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1. Introduction. We consider an optimal control problem associated to the
minimization of the tracking functional subject to linear parabolic PDEs with rough
initial data. In particular, given a target function yd we seek state variable y and
Robin boundary control variable g such that the functional

J(y, g) =
1

2

∫ T

0

∥y − yd∥2L2(Ω) dt+
α

2

∫ T

0

∥g∥2L2(Γ) dt, (1.1)

is minimized subject to the constraints,

yt − η∆y = f in (0, T ]× Ω, y +
η

λ

∂y

∂n
= g on (0, T ]× Γ, y(0, x) = y0 in Ω. (1.2)

Here, Ω ⊂ R2 denotes an open bounded polygonal and convex domain, with Lipschitz
boundary Γ. The control g is applied on the boundary Γ and it is of Robin type. Our
analysis and results will be primarily focused on the case of low regularity assumptions,
i.e., initial data y0 ∈ L2(Ω), but our analysis will be also applicable in other cases
where the solution possesses additional regularity. Furthermore, we are also interested
in case of pointwise control constraints in the sense that ga ≤ g(t, x) ≤ gb for a.e.
(t, x) ∈ (0, T ] × Γ, where ga, gb ∈ R. A precise formulation will be given in the next
section. The forcing term f and the parameters λ > 0, η > 0 are given data, while
α > 0 denotes a penalty parameter which limits the size of the control and it is
comparable to the discretization parameters. The case of rough initial data is very
important within the context of such boundary optimal control problems and great
care is exercised in order to include this case into our analysis.

The main goal is to show that the error estimates of the corresponding optimality
system have the same structure to the estimates of the uncontrolled linear parabolic
equation with Robin boundary data. The key -but not the only- structural diffi-
culty associated to boundary optimal control problems with rough initial data stems
from the lack of sufficient regularity of the state, adjoint and control variables. In
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particular, if y0 ∈ L2(Ω) then the regularity of the state variable is limited to
L2[0, T ;H1(Ω)] ∩ H1[0, T ;H1(Ω)∗]. Hence, classical boot-strap arguments for the
uncontrolled parabolic pdes which rely on standard Ritz-Galerkin elliptic projections,
typically fail due to the lack of regularity. As a consequence, error estimates for
space-time approximations of parabolic optimal control problems with rough initial
data y0 ∈ L2(Ω) in Lipschitz domains have not been treated before.

To overcome the lack of regularity, we analyze a scheme which is based on a discontin-
uous time-stepping approach, which is suitable for problems without regular enough
solutions. The analysis showcases the favorable behavior of such schemes even in pres-
ence of essential Robin boundary controls. The key feature of our discrete schemes
is that they exhibit the same regularity properties to the continuous weak problem.
Our results can be summarized as follows:

1. We develop a symmetric error estimate under minimal regularity assump-
tions on the natural norm W (0, T ) ≡ L∞[0, T ;L2(Ω)] ∩ L2[0, T ;H1(Ω)] ×
L2[0, T ;L2(Γ)] associated to our discontinuous time-stepping scheme, i.e.,

∥error∥W (0,T ) ≤ C∥best approximation error∥W (0,T ),

which states that the error is as good as the regularity and approximation
theory allows it to be.

2. We define a new generalized space-time projection that exhibits best ap-
proximation properties in L2[0, T ;L2(Ω)], and which is also applicable for
yt ∈ L2[0, T ;H1(Ω)∗]. Using the above projection, and an appropriate du-
ality argument for an auxiliary system, we obtain a rate of O(h) for the
L2[0, T ;L2(Ω)] norm, when τ ≤ Ch2.

3. In case of bounded controls, we demonstrate the applicability of our estimates
within the variational discretization concept of [25]. This approach allows to
overcome the lack of the enhanced regularity for the state variable due to the
failure of classical “boot-strap” arguments for the control, state and adjoint
variables.

To our best knowledge our estimates are new, and optimal in terms of the prescribed
regularity of the solutions, and the presence of essential boundary conditions. In
addition, even in presence of additional regularity on the data, i.e., y0 ∈ H1(Ω), and
despite the use of L2 projections which exhibit best approximation properties, the rate
O(h3/2) (when τ ≤ Ch2) appears to be optimal since there is no possibility to obtain
a better estimate at least when polygonal and convex domains are involved. We also
point out that the Robin boundary control can be viewed as a penalization approach
for Dirichlet boundary control problems (see for instance the works of [3, 7, 27] and
references within). For this reason the dependence upon the parameters λ, α, η of
various constants appearing in our estimates is carefully tracked.

1.1. Related results. Previous related results regarding discontinuous time-
stepping approaches are almost exclusively related to distributed controls. For in-
stance, the discontinuous Galerkin framework is explored in the works of [34] and [33]
where a-priori estimates are developed for distributed optimal control problems with
and without control constraints respectively for the heat equation. In [8, 9] a priori er-
ror estimates in terms of suitable space-time projections, are derived for unconstrained
distributed optimal control problems related to parabolic and implicit parabolic pdes
with general and possibly time-dependent coefficients in the elliptic part. Error esti-
mates related to distributed optimal control problems for semi-linear parabolic pdes
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are proved in the work of [37], with control constraints and H1
0 (Ω) ∩ L∞(Ω) initial

data, while a priori error estimates of symmetric type for problems without control
constraints are analyzed in [13]. A-priori error estimates for the velocity tracking
problem with control constraints are analyzed in the works of [5, 6]. A convergence
result for discontinuous time-stepping schemes for Robin optimal control problems
(without control constraints) related to semi-linear parabolic pdes, under L2(Ω) data
is recently considered in [10]. Finally, in [32] fully-discrete approximations of a Neu-
mann boundary control problem related to homogeneous linear parabolic pdes are
analyzed, for the implicit Euler scheme, for smooth domains and for regular enough
data.

Several results regarding the analysis of optimal boundary control problems can be
found in [22, 30, 31, 36, 39] (see also references within). Various boundary control
problems related to time-dependent pdes were studied in the previous works of [1, 2,
11, 23, 26, 28, 29, 40, 39, 41].

2. Background.

2.1. Notation. We use the standard notation for the Sobolev spaces Hs(Ω),
and Hs(Γ), with s ∈ R with norms denoted by ∥ · ∥Hs(Ω) and ∥ · ∥Hs(Γ) respectively.
The dual space of H1(Ω) is denoted by H1(Ω)∗, and the corresponding duality pairing
by ⟨·, ·⟩H1(Ω)∗,H1(Ω) ≡ ⟨·, ·⟩. We will also use the space H1/2(Γ), its dual denoted by

H−1/2(Γ), and their duality pairing denoted by ⟨., .⟩H−1/2(Γ),H1/2(Γ) ≡ ⟨·, ·⟩Γ. Finally,
the standard notation (·, ·), (·, ·)Γ will be used for the L2(Ω) and L2(Γ) inner products
respectively. For any of the above Sobolev spaces, we define the space-time spaces
Lp[0, T ;X], L∞[0, T ;X], C[0, T ;X] and H1[0, T ;X] in a standard fashion (see e.g.
[18, Chapter 5]). We will frequently use the space W (0, T ) := L∞[0, T ;L2(Ω)] ∩
L2[0, T ;H1(Ω)]× L2[0, T ;L2(Γ)] endowed with the standard “graph” norm. For any
γ ≥ 0, we also define the space Hγ [0, T ;X] in a standard way (see e.g. [18, Chapter
5]).The bilinear form associated to our operator is given by

a(y, v) = η

∫
Ω

∇y∇vdx, ∀y, v ∈ H1(Ω),

and satisfies the following properties:

a(y, y) = η ∥∇y∥2L2(Ω) , α(y, v) ≤ Cη ∥y∥H1(Ω) ∥v∥H1(Ω) ∀y, v ∈ H1(Ω).

Finally we recall some useful inequalities which will be used subsequently.
Sobolev’s Boundary Inequality (see e.g. [4, Theorem 1.6.6]): If Ω has a Lipschitz

boundary then there exists C > 0, such that: ∥v∥L2(Γ) ≤ C∥v∥1/2L2(Ω)∥v∥
1/2
H1(Ω), ∀v ∈

H1(Ω).
Generalized Friedrichs’ Inequality (see e.g. [35, Theorem 1.9]): There exists CF > 0
(depending only on Ω) such that: ∥∇v∥2L2(Ω) + ∥v∥2L2(Γ) ≥ CF ∥v∥2H1(Ω).

2.2. The continuous control problem. We begin by stating the weak formu-
lation of the state equation. Given f ∈ L2

[
0, T ;H1(Ω)∗

]
, g ∈ L2

[
0, T ;H−1/2(Γ)

]
,

and y0 ∈ L2(Ω) we seek y ∈ L2[0, T ;H1(Ω)] ∩ H1[0, T ;H1(Ω)∗] such that for a.e.
t ∈ (0, T ], and for all v ∈ H1(Ω),

⟨yt, v⟩+ a(y, v) + λ ⟨y, v⟩Γ = ⟨f, v⟩+ λ ⟨g, v⟩Γ and (y(0), v) = (y0, v) . (2.1)
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An equivalent weak formulation of (2.1) suitable for the analysis of dG schemes, is to
seek y ∈ W (0, T ) such that for all v ∈ L2[0, T ;H1(Ω)] ∩H1[0, T ;H1(Ω)∗],

(y(T ), v(T )) +

∫ T

0

(−⟨y, vt⟩+ a(y, v) + λ ⟨y, v⟩Γ)dt

= (y0, v(0)) +

∫ T

0

(⟨f, v⟩+ λ ⟨g, v⟩Γ)dt. (2.2)

The basic existence, uniqueness and regularity result of (2.2) follows (see e.g. [11]).

Theorem 2.1. Suppose g ∈ L2[0, T ;H−1/2+θ(Γ)] ∩Hθ[0, T ;H−1/2(Γ)], y0 ∈ Hθ(Ω),
and f ∈ L2[0, T ;H1−θ(Ω)∗] for some θ ∈ [0, 1]. Then, there exists a unique y ∈
L2[0, T ;H1+θ(Ω)] ∩H1[0, T ;H1−θ(Ω)∗] satisfying (2.2), and

∥y∥L2[0,T ;H1+θ(Ω)] + ∥yt∥L2[0,T ;H1−θ(Ω)∗]

≤ C
(
∥f∥L2[0,T ;H1−θ(Ω)∗] + ∥u0∥Hθ(Ω) + ∥g∥L2[0,T ;H−1/2+θ(Γ)] + ∥g∥Hθ[0,T ;H−1/2(Γ)]

)
.

