respectively by Mon(V) and Comon(V) (∼= Mon(Vop)op).
When V is braided, both these categories inherit a monoidal structure from V .
A bimonoid (bialgebra) in a braided monoidal category is an object M with a monoid structure

(M,m, j) and a comonoid structure (M, δ, ε) that are compatible, in the sense that a bimonoid is
equivalently both a comonoid inMon(V) and a monoid in Comon(V). Diagrammatically this is expressed
by

M ⊗M M

M ⊗M ⊗M ⊗M

M ⊗M ⊗M ⊗M M ⊗M

δ⊗δ

m

δ

1⊗σ⊗1

m⊗m

I M

M ⊗M

j⊗j

j

δ

M ⊗M M

I ⊗ I

ε⊗ε

m

ε

I M

I

1

j

ε (1)

Bimonoids form a category Bimon(V) whose morphisms are simultaneously monoid and comonoid
morphisms.
Moreover, a Hopf monoid (Hopf algebra) is a bimonoid (H,m, j, d, ǫ) equipped with an antipode

s : H → H satisfying m ◦ (s ⊗ 1H) ◦ d = j ◦ ǫ = m ◦ (1H ⊗ s) ◦ d. Since H has both a monoid
and comonoid structure, we can define the convolution product f ⊙ g of any two endomorphisms
f, g ∈ V(H,H) as the composite m ◦ (f ⊗ g) ◦ d; this is an associative binary operation on V(H,H)
with I⊙ := j ◦ ǫ as its unit. Using this terminology, the defining property of an antipode is that it
is inverse to 1H under the convolution product. Hence, the antipode is unique when it exists, and
bimonoid morphisms between Hopf monoids can be seen to automatically commute with the antipode.
Therefore Hopf monoids form a full subcategory Hopf(V) of Bimon(V). Equivalently to the existence of
an antipode on a bimonoid H , a Hopf monoid can be characterised via the invertibility of the canonical
maps (1H ⊗m) ◦ (d⊗ 1H) or (m⊗ 1H) ◦ (1H ⊗ d); these are sometimes referred to as fusion morphisms,
see e.g. [Str98].
Finally, a Frobenius monoid A also has both a monoid and comonoid structure, but in this case they

are compatible via the Frobenius laws (1A ⊗m) ◦ (d⊗ 1A) = d ◦m = (m⊗ 1A) ◦ (1A ⊗ d). Morphisms
between Frobenius monoids are simultaneously monoid and comonoid morphisms. We denote this
category by Frob(V). For more details about Frobenius algebras, see e.g. [Str04b].

2.2. Enriched categories and opcategories. Recall that for a monoidal category V , a V-graph A
consists of a set of objects X together with a family of hom-objects {Ax,y}x,y∈X in V ; we will use the
notation Ax,y rather than the more common A(x, y). Morphisms of V-graphs are functions f between
the sets of objects, together with a family of arrows Fxy : Ax,y → Bfx,fy in V . Together these form a
category V-Grph.
A V-category is a V-graph {Ax,y}x,y∈X together with composition (or multiplication) lawsmxyz : Ax,y⊗

Ay,z → Ax,z and identities jx : I → Ax,x that satisfy the usual associativity and unity conditions. A
V-functor is a V-graph morphism that respects composition and units, and together these form a cat-
egory V-Cat. If V is braided monoidal, every V-category A has an opposite V-category Aop with the
same objects and hom-objects Aop

x,y := Ay,x, where composition arises from the one in A composed
with the braiding. More on the subject of enriched categories can be found in [Kel05].
A V-opcategory C is a category enriched in Vop [DS97, §9]. Explicitly, there exist cocomposition and

coidentity families of arrows in V

dxyz : Cx,z → Cx,y ⊗ Cy,z, ǫx : Cx,x → I (2)

satisfying coassociativity and counity axioms. A V-opfunctor is a Vop-functor, so there is a category
V-opCat = Vop-Cat.

2.3. Monoidal bicategories and pseudo(co)monoids. Recall that a monoidal bicategory K is a
one-object tricategory [GPS95, Def. 2.6], namely a bicategory equipped with a pseudofunctor ⊗ : K ×
K → K and a unit object I : 1 → K which are associative and unital up to coherent equivalence; for
the explicit description see [Car95; Sch09]. A monoidal 2-category is one whose underlying bicategory
is really a 2-category. Notice that this is different from a 2-monoidal 2-category whose tensor product
is a strict 2-functor, namely where (f ⊗ g) ◦ (h ⊗ k) = (f ◦ h) ⊗ (g ◦ k) rather than being coherently
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isomorphic as in the pseudo case. A weak monoidal pseudofunctor F : K → L between monoidal
bicategories preserves the monoidal structure via pseudonatural maps F(A)⊗F(B)→ F(A⊗B) and
F(1A)→ 1FA along with associativity and unity invertible modifications subject to coherence axioms,
see [DS97].
It is well-known that any monoidal bicategory is monoidally biequivalent to a monoidal 2-category,

and more precisely a Gray monoid: this is the one-object case of the coherence theorem for tricategories
[Gur13; GPS95]. A Gray monoid [BN96; DS97], also called a semistrict monoidal 2-category, is a
monoidal 2-category with a tensor product which is strictly associative and unital on objects, but still
a pseudofunctor and not a strict 2-functor. In particular, for given 1-cells f : A → B and g : C → D

there exists a suitable invertible 2-cell cf,g : (f ⊗ 1) ◦ (1 ⊗ g) → (1 ⊗ g) ◦ (f ⊗ 1), natural in f and g
and satisfying certain coherence conditions. By convention, we denote the 1-cell (f ⊗ 1) ◦ (1 ⊗ g) by
f ⊗ g. In what follows, whenever we consider a monoidal bicategory or monoidal 2-category, we will
always suppose that it is a Gray monoid, where we suppress the morphisms cf,g and their inverses or
(vertical and horizontal) compositions.
A monoidal 2-category is braided when it comes equipped with a pseudonatural equivalence with

components σA,B : A⊗B → B⊗A, and two invertible modifications relating the tensors of three objects,
subject to axioms that are detailed in references such as [BN96, Def. 6], [DS97, Def. 12] and finalised in
[Cra98, Def. 2.2]; it is sylleptic when there exists an invertible modification v : σ ◦σ ⇛ 1 and symmetric
when σA,B◦vA,B = vB,A◦σB,A, subject to appropriate axioms. On the other hand, its weakened version
of a braided monoidal bicategory as described in [Gur11, § 2.4] is computationally more challenging; due
to a coherence theorem though, every braided monoidal bicategory is braided monoidally biequivalent
to a braided monoidal 2-category, as shown in [Gur11, Thm 27]. In more detail, there is an induced
braided structure on the biequivalent Gray monoid, which is then adjusted in order to constitute
an actual braided monoidal 2-categorical structure as defined in [Cra98, Def. 2.2]. Furthermore, the
respective coherence result for symmetric monoidal bicategories can be found in [GO13]. Therefore in
what follows, we often work without loss of generality in the simpler context of a braided or symmetric
monoidal 2-category (Gray monoid) K.
A pseudomonoid [DS97, §3] (or monoidale) (A,m, j, α, ℓ, r) in K is an object A with multiplication

m : A⊗A→ A, unit j : A→ I, and invertible 2-cells

A⊗A⊗A A⊗A A A⊗A A

A⊗A A A

1⊗m

m⊗1 α
∼=

mm

1⊗j

m
ℓ
∼=

r
∼=

j⊗1

m

(3)

satisfying appropriate coherence conditions found in Appendix A.1. For example, a pseudomonoid in
the cartesian monoidal 2-category (Cat,×,1) is a monoidal category. Dually, we have the notions of a
pseudocomonoid in a monoidal 2-category, denoted by (C, δ, ε, β, s, t).
An oplax (or opmonoidal) morphism between pseudomonoids is a 1-cell f : A → B equipped with

2-cells

A⊗ A A

B ⊗B B

⇓ φ

m

f⊗f f

m

I A

B

⇓ φ0

j

j

f (4)

such that compatibility conditions for units and multiplications hold, see Appendix A.1. A lax mor-
phism of pseudomonoids is defined similarly, with the 2-cells φ, φ0 pointing in the opposite direction
and the conditions adjusted accordingly. For example, (op)lax morphisms between pseudomonoids
in Cat are precisely (op)lax monoidal functors. If K is a monoidal 2-category, then pseudomonoids
together with (op)lax morphisms form categories PsMonopl(K) and PsMonlax(K). Dually, we can talk
of oplax morphisms between pseudocomonoids; if Kop is the monoidal 2-category with reversed 1-cells,
it is the case that PsMonopl(K

op) ∼= PsComonopl(K)
op.

In fact, for any monoidal bicategory K, PsMonopl(K) is also a bicategory: if (f, φ, φ0) and (g, ψ, ψ0)
are two oplax morphisms between pseudomonoids A and B, a 2-cell between them is some α : f ⇒ g

which is compatible with the oplax structure 2-cells, see Appendix A.1. The similarly defined bicategory
PsMonlax(K) was denoted by Mon(K) in [CLS10].
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Furthermore, when K is a braided monoidal bicategory with braiding σ, the bicategory PsMonopl(K)
obtains a monoidal structure itself: the multiplication and unit on the tensor product of two pseu-
domonoids A and B is

A⊗B ⊗A⊗B
1⊗σ⊗1
−−−−→ A⊗A⊗B ⊗B

m⊗m
−−−−→ A⊗B (5)

I ∼= I ⊗ I
j⊗j
−−→ A⊗B

and the coherence data can be readily constructed also. This can be seen as a result of the fact that
the braided structure of a monoidal bicategory endows the pseudofunctor ⊗ with a monoidal structure,
as discussed in [DS97, p. 117], hence it preserves pseudomonoids by [DS97, Prop. 5].
Finally, a Frobenius pseudomonoid inside a monoidal bicategory is an object with a pseudomonoid

and pseudocomonoid structure (A,m, j, d, ǫ) together with isomorphisms

A⊗A A⊗A⊗A

A

A⊗A⊗A A⊗A

d⊗1

1⊗d

m

1⊗m

d

φ
∼=

ψ
∼=

m⊗1

(6)

satisfying certain coherence conditions, see Appendix A.5. For a detailed study of such objects and
equivalent formulations see [Str04b; Lau05; LSW11]. If f : A → B is a 1-cell between Frobenius
pseudomonoids, we may choose any of the four combinations of lax or oplax structures between the
pseudo(co)monoids for forming a bicategory. For example, we can denote by Frobopl,opl(K) the category
of Frobenius pseudomonoids with oplax pseudomonoid, oplax pseudocomonoid morphisms between
them.

3. Oplax bimonoids and Hopf monoids

In this section, we define oplax variations of bimonoids and Hopf monoids in a braided monoidal
bicategory and examine some of their basic properties. These serve as basic concepts and tools for the
following sections.

3.1. Oplax bimonoids. Previously we described the monoidal bicategory PsMonopl(K) of pseudo-
monoids with oplax morphisms and 2-cells for a braided monoidal bicategory K; one may consider
pseudocomonoids therein and establish a notion of ‘oplax bimonoid’, namely an object with a pseu-
domonoid and pseudocomonoid structure and an oplax interaction between them.

Definition 3.1.1. In a braided monoidal bicategory (K,⊗, I, σ), an oplax bimonoid is an object M in
K endowed with a pseudomonoid structure (M,m, j) and a pseudocomonoid structure (M, δ, ε) along
with 2-cells

M ⊗M M

M ⊗M ⊗M ⊗M

M ⊗M ⊗M ⊗M M ⊗M

⇓θ

δ⊗δ

m

δ

1⊗σ⊗1

m⊗m

(7)

I M

I ⊗ I M ⊗M

∼

j

⇓θ0 δ

j⊗j

M ⊗M M

I ⊗ I I

ε⊗ε

m

⇓χ ε

∼

I M

I I

1 ⇓χ0

j

ε

1

(8)

expressing that comultiplication and counit are oplax pseudomonoid maps as in (4). These data satisfy
certain axioms which are explicitly written in Appendix A.2.

The above notion indeed generalizes ordinary bimonoids by essentially inserting 2-cells inside the
commutative diagrams (1), subject to coherent conditions. For example, any bimonoid in a braided
monoidal category V viewed as a (2-)monoidal 2-category with trivial 2-cells is an oplax bimonoid,
strict in that the (co)associativity and (co)unit constraints are identities. Moreover, an oplax bimonoid
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in that strict sense in the cartesian 2-category K = (Cat,×,1) is a strict monoidal category, since any
object has a unique strict comonoid structure. A general oplax bimonoid in Cat is up to isomorphism
a monoidal category: due to 1 being terminal, a pseudocomonoid is up to isomorphism still the trivial
one namely the comultiplication is isomorphic to the diagonal, and χ0, χ = id whereas θ, θ0 are uniquely
determined isomorphisms. Non-trivial examples will be provided in the subsequent sections.
Morphisms between oplax bimonoids are oplax maps between the corresponding pseudocomonoids

in PsMonopl(K). More explicitly, we have the following definition.

Definition 3.1.2. An oplax bimonoid morphism between oplax bimonoids M and N with structure
2-cells (θ, θ0, χ, χ0) and (ξ, ξ0, ω, ω0) in a braided monoidal bicategory K is a 1-cell f : M → N that is
both an oplax pseudomonoid morphism and an oplax pseudocomonoid morphism with structure 2-cells

M ⊗M M

N ⊗N N

⇓ φ

m

f⊗f f

m

I M

N

⇓ φ0

j

j

f

M M ⊗M

N N ⊗N

⇓ ψ

δ

f f⊗f

δ

M

N I

⇓ ψ0

ε

f

ε

(9)

satisfying four axioms expressing that ψ and ψ0 are 2-cells between oplax pseudomonoid maps; axioms
are explicitly recorded in Appendix A.3.

Oplax bimonoids form a bicategory OplBimon(K) = PsComonopl (PsMonopl(K)) . Notice that the
axioms oplax bimonoids satisfy are very similar to those of duoidal categories [AM10], which can be
explained by observing that duoidal categories are pseudomonoids in PsMonopl(K) or equivalently in
PsMonlax(K), for K = Cat. Hence these notions are ‘half-dual’ to one other.
As mentioned above, a weak monoidal pseudofunctor between monoidal bicategories preserves pseu-

domonoids and analogously a (strong) monoidal one preserves pseudocomonoids as well. Below we
establish that a braided monoidal pseudofunctor as in [DS97, Def. 14] preserves oplax bimonoids be-
tween braided monoidal bicategories.

Proposition 3.1.3. Let F : K → L be a braided monoidal pseudofunctor of bicategories. If M is an
oplax bimonoid in K, then FM is an oplax bimonoid in L.