Thus, the control to state mapping G : L2[0, T ;L2(Γ)] → W (0, T ), which associates
to each control g the state G(g) = yg ≡ y(g) via (2.2) is well defined, and continuous.
Hence, the cost functional, frequently denoted to by its reduced form, J(y, g) ≡
J(y(g)) ≡ J(g) : L2[0, T ;L2(Γ)] → R is also well defined and continuous.

Definition 2.2. Let f ∈ L2[0, T ;H1(Ω)∗], y0 ∈ L2(Ω), and yd ∈ L2[0, T ;L2(Ω)] be
given data. Then, the set of admissible controls (denoted by Aad), is defined by:

1. Unconstrained Controls: Aad ≡ L2[0, T ;L2(Γ)].
2. Constrained Controls: Aad ≡ {g ∈ L2[0, T ;L2(Γ)] : ga ≤ g(t, x) ≤ gb for a.e.

(t, x) ∈ (0, T )× Γ}.
The pair (y(g), g) ∈ W (0, T ) × Aad, is said to be an optimal solution if J(y(g), g) ≤
J(w(h), h) ∀(w(h), h) ∈ W (0, T )×Aad.

We will occasionally abbreviate the notation y ≡ yg ≡ y(g). Below, we state the main
result concerning the existence of an optimal solution (see for instance [39]).

Theorem 2.3. Let y0 ∈ L2(Ω), f ∈ L2[0, T ;H1(Ω)∗], yd ∈ L2[0, T ;L2(Ω)] be given.
Then, the boundary control problem has unique solution (ȳ(ḡ), ḡ) ∈ W (0, T )×Aad.

2.3. The optimality system. An optimality system of equations can be de-
rived by using standard techniques; see for instance [39] or [11, Section 2]. We first
state the basic differentiability property of the cost functional.

Lemma 2.4. The cost functional J : L2[0, T ;L2(Γ)] → R is of class C∞ and for every
g, u ∈ L2[0, T ;L2(Γ)],

J
′
(g)u =

∫ T

0

∫
Γ

(µ(g) + αg)udxdt,

where µ(g) ≡ µg ∈ W (0, T ) is the unique solution of the following problem: For all
v ∈ L2[0, T ;H1(Ω)] ∩H1[0, T ;H1(Ω)∗],∫ T

0

(
⟨µg, vt⟩+ a (µg, v) + λ ⟨µg, v⟩Γ

)
dt = −(µg(0), v(0)) +

∫ T

0

(yg − yd, v)dt (2.3)

where µg(T ) = 0, and yg is defined by (2.2). In addition, (µg)t ∈ L2[0, T ;H1(Ω)∗].
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Therefore the optimality system which consists of the state and adjoint equations,
and the optimality condition takes the form:

Lemma 2.5. Let (ȳḡ, ḡ) ≡ (ȳ, ḡ) ∈ W (0, T ) × Aad denote the unique optimal pair of
Definition 2.2. Then, there exists an adjoint µ̄ ∈ W (0, T ) satisfying, µ̄(T ) = 0 such
that for all v ∈ L2[0, T ;H1(Ω)] ∩H1[0, T ;H1(Ω)∗],

(ȳ(T ), v(T )) +

∫ T

0

(−⟨ȳ, vt⟩+ a (ȳ, v) + λ ⟨ȳ, v⟩Γ) dt (2.4)

= (ȳ0, v(0)) +

∫ T

0

(⟨f, v⟩+ λ ⟨ḡ, v⟩Γ) dt,∫ T

0

(⟨µ̄, vt⟩+ a (v, µ̄) + λ ⟨µ̄, v⟩Γ) dt = −(µ̄(0), v(0)) +

∫ T

0

(ȳ − yd, v) dt, (2.5)

1) Unconstrained Controls:

∫ T

0

(αḡ + λµ̄, u)Γ dt = 0 ∀u ∈ Aad, (2.6)

2) Constrained Controls:

∫ T

0

∫
Γ

(αḡ + λµ̄) (u− ḡ) dxdt ≥ 0 ∀u ∈ Aad. (2.7)

In addition, ȳt ∈ L2[0, T ;H1(Ω)∗], µ̄ ∈ L2[0, T ;H2(Ω)] ∩ H1[0, T ;L2(Ω)], and (2.7)
is equivalent to ḡ(t, x) = Proj[ga,gb]

(
− λ

α µ̄(t, x)
)
for a.e. (t, x) ∈ (0, T ]× Γ.

Proof. The derivation of the optimality system is standard (see e.g. [39]). For the
enhanced regularity on µ̄, we note that ȳ−yd ∈ L2[0, T ;L2(Ω)] and apply the analogue
of Theorem 2.1 for (2.5) to get that µ̄ ∈ L2[0, T ;H2(Ω)] ∩ H1[0, T ;L2(Ω)]. For the
projection formula we refer the reader to [7, Lemma 4.2] and we note that (2.5)
corresponds to backwards in time problem with zero Robin data.

Remark 2.6. We point out that for smooth boundary and for any v ∈ H2(Ω) we
obtain that the normal derivative ∂v

∂n is well defined and belongs to H1/2(Γ). This
is not the case when Γ is polygonal domain (say only Lipschitz continuous), despite
the fact that on each straight component (denoted by Γi) we clearly obtain ∂v

∂n |Γi ∈
H1/2(Γi). We refer the reader to [20] for related regularity results for general polygonal
domains. If the boundary is smooth, e.g. of class C2 then µ̄|Γ ∈ L2[0, T ;H3/2(Γ)] ∩
H3/4[0, T ;L2(Γ)]. Hence, a bootstrap argument can be applied in order to improve
the regularity of ḡ, ȳ (see e.g. [32]). For example, in case of unconstrained controls,
ḡ ∈ L2[0, T ;H3/2(Γ)] ∩ H3/4[0, T ;L2(Γ)] too, which results ȳ ∈ L2[0, T ;H2(Ω)] ∩
H1[0, T ;L2(Ω)], when y0 ∈ H1(Ω).

3. The discrete optimal control problem.

3.1. Preliminaries. We consider a family of triangulations (say {Th}h>0) of Ω,
defined in the standard way, (see e.g. [17]). To every element T ∈ Th, we associate
two parameters hT and ρT , denoting the diameter of the set T , and the diameter
of the largest ball contained in T respectively. The size of the mesh is denoted by
h = maxT∈Th

hT . The following standard properties of the mesh will be assumed:
(i) – There exist two positive constants ρT and δT such that hT

ρT
≤ ρT and h

hT
≤

δT ∀T ∈ Th and ∀h > 0.
(ii) – Given h, let {Tj}Nh

j=1 denote the family of triangles belonging to Th and having
one side included on the boundary Γ. Thus, if the vertices of Tj ∩ Γ are denoted by
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xj,Γ, xj+1,Γ then the straight line [xj,Γ, xj+1,Γ] ≡ Tj ∩ Γ. Here, we also assume that
x1,Γ = xNh+1,Γ.

On the mesh Th we consider finite dimensional spaces Uh ⊂ H1(Ω) constructed by
piecewise polynomials in Ω. Standard approximation theory assumptions are assumed
on these spaces. In particular, for any v ∈ H l+1(Ω), there exists an integer ℓ ≥ 1, and
a constant C > 0 (independent of h) such that:

inf
vh∈Uh

∥v − vh∥Hs(Ω) ≤ Chl+1−s∥v∥Hl+1(Ω), for 0 ≤ l ≤ ℓ and s = −1, 0, 1.

We also use inverse inequalities on quasi-uniform triangulations, i.e., there exist con-
stants C ≥ 0, such that ∥vh∥H1(Ω) ≤ C/h∥vh∥L2(Ω), and ∥vh∥L2(Ω) ≤ C/h∥vh∥H1(Ω)∗ ,
etc. Approximations will be constructed on a (quasi-uniform) partition 0 = t0 <
t1 < . . . < tN = T of [0, T ], i.e., there exists a constant 0 < θ < 1 such that
minn=1,..,N (tn − tn−1) ≥ θmaxn=1,...,N (tn − tn−1). We also use the notation τn =
tn − tn−1, τ = maxn=1,...,N τn and we denote by Pk[t

n−1, tn;Uh] the space of poly-
nomials of degree k or less having values in Uh. We seek approximate solutions who
belong to the space

Uh = {yh ∈ L2[0, T ;H1(Ω)] : yh|(tn−1,tn] ∈ Pk[t
n−1, tn;Uh]}.

By convention, the functions of Uh are left continuous with right limits and hence
will write ynh ≡ ynh− for yh(t

n) = yh(t
n
−), and ynh+ for yh(t

n
+), while the jump at tn, is

denoted by [ynh ] = ynh+ − ynh . In the above definitions, we have used the following no-
tational abbreviation, yh,τ ≡ yh, Uh,τ ≡ Uh etc. For the time-discretization, our main
focus will be the lowest order scheme (k = 0) which corresponds to the discontinuous
Galerkin variant of the implicit Euler. We emphasize that other schemes (including
schemes of arbitrary order in time and space) can be included in our proofs. However,
the limited regularity will be acting as a barrier in terms of developing estimates of
higher order.

For the control variable, we have two separate choices for the constrained and the
unconstrained case respectively. In both cases our discretization is motivated by the
optimality condition (see also [14]).
Case 1: Unconstrained Controls: We employ a discretization which allows the presence
of discontinuities (in time), i.e., we define,

Gh = {gh ∈ L2[0, T ;L2(Γ)] : gh|(tn−1,tn] ∈ Pk[t
n−1, tn;Gh]}.

Here, a conforming subspace Gh ⊂ L2(Γ) is specified at each time interval (tn−1, tn],
which satisfy standard approximation properties. Even though various choices of Gh

are possible, here we focus our attention to the natural choice, Gh = Uh|Γ and we
refer the reader to [19, 21] (see also references within) for a detailed analysis. Only
L2[0, T ;L2(Γ)] regularity will be needed in the error estimates. To summarize, for the
choice of piecewise linears (in space), we choose:

Uh = {vh ∈ C(Ω̄) : vh|T ∈ P1, for all T ∈ Th},
Gh = {uh ∈ C(Γ) : uh|[xi,Γ,xi+1,Γ] ∈ P1, for i = 1, ..., Nh}.

Case 2: Constrained Controls: Analogously to the previous case, we employ the
variational discretization concept (see e.g. [25]) which allows the natural discretization
of the controls via the adjoint variable. In this case, we do not explicitly discretize
the control variable, i.e., Gh ≡ L2[0, T ;L2(Γ)].
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3.2. The fully-discrete optimal control problem. The discontinuous time-
stepping fully-discrete scheme for the control to state mapping Gh : L2[0, T ;L2(Γ)] →
Uh, which associates to each control g its state Gh(g) = yg,h ≡ yh(g) is defined
as follows: For any boundary data g ∈ L2[0, T ;L2(Γ)], for given data y0 ∈ L2(Ω),
f ∈ L2[0, T ;H1(Ω)∗], and target yd ∈ L2[0, T ;L2(Ω)] we seek yh ∈ Uh such that for
n = 1, ..., N , and for all vh ∈ Pk[t

n−1, tn;Uh],

(ynh , v
n
h) +

∫ tn

tn−1

(
− ⟨yh, vht⟩+ a(yh, vh) + λ⟨yh, vh⟩Γ

)
dt (3.1)

= (yn−1
h , vn−1

h+ ) +

∫ tn

tn−1

(
⟨f, vh⟩+ λ⟨g, vh⟩Γ

)
dt.

Here, y0h = Phy0, where Ph denotes the standard L2(Ω) projection, i.e., (Phy0 −
y0, vh) = 0, ∀vh ∈ Uh. We note that only g ∈ L2[0, T ;L2(Γ)] regularity is needed
to validate the fully-discrete formulation. Stability estimates at partition time-points
as well as in L2[0, T ;H1(Ω)] and L2[0, T ;L2(Γ)] norms easily follow by setting vh =
yh into (3.1). For the estimate at arbitrary time-points, we may apply the tech-
niques which were developed in [15, Section 2] for general linear parabolic PDEs, (see
also [10, Section 3] for stability estimate for semilinear parabolic PDEs with Robin
data). Similar to the continuous case, the control to fully-discrete state mapping
Gh : L2[0, T ;L2(Γ)] → Uh, is well defined, and continuous. The definition of the
discrete Robin boundary control problem, now follows:

Definition 3.1. Let f ∈ L2[0, T ;H1(Ω)∗], y0 ∈ L2(Ω), yd ∈ L2[0, T ;L2(Ω)] be given
data. Suppose that the set of discrete admissible controls is denoted by Ad

ad ≡ Gh∩Aad

(see Section 3.1), and let Jh(yh, gh) ≡ 1
2

∫ T

0

∫
Ω
|yh−yd|2dxdt+ α

2

∫ T

0

∫
Γ
|gh|2dxdt. Here

the pair (yh, gh) ∈ Uh ×Ad
ad satisfy (3.1). Then, the pair (ȳh, ḡh) ∈ Uh ×Ad

ad, is said
to be an optimal solution if Jh(ȳh, ḡh) ≤ Jh(wh, uh), ∀(wh, uh) ∈ Uh ×Ad

ad.

The existence of the discrete optimal control problem can be proved by standard
techniques while uniqueness follows from the structure of the functional, and the lin-
earity of the equation. The basic stability estimates in terms of the optimal pair
(ȳh, ḡh) ∈ W (0, T ) × L2[0, T ;L2(Γ)] can be easily obtained. We close this subsec-
tion by quoting the estimate at arbitrary time-points, for schemes of arbitrary or-
der under minimal regularity assumptions, adapted to our case from [10, Section
3]. The estimate highlights the fact that the natural choice of the discrete energy
norm for the state variable associated to discontinuous time-stepping schemes is
∥.∥W (0,T ) = ∥.∥L∞[0,T ;L2(Ω)] + ∥.∥L2[0,T ;H1(Ω)] + ∥.∥L2[0,T ;L2(Γ)].

Lemma 3.2. Let y0 ∈ L2(Ω), f ∈ L2[0, T ;H1(Ω)∗]. If (ȳh, ḡh) ∈ Uh × Ad
ad denotes

the solution pair of the discrete optimal control problem, then,

∥ȳh∥L∞[0,T ;L2(Ω)] ≤ Cmax
{
1,

(
λ

α

)1/2 }(
∥y0∥L2(Ω) + ∥f∥L2[0,T ;H1(Ω)∗]

)
.

Here, C ≥ 0 depends on 1/CF min{η, λ}, Ck and Ω but not on α, τ , h. We note
that the above estimate remains valid for the control constrained case assuming that
0 ∈ Ad

ad. Otherwise, the constant C of Lemma 3.2 also depends upon max{|ga|, |gb|}.

3.3. The discrete optimality system. Using well known techniques and the
stability estimates in W (0, T ), it is easy to show the differentiability of the relation
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g → yh(g), for any g ∈ L2[0, T ;L2(Γ)]. Hence, the discrete analogue of Lemma 2.4,
takes the following form:

Lemma 3.3. The cost functional Jh : L2[0, T ;L2(Γ)] → R is well defined, differen-
tiable, and for every g, u ∈ L2[0, T ;L2(Γ)],

J
′

h(g)u =

∫ T

0

∫
Γ

(µh(g) + αg)udxdt,

where µh(g) ≡ µg,h ∈ W (0, T ) is the unique solution of following problem: For all
n = 1, ..., N , and for all vh ∈ Pk[t

n−1, tn;Uh],

−(µn
g,h+, v

n
h) +

∫ tn

tn−1

(
⟨µg,h, vht⟩+ a(vh, µg,h) + λ⟨µg,h, vh⟩Γ

)
dt (3.2)

= −(µn−1
g,h+, v

n−1
h+ ) +

∫ tn

tn−1

⟨yg,h − yd, vh⟩dt,

where µN
g,h+ = 0. Here, yh,g ≡ yh(g) is the solution of (3.1).

Thus, the fully-discrete optimality system takes the following form.

Lemma 3.4. Let (ȳh(ḡh), ḡh) ≡ (ȳh, ḡh) ∈ Uh × Ad
ad denote the unique optimal pair

of Definition 3.1. Then, there exists an adjoint µ̄h ∈ Uh satisfying µ̄N
+ = 0, such that

for all vh ∈ Pk[t
n−1, tn;Uh]}, and for all n = 1, ..., N

(ȳnh , v
n
h) +

∫ tn

tn−1

(−⟨ȳh, vht⟩+ a(ȳh, vh) + λ⟨ȳh, vh⟩Γ) dt

= (ȳn−1
h , vn−1

h+ ) +

∫ tn

tn−1

(⟨f, vh⟩+ λ⟨ḡh, vh⟩Γ) dt, (3.3)

−(µ̄n
h+, v

n
h) +

∫ tn

tn−1

(⟨µ̄h, vht⟩+ a(µ̄h, vh) + λ⟨µ̄h, vh⟩Γ) dt

= −(µ̄n−1
h+ , vn−1

h+ ) +

∫ tn

tn−1

(ȳh − yd, vh) dt, (3.4)

and the following optimality condition holds: For all uh ∈ Ad
ad,

1) Unconstrained Controls:

∫ T

0

(αḡh + λµ̄h, uh)Γdt = 0, (3.5)

2) Constrained Controls:

∫ T

0

∫
Γ

(αḡh + λµ̄h) (uh − ḡh) dxdt ≥ 0. (3.6)

Estimates for the adjoint variable at partition points and in L2[0, T ;H1(Ω)] can be
derived easily, while for an estimate in L∞[0, T ;L2(Ω)] we refer the reader to [10].
The following estimate highlights the fact that the discrete solutions produced by
discontinuous time-stepping schemes possess the same regularity properties of the
continuous problem.

Lemma 3.5. Let (ȳh, ḡh) denote the discrete optimal solution and (ȳh, µ̄h, ḡh) satisfy
the system (3.3)-(3.4)-(3.5) or (3.6). Then,

∥µ̄h∥L∞[0,T ;H1(Ω)] + λ1/2∥µ̄h∥L∞[0,T ;L2(Γ)] ≤ C∥ȳh − yd∥L2[0,T ;L2(Ω)],
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where C does not depend on α, τ , h but only on 1/η, Ck, Ω.

Proof. The proof follows based on the techniques of [16, Theorem 4.10], modified in
order to handle the Robin boundary data, and the backward in time nature of our
pde. First, we note that µ(T ) = 0, and yh − yd ∈ L∞[0, T ;L2(Ω)]. Hence, at each
time t ∈ (tn−1, tn] let ap(t) ∈ Uh denote the following discrete approximation of the
Laplacian (with Robin boundary data),

(ap(t), vh) = (1/η)a(µ̄h(t), vh) + (λ/η)(µ̄h(t), vh)Γ, ∀vh ∈ Uh.

Thus, ap ∈ Pk[t
n−1, tn;Uh], and hence setting vh(t) = µ̄ht(t) ∈ Uh, and vh(t) =

ap(t) ∈ Uh, we obtain

(1/2)
d

dt
(∥∇µ̄h(t)∥2L2(Ω) + (λ/η)∥µ̄h(t)∥L2(Γ)) = (ap(t), µ̄ht(t)),

and

a(µ̄h(t), ap(t)) + λ⟨µ̄h(t), ap(t)⟩Γ = η(ap(t), ap(t)).

Integrating by parts in time (3.4), setting vh = ap into the resulting equality, using the
last two equalities, the definition of ap(t

n), i.e., (ap(t
n), µ̄n

h+ − µ̄n
h) = (∇µ̄n

h,∇(µ̄n
h+ −

µ̄n
h)) + (λ/η)(µ̄n

h, µ̄
n
h+ − µ̄n

h)Γ, and standard algebra, we obtain,

(1/2)∥∇µ̄n−1
h+ ∥L2(Ω) + (λ/2η)∥µ̄n−1

h+ ∥L2(Γ) + η

∫ tn

tn−1

∥ap∥2L2(Ω)dt

≤ (1/2)∥∇µ̄n
h+∥L2(Ω) + (λ/2η)∥µ̄n−1

h+ ∥L2(Γ) +

∫ tn

tn−1

(ȳh − yd, ap)dt.

The above inequality implies bounds at the partition points, and hence bounds in
L∞[0, T ;H1(Ω)], when k = 0, 1 after inserting the stability bound on ȳh. For high-
order (in time) schemes, we directly follow the approach of [16, Theorem 4.10].

4. Error estimates. The key ingredient of the proof is the definition of a suit-
able generalized space-time dG projection capable of handling the low regularity of
yt ∈ L2[0, T ;H1(Ω)∗], and an auxiliary optimality system which plays the role of a
global space-time projection and exhibits best approximation properties.