Proof. Suppose (M,m, j, δ, ε, θ, θ0, χ, χ0) is an oplax bimonoid as in Definition 3.1.1. Then the pseu-
domonoid and pseudocomonoid structure on FM are given by

FM ⊗FM → F(M ⊗M)
Fm
−−→ FM, I → FI

Fj
−−→ FM

FM
Fδ
−−→ F(M ⊗M)→ FM ⊗FM, FM

Fε
−−→ FI → I

where the unnamed arrows are the structure maps of the strong monoidal pseudofunctor F , namely
two equivalences and its pseudoinverses. We can then equip FM with an oplax bimonoid structure (7)
and (8) as follows: the 2-cell θFM is formed as the composite

FM ⊗FM F(M ⊗M) FM

F(M ⊗M)⊗F(M ⊗M) F(M ⊗M ⊗M ⊗M) F(M ⊗M)

FM ⊗FM ⊗FM ⊗FM F(M ⊗M ⊗M ⊗M)

FM ⊗FM ⊗FM ⊗FM F(M ⊗M)⊗F(M ⊗M) FM ⊗FM

∼=Fδ⊗Fδ

Fm

⇓FθF(δ⊗δ) Fδ

(∗)
∼=

F(1⊗σ⊗1)

1⊗σ⊗1

∼=

F(m⊗m)

Fm⊗Fm

where the two unnamed invertible 2-cells are due to pseudonaturality of the monoidal structure maps
of F , whereas (∗) comes from F being (strong) monoidal and braided. Similarly the rest three 2-cells
are constructed as composites of Fθ0, Fχ, Fχ0 with coherent isomorphisms, and the conditions of
Appendix A.2 are satisfied. �

In the spirit of [AM10], one could define a notion of ‘bilax’ monoidal pseudofunctor between braided
monoidal bicategories which would be precisely such that it preserves oplax bimonoids: essentially a
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weak and an opweak monoidal pseudofunctor which comes with coherent isomorphisms of the form
(∗). For our purposes though, the above setting suffices for our example at hand – the strict monoidal
forgetful functor of bicategories of Section 5.2.

3.2. Oplax modules for oplax bimonoids. One of the fundamental properties of a bimonoid in
an ordinary monoidal category is that there exists a monoidal structure on its category of modules,
with a strict monoidal forgetful functor. In order to generalize this for oplax bimonoids in monoidal
bicategories, we introduce the notion of an oplax module.

Definition 3.2.1. Let (M,m, j) be a pseudomonoid in a monoidal bicategory K. A (right) oplax
M -module is an object X ∈ K equipped with a 1-cell ρ : X ⊗M → X and 2-cells

X ⊗M ⊗M X ⊗M

X ⊗M X

⇓ ξ

1⊗m

ρ⊗1 ρ

ρ

X X ⊗M

X

1⊗j

⇓ ξ0

id

ρ (10)

satisfying appropriate compatibility axioms listed in Appendix A.4. When ξ and ξ0 are invertible, we
say that X is a pseudo M -module.
A (right) oplax M -module morphism (f, φ) : (X, ρX , ξ, ξ0) → (Y, ρY , ζ, ζ0) consists of a 1-cell f :

X → Y in K and a 2-cell

X ⊗M X

Y ⊗M Y

f⊗1

ρX

⇓ φ f

ρY

(11)

satisfying coherence conditions (70) and (71). If φ is invertible, we say that (f, φ) is an oplax M -
module pseudomorphism. Finally, a transformation between oplax M -module morphisms (f, φ), (g, ψ)
is a 2-cell α : f ⇒ g which is compatible with the structure morphisms, see (72).

Oplax M -modules together with their oplax morphisms and transformations form a bicategory

OplMod
opl
M , which comes with an evident forgetful strict functor to K. Similarly, we have the bicategory

OplMod
ps
M of oplax M -modules with pseudomorphisms and transformations.

Remark 3.2.2. Clearly, one could also consider (op)lax (co)modules over a pseudo(co)monoid. In
fact, the notion of pseudomodule as defined above is closely related to the notion of algebra for the
pseudomonad (−⊗M) on K as considered in [Mar99]. However, it is important to remark that some
(but not all) structure 2-cells in our context have the opposite direction of those e.g. in [Mar99, p.96].
Since the appearance of the first pre-print version of this work, oplax modules over a skew monoidale

also have been studied under the name of oplax actions in [Abu18]. Therein, oplax modules are required
to satisfy an additional axiom, which however follows from the other axioms in our setting (see [Mar99]).

Proposition 3.2.3. For any oplax bimonoid M , the bicategories OplMod
ps
M and OplMod

opl
M have a

monoidal structure, such that the forgetful functors OplMod
ps
M → OplMod

opl
M → K are strict monoidal.

Proof. Suppose (K,⊗, I, σ) is a braided monoidal bicategory. Take an oplax bimonoid (M,m, j, δ, ε)
with structure 2-cells (θ, θ0, χ, χ0) as in Definition 3.1.1, and two oplax M -modules (X, ρX , ξ, ξ0) and
(Y, ρY , ζ, ζ0) as in Definition 3.2.1. We can endow X⊗Y with an oplaxM -module structure as follows:
the M -action is the composite

ρX⊗Y : X ⊗ Y ⊗M
1⊗1⊗δ
−−−−→ X ⊗ Y ⊗M ⊗M

1⊗σ⊗1
−−−−→ X ⊗M ⊗ Y ⊗M

ρX⊗ρY
−−−−−→ X ⊗ Y (12)
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and the structure 2-cells are given by

X⊗Y⊗M⊗M X⊗Y⊗M

X⊗Y⊗M⊗M⊗M X⊗Y⊗M⊗M⊗M⊗M X⊗Y⊗M⊗M⊗M⊗M X⊗Y⊗M⊗M

X⊗M⊗Y⊗M⊗M X⊗M⊗Y⊗M⊗M⊗M X⊗M⊗M⊗Y⊗M⊗M X⊗M⊗Y⊗M

X⊗Y⊗M X⊗Y⊗M⊗M X⊗M⊗Y⊗M X⊗Y

11m

11δ1 11δδ ⇓ 11θ 11δ

1111δ

1σ11

111σ1

1σ111

11mm

1σ1 1σ1

ρρ1

11σ11

ρρ11 ⇓ ξζ

1m1m

ρ1ρ1 ρρ

1δ 1σ1 ρρ

X ⊗ Y X ⊗ Y ⊗M

X ⊗ Y ⊗M ⊗M

X ⊗M ⊗ Y ⊗M

X ⊗ Y

⇓ 11θ0

⇓ ξ0ζ0

11j

11jj

1j1j

1

11δ

1σ1

ρXρY

(13)

where the empty squares should be filled by the coherence isomorphisms of the braided monoidal
bicategory K (or its equivalent Gray monoid), and we have suppressed the ⊗-symbol for morphisms.
Combining the axioms (68) and (69) for X and Y with the oplax bimonoid axioms for M as found in
Appendix A.2, we can verify that this constitutes an oplax module structure on X ⊗ Y .
Moreover, the monoidal unit I of K can also be endowed with the structure of an oplax M -module,

with action and structure 2-cells

ρI : I ⊗M ∼=M
ε
−→ I (14)

I ⊗M ⊗M ∼=M ⊗M M

M I

m

ε⊗1 ⇓ χ
ε⊗ε ε

ε

I M

I

j

1

⇓ χ0 ε

Given morphisms of oplax modules (f, φ) : X → Y and (g, ψ) : Z → U , define (f, φ) ⊗ (g, ψ) as
(f ⊗ g, τ), where f ⊗ g is the tensor product in K and τ is given by

X ⊗ Z ⊗M Y ⊗ U ⊗M

X ⊗ Z ⊗M ⊗M Y ⊗ U ⊗M ⊗M

X ⊗M ⊗ Z ⊗M Y ⊗M ⊗ U ⊗M

X ⊗ Z Y ⊗ U

1⊗1⊗δ

f⊗g⊗1

1⊗1⊗δ

f⊗g⊗1⊗1

1⊗σ⊗1 1⊗σ⊗1

⇓ φ⊗ψ

f⊗1⊗g⊗1

ρX⊗ρZ ρY ⊗ρU

f⊗g

(15)
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Clearly, if the morphisms (f, φ) and (g, ψ) are pseudo, namely if φ and ψ above are invertible, then
f⊗g is a pseudo morphism as well, since (15) is a composite of invertible 2-cells. The tensor product of
oplax module transformations is given by the tensor product of 2-cells in K; there is no extra structure.
With the above descriptions, it can be verified that the category of oplax modules over an oplax

bimonoid is a monoidal bicategory, and it directly follows that the forgetful functor to K strictly
preserves the monoidal structure. �

Remark 3.2.4. Notice that if X and Y are pseudo M -modules, X ⊗ Y is naturally still only an oplax
module even in the stricter 2-monoidal 2-category case, due to the non-invertible 2-cells θ and θ0 of the
oplax bimonoid used for the coherence 2-cells (13) of X ⊗ Y in the above proof. Hence the bicategory
of pseudomodules over an oplax bimonoid is in general not a monoidal bicategory.

For a monoid M in an ordinary monoidal category C (under some conditions, see e.g. [Ver13]), it
is known that there is a bijective correspondence between bimonoid structures on M and monoidal
structures on the category of M -modules such that the forgetful functor to C is strict monoidal. Since
the previous proposition lifts one part of this correspondence to oplax bimonoids, we now consider part
of the converse direction by showing that the monoidal structure on the bicategory of oplax modules
over an oplax bimonoid completely determines its pseudocomonoid structure.
Let us assume that for a pseudomonoid (M,m, j), the bicategory OplMod

ps
M is monoidal in such a

way that the forgetful functor to K is strict monoidal. Since M is a pseudomonoid, it is a pseudo
M -module (M,m) and so M ⊗M is an oplax M -module: denote its action by ρM⊗M and structure

2-cells (ξM⊗M , ξM⊗M
0 ) as in (10). Then we can define a comultiplication 1-cell as the composite

δ : M
j⊗j⊗1
−−−−→M ⊗M ⊗M

ρM⊗M
−−−−→M ⊗M. (16)

Moreover, the monoidal unit I is also an oplax M -module with action denoted ρI and 2-cells (ξI , ξI0);
therefore a counit can be defined as

ε : M ∼= I ⊗M
ρI
−→ I. (17)

Using notation as in Definition 3.1.1, the required 2-cells (θ, θ0, χ, χ0) for an oplax bimonoid structure
on M can be constructed as follows: θ is built from ξM⊗M as the composite

M⊗M M M⊗M⊗M

M⊗M⊗M⊗M⊗M⊗M M⊗M⊗M⊗M

M⊗M⊗M⊗M⊗M M⊗M⊗M

M⊗M⊗M⊗M M⊗M⊗M⊗M M⊗M

m

jj1jj1 jj11

jj1

ρMM

ρMMρMM

ρMM111

111jj1

11m

ρMM1

⇓ ξMM

11ρMM ρMM

11jj1

1σ1 mm

(18)

Moreover, θ0 can be built using ξM⊗M
0 as the composite

I M ⊗M M ⊗M ⊗M

M ⊗M

j⊗j

j⊗j

1⊗j

1

⇓ ξM⊗M
0

ρM⊗M (19)
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In a similar way, χ and χ0 can be obtained from ξI and ξI0 as follows

M ⊗M M

M

I ⊗ I I

m

ε⊗ε
ε⊗1 ⇓ ξI

ε

ε

I M

I

j

1

⇓ ξI0
ε (20)

The following result shows that when we consider the monoidal structure on OplMod
ps
M as described

in Proposition 3.2.3, by the above construction we recover the initial pseudocomonoid structure of the
oplax bimonoid M , which is a so-called Tannakian recontruction theorem for oplax bimonoids.

Proposition 3.2.5. Suppose that M is an oplax bimonoid. Then the 1-cells (16) and (17) and the

2-cells (18) to (20) constructed using the monoidal structure of OplMod
opl
M as described in Proposi-

tion 3.2.3 endow the underlying pseudomonoid M with an oplax bimonoid structure which is isomorphic
to the initial one.

Proof. The following diagram can be filled with invertible 2-cells, showing that the the reconstructed
comultiplication (16) using (12) is isomorphic to the initial comultiplication d.

M
m⊗m⊗1 //

d

��

M ⊗M ⊗M
1⊗1⊗d // M ⊗M ⊗M ⊗M

1⊗σ⊗1

��
M ⊗M

j⊗1j⊗1 //

❩❩❩❩❩❩
❩❩❩❩❩❩

❩❩❩❩❩❩
❩❩❩❩❩❩

❩❩❩❩❩❩
❩❩❩❩❩

❩❩❩❩❩

❩❩❩❩❩
❩❩❩❩❩❩

❩❩❩❩❩❩
❩❩❩❩❩❩

❩❩❩❩❩❩
❩❩❩❩❩❩

❩❩❩❩❩
M ⊗M ⊗M ⊗M

m⊗m

��
M ⊗M

Furthermore, by definition it is obvious that the reconstructed counit coincides with the initial one
since ρI itself is defined as isomorphic to the counit (14). In the same way, one observes that the
reconstructed 2-cells θ, θ0, χ, χ0 coincide with the initial ones and hence we obtain by reconstruction
an isomorphic oplax bimonoid structure on M . �

Remark 3.2.6. A next step would be a recognition theorem for oplax bimonoids, in the following sense.
Given a pseudomonoid M in K such that the category OplMod

ps
M is monoidal and the forgetful functor

to K is strict monoidal, when do the constructions described above Proposition 3.2.5 provide an oplax
bimonoid structure on M , such that the monoidal structure of OplMod

ps
M coincides with the one given

in Proposition 3.2.3? In view of the 1-categorical case (see e.g. [Ver13]), in order to obtain such a
theorem one would need a suitable generator condition on the monoidal unit of the bicategory K. Such
a result, which would lead to a bijective correspondence between oplax bimonoid structures on a given
pseudo monoid M and monoidal structures on its category of oplax modules with a strict monoidal
forgetful functor to K, is beyond the scope of the present paper and left open for future work.

3.3. Oplax inverses. Having established the notion of an oplax bimonoid in Definition 3.1.1, we now
investigate the appropriate notion of an antipode in this generalized setting. For that purpose, we
introduce the notion of an oplax inverse in a monoidal category as a special case Morita context. We
begin with some motivating definitions; in what follows, ◦ denotes vertical composition of 2-cells, ∗
denotes horizontal composition of 2-cells and we suppress horizontal composition of 1-cells.

Definition 3.3.1. [El 08] A (wide) Morita context (A,B, p, q, µ, τ) in a bicategory K consists of two
objects A and B, two 1-cells p : A → B and q : B → A and two 2-cells µ : qp ⇒ 1A and τ : pq ⇒ 1B
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such that 1p ∗ µ = τ ∗ 1p : pqp⇒ p explicitly as in

B

A A B

qp

1A

⇓ µ

p

∼=

p

p

⇓ 1p =

A

A B B

p

∼=

p◦(q◦p)

p

p

⇓ 1p

p

∼=

q

1B

⇓ τ

and similarly 1q ∗ τ = µ ∗ 1q : qpq ⇒ q.
A wide Morita context is called strict if the 2-cells µ and τ are invertible.