4.1. The fully-discrete projection. Let wh, zh ∈ Uh be defined as the solu-
tions of the following system. Given data f, y0, initial conditions w0

h = y0h, where
y0h ≡ Phy0, (recall that Ph denotes the standard L2 projection, i.e., (Phy0 − y0, vh) =
0, ∀ vh ∈ Uh), and terminal condition zN+ = 0, we seek wh, zh ∈ Uh such that for
n = 1, ..., N and for all vh ∈ Pk[t

n−1, tn;Uh],

(wn
h , v

n
h) +

∫ tn

tn−1

(
− ⟨wh, vht⟩+ a(wh, vh) + λ⟨wh, vh⟩Γ

)
dt (4.1)

= (wn−1
h , vn−1

h+ ) +

∫ tn

tn−1

(
⟨f, vh⟩+ λ⟨ḡ, vh⟩Γ

)
dt,

−(znh+, v
n
h) +

∫ tn

tn−1

(
⟨zh, vht⟩+ a(zh, vh) + λ⟨zh, vh⟩Γ

)
dt (4.2)

= −(zn−1
h+ , vn−1

h+ ) +

∫ tn

tn−1

(wh − yd, vh)dt.
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The solutions wh, zh ∈ Uh exist due to the regularity of ȳ, µ̄ ∈ W (0, T ). The solutions
of the auxiliary optimality system play the role of “global projections” onto Uh. The
basic estimate on the energy norm of ȳ − wh, µ̄− zh will be derived in terms of local
L2 projections associated to discontinuous time-stepping methods (see e.g. [38]).

Definition 4.1. (1) The projection P loc
n : C[tn−1, tn;L2(Ω)] → Pk[t

n−1, tn;Uh]
satisfies (P loc

n v)n = Phv(t
n), and∫ tn

tn−1

(v − P loc
n v, vh) = 0, ∀ vh ∈ Pk−1[t

n−1, tn;Uh]. (4.3)

Here we have used the convention (P loc
n v)n ≡ (P loc

n v)(tn) and Ph : L2(Ω) → Uh is the
orthogonal projection operator onto Uh ⊂ H1(Ω).

(2) The projection P loc
h : C[0, T ;L2(Ω)] → Uh satisfies

P loc
h v ∈ Uh and (P loc

h v)|(tn−1,tn] = P loc
n (v|[tn−1,tn]).

Due to the lack of regularity, and in particular the fact that ȳ ∈ L2[0, T ;H1(Ω)] ∩
H1[0, T ;H1(Ω)∗], we construct a space-time generalized L2 projection which combines
the standard dG time stepping projection, and the spacial generalized L2 projection
Qh : H1(Ω)∗ → Uh. Recall that the definition of Qh states that ⟨v − Qhv, vh⟩ = 0,
for all v ∈ H1(Ω)∗ and vh ∈ Uh (see for instance [12, Section 2]).

Definition 4.2. (1) The projection Qloc
n : C[tn−1, tn;H1(Ω)∗] → Pk[t

n−1, tn;Uh]
satisfies (Qloc

n v)n = Qhv(t
n), and∫ tn

tn−1

⟨v −Qloc
n v, vh⟩ = 0, ∀ vh ∈ Pk−1[t

n−1, tn;Uh].

Here we also use the convention (Qloc
n v)n ≡ (Qloc

n v)(tn) and Qh : H1(Ω)∗ → Uh is
the generalized orthogonal projection operator onto Uh ⊂ H1(Ω).

(2) The projection Qloc
h : C[0, T ;H1(Ω)∗] → Uh satisfies

Qloc
h v ∈ Uh and (Qloc

h v)|(tn−1,tn] = Qloc
n (v|[tn−1,tn]).

For k = 0, the projection Qloc
h : C[0, T ;H1(Ω)∗] → Uh reduces to Qloc

h v(t) = Qhv(t
n)

for all t ∈ (tn−1, tn], n = 1, ..., N .

The key feature of Qloc
h is that it coincides to P loc

h , when v ∈ L2[0, T ;L2(Ω)] i.e.,
P loc

h v = Qloc
h v when v ∈ L2[0, T ;L2(Ω)], and hence exhibits best approximation

properties, but is also applicable for v ≡ ȳt ∈ L2[0, T ;H1(Ω)∗]. For the backwards
in time problem a modification of the above projections (still denoted by P loc

n , Qloc
n

respectively) will be needed. For example, in addition to relation (4.3), we need to
impose the “matching condition” on the left, i.e., (P loc

n v)n−1
+ = Phv(t

n−1
+ ) instead

of imposing the condition on the right. In the following Lemma, we collect several
results regarding (optimal) rates of convergence for the above projection. Here, the
emphasis is placed on the approximation properties of the generalized projection Qloc

h ,
under minimal regularity assumptions, i.e., for v ∈ L2[0, T ;H1(Ω)]∩H1[0, T ;H1(Ω)∗]
for the lowest order scheme.

Lemma 4.3. Let Uh ⊂ H1(Ω), and P loc
h , Qloc

h defined in Definitions 4.1 and 4.2
respectively. Then, for all v ∈ L2[0, T ;H l+1(Ω)] ∩Hk+1[0, T ;L2(Ω)] there exists con-
stant C ≥ 0 independent of h, τ such that

∥v − P loc
h v∥L2[0,T ;L2(Ω)] ≤ C

(
hl+1∥v∥L2[0,T ;Hl+1(Ω)] + τk+1∥v(k+1)∥L2[0,T ;L2(Ω)]

)
.

10



If in addition, k = 0, l = 1, and v ∈ L2[0, T ;H1(Ω)] ∩ H1[0, T ;H1(Ω)∗] then there
exists a constant C ≥ 0 independent of h, τ such that

∥v −Qloc
h v∥L2[0,T ;L2(Ω)] ≤ C

(
h∥v∥L2[0,T ;H1(Ω)]

+τ1/2(∥v∥L2[0,T ;H1(Ω)] + ∥vt∥L2[0,T ;H1(Ω)∗])
)
,

∥v −Qloc
h v∥L2[0,T ;H1(Ω)] ≤ C

(
∥v∥L2[0,T ;H1(Ω)] + (τ/h2)∥vt∥L2[0,T ;H1(Ω)∗]

)
.

Let k = 0, l = 1, and v ∈ L2[0, T ;H2(Ω)]∩H1[0, T ;L2(Ω)]. Then there exists constant
C ≥ 0 independent of h, τ such that,

∥v −Qloc
h v∥L2[0,T ;H1(Ω)] ≤ C

(
h∥v∥L2[0,T ;H2(Ω)]

+τ1/2(∥vt∥L2[0,T ;L2(Ω)] + ∥v∥L2[0,T ;H2(Ω)])
)
.

Proof. The first estimate is given in [16, Theorem 4.3, and Corollary 4.8]. For the
second estimate, for any t ∈ (tn−1, tn], adding and subtracting appropriate terms, and
using the definition of Qloc

h , we obtain,

∥v −Qloc
h v∥2L2[0,T ;L2(Ω)] ≤

N∑
n=1

∫ tn

tn−1

(∥v(t)− v(tn)∥2L2(Ω) + ∥v(tn)−Qhv(t
n)∥2L2(Ω))dt.

For the first term,∫ tn

tn−1

∥v(t)− v(tn)∥2L2(Ω)dt ≤ Cτ

∫ tn

tn−1

(
∥vt∥2H1(Ω)∗ + ∥v∥2H1(Ω)

)
dt.

The second term can be approximated by triangle inequality, the approximation prop-
erty ∥v(t) − Qhv(t)∥L2(Ω) ≤ Ch∥v(t)∥H1(Ω), and the bound on ∥v(t) − v(tn)∥L2(Ω).
For the third estimate, we first note that the generalized orthogonal projection Qh :
H1(Ω)∗ → Uh is stable in ∥.∥H1(Ω)∗ norm. Indeed, for all v ∈ H1(Ω)∗, w ∈ H1(Ω),
by the definition of projections Qh and Ph,

∥Qhv∥H1(Ω)∗ = sup
0̸=w∈H1(Ω)

|⟨Qhv, w⟩|
∥w∥H1(Ω)

≤ sup
0̸=w∈H1(Ω)

(
|⟨Qhv − v, w⟩|

∥w∥H1(Ω)
+

|⟨v, w⟩|
∥w∥H1(Ω)

)
≤ sup

0̸=w∈H1(Ω)

|⟨Qhv − v, w − Phw⟩|
∥w∥H1(Ω)

+ ∥v∥H1(Ω)∗

where at the last inequality we have used the fact that ⟨Qhv − v, Phw⟩ = 0. Note
also that by the definition of projection Ph, we deduce that ⟨Qhv − v, w − Phw⟩ =
⟨−v, w − Phw⟩. Hence, the H1(Ω) stability of the Ph projection implies,

∥Qhv∥H1(Ω)∗ ≤ sup
0̸=w∈H1(Ω)

|⟨v, w − Phw⟩|
∥w∥H1(Ω)

+ ∥v∥H1(Ω)∗

≤ C
∥v∥H1(Ω)∗∥w − Phw∥H1(Ω)

∥w∥H1(Ω)
+ ∥v∥H1(Ω)∗ ≤ C∥v∥H1(Ω)∗ .

Thus, the definition of Qloc
h for k = 0, l = 1, the inverse estimate ∥Qhv∥L2(Ω) ≤

11



C/h∥Qhv∥H1(Ω)∗ , and the stability of Qh in H1(Ω)∗ norm, imply

∥v −Qloc
h v∥L2[0,T ;H1(Ω)] =

(
N∑

n=1

∫ tn

tn−1

∥v(t)−Qhv(t
n)∥2H1(Ω)dt

)1/2

=

(
N∑

n=1

∫ tn

tn−1

∥v(t)−Qhv(t)∥2H1(Ω)dt

)1/2

+

(
N∑

n=1

∫ tn

tn−1

∥Qhv(t)−Qhv(t
n)∥2H1(Ω)dt

)1/2

≤ C∥v∥L2[0,T ;H1(Ω)] +
C

h2

(
N∑

n=1

∫ tn

tn−1

∥Qhv(t)−Qhv(t
n)∥2H1(Ω)∗dt

)1/2

≤ C∥v∥L2[0,T ;H1(Ω)] +
C

h2

(
N∑

n=1

∫ tn

tn−1

∥v(t)− v(tn)∥2H1(Ω)∗dt

)1/2

≤ C∥v∥L2[0,T ;H1(Ω)] +
C

h2

(
N∑

n=1

∫ tn

tn−1

(tn − t)

∫ tn

tn−1

∥vt∥2H1(Ω)∗dsdt

)1/2

≤ C∥v∥L2[0,T ;H1(Ω)] + C
τ

h2
∥vt∥L2[0,T ;H1(Ω)∗],

for all v ∈ L2[0, T ;H1(Ω)]∩H1[0, T ;H1(Ω)∗], which completes the proof of the third
estimate. The last estimate is standard, and can be derived similar to the second one,
after noting that Qloc

h ≡ P loc
h , and d

dt∥∇v(t)∥2L2(Ω) = 2⟨∇vt,∇v⟩.

Remark 4.4. The stability estimate in L2[0, T ;H1(Ω)] requires the time-step re-
striction of τ ≤ Ch2 due to the lack of regularity with respect to time. If v ∈
L2[0, T ;H l+1(Ω)] ∩ Hk+1[0, T ;L2(Ω)] then the first estimate of Lemma 4.3 implies
that,

∥v − P loc
h v∥L2[0,T ;H1(Ω)] ≤ C

(
hl∥v∥L2[0,T ;Hl+1(Ω)] + (τk+1/h)∥v(k+1)∥L2[0,T ;L2(Ω)]

)
.

Indeed, using [16, Theorem 4.3, Corollary 4.8], we obtain the following (local in time)
estimates:

∥v − P loc
n v∥L2[tn−1,tn;H1(Ω)]

≤ C
(
∥v − Phv∥L2[tn−1,tn;H1(Ω)] + τk+1∥Phv

(k+1)∥L2[tn−1,tn;H1(Ω)]

)
≤ C

(
hl∥v∥L2[tn−1,tn;Hl+1(Ω)] + (τk+1/h)∥v(k+1)∥L2[tn−1,tn;L2(Ω)]

)
,

where at the last estimate we have used an inverse estimate. We note that if more
regularity is available, the inverse estimate is not necessary. In particular if v(k+1) ∈
L2[0, T ;H1(Ω)], then the improved rate of O(hl+τk+1) holds in ∥.∥L2[0,T ;H1(Ω)] norm.
However, we note that for our boundary optimal control problem the increased regu-
larity vt ∈ L2[0, T ;H1(Ω)] is not available. Hence, we emphasize that the lack of
regularity acts as a barrier for developing a truly higher order scheme. Working sim-
ilarly we also obtain an estimate at arbitrary time-points, i.e.,

∥v − P loc
h v∥L∞[0,T ;L2(Ω)] ≤ C

(
hl+1∥v∥L∞[0,T ;Hl+1(Ω)] + (τk+1/h)∥v(k+1)∥L∞[0,T ;H1(Ω)]

)
.

Below, we state the main result for related to the auxiliary problem, which acts as
the global space-time dG projection. Our goal is to state that the projection error is
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as good as the local dG projection error allows it to be, and hence it is optimal in the
sense of the available regularity.

Theorem 4.5. Let f ∈ L2[0, T ;H1(Ω)∗] and y0 ∈ L2(Ω) be given, and ȳ, µ̄ ∈ W (0, T )
be the solutions of (2.4)-(2.5)-(2.6) or (2.7), and wh, zh ∈ Uh be the solutions of (4.1)-
(4.2). Denote by e1 = ȳ − wh, r1 = µ̄ − zh and let ep ≡ ȳ − Qloc

h ȳ, rp = µ̄ − P loc
h µ̄,

where P loc
h , Qloc

h are defined in Definitions 4.1 and 4.2. Then, there exists an algebraic
constant C > 0 depending only on Ω such that,

1)CF min{η, λ}∥e1∥2L2[0,T ;H1(Ω)] +
N−1∑
i=0

∥[ei1]∥2L2(Ω) + λ∥e1∥2L2[0,T ;L2(Γ)]

≤ C
(
∥e01∥2L2(Ω) + (1/CF min{η, λ})

(
∥ep∥2L2[0,T ;H1(Ω)] + λ∥ep∥2L2[0,T ;L2(Γ)]

)
,

2)CF min{η, λ}∥r1∥2L2[0,T ;H1(Ω)] +

N∑
i=1

∥[ri1]∥2L2(Ω) + λ∥r1∥2L2[0,T ;L2(Γ)]

≤ C
(
(1/CF min{η, λ})

(
∥e1∥2L2[0,T ;L2(Ω)] + ∥rp∥2L2[0,T ;H1(Ω)]

)
+ λ∥rp∥2L2[0,T ;L2(Γ)]

)
,

3)∥e1∥L2[0,T ;L2(Ω)] ≤ C
(
η∥ep∥L2[0,T ;L2(Ω)] + τ1/2(∥ep∥L2[0,T ;H1(Ω)] + ∥ep∥L2[0,T ;L2(Γ)])

)
,

4)∥r1∥L2[0,T ;L2(Ω)] ≤ C
(
η∥e1∥L2[0,T ;L2(Ω)] + ∥rp∥L2[0,T ;L2(Ω)]

+τ1/2(∥rp∥L2[0,T ;H1(Ω)] + ∥rp∥L2[0,T ;L2(Γ)])
)
.

Here, w0
h = y0h, where y0h = Phy0, and C a constant depending upon on the domain

Ω.

Proof. Step 1: Preliminary estimates. Throughout this proof, we denote by e1 =
ȳ −wh, r1 = µ̄− zh and we split e1, r1 to e1 ≡ e1h + ep ≡ (Qloc

h ȳ −wh) + (ȳ −Qloc
h ȳ),

r1 ≡ r1h+rp ≡ (P loc
h µ̄−zh)+(µ̄−P loc

h µ̄), where P loc
h , Qloc

h are defined in Definitions 4.1
and 4.2. Subtracting (4.1) from (2.4), and (4.2) from (2.5) we obtain the orthogonality
condition: For n = 1, ..., N , and for all vh ∈ Pk[t

n−1, tn;Uh],

(en1 , v
n
h) +

∫ tn

tn−1

(
− ⟨e1, vht⟩+ a(e1, vh) + λ⟨e1, vh⟩Γ

)
dt = (en−1

1 , vn−1
h+ ), (4.4)

−(rn1+, v
n
h) +

∫ tn

tn−1

(
⟨r1, vht⟩+ a(r1, vh) + λ⟨r1, vh⟩Γ

)
dt

= −(rn−1
1+ , vn−1

h+ ) +

∫ tn

tn−1

(e1, vh)dt. (4.5)

Note that the orthogonality condition (4.4) is essentially uncoupled and identical to
the orthogonality condition of [15, Relation (2.6)]. Hence applying [15, Theorem 2.2],
we derive the first estimate. In a similar way, the orthogonality condition (4.5) is
equivalent to: For n = 1, ..., N , and for all vh ∈ Pk[t

n−1, tn;Uh],

−(rn1h+, v
n
h) +

∫ tn

tn−1

(
⟨r1h, vht⟩+ a(r1h, vh) + λ⟨r1h, vh⟩Γ

)
dt (4.6)

= −(rn−1
1h+ , vn−1

h+ ) +

∫ tn

tn−1

(
(e1, vh)− a(rp, vh)− λ(rp, vh)Γ

)
dt.

Here, we have used the Definition 4.1 of the projection P loc
h , which implies that∫ tn

tn−1⟨rp, vht⟩dt = 0, (rnp+, v
n
h) = 0, and (rn−1

p+ , vn−1
h+ ) = 0. Setting vh = r1h into (4.6),
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using the Friedrichs’ inequality to bound the second and the third term on the left,
Young’s inequality to bound the terms on the right, and standard algebra, we obtain

−(1/2)∥rn1h+∥2L2(Ω) + (1/2)∥[rn1h]∥2L2(Ω) + (1/2)∥rn−1
1h+∥2L2(Ω) + (λ/4)

∫ tn

tn−1

∥r1h∥2L2(Γ)dt

+(CF min{λ, η}/4)
∫ tn

tn−1

∥r1h∥2H1(Ω)dt+ (η/2)

∫ tn

tn−1

∥∇r1h∥2L2(Ω)dt

≤ C

∫ tn

tn−1

(
(1/CF min{λ, η})∥e1∥2L2(Ω) + (1/CF min{λ, η})∥rp∥2H1(Ω) + λ∥rp∥2L2(Γ)

)
dt.

The second estimate now follows upon summation.
Step 2: Duality arguments. We turn our attention to the last two estimates. In order
to obtain the improved rate for the L2[0, T ;L2(Ω)] norm we employ a duality argument
to derive a better bound for the quantity ∥e1h∥2L2[0,T ;L2(Ω)]. For this purpose, we define

a backwards in time parabolic problem with right hand side e1h ∈ L2[0, T ;L2(Ω)], and
zero Robin and terminal data, i.e., λϕ + η ∂ϕ

∂n |Γ = 0, and ϕ(T ) = 0. For n = 1, ..., N
and for all v ∈ L2[0, T ;H1(Ω)] ∩H1[0, T ;H1(Ω)∗], we seek ϕ ∈ W (0, T ) such that∫ tn

tn−1

(
⟨ϕ, vt⟩+ a(v, ϕ) + λ⟨ϕ, v⟩Γ

)
dt+ (ϕ(tn−1, v(tn−1)) =

∫ tn

tn−1

(e1h, v)dt. (4.7)

Note that since e1h ∈ L∞[0, T ;L2(Ω)], then ϕ ∈ L2[0, T ;H2(Ω)]∩H1[0, T ;L2(Ω)] (see
Theorem 2.1). In particular, the following estimate hold:

∥ϕ∥L2[0,T ;H2(Ω)] + ∥ϕt∥L2[0,T ;L2(Ω)] + λ∥ϕ∥L2[0,T ;L2(Γ)] ≤ C∥e1h∥L2[0,T ;L2(Ω)]. (4.8)

The lack of regularity of the right hand side of (4.7) due to the presence of discon-
tinuities, implies that we can not improve regularity of ϕ in [0, T ]. The associated
discontinuous time-stepping scheme can be defined as follows: Given, terminal data
ϕN
h+ = 0, we seek ϕh ∈ Uh such that for all vh ∈ Pk[t

n−1, tn;Uh],

−(ϕn
h+, v

n
h−) +

∫ tn

tn−1

(
(ϕh, vht) + a(ϕh, vh) + λ⟨ϕh, vh⟩Γ

)
dt

+(ϕn−1
h+ , vn−1

h+ ) =

∫ tn

tn−1

(e1h, vh)dt. (4.9)

Hence using Lemma 3.5, the following stability estimate holds:

∥ϕh∥L∞[0,T ;H1(Ω)] + λ∥ϕh∥L∞[0,T ;L2(Γ)] ≤ Ck∥e1h∥L2[0,T ;L2(Ω)]. (4.10)

It is now clear that we have the following estimate for ϕ−ϕh, which is a straightforward
application of the previous estimates in L2[0, T ;H1(Ω)], the approximation properties
of Lemma 4.3, of projections P loc

h , Qloc
h , and the boundary Sobolev inequality,

∥ϕ− ϕh∥L2[0,T ;H1(Ω)] + λ∥ϕ− ϕh∥L2[0,T ;L2(Γ)] (4.11)

≤ C
(
h+ τ1/2

)(
∥ϕ∥L2[0,T ;H2(Ω)] + ∥ϕt∥L2[0,T ;L2(Ω)]

)
≤ C

(
h+ τ1/2

)
∥e1h∥L2[0,T ;L2(Ω)].