We will henceforth call a wide Morita context firm if the above composite 2-cells 1p ∗ µ, τ ∗ 1p, 1q ∗
τ, µ ∗ 1q are in fact invertible. The motivation for this terminology comes from the following example.
Notice that a strict wide Morita context is always firm, but the inverse is not true; firmness serves as
an intermediate notion.
There exists a straightforward notion of (iso)morphism of wide Morita contexts. From now on, we

will suppress the word ‘wide’ for Morita contexts.

Examples 3.3.2. In the bicategory BMod of algebras, bimodules and bilinear maps, wide Morita
contexts as in Definition 3.3.1 coincide with the classical notion of a Morita context. In that case,
it is well-known that a Morita context (A,B, p, q, µ, τ) is strict if and only if p is finitely generated
and projective both as a left A-module and a right B-module and there are isomorphisms B∼=AEnd(p),
A∼=EndB(p)

op, q∼=AHom(p,A) ∼=HomB(p,B), if and only if the bimodules p and q induce an equivalence
between the categories of A-modules and B-modules. Similarly, such a classical Morita context is firm
if and only if the rings R = p⊗B q and S = q⊗Ap are firm and p is R-firmly projective as left A-module
and S-firmly projective as right B-module; in this case, there is an equivalence between the categories
of firm R-modules and firm S-modules, see [BV09; Ver08].
In BMod, it is therefore clear that any strict Morita context is firm, but not vice versa: not every

firmly projective module is necessarily finitely generated and projective.

Similarly to the essential uniqueness of adjoints in a bicategory, for a given 1-cell p : A → B it is
known that there can exist only one (up to isomorphism) strict Morita context (A,B, p, q, µ, τ). The
subsequent theorem generalizes this result for firm Morita contexts in bicategories, and is fundamental
for what follows; before that, a lemma establishes some required identities.

Lemma 3.3.3. Let (A,B, p, q, µ, τ) and (A,B, p, q′, µ′, τ ′) be two firm Morita contexts. If α, β, α′ and
β′ are the respective inverse 2-cells of 1p ∗ µ, 1q ∗ τ , 1p ∗ µ

′ and 1q′ ∗ τ
′, the following hold:

(i) 1q ∗ α = β ∗ 1p
(ii) α ∗ 1p = 1q ∗ β

(iii) (α′ ∗ 1qp) ◦ α = (1pq′ ∗ α) ◦ α
′

as well as appropriate identities including α′ and β′.

Proof. (i). By the defining axioms of a Morita context, all arrows (2-cells in K) from left to right in

the next diagram are equal, and therefore have equal inverses. By definition, the inverse of the upper
arrows is 1q ∗ α and the inverse of the lower arrows is β ∗ 1p.

qpqp
1q∗(1p∗µ) //
1q∗(τ∗1p)

// qp

1q∗α

��

qpqp
(1q∗τ)∗1p //
(µ∗1q)∗1p

// pq

β∗1p

^^
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Clause (ii) is proven in a similar way.
(iii). This 2-dimensional equality can be depicted as

A B A B

B B A

⇓ 1qp

p

⇓ α
p

p

q

⇓ α′

p

p
q

q′

p =

A B A B

B A A

⇓ α

p

⇓ α′

p

p ⇓ 1pq′

q′

q′

p

q

p
p

Similarly to the proof of (i), we will show that both 2-cells have the same inverse. Consider the following
diagram, where the parallel arrows are the same due to Morita context axioms, and the inner rectangle
commutes due to the interchange law.

pq′pqp
τ∗1pq′∗1p

//
1pq′p∗µ // pq′p

τ ′∗1p

//
1p∗µ

′

//

1pq′∗α

~~
p

α′

��

pq′pqp
τ ′∗1pqp //

1p∗µ
′∗1qp

// pqp
τ∗1p //
1p∗µ

//

α′∗1qp

__ p

α

]]

�

Theorem 3.3.4. If (A,B, p, q, µ, τ) and (A,B, p, q′, µ′, τ ′) are two firm Morita contexts, there is an
isomorphism q ∼= q′ that makes the above Morita contexts isomorphic.

Proof. Denote by α and β the inverses of respectively 1p ∗µ and 1q ∗ τ , and similarly α′ and β′ for the
corresponding 2-cells of the alternate firm Morita context, as in Lemma 3.3.3. We will show that the
following 2-cells between q and q′

φ : q
β // qpq

1q∗α
′∗1q // qpq′pq

µ∗1q′∗τ // q′

ψ : q′
β′

// q′pq′
1q′∗α∗1q′ // q′pqpq′

µ′∗1q∗τ
′

// q

are mutual inverses, therefore providing the required isomorphism. Indeed, consider the following
identities, where the first one is due to the interchange law, and the unnamed ones are due to firmness
of the Morita context:

ψ ◦ φ = (µ ∗ µ′ ∗ 1q ∗ τ
′ ∗ τ) ◦ (1qpq′ ∗ α ∗ 1q′pq) ◦ (1qp ∗ β

′ ∗ 1pq) ◦ (1q ∗ α
′ ∗ 1q) ◦ β

(i)
= (µ ∗ µ′ ∗ 1q ∗ τ

′ ∗ τ) ◦ (1qpq′ ∗ α ∗ 1q′pq) ◦ (1qpq′ ∗ α
′ ∗ 1q) ◦ (1q ∗ α

′ ∗ 1q) ◦ β

(iii)
= (µ ∗ µ′ ∗ 1q ∗ τ

′ ∗ τ) ◦ (1q ∗ α
′ ∗ 1qpq′pq) ◦ (1qpq′ ∗ α ∗ 1q) ◦ (1q ∗ α

′ ∗ 1q) ◦ β

(iii)
= (µ ∗ µ′ ∗ 1q ∗ τ

′ ∗ τ) ◦ (1q ∗ α
′ ∗ 1qpq′pq) ◦ (1q ∗ α

′ ∗ 1qpq) ◦ (1q ∗ α ∗ 1q) ◦ β

= (µ ∗ µ′ ∗ 1q ∗ τ) ◦ (1q ∗ α
′ ∗ 1qpq) ◦ (1q ∗ α ∗ 1q) ◦ β

= (µ ∗ 1q ∗ τ) ◦ (1q ∗ α ∗ 1q) ◦ β

(i)
= (µ ∗ 1q ∗ τ) ◦ (β ∗ 1qp) ◦ β

= (1q ∗ τ) ◦ β

= 1q

In a very analogous way, φ ◦ ψ = 1q′ and hence q and q′ are isomorphic. �
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We now consider the particular case of an one-object bicategory, i.e. a monoidal category. A firm
Morita context (⋆, ⋆,X, Y, t1, t2) in a bicategory K with one object ⋆ and V = K(⋆, ⋆) gives rise to the
following definition.

Definition 3.3.5. An oplax inverse for an object X in a monoidal category V is an object Y , together
with morphisms τ1 : X⊗Y → I and τ2 : Y ⊗X → I such that 1Y ⊗τ1 = τ2⊗1Y and τ1⊗1X = 1X⊗τ2,
and these are invertible morphisms in V .

As a result of Theorem 3.3.4, such a notion is unique up to isomorphism. Moreover, as a special case
of the fact that pseudofunctors between bicategories preserve Morita contexts [El 08, Prop. 1.10], we
obtain that a strong monoidal functor between monoidal categories preserve oplax inverses.
In many immediate examples, oplax inverses are trivial. Indeed, in the monoidal category V = Vectk

of vector spaces over a field, a simple dimension argument shows that an object has an oplax inverse
if and only if it is isomorphic to the monoidal unit k. Nevertheless, as will be evident in the next
sections, oplax inverses provide the required structure to capture the proper notion of antipodes for
oplax bialgebras.

3.4. Oplax Hopf monoids. Let us first recall the convolution monoidal structure [DS97, Prop.4] on a
hom-category between a pseudomonoid and pseudocomonoid in a monoidal bicategory, that naturally
generalizes the classical convolution for (co)monoids in monoidal categories.

Lemma 3.4.1. Let (M,m, j) be a pseudomonoid and (C, δ, ε) a pseudocomonoid in K. The hom-
category K(C,M) is a monoidal category, with tensor product ⊙ defined on 1-cells f, g : C →M by

f ⊙ g := C
δ // C ⊗ C

f⊗g // M ⊗M
m // M

and on two-cells α : f ⇒ f ′, β : g ⇒ g′ by

α⊙ β := C
δ // C ⊗ C

f⊗g
++

f ′⊗g′

33⇓α⊗β M ⊗M
m // M .

The monoidal unit is given by I⊙ = j ◦ ε : C → I →M .

If M is an oplax bimonoid in K as in Definition 3.1.1, the above lemma assures that K(M,M) has a
monoidal structure given by convolution. This is clearly different to the standard monoidal structure
of every endo-hom category (K(M,M), ◦, 1M ) via horizontal composition, for an arbitrary (not neces-
sarily monoidal) bicategory K; for a meaningful relation between these two monoidal structures, see
Lemma 3.4.5. Another relation, albeit not relevant to our current development, is that if M is a map
monoidale these form a duoidal structure on K(M,M), see e.g. [BL16, Section 3.3].
Since in the classical case, the antipode of a Hopf algebra is a convolution inverse to the identity,

the following definition sets the respective oplax version in an analogous setting.

Definition 3.4.2. An oplax antipode for an oplax bimonoid M in a braided monoidal bicategory K is
an oplax inverse of 1M in the convolution monoidal category K(M,M).

To unpack the above definition, consider an oplax bimonoid (M,m, j, δ, ε) in K. Definition 3.3.5
implies that an oplax antipode is a 1-cell s : M → M along with 2-cells τ1 : 1M ⊙ s ⇒ I⊙ and τ2 : s⊙
1M ⇒ I⊙ as in

M ⊗M M ⊗M

M I M

M ⊗M M ⊗M

1⊗s

⇓ τ1 m

ε

δ

δ

j

s⊗1

⇑ τ2 m

(21)
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such that 1s ⊙ τ1 = τ2 ⊙ 1s and τ1 ⊙ 11M = 11M ⊙ τ2, namely

MMM MMM

M MM MM M

M M

s1s

1m

δ

1

∼=

⇓ 1s⊗τ1

1ε

1δ

m

s

1j

1

∼=

=

MMM MMM

M MM MM M

M M

s1s

m1 m◦1m
∼=

δ

1

∼=

1δ◦δ
∼=

⇓ τ2⊗1s

ε1

δ1

m

s

j1

1

∼=

MMM MMM

M MM MM M

M M

1s1

m1 m◦1m
∼=

δ

1

∼=

1δ◦δ
∼=

⇓ τ1⊗11M

ε1

δ1

m

1

j1

1

∼=

=

MMM MMM

M MM MM M

M M

1s1

1m

δ

1

∼=

⇓ 11M⊗τ2

1ε

1δ

m

1

1j

1

∼=

(22)
and all 2-cells 1s ⊙ τ1, τ2 ⊙ 1s, τ1 ⊙ 11M and 11M ⊙ τ2 are invertible.
The above says that s⊙ 1M ⊙ s ∼= s and 1M ⊙ s⊙ 1M ∼= 1M via specific 2-isomorphisms.

Definition 3.4.3. An oplax Hopf monoid in a monoidal bicategory K is an oplax bimonoid with an
oplax antipode. A morphism of oplax Hopf monoids is an oplax bimonoid morphism which preserves
the antipode.

Notice that from Theorem 3.3.4 it follows that the antipode is essentially unique when it exists; hence
‘being Hopf’ is a property on oplax bimonoids and not structure. We obtain a (bi)category OplHopf(K)
of oplax Hopf monoids and morphisms between them, with a faithful forgetful functor to OplBimon(K)
of oplax bimonoids. Moreover, Proposition 3.1.3 extends to the case of oplax Hopf monoids as follows.

Proposition 3.4.4. If F : K → L is a braided monoidal pseudofunctor andM is an oplax Hopf monoid
in K with antipode s, then FM is an oplax Hopf monoid in L with antipode Fs.

Proof. Suppose the monoidal pseudofunctor F has structure maps the pseudonatural equivalences
φX,Y : FX ⊗ FY → F(X ⊗ Y ) and ψX,Y : F(X ⊗ Y )→ FX ⊗FY with φψ ∼= ψφ ∼= id, and similarly
for φ0, ψ0. The 1-cell Fs : FM → FM along with the composite 2-cells formed from Fτ1 as in

FM ⊗FM FM ⊗FM

FM F(M ⊗M) F(M ⊗M) F(M ⊗M) F(M ⊗M) FM

FM FI FM

FI I FI

∼=
∼=φM,M

1⊗Fs

φM,M
φM,M

∼=

F(m◦(1⊗s)◦δ)

1

Fδ

ψM,M

1 F(1⊗s)

⇓Fτ1

1
Fm

1

∼=

F(j◦ε)

Fε

Fε

1∼=

Fj

1

ψ0 φ0

Fj

and similarly the one formed from Fτ2 constitute an oplax antipode for the oplax bimonoid FM .
This can be also deduced from the fact that FM,M : K(M,M)→ K(FM,FM) is a strong ⊙-monoidal
functor with structure maps essentially those on the top and the bottom of the diagram, therefore
preserves oplax inverses. �

Finally, we can also express the definition of an oplax Hopf monoid in terms of fusion morphisms,
similarly to the classical case recalled in Section 2.1. For an oplax bimonoid (M,m, j, δ, ε), consider
M ⊗M as a (strict) left M -module and (strict) right M -comodule with actions given by

ρ =M ⊗M ⊗M
m⊗1M−−−−→M ⊗M

χ =M ⊗M
1M⊗δ
−−−−→M ⊗M ⊗M
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If we denote by MK
M (M ⊗M,M ⊗M) the monoidal subcategory of the endo-hom category (K(M ⊗

M,M ⊗ M), ◦, 1M⊗M ) that consists of strict M -module and M -comodule morphisms, we have the
following result.

Lemma 3.4.5. For M an oplax bimonoid in a monoidal bicategory K, there exists an isomorphism of
monoidal categories

(MK
M (M ⊗M,M ⊗M), ◦, 1M⊗M ) ∼= (K(M,M),⊙, I⊙).

Proof. Define F : K(M,M)→M K
M (M ⊗M,M ⊗M) mapping any f :M →M to

F (f) =M ⊗M
1M⊗δ
−−−−→M ⊗M ⊗M

1M⊗f⊗1M
−−−−−−−→M ⊗M ⊗M

m⊗1M−−−−→M ⊗M.