We note that the lack of regularity on the right hand side, restricts the rate of con-
vergence to the rate given by the lowest order scheme l = 1, k = 0, even if high order
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schemes (in time) are chosen. Setting vh = e1h, into (4.9), we obtain,

−(ϕn
h+, e

n
1h−) +

∫ tn

tn−1

(
(ϕh, e1ht) + a(e1h, ϕh) + λ⟨ϕh, e1h⟩Γ

)
dt+ (ϕn−1

h+ , en−1
1h+)

=

∫ tn

tn−1

∥e1h∥2L2(Ω)dt.

Integrating by parts in time, we deduce,

−(ϕn
h+, e

n
1h−) + (ϕn

h−, e
n
1h−) +

∫ tn

tn−1

(
− (ϕht, e1h) + a(ϕh, e1h) + λ⟨ϕh, e1h⟩Γ

)
dt

=

∫ tn

tn−1

∥e1h∥2L2(Ω)dt. (4.12)

Setting vh = ϕh into (4.4) and using e1 = ep + e1h, and the definition of projection

Qloc
h of Definition 4.2 we obtain,

(en1h−, ϕ
n
h−) +

∫ tn

tn−1

(
− (e1h, ϕht) + a(e1h, ϕh) + λ⟨e1h, ϕh⟩Γ

)
dt− (en−1

1h−, ϕ
n−1
h+ )

= −
∫ tn

tn−1

(
a(ep, ϕh) + λ⟨ep, ϕh⟩

)
dt. (4.13)

Here, we have used the fact that the definition of projection Qloc
h of Definition 4.2,

implies that (enp , ϕ
n
h−) = 0,

∫ tn

tn−1(ep, vht)dt = 0 and (en−1
p− , ϕn−1

h+ ) = 0. Using (4.12) to
replace the first four terms of (4.13) we arrive to

(ϕn
h+, e

n
1h−)− (en−1

1h−, ϕ
n−1
h+ ) +

∫ tn

tn−1

∥e1h∥2L2(Ω)dt

= −
∫ tn

tn−1

(
a(ep, ϕh) + λ⟨ep, ϕh⟩Γ

)
dt

= −
∫ tn

tn−1

(
a(ep, ϕh − ϕ) + a(ep, ϕ) + λ⟨ep, ϕh − ϕ⟩Γ + λ⟨ep, ϕ⟩Γ

)
dt

= −
∫ tn

tn−1

(
a(ep, ϕh − ϕ) + λ⟨ep, ϕh − ϕ⟩Γ − η(ep,∆ϕ) + η⟨ep,

∂ϕ

∂n
⟩Γ + λ⟨ep, ϕ⟩Γ

)
dt

= −
∫ tn

tn−1

(
a(ep, ϕh − ϕ) + λ⟨ep, ϕh − ϕ⟩Γ − η(ep,∆ϕ)

)
dt

where at the last two equalities we have used integration by parts (in space), and
the definition of ϕ as a dual problem with zero Robin boundary data respectively.
Therefore,∫ tn

tn−1

∥e1h∥2L2(Ω)dt+ (ϕn
h+, e

n
1h−)− (en−1

1h−, ϕ
n−1
h+ ) ≤

∫ tn

tn−1

η∥ϕh − ϕ∥H1(Ω)∥ep∥H1(Ω)dt

+

∫ tn

tn−1

(
η∥ep∥L2(Ω)∥∆ϕ∥L2(Ω) + λ∥ep∥L2(Γ)∥ϕh − ϕ∥L2(Γ)

)
dt.

Then summing the above inequalities and using the fact that ϕN
+ ≡ 0 and e01h− = 0
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(by definition) and rearranging terms, we obtain

(1/2)∥e1h∥2L2[0,T ;L2(Ω)] ≤ Cη

∫ T

0

∥ep∥L2(Ω)∥ϕ∥H2(Ω)dt

+C

∫ T

0

(
η∥ϕh − ϕ∥H1(Ω)∥ep∥H1(Ω) + λ∥ep∥L2(Γ)∥ϕh − ϕ∥L2(Γ)

)
dt

≤ C
(
η∥ep∥L2[0,T ;L2(Ω)]∥ϕ∥L2[0,T ;H2(Ω)] + η∥ϕh − ϕ∥L2[0,T ;H1(Ω)]∥ep∥L2[0,T ;H1(Ω)]

+λ∥ep∥L2[0,T ;L2(Γ)]∥ϕh − ϕ∥L2[0,T ;L2(Γ)]

)
≤ C

(
η∥ep∥L2[0,T ;L2(Ω)]∥e1h∥L2[0,T ;L2(Ω)]

+(h+ τ1/2)∥e1h∥L2[0,T ;L2(Ω)](∥ep∥L2[0,T ;H1(Ω)] + λ∥ep∥L2[0,T ;L2(Γ)])
)
.

Here, we have used the Cauchy-Schwarz inequality, the stability bounds of dual equa-
tion (4.8), i.e., and the error estimates (4.11) on ϕh − ϕ. Finally, the estimate on
∥r1∥L2[0,T ;L2(Ω)] follows by using a similar duality argument.

Since, an estimate on the L2[0, T ;H1(Ω)] norm is already obtained, and the auxiliary
optimality system is now essentially uncoupled, the techniques of [15, Section 2] can be
applied directly to derive an estimate in L∞[0, T ;L2(Ω)] (see also Proposition 4.10).

Theorem 4.6. Let wh, zh ∈ Uh be the solutions of (4.1)-(4.2). Denote by e1 = ȳ−wh,
r1 = µ̄− zh and suppose that the assumptions of Theorem 4.5 hold. Then there exists
a constant C depending on Ck,Ω such that

∥e1∥L∞[0,T ;L2(Ω)] ≤ C
(
∥ep∥L∞[0,T ;L2(Ω)] + ∥e01∥L2(Ω)

+∥ep∥L2[0,T ;H1(Ω)] + λ∥ep∥L2[0,T ;L2(Γ)]

)
,

∥r1∥L∞[0,T ;L2(Ω)] ≤ C
(
∥rp∥L∞[0,T ;L2(Ω)] + ∥e1∥L2[0,T ;L2(Ω)]

+∥rp∥L2[0,T ;H1(Ω)] + λ∥rp∥L2[0,T ;L2(Γ)]

)
.

Here ep = ȳ −Qloc
h ȳ, rp = µ̄− P loc

h µ̄.

Proof. Splitting the error as in the previous theorem, i.e., e1 = e1h + ep it suffices to
bound the term suptn−1<t≤tn ∥e1h(t)∥2L2(Ω). This is done in [15, Theorem 2.5] (note

that the orthogonality condition is uncoupled). The estimate for the adjoint variable
can be derived similarly.

Remark 4.7. The combination of the last two Theorems implies the “symmetric,
regularity free” structure of our estimate. In particular, suppose that the initial data
y0 ∈ L2(Ω), and the forcing term f ∈ L2[0, T ;H1(Ω)∗]. Then, define the natural
energy norm ∥(., .)∥X endowed by the weak formulation under minimal regularity as-
sumptions as follows:

∥(e1, r1)∥X ≡ ∥e1∥W (0,T ) + ∥r1∥W (0,T ).

Then, using Theorems 4.5, 4.6 we obtain an estimate of the form

∥error∥X ≤ C
(
∥in. data error∥L2(Ω) + ∥best approx. error∥X

)
.

The above estimate indicates that the error is as good as the approximation properties
enables it to be, under the natural parabolic regularity assumptions, and it can be
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viewed as the fully-discrete analogue of Céa’s Lemma (see e.g. [17]). Hence, the rates
of convergence for e1, r1 depend only on the approximation and regularity results, via
the projection error ep, rp as indicated in Lemma 4.3 and Remark 4.4. If y0 ∈ L2(Ω),
i.e, ȳ ∈ L2[0, T ;H1(Ω)]∩H1[0, T ;H1(Ω)∗], and µ̄ ∈ L2[0, T ;H2(Ω)]∩H1[0, T ;L2(Ω)]
then for l = 1, k = 0, and for τ ≤ Ch2 we obtain that

1. ∥ep∥L2[0,T ;H1(Ω)] ≤ C,

2. ∥rp∥L2[0,T ;H1(Ω)] ≤ C(h∥µ̄∥L2[0,T ;H2(Ω)] + τ1/2∥µ̄t∥L2[0,T ;L2(Ω)]),

3. ∥ep∥L2[0,T ;L2(Ω)] ≤ C(h∥ȳ∥L2[0,T ;H1(Ω)] + τ1/2∥ȳt∥L2[0,T ;H1(Ω)∗]),
4. ∥rp∥L2[0,T ;L2(Ω)] ≤ C(h2∥µ̄∥L2[0,T ;H2(Ω)] + τ∥µ̄t∥L2[0,T ;L2(Ω)]),

5. ∥ep∥L2[0,T ;L2(Γ)] ≤ C∥ep∥1/2L2[0,T ;L2(Ω)]∥ep∥
1/2
L2[0,T ;H1(Ω)] ≤ C(h+ τ1/2)1/2.

Therefore, the above estimates, and Theorem 4.5, imply for τ ≤ Ch2 the following
rates: ∥e1∥L2[0,T ;L2(Ω)] ≈ O(h), and ∥r1∥L2[0,T ;L2(Γ)] ≈ O(h).

The estimate is applicable even in case of more regular solutions. For example, if in
addition both ȳ, µ̄ ∈ L2[0, T ;H2(Ω)] ∩H1[0, T ;L2(Ω)] (here l = 1, and k = 0),

1. ∥ep∥L2[0,T ;H1(Ω)] ≤ Ch∥ȳ∥L2[0,T ;H2(Ω)] + τ1/2∥ȳt∥L2[0,T ;L2(Ω)].
2. ∥ep∥L2[0,T ;L2(Ω)] ≤ Ch2∥ȳ∥L2[0,T ;H2(Ω)] + τ∥ȳt∥L2[0,T ;L2(Ω)].

3. ∥ep∥L2[0,T ;L2(Γ)] ≤ C(h2 + τ)1/2(h+ τ1/2)1/2.

For the boundary norm we have used Sobolev’s boundary inequality. Same rates
hold also the related norms of rp. Therefore, from Theorem 4.5, we obtain that
∥e1∥L2[0,T ;H1(Ω)] ≈ O(h), ∥r1∥L2[0,T ;H1(Ω)] ≈ O(h), ∥e1∥L2[0,T ;L2(Ω)] ≈ O(h3/2) and

∥r1∥L2[0,T ;L2(Ω)] ≈ O(h3/2) when τ ≤ Ch2.

4.2. Unconstrained Controls: Preliminary estimates for the optimality
system. It remains to compare the discrete optimality system (3.3)-(3.4)-(3.5) to the
auxiliary system (4.1)-(4.2).

Lemma 4.8. Let ȳh, µ̄h,wh,zh ∈ Uh be the solutions the discrete optimality system
(3.3)-(3.4)-(3.5) and of the auxiliary system (4.1)-(4.2) respectively. Denote by e1 ≡
ȳ−wh, r1 ≡ µ̄− zh, and let e2h ≡ wh− ȳh, r2h ≡ zh− µ̄h. Then there exists algebraic
constant C > 0 such that:

∥e2h∥L2[0,T ;L2(Ω)] + (λ/α1/2)∥r2h∥L2[0,T ;L2(Γ)] ≤ Cλ/α1/2∥r1∥L2[0,T ;L2(Γ)].

Proof. Subtracting (3.4) from (4.2) we obtain the equation: For n = 1, ..., N ,

−(rn2h+, v
n
h) +

∫ tn

tn−1

(
⟨r2h, vht⟩+ a(r2h, vh) + λ⟨r2h, vh⟩Γ

)
dt (4.14)

= −(rn−1
2h+ , vn−1

h+ ) +

∫ tn

tn−1

(e2h, vh)dt ∀ vh ∈ Pk[t
n−1, tn;Uh].

Subtracting (3.3) from (4.1) and using (2.6)-(3.5), we obtain: For n = 1, ..., N ,

(en2h, v
n
h) +

∫ tn

tn−1

(
− ⟨e2h, vht⟩+ a(e2h, vh) + λ⟨e2h, vh⟩Γ

)
dt (4.15)

= (en−1
2h , vn−1

h+ ) +

∫ tn

tn−1

−(λ2/α)(µ̄− µ̄h, vh)Γdt ∀ vh ∈ Pk[t
n−1, tn;Uh].
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We set vh = e2h into (4.14) to obtain

−(rn2h+, e
n
2h) +

∫ tn

tn−1

(
⟨r2h, e2ht⟩+ a(r2h, e2h) + λ⟨r2h, e2h⟩Γ

)
dt (4.16)

+(rn−1
2h+ , en−1

2h+) =

∫ tn

tn−1

∥e2h∥2L2(Ω)dt.

Similarly, setting vh = r2h into (4.15) we deduce,

(en2h, r
n
2h) +

∫ tn

tn−1

(
− ⟨e2h, r2ht⟩+ a(e2h, r2h) + λ⟨e2h, r2h⟩Γ

)
dt (4.17)

−(en−1
2h , rn−1

2h+) =

∫ tn

tn−1

(
− (λ2/α)⟨r1, r2h⟩Γ − (λ2/α)∥r2h∥2L2(Γ)

)
dt.

Integrating by parts with respect to time in (4.17), and subtracting the resulting
equation from (4.16), we arrive to

(rn2h+, e
n
2h)− (en−1

2h , rn−1
2h+) +

∫ tn

tn−1

(
∥e2h∥2L2(Ω) + (λ2/α)∥r2h∥2L2(Γ)

)
dt (4.18)

= −(λ2/α)

∫ tn

tn−1

⟨r1, r2h⟩Γdt.

Using Young’s inequality to bound the right hand side, adding the resulting inequali-
ties (4.18) from 1 to N , and noting that

∑N
n=1

(
(rn2h+, e

n
2h)− (en−1

2h , rn−1
2h+)

)
= 0 (since

e02h ≡ 0, rN2h+ = 0) we obtain the desired estimate.

Estimates easily follow by the previous Lemma and the estimates on the projections
e1 and r1 together with a classical “boot-strap” argument.

Proposition 4.9. Let ȳh, µ̄h,wh,zh ∈ Uh be the solutions of the optimality system
(3.3)-(3.4)-(3.5) and of the auxiliary system (4.1)-(4.2) respectively. Denote by e1 ≡
ȳ − wh, r1 ≡ µ̄ − zh, and let e2h ≡ wh − ȳh, r2h ≡ zh − µ̄h. Then, the following
estimate holds:

∥eN2h∥2L2(Ω) +

N−1∑
i=0

∥[ei2h]∥2L2(Ω) + CF min{η, λ}
∫ T

0

∥e2h∥2H1(Ω)dt

+λ

∫ T

0

∥e2h∥2L2(Γ)dt ≤ (C/λα2)

∫ tn

tn−1

∥r1∥2L2(Γ)dt

∥r02h+∥2L2(Ω) +

N∑
i=1

∥[ri2h]∥2L2(Ω) + CF min{η, λ}
∫ T

0

∥r2h∥2H1(Ω)dt

+λ

∫ T

0

∥r2h∥2L2(Γ)dt ≤
(
Cλ2/αCF min{η, λ}

) ∫ T

0

∥r1∥2L2(Γ)dt,

where C is constant depending only upon Ω.

Proof. Step 1: Estimates for the state: Setting vh = e2h into (4.15) and noting that
µ− µh = r1 + r2h we obtain

(1/2)∥en2h∥2L2(Ω) + (1/2)∥[en−1
2h ]∥2L2(Ω) − (1/2)∥en−1

2h ∥2L2(Ω) + η

∫ tn

tn−1

∥∇e2h∥2L2(Ω)dt

+λ

∫ tn

tn−1

∥e2h∥2L2(Γ)dt ≤ −(λ2/α)

∫ tn

tn−1

(r1 + r2h, e2h)Γdt. (4.19)
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Using Young’s inequality for the first term on the right hand side, (4.19) gives,

(1/2)∥en2h∥2L2(Ω) + (1/2)∥[en−1
2h ]∥2L2(Ω) − (1/2)∥en−1

2h ∥2L2(Ω) + η

∫ tn

tn−1

∥∇e2h∥2L2(Ω)dt

+(λ/2)

∫ tn

tn−1

∥e2h∥2L2(Γ)dt ≤ (1/λα2)

∫ tn

tn−1

(∥r1∥2L2(Γ) + ∥r2h∥2L2(Γ))dt. (4.20)

Using Friedrichs’ inequality, and standard algebra we obtain the estimate upon sum-
mation by using the estimate on ∥r2h∥L2[0,T ;L2(Γ)] of Lemma 4.8.
Step 2: Estimates for the adjoint: Setting vh = r2h into (4.14), and using Friedrichs’
and Young’s inequalities, and Lemma 4.8 to bound the norm of ∥e2h∥L2[0,T ;L2(Ω)] we
obtain the desired estimate.

An estimate at arbitrary time points for the forward in time equation can be derived
by applying the approximation of the discrete characteristic technique of [15] into the
Robin boundary linear case. Here, the stability estimate at arbitrary time-points will
be also needed.

Proposition 4.10. Suppose that the assumptions of Theorem 4.5, and Proposition
4.9 hold. Then there exists a constant C depending only upon constant Ck, and the
domain such that,

∥e2h∥L∞[0,T ;L2(Ω)] ≤ C
(
η∥e2h∥L2[0,T ;H1(Ω)] + λ∥e2h∥L2[0,T ;L2(Γ)]

+(λ3/2/α)∥r1∥L2[0,T ;L2(Γ)]

)
,

∥r2h∥L∞[0,T ;L2(Ω)] ≤ C
(
η∥r2h∥L2[0,T ;H1(Ω)] + (λ/α1/2)∥r1∥L2[0,T ;L2(Γ)]

)
.

Proof. The proof closely follows the techniques of [15, Section 2], adjusted to the
Robin boundary data case. For completeness, we state the proof for the first estimate,
while the second one can be treated similarly. First, we briefly recall the main tool
of approximations of the discrete characteristic function. For any polynomial s ∈
Pk(t

n−1, tn), we denote the discrete approximation of χ[tn−1,t)s by the polynomial
ŝ ∈ {ŝ ∈ Pk(t

n−1, tn), ŝ(tn−1) = s(tn−1)} which satisfies∫ tn

tn−1

ŝq =

∫ t

tn−1

sq ∀ q ∈ Pk−1(t
n−1, tn).

The motivation for the above construction stems from the elementary observation

that for q = s′ we obtain
∫ tn

tn−1 s
′ŝ =

∫ t

tn−1 ss
′ = 1

2 (s
2(t)−s2(tn−1)). The construction

can be extended to approximations of χ[tn−1,t)v for v ∈ Pk[t
n−1, tn;V ] where V is a

linear space. The discrete approximation of χ[tn−1,t)v in Pk[t
n−1, tn;V ] is defined by

v̂ =
∑k

i=0 ŝi(t)vi and if V is a semi-inner product space then,

v̂(tn−1) = v(tn−1), and

∫ tn

tn−1

(v̂, w)V =

∫ t

tn−1

(v, w)V ∀w ∈ Pk−1[t
n−1, tn;V ].