One easily verifies that this is leftM -linear and rightM -colinear. Conversely, given any leftM -module
and right M -comodule map g : M ⊗M →M ⊗M , define

G(g) =M
j⊗1M
−−−−→M ⊗M

g
−→M ⊗M

1M⊗ε
−−−−→M

The bijection is established using the strict (co)unity conditions for M , and furthermore it can be
checked that F (f ⊙ f ′) = F (f) ◦ F (f ′), hence this is a monoidal isomorphism. �

Under the above isomorphism, the identity 1M ∈ K(M,M) corresponds to the so-called fusion 1-cell

M ⊗M
1M⊗δ
−−−−→M ⊗M ⊗M

m⊗1M−−−−→M ⊗M (23)

and the following can be easily deduced from Definition 3.4.2.

Proposition 3.4.6. An oplax bimonoid is an oplax Hopf monoid if and only if the fusion 1-cell
(m⊗ 1M ) ◦ (1M ⊗ δ) has an oplax inverse in MK

M (M ⊗M,M ⊗M).

4. The object X2 in Span

In this section, we describe various algebraic properties of X2 as an object in the symmetric monoidal
bicategory Span; these results will be necessary to capture the structure of Hopf and Frobenius V-
categories in Sections 6 and 7, where X serves as their set of objects. Although the results of this
section are valid for arbitrary groupoids as discussed in Remark 4.5.2, we provide explicit proofs only
for X2.

4.1. Spans. Recall that in any category C, a span X Y is a diagram of the form X Sfoo g // Y.

A morphism between spans is a map u : S → T making both left and right triangles commute:

S

T

X Y

u
f g

h k

(24)

If C has pullbacks, the composite X Y Z is X S ×Y Roo // Z in the usual way. Since
pullbacks are unique only up to isomorphism, the above data forms a bicategory. As explained in
Section 2.3, using coherence we can work with Span as if it was a strict 2-category; on the other hand,
taking isomorphism classes of spans we can work with a 1-category also denoted Span, and it should
be clear from the context which one we mean. From this point on, we restrict ourselves to Span for
C = Set, where spans can also be expressed as (f, g) : S → X × Y as is the case in any category with
products.

Remark 4.1.1. An evident observation, which will nevertheless be very useful in checking various axioms
in the following sections, is that there is at most one span morphism with target a span with a monic
leg. Explicitly, if there were two maps of spans u, u′ : S → T as in (24) and for example the leg
h : T → X is monic, then u = u′ since h ◦ u = f = h ◦ u′. More generally, a similar argument shows
that there is at most one span morphism with target a span with jointly monic legs. As a result, in
later axioms that involve equalities of pasted composites of 2-cells in Span, whenever the target span
has that property, the axiom verification is straightforward since there can only be one such 2-cell.



16 BUCKLEY, FIEREMANS, VASILAKOPOULOU, AND VERCRUYSSE

The bicategory (Span,×, 1 = {⋆}) is symmetric monoidal, with σ : X × Y Y × X given by the

span X × Y X × Yidoo sw // Y ×X where sw is the switch map (x, y) 7→ (y, x) in Set. If we view
Set as a 2-category with trivial 2-cells, there is a faithful (strict) monoidal (strict) functor

Set→ Span (25)

which acts as the identity on objects, and maps a function f : X → Y to the span X Xidoo f // Y .

Indeed g ◦ f : X → Y → Z is mapped to the span X Xidoo g◦f // Z by choosing pullbacks along the
identity to be identity in Set. In a similar way there is an embedding from Setop to Span.

4.2. Trivial monoid and comonoid structures. Since every set X has a canonical comonoid struc-
ture in Set given by the diagonal map ∆: X → X × X and unique map ! : X → 1, the monoidal
embedding Set→ Span as in (25) yields a comonoid structure on X in Span with (id,∆): X X ×X
as the comultiplication and (id, !) : X 1 as the counit; we refer to this as the trivial comonoid struc-
ture on X in Span. Similarly, the contravariant embedding yields a monoid structure on X which is the
reverse of the comonoid structure and is called the trivial monoid structure on X . Notice that these
structures are strict rather than pseudo in the monoidal bicategory of spans, namely the (co)associator
and (co)unitors are identities and the axioms (51) are trivially satisfied (since for example cm,m in this
case is the identity).
In particular, on an object of the form X2 in Span, we will denote the trivial comonoid structure as

(X2, ζ, ν) where

X2

X2 X4

∆X2id

ζ

X2

X2 1

!id

ν

(26)

Remark 4.2.1. Notice that while Comon(Set) ∼= Set as is the case in any cartesian monoidal category,
here Comon(Span) ≇ Span since the latter is no longer cartesian: the categorical product in this category
is given by the disjoint union. Hence our so-called ‘trivial’ comonoid structure above is not so in that
usual way.

4.3. Groupoid pseudomonoid and pseudocomonoid structures. For any set X , one can form
the codiscrete category whose objects are elements of X and where there is a single arrow (x, y) ∈ X2

between any pair of objects x, y ∈ X . The identity arrows are the pairs (x, x) and composition is
((x, y), (y, z)) 7→ (x, z). This category is in fact a groupoid: inverses are computed by (x, y) 7→ (y, x).
This groupoid gives rise to a pseudomonoid structure on X2 in Span with the following multiplication
and unit

X3

1×∆×1

}}④④
④④
④④
④④ 1×!×1=π13

!!❈
❈❈

❈❈
❈❈

❈

X4 ✤
µ

// X2

X

!

}}④④
④④
④④
④④
④

∆

!!❈
❈❈

❈❈
❈❈

❈

1 ✤
η

// X2

(27)

We call this the groupoid pseudomonoid structure onX2. The reverse structure u = (π13, 1×∆×1): X
3 →

X2×X4 and v = (∆, !) : X → X2×1 is called the groupoid pseudocomonoid structure on X2.
Explicitly, the coassociator β : (1×u)◦u ∼= (u×1)◦u and counitors t : (v×1)◦u ∼= 1, s : (1×v)◦u ∼= 1

are formed between

P

X3 X2 ×X3

X2 X2 ×X2 X2 ×X2 ×X2

X3 X3 ×X2

Q

p

π13 1∆1 11π13 111∆1

u 1×u

u×1

π13 1∆1 π1311 1∆111

p

(28)
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A

X3 X2 ×X

X2 X2 ×X2 X2

X2

p

π13 1∆1 11∆ 11!

idX2

u 1×v

1 1

B

X3 X2 ×X

X2 X2 ×X2 X2

X2

p

π13 1∆1 ∆11 !11

idX2

u v×1

1 1

where P and Q are isomorphic to X4, and A, B are isomorphic to X2. The precise span isomorphisms
can be computed in a clear but tedious way: for example, taking the usual choice of pullbacks in Set,
we can compute that

X3×X2×X3 ⊇ P={((x1, x2, x3), (x4, x5), (x6, x7, x8)) | (x1, x2, x2, x3)=(x4, x5, x6, x8)} ∼= {(x1, x2, x7, x3)}

X3×X3×X2 ⊇ Q={((y1, y2, y3), (y4, y5, y6), (y7, y8)) | (y1, y2, y2, y3)=(y4, y6, y7, y8)} ∼= {(y1, y5, y2, y3)}

and the precise isomorphism that commutes with the legs can be written according to the above
representation, namely x1 7→ y1, x2 7→ y5, x7 7→ y2 and x3 7→ y3.
Notice that by Remark 4.1.1, the above structure span isomorphisms are unique: the counitors

involve the identity, and the coassociator has monic legs on the right side. For the same reasons, the
pseudocomonoid axioms – dual to (51) – hold: both span 2-isomorphisms involve a span with a monic
leg, therefore they must be equal.

4.4. Oplax bimonoid and oplax Hopf monoid structures. The following result establishes the
oplax bimonoid structure of X2 in the symmetric monoidal bicategory Span.

Proposition 4.4.1.

(i) For any set X, the groupoid pseudomonoid (µ, η) (27) and trivial comonoid (ζ, ν) (26) structures
on X2 make it an oplax bimonoid in Span.

(ii) For any set X, the trivial monoid and groupoid pseudocomonoid structures on X2 make it an
oplax bimonoid in Span.

Proof. Since Span is a symmetric monoidal bicategory and X2 is a strict comonoid with the trivial
comonoid structure, X2 ×X2 is a pseudocomonoid with comultiplication and counit similarly to (5)

X2 ×X2 X2 ×X2 ×X2 ×X2 X8, X2 ×X2 1
ζ×ζ 1×σX2,X2×1 ν×ν

The data for the oplax bimonoid structure (Definition 3.1.1) are span morphisms θ, θ0, χ, χ0 defined
below.

X3

id
③③

||③③ π13

❊❊

""❊❊

θ

��

X3

1∆1
③③
③③
③③

||③③
③③
③③

π13

❊❊

""❊❊
X2

id
③③

||③③
∆
❊❊

❊❊
❊❊

""❊
❊❊

❊❊
❊X2

X4 X8 X8 X4

X4

id❊❊
bb❊❊

∆2

<<

X8

id❊❊
bb❊❊

11sw11③③

<<③③

X6

1∆11∆1

bb❊❊
π1346③③

<<③③

X4

id❊❊
bb❊❊

∆2

<<

P

1∆1❊❊

bb❊❊
∆

<<②②②②②②②②②②②②②

X
id

||③③
③③
③ ∆

""❊
❊❊

❊

θ0=∆





X
!

||③③③
③③
③ ∆

""❊
❊❊

❊ X2

id
||③③
③③ ∆

""❊
❊❊

❊

1 X2 X4

X2

!

bb❊❊❊❊❊❊❊❊❊❊❊❊❊
∆2

<<③③③③③③③③③③③③③

(29)
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X3

id
||②②②
② π13

""❊
❊❊

❊

χ=1∆1





X3

1∆1
||②②②
② π13

""❊
❊❊

❊ X2

id
||②②②
② !

""❊
❊❊

❊❊

X4 X2 1

X4

id

bb❊❊❊❊❊❊❊❊❊❊❊ !

<<②②②②②②②②②②②②

X
id

||②②
②② ∆

""❊
❊❊

❊

χ0=!

		

X
!

||②②
②②
② ∆

""❊
❊❊

❊ X2

id
||②②②
② !

""❊
❊❊

❊❊

1 X2 1

1

id

bb❊❊❊❊❊❊❊❊❊❊❊❊❊
!

<<②②②②②②②②②②②②②

(30)

where X4 ×X6 ⊇ P ∼= X3 and θ is the (unique) span isomorphism that fits therein, like above. The
conditions listed in Appendix A.2 can all be verified again by Remark 4.1.1 since all have a span with
monic leg as target, therefore (X2, µ, η, ζ, ν, id,∆, 1×∆×1, !) is an oplax bimonoid in the symmetric
monoidal bicategory Span.
Since Span is isomorphic to Span

op, the two statements are equivalent. �

Remark 4.4.2. In general, asking for a pseudomonoid and pseudocomonoid to be an oplax bimonoid
amounts to specifying structure, not a property; it requires the existence of four 2-cells subject to
axioms. However, there are cases like above where that structure is unique when it exists, according
to Remark 4.1.1: in all cases (29) and (30), the target span has at least one monic leg.

Finally, X2 is an oplax Hopf monoid in Span as in Definition 3.4.3.

Proposition 4.4.3. For any set X, the oplax bimonoid structure (X2, µ, η, ζ, ν) uniquely extends to
an oplax Hopf monoid structure on X2.

Proof. The oplax antipode is given by the span s : X2 X2
idoo sw // X2 , along with two 2-cells τ1, τ2

(21) in Span, computed to be the upper and lower span morphisms

X2
id

��

∆◦π1

��
τ1

��
X2 X3

π12

oo
∆◦π3

// X2

X2id

]]

∆◦π2

AA

τ2

OO (31)

with τ1 : (a, b) 7→ (a, b, a) and τ2 : (a, b) 7→ (a, b, b). These are monomorphisms, and moreover according
to Remark 4.4.2 they are unique. One can now verify that s and 1X2 by means of the 2-cells τ1 and τ2
are oplax inverses in the convolution category Span(X2, X2). �

Remark 4.4.4. We could alternatively consider the fusion 1-cell (23) for (X2, µ, η, ζ, ν)

c : X4 X6 X4
1X2×ζ µ×1X2

which is computed to be a span X4 ← X3 → X4 defined by (a, b, b, c) 7→(a, b, c) 7→ (a, c, b, c).
As expected from Proposition 3.4.6, this is not invertible in Span, but it allows an oplax inverse in

X2SpanX
2

(X4, X4) namely the following composite

c̄ : X4 X6 X6 X4
1X2×ζ 1X2×σ×1X2 µ×1X2

Once we recognize that both legs of the span c are monomorphisms, it is immediate that c̄ and c are
oplax inverses. Notice that c̄ given by (a, b, c, b) 7→(a, b, c) 7→ (a, c, c, b) is the reverse span of c up to a
switch between b and c.

4.5. Frobenius monoid structure. The following proposition exhibits how different combinations of
the earlier monoid and comonoid structures give rise to Frobenius (pseudo)monoids in the symmetric
monoidal bicategory Span.

Proposition 4.5.1.

(i) For any set X, the trivial monoid ((∆, id), (!, id)) and its reverse trivial comonoid structures make
X into a Frobenius (strict) monoid in Span; clearly also X2 with (26) and its reverse.
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(ii) For any set X, the groupoid monoid (µ, η) (27) and its reverse groupoid comonoid structure (u, v)
on X2 make it a Frobenius pseudomonoid in Span.

Proof. The first statement can be easily verified. For the second one, we need to provide the structure
isomorphisms of (6) and verify the conditions of Appendix A.5. The middle composite is

P ∼= X4

X3 X3

X2 ×X2 X2 X2 ×X2

π134π124
p

1×∆×1 π13 π13 1×∆×1

µ δ

which explicitly acts as (a, b, b, d) 7→(a, b, c, d) 7→ (a, c, c, d). The downside composite on the other
hand is

Q ∼= X4

X2 ×X3 X3 ×X2

X2 ×X2 X2 ×X2 ×X2 X2 ×X2

12×∆×11×∆×12

p

12×π13

13×∆×1 1×∆×13
π13×12

1×δ µ×1

So the span isomorphism is between P ⊆ X3 × X3 and Q ⊆ X2 × X3 × X3 × X3, and the other
isomorphism is formed similarly. Even though the spans involved do not have monic legs in this case as
earlier, they are jointly monic; again by Remark 4.1.1, this fact renders the structure span isomorphisms
unique. Finally, all conditions (73) to (76) hold for the same reasons. �

Remark 4.5.2. The above structures arise not just on the set X2, but for an arbitrary groupoid G =

( G1
s //
t // G0 ) with set of objects G0, set of morphisms G1, and s, t the source and target maps. Any

G gives rise to a pseudomonoid (and a pseudocomonoid) in Span with multiplication and counit as
follows

G2

(s,t)

xxqqq
qq
qq
qq
qq

m

&&▼▼
▼▼

▼▼
▼▼

▼▼
▼▼

G1 ×G1
✤ // G1

G0

!

}}⑤⑤
⑤⑤
⑤⑤
⑤⑤ e

!!❇
❇❇

❇❇
❇❇

❇

1 ✤ // G1

(32)

where G2 = G1s×tG1 are the composable morphisms of G and e : G0 → G1 gives the identity;
this determines the ‘groupoid’ structures of Section 4.3. Moreover, the trivial monoid and groupoid
pseudocomonoid structures on G1 make it an oplax bimonoid in Span that uniquely extends to an oplax
Hopf monoid, analogously to Propositions 4.4.1 and 4.4.3. Finally, the groupoid pseudomonoid and
pseudocomonoid structures on G1 make it a Frobenius pseudomonoid in Span as in Proposition 4.5.1.

The results of this section can be summarised in the following table. The combinations of structures
in the columns give oplax Hopf monoid structures on X2 in Span, and in the rows give Frobenius
monoid structures.

Hopf Hopf
Frob Trivial monoid Trivial comonoid
Frob Groupoid comonoid Groupoid monoid

Table 1.

A similar observation was made by Street in [Str04a], where the possible Frobenius and Hopf algebra
structures for a group algebra kG were described.



20 BUCKLEY, FIEREMANS, VASILAKOPOULOU, AND VERCRUYSSE

5. The symmetric monoidal bicategory Span|V

In [Böh17], starting from a bicategory K a new bicategory Span|K is constructed, with the property
that when K is monoidal so is Span|K. The two special cases that are addressed (due to the Hopf objects
of interest) are Span|Cat and Span|V , for V a braided monoidal category considered as a one-object
monoidal bicategory.
In our context, we take V to be any monoidal category, this time viewed as a monoidal 2-category

with trivial 2-cells; this induces some sort of ‘level-shift’ compared to Böhm’s primary examples. We
give an explicit description of the monoidal bicategory Span|V [Böh17, §2.1] in our particular case of
interest, and in the following Sections 6 and 7 we show how it serves as a common framework for Hopf
and Frobenius V-categories: they are expressed as oplax Hopf monoids and Frobenius pseudomonoids
in Span|V respectively.

5.1. Monoidal bicategory structure. The 0-cells in Span|V are pairs (X,M) where X is a set and
M : X → V is a functor, given by a family of objects {Mx}x∈X in V ; we use the shorthand notation

MX for the pair (X,M). A 1-cell from MX to NY in Span|V consists of a span X Sfoo g // Y of
sets, along with a natural transformation

X

S V

Y

Mf

g N

α (33)

whose components are arrows αs : Mfs → Ngs in V . We use the shorthand fαg : MX → NY and specify
S separately when needed. A 2-cell in Span|V denoted by φu :

fαg ⇒ hβk : MX → NY is a map of
spans u : S → T , i.e. hu = f and ku = g, such that α factorizes through β in the sense that α = β ∗ 1u:

X

S T V

Y

M

u

f

g

h

k N

β =

X

S V

Y

Mf

g N

α (34)

Componentwise, this means that αs = βus : Mfs → Ngs in V . Notice that a 2-cell is invertible if
and only if the underlying map of spans is invertible. Vertical composition is performed by the usual

composition of maps of spans, and horizontal composition MX
α
−→ NY

γ
−→ OZ of 1-cells is obtained via

the pasted composite of natural transformations

X

S

S×YQ Y V

Q

Z

M
f

g

π1

π2

p
N

m

n
O

α

γ

(35)

given by V-arrows (γ ◦ α)(s,q) : Mfs
αs−→ Ngs

=
−→ Nmq

βq
−→ Onq for any (s, q) ∈ S×YQ. The iden-

tity 1M : MX → MX is given by the identity span and natural transformation. Finally, horizontal
composition of 2-cells in Span|V follows from horizontal composition of 2-cells in Span: in detail,

φ ∗ ψ = MX NY OZ

α

β

⇓ φ

γ

δ

⇓ ψ
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is given by the map of spans w below,

X

S T

� • Y V

Q P

Z

M
f

u

h

k

w N
g

m

n

v

r

l
O

β

δ

(36)

where � is the pullback of g and m and • is the pullback of r and k, and the factorization of γ ◦ α
through δ ◦ β is

γq ◦ αs = (γ ◦ α)(s,q) = (δ ◦ β)w(s,q) = (δ ◦ β)(us,vq) = δvq ◦ βus

for any (s, q) in the square pullback, since αs = βus and γq = δvq by φ and ψ.
With the above data, Span|V becomes a bicategory. Notice that Span|(Vop) ∼= (Span|V)op.

Remark 5.1.1. By definition of a 2-cell in Span|V , namely a map of spans which satisfies a factorization
property (34), it follows that two 2-cells are equal if and only if their underlying maps of spans in Span

are equal; the accompanying factorizations are conditions that already hold. This fact is very useful
when verifying axioms including 2-cells in subsequent sections.

Since V is a monoidal 2-category (with trivial 2-cells), the bicategory Span|V has an induced monoidal
structure as follows. On objects, the tensor productMX⊗NY = (M⊗N)X×Y is given by (M⊗N)x,y =
Mx ⊗Ny in V , namely the composite

X × Y
M×N
−−−−→ V × V

⊗×⊗
−−−→ V .

For 1-cells, fαg ⊗ kβl is of the form

X × Z

S × T V

Y ×W

M⊗Qf×k

g×l N⊗P

α⊗β (37)

given by morphisms Mfs ⊗ Qkt
αs⊗βt
−−−−→ Ngs ⊗ Rlt in V . For 2-cells, it is given by the product of the

factorizing functions (maps of spans) in (34), and the monoidal unit is IV : 1 → V that picks out the
unit in V . Finally, if (V ,⊗, I, σ) is braided, then so is Span|V via σ̄MN : MX ⊗NY → NY ⊗MX given
by

X × Y

X × Y V

Y ×X

M⊗Nid

sw N⊗M

σ̄MN

with components Mx ⊗Ny
σMx,Ny
−−−−−→ Ny ⊗Mx in V .

5.2. The underlying span functor. There is an evident strict functor of bicategories U : Span|V →
Span that forgets the data associated with V . In more detail, U maps a 0-cell AX to the set X , a

1-cell fαg to the span X Sfoo g // Y and a 2-cell φu to the map of spans u; it is clear that the
composition is preserved on the nose. This functor is strict monoidal, since

U(AX)⊗Span U(BY ) = X × Y = U(AX ⊗Span|V BY ), U(I1) = 1 (38)

and similarly for morphisms. Since U is a (symmetric) strict monoidal strict functor of bicategories,
Proposition 3.1.3 ensures that any pseudomonoid or pseudocomonoid object in Span|V has an un-
derlying pseudo(co)monoid in Span which by the definitions is part of the structure; e.g. if AX is a
pseudomonoid in Span|V , X must be a pseudomonoid in Span.
In fact, this strict functor of bicategories is a kind of 2-opfibration, see [Buc14]. Briefly, therein the

usual Grothendieck construction (see [Bor94, §8]) extends to give a correspondence between 2-functors
F : Xop → 2-Cat and 2-fibrations

∫

F → X, and a similar correspondence between trihomomorphisms



22 BUCKLEY, FIEREMANS, VASILAKOPOULOU, AND VERCRUYSSE

from a bicategory into Bicat and fibrations of bicategories. The covariant case is not explicitly described
therein, but is easily obtained by modifying the contravariant construction. In the case of a covariant
F , the resulting functor is a 2-opfibration and the 2-category

∫

F has objects (X,A∈FX), morphisms
pairs (f : X→Y ∈ X, α : Ff(A)→B ∈ FY ) and 2-cells (f, α)⇒ (g, β)

X Y

f

g

⇓ φ in X such that

Ff(A)

Fg(A) B

α(Fα)A
=

β

in FY. (39)

The work of Buckley also omits any version of this construction where F is not as strict as it can be (a
2-functor from a 2-category into 2-Cat) or as weak as it can be (a trihomomorphism from a bicategory
into Bicat), but those intermediate versions can be generated by adapting the construction accordingly.
In our case, we need the covariant version where X is a bicategory and F is a pseudofunctor into 2-Cat,
when

∫

F becomes a bicategory and
∫

F → X a strict functor.

Theorem 5.2.1. If V has colimits, U : Span|V → Span is a 2-opfibration.

Proof. We build a pseudofunctor Span→ Cat →֒ 2-Cat and apply a modified Grothendieck construction
from [Buc14]; the resulting 2-opfibration is isomorphic to U .
Briefly recall that the left Kan extension of a functor K : A → C along some F : A → B is a

functor LanFK : B → C equipped with a natural transformation ηK : K ⇒ (LanFK) ◦ F such that
LanF ⊣ F∗ = - ◦ F with unit η. When C has colimits, the left Kan extension always exists and can be
computed as the coend [Kel05, (4.25)]

LanFK(b) :=

∫ a∈A

B(Fa, b) ·Ka

where · denotes the set-theoretic copower.

Define a pseudofunctor Span→ Cat which maps X to [X,V ], a span X Sfoo g // Y to Lang(− ◦
f) : [X,V ] → [Y,V ] and a map of spans u : (f, g) → (h, k) (24) to a natural transformation ū whose
components are

ūA : Lang(Af) = Lang(Ahu) ∼= Lank(Lanu(Ahu))
Lank(εAh)
−−−−−−−→ Lank(Ah) (40)

for all A ∈ [X,V ], where the isomorphism is a standard property for Kan extensions of compos-
ites [Kel05, (4.48)]. This action on 1- and 2-cells defines a functor for allX,Y in Span. For pseudofuncto-
riality, we need natural isomorphisms Lanid(−◦id) = id[X,V] and Lank(Lang(−◦f)◦h) ∼= Lankπ2 (−◦fπ1)
for every pullback of spans

Q

S T

X Y Z

π2π1
p

f g h k

The identity is straightforward, while the second isomorphism arises as the composite

[X,V ] [S,V ] [Y,V ]

[Q,V ] [T,V ]

[Z,V ]

f∗

(fπ1)∗

=

Lang

⊥

(π1)∗ ∼=

g∗

h∗

Lanπ2

⊥

Lankπ2

∼=
(π2)∗

Lank
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where the middle isomorphism is realised via the following coends computation, for any B ∈ [S,V ]:

LangB(ht) =

∫ s∈S

Y (gs, ht) · Bs ∼=

∫
s∈S
gs=ht

Bs =
∑

gs=ht

Bs (Y, S are sets)

Lanπ2(Bπ1)t =

∫ (s,t′)∈Q

T (π2(s, t
′), t) · (Bπ1)(s, t

′) ∼=

∫
(s,t′)∈Q
t=t′

Bs =
∑

gs=ht

Bs.

The axioms for pseudofunctoriality can be shown to hold using the universal properties of these co-
ends. If we compose this functor with the usual 2-functor Cat → 2-Cat and apply the Grothendieck
construction, we obtain the bicategory whose objects are (X,A ∈ [X,V ]), 1-cells are pairs

{

Lang(Af)
α
−→ B in [Y,V ]

X Sfoo g // Y in Span
(41)

and 2-cells are, for u as in (24) and ū as in (40),

(f, g)
u
−→ (h, k) in Span such that

Lang(Af)

Lank(Ah) B

αūA

β

in [Y,V ]. (42)

This bicategory has exactly the same objects as Span|V , and there is an isomorphism between their
hom-categories: the necessary bijections between (41) and (33), (42) and (34) are exactly the universal
property of left Kan extension. This isomorphism commutes with the projections to Span and thus
makes U : Span|V → Span a 2-opfibration. �

The above theorem shows that the definition of the bicategory Span|V in fact arises from a series of
quite natural constructions.

6. Hopf V-categories as oplax Hopf monoids

In this section, we recall the notion of Hopf V-category [BCV16] for a braided monoidal category V ,
and we realize them as oplax Hopf monoids in the monoidal bicategory Span|V , described respectively
in Sections 3 and 5. This allows us to understand exactly how such a concept can be described as a
‘Hopf object’ internal to some monoidal structure, generalizing the classical setting via this relaxed
notion of a Hopf monoid in higher dimensions.
Our notation in what follows uses Latin letters to denote ‘global’ operations that relate hom-objects

of different indices (like category composition), and Greek letters to denote ‘local’ operations that relate
hom-objects of fixed indices (like monoid multiplication).

6.1. Hopf V-categories. Intuitively, a category can be thought of as a many-object generalization of
a monoid. Since a Hopf monoid — internal to any braided monoidal category — has both a monoid
and a comonoid structure, it is reasonable to ask what its many-object generalization should be. A
natural answer to this question is as follows.

Definition 6.1.1. [BCV16, §2] If (V ,⊗, I, σ) is braided, a semi-Hopf V-category H is a Comon(V)-
enriched category. Explicitly, it consists of a collection of objects H0 and for every x, y ∈ H0 an object
Hx,y of V , together with families of morphisms in V

mxyz : Hx,y ⊗Hy,z → Hx,z jx : I → Hx,x

δab : Ha,b → Ha,b ⊗Ha,b εab : Ha,b → I
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which make H a V-category, each Hx,y a comonoid in V , and satisfy

Hx,y ⊗Hy,z

δxy⊗δyz //

mxyz

��

Hx,y ⊗Hx,y ⊗Hy,z ⊗Hy,z

1⊗σ⊗1

��
Hx,y ⊗Hy,z ⊗Hx,y ⊗Hy,z

mxyz⊗mxyz

��
Hx,z

δxz

// Hx,z ⊗Hx,z

I
∼ //

jx

��

I ⊗ I

jx⊗jx

��
Hx,x

δxx

// Hx,x ⊗Hx,x

Hx,y ⊗Hy,z

εxy⊗εyz //

mxyz

��

I ⊗ I

∼

��
Hx,z εxz

// I

I
id //

jx

��

I

id

��
Hx,x εxx

// I.

(43)

Semi-Hopf V-categories together with Comon(V)-functors and Comon(V)-natural transformations
form the 2-category Comon(V)-Cat, denoted by sHopf-V-Cat.

Examples 6.1.2.

(1) Every bimonoid in a braided monoidal category V can be viewed as a 1-object semi-Hopf V-
category, therefore semi-Hopf categories are indeed many-object generalizations of bialgebras.

(2) For any cartesian monoidal category V , where by default Comon(V) ∼= V , any V-enriched
category is automatically a semi-Hopf V-category.

(3) In [HLV17], it is established that when V is a locally presentable braided monoidal closed
category, the category of monoidsMon(V) is enriched in Comon(V) via the existence of universal
measuring comonoids, first introduced by Sweedler in [Swe69]. ThereforeMon(V) is a semi-Hopf
V-category. The assumptions on V are satisfied by a wide class of examples, like vector spaces,
modules over a commutative ring, chain complexes over a commutative ring, Grothendieck
toposes etc.

Definition 6.1.3. [BCV16, Def. 2.3] A Hopf V-category is a semi-Hopf V-category equipped with a
family of maps sxy : Hx,y → Hy,x in V satisfying

Hx,y ⊗Hx,y

Hx,y⊗sxy // Hx,y ⊗Hy,x

mxyx

%%❑
❑❑

❑❑
❑❑

❑❑

Hx,y

εxy //

δxy
99sssssssss

I
jx // Hx,x

Hx,y ⊗Hx,y

sxy⊗Hx,y // Hy,x ⊗Hx,y

myxy

%%❑❑
❑❑

❑❑
❑❑

❑

Hx,y

εxy //

δxy
99sssssssss

I
jy // Hy,y .

(44)

Such an identity-on-objects V-graph map s : H → Hop is called the antipode of H .

If H and K are Hopf V-categories, a Comon(V)-functor F : H → K is called a Hopf V-functor if
sf(x)f(y) ◦ Fxy = Fyx ◦ sxy for all x, y ∈ X . In fact, any Comon(V)-functor automatically satisfies that
condition [BCV16, 2.10]; hence we have a full 2-subcategory Hopf-V-Cat of sHopf-V-Cat.

Examples 6.1.4.

(1) Every Hopf algebra H in a braided monoidal V is a 1-object Hopf V-category; in particular,
each ‘diagonal’ hom-object Hx,x of a Hopf V-category H is a Hopf monoid in V .

(2) A Hopf Set-category is precisely a groupoid; in general, for a cartesian monoidal V , a Hopf V-
category is a V-groupoid, namely a V-category whose hom-objects are equipped with inversion
maps.
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(3) If we replace V with Vop, we obtain the notion of a (semi-)Hopf V-opcategory, called dual Hopf
category in [BCV16]. Since Comon(Vop) ∼= Mon(V)op, a semi-Hopf V-opcategory (C, d, ǫ, µ, η)
is precisely a Mon(V)-opcategory, i.e. is equipped with ‘global’ cocomposition and coiden-
tity morphisms dxyz, ǫx as in (2), together with ‘local’ multiplication and unit morphisms
µxy : Cx,y ⊗ Cx,y → Cx,y, ηxy : I → Cx,y making each hom-object a monoid in V , subject to
compatibility conditions. Moreover, a Hopf V-opcategory comes with arrows sxy : Cy,x → Cx,y
satisfying dual axioms to (44).

Remark 6.1.5. Hopf V-categories can be realized as Hopf monads inside two different monoidal bicat-
egories as follows. In [Böh17, §4.8], Hopf V-categories are captured as certain Hopf monads in Span|V
(those with indiscrete underlying category), for a one-object monoidal bicategory V . On the other
hand, Hopf V-categories are in bijection to Hopf monads in V-Mat, the bicategory of V-matrices; the
relevant structure is sketched in [Vas19, Remark 4.8].

6.2. Oplax Hopf monoid structure. In the following theorem, we summarize the main results of
this section regarding oplax bimonoid and Hopf monoid structures on an object in Span|V . Recall that
by Propositions 3.1.3 and 3.4.4, the strict monoidal structure (38) of the forgetful functor U : Span|V →
Span ensures that the underlying set of an oplax Hopf monoid in Span|V is an oplax Hopf monoid in
Span; the relevant structures on X2 were described in Section 4.

Theorem 6.2.1. Let V be a braided monoidal category, and X any set.

(1) A pseudomonoid (resp. pseudocomonoid) in Span|V over the groupoid pseudomonoid (resp.
pseudocomonoid) X2 in Span is exactly a V-category (resp. V-opcategory) with objects X.

(2) A monoid (resp. comonoid) in Span|V over the trivial monoid (resp. comonoid) X2 in Span is
exactly a Mon(V)-graph (resp. Comon(V)-graph) with objects X.

(3) An oplax bimonoid in Span|V over the (groupoid pseudomonoid, trivial comonoid) oplax bi-
monoid X2 in Span is exactly a semi-Hopf V-category.

(4) An oplax bimonoid in Span|V over the (trivial monoid, groupoid pseudocomonoid) oplax bi-
monoid X2 in Span is exactly a semi-Hopf V-opcategory.

(5) An oplax Hopf bimonoid in Span|V over the (groupoid pseudomonoid, trivial comonoid) oplax
Hopf bimonoid X2 in Span is exactly a Hopf V-category.

(6) An oplax Hopf bimonoid in Span|V over the (trivial monoid, groupoid pseudocomonoid) oplax
Hopf bimonoid X2 in Span is exactly a Hopf V-opcategory.

Similar results are obtained for the morphisms between such objects, leading to isomorphisms of the
corresponding categories. We provide proofs of some parts of the theorem below, and the rest follow
analogously.

Proposition 6.2.2. A pseudocomonoid in Span|V over the set X2 with the groupoid pseudocomonoid
structure in Span is precisely a V-opcategory with set of objects X. Dually, a pseudomonoid in Span|V
over the set X2 with the groupoid pseudomonoid structure in Span is a V-category.

Proof. Consider a pseudocomonoid CX2 in Span|V , with underlying pseudocomonoid X2 in Span

equipped with the reversed (27). It consists of an object C : X2 → V , i.e. a family of objects {Cx,y}x,y∈X
in V , along with d : C ⊗ C → C and ǫ : I → C in Span|V , i.e. natural transformations

X2

X3 V ,

X4

Cπ13

1×∆×1 C⊗C

d

X2

X V

1

C∆

! I

ǫ with components

dxyz : Cx,z → Cx,y ⊗ Cy,z and ǫx : Cx,x → I.
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The coassociativity isomorphism β dual to (3), using the composition formula (35), amounts to

X2

X3

P ∼= X4 X4 V

X2 ×X3

X6

C
π13

1∆1

π124

1∆11

p C⊗C

12π13

13∆1

C⊗C⊗C

d

1C⊗d

β
∼=

X2

X3

Q ∼= X4 X4 V

X3 ×X2

X6

C
π13

1∆1

π134

11∆1

p C⊗C

π131
2

1∆13
C⊗C⊗C

d

d⊗1C

which is the invertible map of spans (28), satisfying the factorization (34) expressed by

((1C ⊗ d) ◦ d)xyzw : Cx,w
dxyw
−−−→ Cx,y ⊗ Cy,w

1⊗dyzw
−−−−−→ Cx,y ⊗ Cy,z ⊗ Cz,w

((d⊗ 1C) ◦ d)xyzw : Cx,w
dxzw−−−→ Cx,z ⊗ Cz,w

dxyz⊗1
−−−−−→ Cx,y ⊗ Cy,z ⊗ Cz,w

which is precisely the first V-opcategory axiom, see Section 2.2. Analogously, from the counity isomor-
phisms we obtain the coidentity axioms for enriched opcategories. �

On the level of morphisms between such structures, the following indicates the relation of V-functors
and oplax morphisms between pseudomonoids in Span|V .

Proposition 6.2.3. Suppose we have two pseudomonoids AX2 and BY 2 in Span|V with the groupoid
pseudomonoid structure on their underlying sets, i.e. two V-categories. An oplax pseudomonoid mor-
phism in Span|V of the form

X2

X2 V

Y 2

Aid

f×f B

α (45)

is precisely a V-functor. Dually, an oplax pseudocomonoid morphism of the same form is a V-opfunctor
between two V-opcategories.

Proof. The map idαf×f has components αxy : Ax,y → Bfx,fy and comes equipped with two 2-cells φ
and φ0 as in (4). The first 2-cell has to be of the form

X4

X3

X3 X2 V

X2

Y 2

A⊗A1∆1

π13

id

π13

p A

id

f2 B

m

α

φ
⇒

X4

X4

S Y 4 V

Y 3

Y 2

A⊗Aid

f4

f2!f

p B⊗B

1∆1

π13 B

α⊗α

m

(46)

where we compute S = {(x, y, z, w) ∈ X4 | fy = fz} ⊆ X4. On the left and on the right, respectively,
we have components

(α ◦m)xyz : Ax,y ⊗Ay,z
m
−→ Ax,z

αxz−−→ Bfx,fz (47)

(m ◦ (α⊗ α))xyzw : Ax,y ⊗ Az,w
αxy⊗αzw
−−−−−−→ Bfx,fy ⊗Bfz,fw

m
−→ Bfx,fz (fy = fz in S)

To define such a 2-cell φ in Span|V , we need a map of spans between the induced outer Y 2 X3oo // X4

and Y 2 Soo // X4 above, that gives a factorization as in (34). The function 1×∆× 1: X3 → S
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is indeed a map of spans, and the factorization of (α ◦m)

X4

X3 S V

Y 2

A⊗A

1∆1

1∆1

f !f

f !2f

B

m◦(α⊗α)

requires the equality of the two composites (47), but the second only applied to quadruples (x, y, y, z);
this is precisely the first axiom for a V-functor. The second 2-cell is

1

X

X X2 V

X2

Y 4

I!

∆

id

∆

p A

id

f2 B

j

α

φ0
⇒

1

Y V

Y 2

I!

∆ B

j (48)

between natural transformations with components I
jx
−→ Ax,x

αxx−−→ Bfx,fx and I
jy
−→ By,y respectively.

Hence define φ0 by the map of spans f : X → Y with a factorization

1

X Y V

Y 2

I

f

!

(f,f)

!

∆

B

j = α ◦ j

which gives αxx ◦ jx = jfx, precisely the second axiom for a V-functor.
In order to verify that φ, φ0 endow α with the structure of an oplax pseudomonoid morphism, we

compute the appropriate pasting diagrams (52) using composition formulas like (35) and (36). Their
verifications are greatly simplified by Remark 5.1.1 since they reduce to ones for 2-cells in Span.
Notice that both φ and φ0 are uniquely defined as above, since at each case there is only one

span morphism possible, see Remark 4.1.1. Therefore V-functors are in bijection with oplax monoid
morphisms idαf×f .
Dually, taking into account that V-opfunctors are Vop-functors hence live inside

PsMonopl(Span|(V
op)) ≃ PsMonopl((Span|V)

op) ≃ PsComonopl(Span|V)
op

we deduce that an oplax comonoid map of the form idαf×f is a V-opfunctor between the corresponding
V-opcategories. �

As a result, we can realize V-Cat as a subcategory of PsMonopl(Span|V), the bicategory of pseu-
domonoids and oplax morphisms between them, and V-opCat as a subcategory of PsComonopl(Span|V)

op.
The strict associativity and unitality of composition of 1-cells (45) is due to the fact that they actually
come from functions, i.e. are in the image of (25).
We now turn to the expression of semi-Hopf categories as oplax bimonoids (Definition 3.1.1) in

Span|V , using the oplax bimonoid structure on X2 ∈ Span (Proposition 4.4.1); we first consider
(pseudo)comonoids over the trivial comonoid structure of X2 as discussed in Section 4.2.

Proposition 6.2.4. A comonoid in Span|V over X2 with the trivial comonoid structure is precisely a
Comon(V)-graph, i.e. an X2-indexed family of comonoids in V.

Proof. Such an object consists of M : X2 → V together with natural transformations

X2

X2 V

X2 ×X2

Mid

∆ M⊗M

δ and

X2

X2 V

1

Mid

! I

ε

which are given by components

δxy : Mx,y →Mx,y ⊗Mx,y and εxy : Mx,y → I.
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Using the same machinery as for earlier proofs, we deduce that these maps satisfy coassociativity and
counity conditions which render each Mx,y ∈ V a strict comonoid; as discussed in Section 4.2, this
comultiplication and counit only form a pseudocomonoid structure with identity structure 2-cells. �

Proposition 6.2.5. An oplax bimonoid in Span|V over the oplax bimonoid X2 in Span is precisely a
semi-Hopf V-category.

Proof. By Propositions 6.2.2 and 6.2.4, we already know that an object A in Span|V with the structure
of a pseudomonoid and (pseudo)comonoid over the {groupoid pseudomonoid, trivial comonoid} X2 is
a V-category which is Comon(V)-enriched as a graph. We will now show that requiring (A,m, j, δ, ε)
to be an oplax bimonoid in Span|V in fact endows its enriched composition law and identities with a
comonoid morphism structure, as in Definition 6.1.1.
Following Definition 3.1.1, A comes equipped with four 2-cells θ, θ0, χ, χ0 in Span|V , satisfying certain

coherence conditions. We address each one of them in detail below.
θ

X4

X4

X8

P ∼= X3 X8 V

X8

X6

X4

A⊗A
1∆1

∆2
X2

A⊗A⊗A⊗A
p

id

1σ1
A⊗A⊗A⊗A

(1∆1)2

π2
13

A⊗A

δ⊗δ

1⊗σ⊗1

m⊗m

θ
∼=

X4

X3

X3 X2 V

X2

X4

A⊗A1∆1

π13

id

π13

p A

id

∆X2
A⊗A

m

δ

The left hand side pasted composite, using (37) for the tensor of 1-cells, is given by

Ax,y ⊗Ay,z
δx,y⊗δy,z
−−−−−−→ A⊗2

x,y ⊗A
⊗2
y,z

1⊗σ⊗1
−−−−→ Ax,y ⊗Ay,z ⊗Ax,y ⊗Ay,z

m⊗2
xyz
−−−→ Ax,z ⊗Ax,z

whereas the right hand side is given by Ax,y ⊗ Ay,z
mxyz
−−−→ Ax,z

δxz−−→ Ax,z ⊗ Ax,z. The required 2-cell
θ is given by the (unique) span isomorphism P ∼= X3 from (29) with the condition (δ ◦ m)xyz =
((δ ⊗ δ) ◦ (1⊗ σ ⊗ 1) ◦ (m⊗m))xyz, which is precisely the first commutative diagram in (43).

θ0

1

X

X X2 V

X2

X4

I!

∆

id

∆

p A

id

∆X2 A⊗A

j

δ

θ0⇒

1× 1

X ×X V

X2 ×X2

I⊗I!

∆×∆ A⊗A

j⊗j

The left hand side composite is given by arrows I
jx
−→ Ax,x

δx,x
−−→ Ax,x ⊗ Ax,x and the right hand side

by I
jx⊗jy
−−−−→ Ax,x⊗Ay,y in V . The 2-cell θ0 is given by the morphism of spans X

∆
−→ X2 from (30) and

the factorization

1× 1

X X ×X V

X2 ×X2

I⊗I

∆

!

∆2

!

∆×∆

A⊗A

j⊗j = δ ◦ δ

i.e. (δ ◦ j)x = (j ⊗ j)∆x = jx ⊗ jx which gives the second commutative diagram of (43).
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χ

X4

X3

X3 X2 V

X2

1

A⊗A1×∆×1

π13

id

π13

p A

id

! I

m

ε

χ
⇒

X2 ×X2

X2 ×X2 V

1× 1

A⊗Aid

! I⊗I

ε⊗ε

Similarly to above, we have components Ax,y⊗Ay,z
mxyz
−−−→ Ax,z

εxz−−→ I and Ax,y⊗Az,w
εxy⊗εzw
−−−−−−→ I⊗I ∼=

I, and the 2-cell χ is the a map of spans X3 1×∆×1
−−−−−→ X4 as in (30) with the factorization

X2 ×X2

X3 X2 ×X2 V

1× 1

A⊗A

1∆1

1∆1

!

id

!

I⊗I

ε⊗ε

i.e. (ε ◦m)xyz = (ε⊗ ε)xyyz = εxy ⊗ εyz which is the third commutative diagram of (43).
χ0

1

X

X X2 V

X2

1

I!

∆

id

∆

p A

id

! I

j

ε

χ0
⇒

1

1 V

1

Iid

id I

1I

with components I
jx
−→ Ax,x

εx,x
−−−→ I and I

id
−→ I in V respectively. The 2-cell χ0 is given by the map of

spans X
!
−→ 1 of (29) and the factorization

1

X 1 V

1

I

!

!

!

id

id

I

1I = ε⊗ j

i.e. (ε⊗ j)x = (1I)x which coincides with the fourth diagram of (43).
Due to Remark 5.1.1, the proof of Proposition 4.4.1 guarantees that the above 2-cells satisfy ax-

ioms (54) to (63) of an oplax bimonoid, hence the proof is complete. �

Notice that the 2-cells rendering X2 an oplax bimonoid in Span in Proposition 4.4.1 are all unique,
based on Remark 4.4.2. Hence the above proposition establishes a bijection between semi-Hopf V-
categories and oplax bimonoids over X2 in Span|V .
Moving on to the morphisms between semi-Hopf categories, we initially address the comonoid part

of our structures.

Proposition 6.2.6. Suppose we have two comonoids CX2 , DY 2 in Span|V with the trivial comonoid
structure on their underlying sets, i.e. two Comon(V)-graphs. A (strict) comonoid map of the form
idαf×f is precisely a Comon(V)-graph morphism.

Proof. The 1-cell α is of the form (45), but now the comonoid structures are the trivial and not the
groupoid ones; if we denote by δ and ε the comultiplication and counit, the coassociativity isomorphism
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can again only be the identity, namely (α⊗ α) ◦ δ = δ ◦ α which is

X2

X2

X2 X4 V =

X4

Y 4

Cid

∆

id

∆

p C⊗C

id

f4 D⊗D

δ

α⊗α

X2

X2

X2 Y 2 V

Y 2

Y 4

Cid

f2

id

f2

p D

id

∆ D⊗D

α

δ

(49)

For the V-components, this requires the commutativity of

Cx,y Cx,y ⊗ Cx,y

Dfx,fy Dfx,fy ⊗Dfx,fy

δxy

αxy αxy⊗αxy

δfxfy

and similarly for counity; these precisely translate in all αxy being comonoid morphisms. �

Due to Propositions 6.2.4 and 6.2.6, we conclude that the category Comon(V)-Grph is a subcategory
of Comon(Span|V) of those objects over X2 with the trivial comonoid structure and of strict morphisms
idαf×f .
Using Definition 3.1.2, we can express Comon(V)-functors in Span|V as well.

Proposition 6.2.7. An oplax bimonoid morphism of the form idαf×f between two oplax bimonoids
AX2 and BY 2 in Span|V as in Proposition 6.2.5 is a semi-Hopf V-functor.

Proof. The 2-cells φ, φ0, ψ, ψ0 like (9) are respectively given by (46), (48) and identities (49). Propo-
sitions 6.2.3 and 6.2.6 ensure that these make idαf×f into an oplax morphism of pseudomonoids and
a morphism of comonoids, producing the four diagrams of a Comon(V)-functor through factorizations
as usual. The conditions of Definition 3.1.2 can be verified in a straightforward way, by comparing the
appropriate maps of spans due to Remark 5.1.1. �

Consequently, sHopf-V-Cat is a subcategory of OplBimon(Span|V) of oplax bimonoids and morphisms
between them, spanned by objects over X2 as in Proposition 4.4.1 and maps of the form idαf×f . As
mentioned earlier, even though OplBimon(Span|V) is in general a bicategory, these structures form a
category due to the form of morphisms coming from sheer functions.
Finally, we turn on to the subcategory of Hopf V-categories, Definition 6.1.3. The oplax Hopf monoid

(X2, µ, η, ζ, ν) in Span, Proposition 4.4.3, underlies our oplax Hopf monoids in Span|V , as was the case
in all the above propositions.

Proposition 6.2.8. An oplax Hopf monoid in Span|V over the oplax Hopf monoid X2 in Span is
precisely a Hopf V-category.

Proof. Following Definition 3.4.3, we wish to endow the oplax bimonoid (A,m, j, δ, ε, θ, θ0, χ, χ0) from

Proposition 6.2.5 with an antipode s : A→ A in Span|V over the span X2 X2
idoo sw // X2

X2

X2 V

X2

Aid

sw A

s
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given by families sxy : Ax,y → Ay,x, along with two 2-cells τ1, τ2 in Span|V (34) where for example, the
first one is

X2

X2

X4

X2 X4 V

X4

X3

X2

A

id

∆X2

A⊗A
p

id

1sw
A⊗A

1∆1

π13

A

δ

1⊗s

m

τ1⇒

X2

X2

X3 1 V

X

X2

A
id

!

π12

π3

p I

!

∆ A

ε

j

The left hand side and right hand side components are, respectively,

(m ◦ (1 ⊗ s) ◦ δ)xy : Ax,y
δxy
−−→ Ax,y ⊗Ax,y

1⊗sxy
−−−−→ Ax,y ⊗ Ay,x

mxyx
−−−→ Ax,x

(j ◦ ε)xyz : Ax,y
εxy
−−→ I

jz
−→ Az,z

and the 2-cell τ1 is given by the map of spans ρ1 = (1× sw)(∆× 1): X2 → X3 just like the upper (31),
such that

X2

X2 X3 V

X2

AA

ρ1

id

∆◦π1

π12

∆◦π3

A

j◦ε = m ◦ (1⊗ s) ◦ δ

This factorization can be written as the upper commutative diagram of the Hopf V-category axiom
(44), and similarly for τ2. �

This establishes a bijection between Hopf V-categories and oplax Hopf monoids in Span|V over X2,
and a Hopf V-functor is merely an oplax bimonoid morphism in Span|V like before.

7. Frobenius V-categories

Hopf algebras are closely related to Frobenius algebras in the classical context, and more generally
to Frobenius monoids in an arbitrary monoidal category V . As a result, we may also ask what a many-
object generalization of a Frobenius object could be. In this section, we initially provide an ad-hoc
definition of a Frobenius V-category, which is then realized as a Frobenius pseudomonoid in the same
monoidal bicategory Span|V where Hopf V-categories live as oplax Hopf monoids, see Sections 5 and 6.
In subsequent work [BFVV19], we study in detail the relation between Frobenius and Hopf categories,
providing a generalized version of the standard Larson-Sweedler theorem. For the time being, we
restrict to the solid introduction of this notion and its expression as a Frobenius pseudomonoid.

7.1. Frobenius categories. Naturally, the Frobenius counterpart of Hopf V-categories will still have
a notion of multiplication and comultiplication. However, the ‘local comonoid’ part previously captured
via the enrichment in comonoids is now replaced by a global operation, expressed as follows.

Definition 7.1.1. A Frobenius V-category A is a V-category that is also a V-opcategory and satisfies
‘indexed’ Frobenius conditions. Explicitly, it consists of a set of objects A0 and for every x, y ∈ A0 an
object Ax,y of V together with maps

mxyz : Ax,y ⊗Ay,z → Ax,z jx : I → Ax,x

dabc : Aa,c → Aa,b ⊗Ab,c ǫy : Ay,y → I
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which satisfy the V-category and V-opcategory axioms, as well as the commutativity of

Ax,y ⊗Ay,z Ax,w ⊗Aw,y ⊗Ay,z

Ax,z

Ax,y ⊗Ay,w ⊗Aw,z Ax,w ⊗Aw,z

dxwy⊗1

1⊗dywz

mxyz

1⊗mwyz

dxwz

mxyw⊗1

(50)

Definition 7.1.2. A Frobenius V-functor between two Frobenius categories A and B is a V-graph
morphism simultaneously in V-Cat and V-opCatop. This amounts to a function f : A0 → B0 between
the sets of objects, along with families of arrows Fxy : Ax,y → Bfx,fy in V subject to the following
axioms:

Ax,y ⊗Ay,z Ax,z

Bfx,fy ⊗Bfy,fz Bfx,fz

mxyz

Fxy⊗Fyz Fxz

mfxfyfz

I Ax,x

Bfx,fx

jx

jfx
Fxx

Ax,z Ax,y ⊗Ay,z

Bfx,fz Bfx,fy ⊗Bfy,fz

dxyz

Fxz Fxy⊗Fyz

dfxfyfz

Ax,x I

Bfx,fx

Fxx

ǫx

ǫfx

Remark 7.1.3. The above introduced notions should not be confused with (related but different) ones
existing in literature. The name Frobenius category is also used for an exact category which has enough
injectives and enough projectives and where the class of projectives coincides with the class of injectives,
see [Hel60]. The name Frobenius functor is also used for a functor that has an identical left and right
adjoint, see [CMZ02].

Frobenius V-categories and Frobenius V-functors form a category Frob-V-Cat.

Examples 7.1.4.

(1) Every Frobenius monoid in a monoidal category V can be viewed a one-object Frobenius V-
category; as a result, this definition indeed serves as many-object generalization of Frobenius
algebras. In particular, each ‘diagonal’ hom-object Ax,x of a Frobenius V-category is a Frobe-
nius monoid in V .

(2) For a commutative ring k, let Mat be the category whose objects are the natural numbers and
whose hom-setsMatm,n are the sets ofm×n matrices with entries in k. This is aModk-category
if we take the usual composition of matrices and identity matrices. The comultiplication and
counit are defined by

dn,p,m : Matn,m → Matn,p ⊗Matp,m : en,mi,j 7→

p
∑

t=1

e
n,p
i,t ⊗ e

p,m
t,j

ǫn,m : Matn,m → k : en,mi,j 7→ δi,j

for all 1 ≤ i ≤ n, 1 ≤ j ≤ m, where en,mi,j denote the elementary matrices of Matn,m with a
single 1 in the i-th row and j-th column and zeroes elsewhere. This makes Mat into a Frobenius
k-linear category, generalizing the classical example of each Matn,n being a Frobenius algebra.

7.2. Frobenius pseudomonoid structure. The following results extend Theorem 6.2.1 to the case
of Frobenius monoids; they are also relevant to Table 1. Again, the fact that U : Span|V → Span is
strict monoidal via (38) implies that the underlying set of a Frobenius pseudomonoid in Span|V is also
a Frobenius pseudomonoid Span similarly to Proposition 3.1.3, and the set X2 will once more play this
role, with structures described in Section 4.5.
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Proposition 7.2.1. A Frobenius pseudomonoid in Span|V over the Frobenius X2 with groupoid pseu-
domonoid and groupoid pseudocomonoid structure in Span is a Frobenius V-category.

Proof. Having established by Proposition 6.2.2 that a pseudomonoid and pseudocomonoid (A,m, j, d, ǫ)
in Span|V over X2 of Proposition 4.5.1 is a V-category and V-opcategory, we only need to check they
form a Frobenius pseudomonoid structure, namely there exist isomorphisms as in (6) satisfying the
axioms of Appendix A.5. The lower isomorphism is

X4

X3

X4 X2 V
ψ
∼=

X3

X4

A⊗A1∆1

π13
p A

π13

1∆1 A⊗A

m

d

X4

X2 ×X3

X4 X6 V

X3 ×X2

X4

A⊗A
12π13

13∆1p A⊗A⊗A

1∆13

π131
2 A⊗A

1⊗d

m⊗1

which uses the isomorphism from Proposition 4.5.1. The existence of such a 2-isomorphism in Span|V
comes with an equality (34) of composite arrows in V

Axy ⊗Ayz
1⊗dywz
−−−−−→ Axy ⊗Ayw ⊗Awz

mxyw⊗1
−−−−−→ Axw ⊗Awz

Axy ⊗Ayz
mxyz
−−−→ Axz

dxwz−−−→ Axw ⊗Awz

which is precisely the one of the two conditions for a Frobenius V-category (50). The second condition
can be checked similarly, and the axioms hold since those in Span hold by Remark 5.1.1 as in earlier
proofs. �

Hence we have a bijective correspondence between Frobenius monoids in Span|V over X2 and Frobe-
nius V-categories, for any monoidal category V . Regarding Frobenius V-functors of Definition 7.1.2,
by Proposition 6.2.3 we can express them as morphisms between Frobenius pseudomonoids.

Corollary 7.2.2. An oplax pseudomonoid and oplax pseudocomonoid morphism of the form idαf×f in
Span|V is a Frobenius V-functor.

We can thus realize Frob-V-Cat as the subcategory of Frobopl,opl(Span|V) of Frobenius pseudomonoids
in Span|V over X2 with the groupoid pseudo(co)monoid structures, and morphisms of the form idαf×f .
For purposes of completeness, we conclude with the following result.

Proposition 7.2.3. A Frobenius (strict) monoid in Span|V over X2 with the trivial monoid and
comonoid structure is a Frob(V)-graph, whereas a oplax monoid and comonoid morphism idαf×f is a
Frob(V)-graph morphism.

Proof. This can be deduced in a straightforward way from Proposition 6.2.4 and its dual by checking
the Frobenius conditions. For morphisms, Proposition 6.2.6 and its dual suffice. �

Based on the above, the braided monoidal bicategory Span|V serves indeed as the common framework
for Hopf V-categories and Frobenius V-categories, which are respectively expressed as oplax Hopf
monoids and Frobenius pseudomonoids therein. The fact that subsequent work [BFVV19] extends the
Larson-Sweedler theorem between such many-object generalized structures may in particular indicate
a correspondence between these relaxed notions of oplax bimonoids and their Frobenius counterparts
in higher structures, yet to be investigated.

Appendix A.



34 BUCKLEY, FIEREMANS, VASILAKOPOULOU, AND VERCRUYSSE

A.1. Pseudomonoid, oplax maps and 2-cells axioms. A pseudomonoid A with constraints α, ℓ, r
as in (3) satisfy the following two axioms

AAAA AAA

AAA AAA AA

AA A

11m

m11 1m1
1α
∼= 1m

α1
∼=

m1 α
∼=

1m

m1 m

m

=

AAAA AAA

AAA AA AA

AA A

cm,m
∼=

11m

m11 1mm1

m1

1m
α
∼=

α
∼= m m

m

AA

AAA AA

AA A

1r
∼=

1j1

1m

α
∼=

m1 m

m

=

AA

AAA AA

AA A

1j1

m1

ℓ1
∼=

m

m

(51)
A 1-cell f : A→ B between pseudomonoids comes with 2-cells (φ, φ0) as in (4) that satisfy

AA A

AAA AA B

BBB BB

m

α
∼=

f

m1

1m

fff

m

ff

⇓ φ

⇓ φ1f

m1

m

=

AA A

AAA BB B

BBB BB

m

ff

⇓ 1fφ

f
⇓ φ

fff

1m

m

α
∼=

Bm

m1

m

(52)

AA A

A ∼= AI BB B

m

ff ⇓ φ
f1j

fj

idA

ℓ∼=

f

ℓ∼=
m

1fφ0
= A B

f

f

⇓ 1f
=

AA A

A ∼= IA BB B

m

ff ⇓ φ
fj1

jf

idA

r∼=

f

r∼=
m

φ01f

A 2-cell β : f ⇒ g between two oplax 1-cells of pseudomonoids A and B satisfies

A

AA B

BB

fm

ff

gg

⇓ φ
⇓ αα

m

=

A

AA B

BB

f

g

⇓ α
m

gg

ψ ⇓

m

(53)

A

I B

fj

j

⇓ φ0

=
A

I B.

f

g

⇓ α

j

j

ψ0 ⇓

A.2. Oplax bimonoid axioms. An oplax bimonoid (M,m, j, δ, ε, θ, θ0, χ, χ0) in a braided monoidal
bicategory K as in Definition 3.1.1, namely an object in PsComon(PsMonopl(K)), satisfies a number of
axioms listed below.
Explicitly, (M,m, j) comes with invertible associativity and unit 2-cells (α, ℓ, r) satisfying (51) and

(M, δ, ε) come with invertible coassociativity and unit 2-cells (β, s, t) satisfying dual axioms. More-
over, (54) and (55) express that δ : M → M ⊗M equipped with θ, θ0 is an oplax morphism between
pseudomonoids as in (52); conditions (56) and (57) express that ε : M → I equipped with χ, χ0 is
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an oplax morphism between pseudomonoids; conditions (58) and (59) express that the coassociativity
isomorphism β is a monoidal 2-cell namely satisfies (53); and conditions (60) to (63) do the same for
the left and right counit isomorphisms s, t.
All empty faces are filled appropriately (co)associativity and (co)unit isomorphisms, or by coherence

isomorphisms coming from the braided monoidal structure on the bicategory (Gray monoid) K.

M3 δ11 //

1m

��

m1

��✁✁
✁✁
✁✁
✁✁
✁✁
✁✁
✁✁
✁✁
✁✁

M4 11δδ//

11m

��

11θ⇑

M6

111σ1
��

M6

11mm
��

M2

m

��❁
❁❁

❁❁
❁❁

❁❁
❁❁

❁❁
❁❁

❁❁
❁ M2

m

��

δ1 // M3 11δ // M4

1σ1
��

θ ⇑ M4

mm

��
M

δ
// M2

=

M3 11δ //

m1

��

M4 δδ11//

m11

��

θ11⇑

M6

1σ111
��

111σ1

��❂
❂❂

❂❂
❂❂

M6

mm11
��

M6

11mm

��❂
❂❂

❂❂
❂❂

M2

m

��

1δ // M3 δ11 // M4

1σ1
��

M4

1σ1��✂✂
✂✂
✂✂
✂

θ ⇑ M4

mm

��

M4

mm
��✂✂
✂✂
✂✂
✂

M
δ

// M2

(54)

M
δ //

j1

��

1

��

M2 1 //

j11

��
θ011⇑

M2

jj1

��

1

��

M2

θ⇑m

��

1δ // M3 δ11 // M4

1σ1
��

M4

mm

��
M

δ
// M2

= idδ =

M
δ //

1j

��

1

��

M2 1 //

11j

��
11θ0⇑

M2

11jj

��

1

��

M2

θ⇑m

��

δ1 // M3 11δ // M4

1σ1
��

M4

mm

��
M

δ
// M2

(55)

M3

m1
��

εε1 //
1m

��
χ1⇑

M

1

��
M2

m ++

M2

m

��

ε1 //

χ⇑

M

ε

��
M

ε
// I

=

M3

1m
��

1εε //

1χ⇑

M

1

��
M2

m

��

1ε //

χ⇑

M

ε

��
M

ε
// I

(56)

M

ε

""❊
❊❊

❊❊
❊❊

❊❊

M
j1 //

1
00

1 ..

M2

ε1

<<③③③③③③③③

m
""❊

❊❊
❊❊

❊❊
❊

χ01⇑

χ⇑ I

M

ε

<<③③③③③③③③③

= idε =

M

ε

""❊
❊❊

❊❊
❊❊

❊❊

M
1j //

1
00

1 ..

M2

1ε

<<③③③③③③③③

m
""❊

❊❊
❊❊

❊❊
❊

1χ0⇑

χ⇑ I

M

ε

<<③③③③③③③③③

(57)
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M2 M4 M6

M4 M5

M5

M M2 M3

M2

m

δδ

m11.1σ1

δ1δ1

1111m.σ.σδ

m1

δδ1

1σ11

mm1

δ

δ δ1

1δ

θ

θ1 =

M2

M2 M4 M6

M4 M5

M5

M M2 M3

δ1δ1

m

δδ

δδ

m11.1σ1

1δ1δ

1111m.σ.σδ

1m

1δδ

11σ1

1mm

δ 1δ

θ

1θ

(58)

I II III

IM IIM

M M2 M3

M2

j

∼

1j

∼

11j

j1

∼

jj1

δ

δ δ1

1δ

θ0

1θ0 =

II

I II III

MI MII

M M2 M3

∼

j

∼

∼

j1

∼

j11

1j

∼

1jj

δ 1δ

θ0

θ01

(59)

M2 M4 MIMI

M3 MII

M M2 MI

∼

m

δδ

m11.1σ1

1ε1ε

m11.1σ1

1m

1εε

∼

∼

δ 1ε

θ

1χ

=

M2 MIMI

MII

M MI

∼

m

m11.1σ1

∼

∼

(60)

I II II

MI MI

M M2 MI

∼

j

∼

j1

1

j1

1j

1

1

∼

δ 1ε

θ0

1χ0

=

I II

MI

M MI

∼

j

j1

id

∼

(61)
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M2 M4 IMIM

M3 IMI

M M2 IM

∼

m

δδ

11m.1σ1

ε1ε1

11m.1σ1

m1

εε1

∼

∼

δ ε1

θ

χ1

=

M2 IMIM

MII

M MI

∼

m

11m.1σ1

∼

∼

(62)

I II II

IM IM

M M2 IM

∼

j

∼

1j

1

1j

j1

1

1

∼

δ ε1

θ0

χ01

=

I II

IM

M IM

∼

j

1j

1

∼

(63)

A.3. Oplax bimonoid morphisms axioms. Below we give the axioms for Definition 3.1.2 where an
oplax bimonoid morphism between is a 1-cell (f, φ, φ0, ψ, ψ0) : M → N in PsComonopl(PsMonopl(K)),
namely satisfying the oplax pseudomonoid and pseudocomonoid morphism axioms (52) and moreover
ψ, ψ0 are monoidal 2-cells (53), i.e.

M MM

MM M4 M4 NN

NN N4 N4

δ

⇓ θ
ff

δδ

m

ff

1σ1

f4⇓ ψψ

mm

f4

⇓ φφ

δδ 1σ1

mm

=

M MM

MM N N

NN N4 N4

δ

f

⇓ φ

ff

⇓ ψ

ff

m

δ

⇓ ξm

δδ 1σ1

mm

(64)

M MM

I ⇓ φ0φ0 NN

δ

⇓ θ0
ffj

jj

jj

=

M MM

I N NN

δ

f
⇓ φ0

ff

⇓ ψ
j

j

jj

⇓ξ0
δ

(65)

M

M I

NN II

ε

⇓ χ

m

εε

ff
⇓ ψ0ψ0

εε

∼

=

M

MM N I

NN II

ε

⇓ψ0

f

⇓ φ

m

ff

ε

⇓ ω

εε

m

∼

(66)

M

I I

εj

∼

⇓ χ0

=
M

I N I

ε

⇓ψ0f

j

j

⇓φ0

∼

⇓ω0
ε

(67)
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More precisely, for example recall that the 2-cell ψ : (f ⊗ f) ◦ δ ⇒ δ ◦ f from (9) has as codomain
the pseudomonoid morphism whose structure maps arise as composites from the ones for δ and f , for
example

MM M

NN N

NNNN NNNN NN

m

ff ⇓φ f

m

δδ ⇓ξ δ

1σ1 mm

and similarly for its domain, where the monoidal product of pseudomonoid maps using the braiding is
needed, giving

MM M

MMMM MMMM MM

NNNN NNNN NN

⇓θ

m

δδ δ

1σ1

ffff f4

mm

⇓φφ ff

1σ1 mm

which are both used in axiom (64).

A.4. Oplax module, morphism and transformation axioms. We detail the conditions satisfied
by the structure maps of a right oplax module (X, ρ, ξ, ξ0) for a pseudomonoid (M,m, j, α, r, ℓ) as
defined in Definition 3.2.1.

XMMM XMM

XMM XMM XM

XM X

11m

1α
∼=

ρ11 1m1 1m

⇓ ξ1

ρ1

1m

ρ1 ⇓ ξ ρ

ρ

=

XMMM XMM

XMM XM XM

XM X

cρ,m
∼=

11m

ρ11
ρ1

1m

1m

⇓ ξρ1
ρ

⇓ ξ

ρ

ρ

(68)

XM XMM XM

XM X

1j1

1
1r
∼=

⇓ ξ01

1

ρ1

1m

⇓ ξ ρ

ρ

= idρ (69)

An oplax module morphism f : X → Y comes with a 2-cell φ : f ◦ ρ⇒ ρ ◦ f ⊗ 1 as in (11) satisfying

XMM XM

YMM XM X

YM Y

1m

f11
ρ1

⇓ ξ ρ

ρ1

⇓ φ1
ρ

f1 ⇓ φ f

ρ

=

XMM XM

YMM YM X

YM Y

cf,m
∼=

1m

f11 ρ
f1

1m

ρ1 ⇓ ξ
ρ

⇓ φ

f

ρ

(70)

X XM

Y YM X

Y

cf,j
∼=

1j

f ρ
f1

1j

1

⇓ ξ0
ρ

⇓ φ

f

=

X XM

X

Y

1j

1

f

⇓ ξ0 ρ

f

(71)
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An oplax module transformation α : (f, φ)⇒ (g, ψ) satisfies

XM X

YM Y

ρ

g1 f1α1
⇐ f

ρ

φ =

XM X

YM Y

g1

ρ

fg α
⇐

ρ

ψ (72)

A.5. Frobenius pseudomonoid axioms. In [Lau05, Prop. 25], a definition for a pseudomonoid A in
a Gray monoid to be Frobenius is given, in terms of the existence of a counit and a map I → A⊗A along
with two 2-isomorphisms satisfying axioms. We will here use an alternative definition that naturally
generalizes the monoid-comonoid definition in the ordinary monoidal setting, using a subset of axioms
of [Lau05, Lem. 32].
An object which is a pseudomonoid (A,m, j, α, ℓ, r) and a pseudocomonoid (A, d, ǫ, β, s, t) is Frobe-

nius when it comes equipped with 2-isomorphisms ψ, φ as in (6) subject to axioms that express that
d : A → A ⊗ A is a left A, right A pseudomodule morphism and also m : A ⊗ A → A is a left
A, right A pseudocomodule morphism. Explicitly, we have the following eight axioms where ax-
ioms (73) express that d is a right A-pseudomodule pseudomap between (A,m : A ⊗ A → A) and
(A ⊗ A, 1 ⊗m : A ⊗ A ⊗ A → A ⊗ A) similarly to (70) and (71), axioms (74) express that d is a left
A-pseudomodule pseudomap, axioms (75) express that m is a left A-pseudocomodule map between
(A, d : A→ A⊗A) and (A⊗A, d⊗ 1: A⊗A→ A⊗A⊗A), and axioms (76) express that m is a right
A-pseudocomodule map.

AAA AA

AAAA AA A

AAA AA

1m

d11 m1 m

1m1

mφ1
∼=

φ
∼=

α
∼=

d1 d

1m

=

AAA AA

AAAA AAA A

AAA AA

1m

d11
cd,m
∼=

md1

1m1

11m

1m1α
∼=

φ
∼=

d

1m

A AA

AA AAA A

AA

1j

d
cd,j
∼=

md1

11j

id

1m

φ
∼=

d

1r
∼=

=

A AA

AA A

AA

1j

r
∼=d

id
m

id
d

(73)

AAA AA

AAAA AA A

AAA AA

m1

11d 1m m

1m1

m1ψ
∼=

ψ
∼=

α
∼=

1d d

m1

=

AAA AA

AAAA AAA A

AAA AA

m1

11d
cm,d
∼=

m1d

1m1

m11

m1α1
∼=

ψ
∼=

d

m1

A AA

AA AAA A

AA

j1

d
cj,d
∼=

m1d

j11

id

m1

ψ
∼=

d

ℓ1
∼=

=

A AA

AA A

AA

j1

ℓ
∼=d

id
m

id
d

(74)

AA A

AAA AA AA

AAAA AAA

m

d1
φ
∼= dd

1d1

1m

1d
1φ
∼=

β
∼=

d1

11m

=

AA AA

AAA AAA AA

AAAA AAA

m

d1 d1 d

1d1

1mβ1
∼=

cd,m
∼=

φ
∼=

d11 d1

11m

AA AAA

A AA AA

A

d1

m φ
∼= ǫ111m

d

id

ǫ1

cǫ,m
∼=

m

t
∼=

=

AA AAA

A AA

A

d1

t1
∼=

m
id

ǫ11

id
m

(75)
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AA A

AAA AA AA

AAAA AAA

m

1d
ψ
∼= dd

1d1

m1

d1
ψ1
∼=

β
∼=

1d

m11

=

AA AA

AAA AAA AA

AAAA AAA

m

1d 1d d

1d1

m11β
∼=

cm,d
∼=

ψ
∼=

11d 1d

m11

AA AAA

A AA AA

A

1d

m ψ
∼= 11ǫm1

d

id

1ǫ

cm,ǫ
∼=

m

s
∼=

=

AA AAA

A AA

A

1d

1s
∼=

m
id

11ǫ

id
m

(76)
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the Université Libre de Bruxelles for support through a ULB Individual Fellowship. All authors want
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