Then, [15, Lemma 2.4] states various continuity properties, and in particular that

∥v̂∥L2[tn−1,tn;V ] ≤ Ck∥v∥L2[tn−1,tn;V ], ∥v̂ − χ[tn−1,t)v∥L2[tn−1,tn;V ] ≤ Ck∥v∥L2[tn−1,tn;V ]

where Ck is a constant depending on k. We begin by integrating by parts with respect
to time in (4.15), and substituting vh = ê2h, where ê2h denotes the approximation
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of the discrete characteristic function χ[tn−1,t)e2h (for any fixed t ∈ [tn−1, tn)), as
constructed above. The definition of the ê2h and the fact that e2ht ∈ Pk−1[t

n−1, tn;Uh]

implies that
∫ tn

tn−1(e2ht, ê2h)dt =
∫ t

tn−1(e2ht, e2h)dt and hence,

(1/2)∥e2h(t)∥2L2(Ω) + (1/2)∥[en−1
2h ]∥2L2(Ω) +

∫ tn

tn−1

a(e2h, ê2h)dt (4.21)

= (1/2)∥en−1
2h ∥2L2(Ω) − λ

∫ tn

tn−1

(e2h, ê2h)Γdt−
∫ tn

tn−1

(λ2/α)(r1 + r2h, ê2h)Γdt.

Recall also that the continuity property on a(., .), imply∣∣∣ ∫ tn

tn−1

(
a(e2h, ê2h) + λ(e2h, ê2h)Γ

)
dt
∣∣∣ ≤ Ck

∫ tn

tn−1

(η∥e2h∥2H1(Ω) + λ∥e2h∥2L2(Γ))dt

while the coupling term can be bounded as:∣∣∣λ2

α

∫ tn

tn−1

(r1 + r2h, ê2h)Γdt
∣∣∣ ≤ (Ckλ

3/α2)

∫ tn

tn−1

(
∥r2h∥2L2(Γ) + ∥r1∥2L2(Γ)

)
dt

+Ckλ

∫ tn

tn−1

∥e2h∥2L2(Γ)dt.

Here we have used Young’s inequality with appropriate δ > 0, and in various instances
of the continuity property of the approximation of the discrete characteristic. Hence,
substituting the above estimates into (4.21), we obtain an inequality of the form,
(1 − Cτ)an ≤ an−1 + fn, where an = sups∈(tn−1,tn] ∥e2h(s)∥2L2(Ω). Indeed, let t ∈
(tn−1, tn] to be chosen as an ≡ ∥e2h(t)∥2L2(Ω) and note that ∥en−1

2h ∥2L2(Ω) ≤ an−1.
Hence the desired estimate follows by summation and by Lemma 4.8.

4.3. Unconstrained Controls: Symmetric error estimates and estimates
for rough initial data. Various estimates can be derived, using results of previous
subsections and standard approximation theory results. We begin by stating sym-
metric error estimates which can be viewed as the analogue of the classical Céa’s
Lemma.

Theorem 4.11. Let ȳh, µ̄h ∈ Uh and (ȳ, µ̄) ∈ W (0, T ) denote the approximate so-
lutions of the discrete and continuous optimality systems (3.3)-(3.4)-(3.5) and (2.4)-
(2.5)-(2.6) respectively. Let ep = ȳ − Qloc

h ȳ, rp = µ̄ − P loc
h µ̄ denote the projection

error, where P loc
h , Qloc

h defined in Definition of 4.1, and 4.2 respectively. Then, the
following estimate holds for the error e = ȳ − ȳh and r = µ̄− µ̄h:

∥(e, r)∥X ≤ C̃(1/α)∥(ep, rp)∥X

where C̃ depends upon constants of Theorems 4.5, 4.6, and Proposition 4.9, 4.10, and
is independent of τ, h, α.

Proof. The first estimate follows by using triangle inequality and previous estimates
of Theorem 4.5 and 4.6 and Propositions 4.9 and 4.10.

An improved estimate for the L2[0, T ;L2(Ω)] norm for the state, and in L2[0, T ;L2(Γ)]
for the adjoint follow by combining the estimates of Theorem 4.5, and Lemma 4.8.

Theorem 4.12. Suppose that y0 ∈ L2(Ω), f ∈ L2[0, T ;H1(Ω)∗], and the assumptions
of Theorem 4.5 and Lemma 4.8 hold. Let ep = ȳ −Qloc

h ȳ, rp = µ̄− P loc
h µ̄ denote the
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projection error, where P loc
h , Qloc

h defined in Definition of 4.1, and 4.2 respectively.
Then, there exists a constant C independent of h, τ, α such that,

∥e∥L2[0,T ;L2(Ω)] ≤ C
(
∥ep∥L2[0,T ;L2(Ω)] + τ1/2(∥ep∥L2[0,T ;H1(Ω)] + ∥ep∥L2[0,T ;L2(Γ)])

+(λ/α1/2)∥r1∥L2[0,T ;L2(Γ)]

)
∥r∥L2[0,T ;L2(Γ)] ≤ C∥r1∥1/2L2[0,T ;L2(Ω)]∥r1∥

1/2
L2[0,T ;H1(Ω)],

where r1 is estimated in terms of projection errors ep, rp by Theorem 4.5.

Proof. The first estimate follows by using triangle inequality and previous estimates
of Theorem 4.5, Lemma 4.8. The second estimate follows by triangle inequality, the
estimate of Lemma 4.8 to bound r2h and Sobolev’s boundary inequality.

Using now standard regularity and approximation theory results we obtain conver-
gence rates. Below, we state convergence rates in two distinct cases, depending on
the available regularity.

Proposition 4.13. Suppose that the assumptions of Theorem 4.5 and Lemma 4.8
hold, and let y0 ∈ L2(Ω), f ∈ L2[0, T ;H1(Ω)∗]. Assume that piecewise linear poly-
nomials are being used to construct the subspaces Uh ⊂ H1(Ω) in each time step,
and piecewise constants polynomials k = 0 for the temporal discretization. Then, for
τ ≤ Ch2 we obtain,

∥e∥L2[0,T ;L2(Ω)] ≤ Ch and ∥r∥L2[0,T ;L2(Γ)] ≤ Ch.

If in addition, ȳ, µ̄ ∈ L2[0, T ;H2(Ω)] ∩H1[0, T ;L2(Ω)] then,

∥(e, r)∥X ≤ C̃(1/α)
(
h+ τ1/2

)
,

∥e∥L2[0,T ;L2(Ω)] ≤ C(1/α1/2)
(
h2 + τ + (h2 + τ)1/2(h+ τ1/2)1/2 + (h+ τ1/2)2

)
,

∥r∥L2[0,T ;L2(Γ)] ≤ C(h2 + τ)1/2(h+ τ1/2)1/2,

which imply for τ ≈ h2, the rates ∥(e, r)∥X ≈ O(h), ∥e∥L2[0,T ;L2(Ω)] ≈ O(h3/2), and

∥r∥L2[0,T ;L2(Γ)] ≈ O(h3/2).

Proof. The rates directly follow from Theorem 4.11, Theorem 4.12, Lemma 4.3 and
Remark 4.7.

4.4. Control Constraints: The variational discretization approach. It
is worth noting that our estimates are also applicable in case of point-wise control
constraints, when using the variational discretization approach of Hinze ([25]). The
variational discretization approach implies that Ad

ad ≡ Aad, i.e., the control is not
discretized explicitly, but only implicitly via the adjoint variable. Thus, our dis-
crete optimal control problem now coincides to: Minimize functional Jh(yh(g), g) ≡
(1/2)

∫ T

0
∥yh(g)− yd∥2L2(Ω)dt+(α/2)

∫ T

0
∥g∥2L2(Γ)dt subject to (3.1), where yh(g) ∈ Uh

denotes the solution of (3.1) with right hand side given control g ∈ L2[0, T ;L2(Γ)].
Then, the optimal control (abusing the notation, denoted again by ḡh) satisfies the
following first order optimality condition,

J
′

h(ḡh)(u− ḡh) ≥ 0, for all u ∈ L2[0, T ;L2(Γ)],

where ḡh can take the form ḡh(t, x) = Proj[ga,gb](− λ
α µ̄h(ḡh(t, x))), for a.e. (t, x) ∈

(0, T ] × Γ similar to continuous case. We note that the ḡh is not in general a finite
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element function corresponding to our finite element mesh, hence its algorithmic con-
struction requires extra care (see e.g. [25]). However, in most practical situations,
the main goal is to minimize and compute the state variable, and not necessarily the
control that is used to achieve our goal. For the second derivative we easily obtain an
estimate independent of ḡ, ḡh, and in particular,

J
′′

h (u)(ũ, ũ) ≥ α∥ũ∥2L2[0,T ;L2(Γ)], for all ũ ∈ L2[0, T ;L2(Γ)].

Theorem 4.14. Let y0 ∈ L2(Ω), f ∈ L2[0, T ;H1(Ω)∗], and yd ∈ L2[0, T ;L2(Ω)].
Suppose that Ad

ad ≡ Aad and let ḡ, ḡh denote the solutions of the corresponding con-
tinuous and discrete optimal control problems. Then, the following estimate hold:

∥ḡ − ḡh∥L2[0,T ;L2(Γ)] ≤ C(1/α)∥µ(ḡ)− µh(ḡ)∥L2[0,T ;L2(Γ)],

where µh(ḡ) and µ(ḡ) denote the solutions of (3.2) and (2.3) respectively. Further-
more, if τ ≤ Ch2, ∥ḡ − ḡh∥L2[0,T ;L2(Γ)] ≈ O(h).

Proof. We note that Ad
ad ≡ Aad, and hence the optimality conditions imply that

J
′

h(ḡh)(ḡ − ḡh) ≥ 0 and J
′
(ḡ)(ḡ − ḡh) ≤ 0. (4.22)

Therefore, using the second order condition and the mean value theorem, we obtain
for any u ∈ L2[0, T ;L2(Γ)], (and hence for the one resulting from the mean value
theorem) and inequalities (4.22),

α∥ḡ − ḡh∥2L2[0,T ;L2(Γ)] ≤ J
′′

h (u)(ḡ − ḡh, ḡ − ḡh)

= J
′

h(ḡ)(ḡ − ḡh)− J
′

h(ḡh)(ḡ − ḡh) ≤ J
′

h(ḡ)(ḡ − ḡh)− J
′
(ḡ)(ḡ − ḡh)

=

∫ T

0

∫
Γ

(µh(ḡ)− µ(ḡ))(ḡ − ḡh)dxdt ≤ C∥µ(ḡ)− µh(ḡ)∥L2[0,T ;L2(Γ)]∥ḡ − ḡh∥L2[0,T ;L2(Γ)],

which clearly implies the first estimate. Now, a rate of convergence can be obtained us-
ing similar arguments to Theorem 4.5. Indeed, note that subtracting (3.2) from (2.3)
and setting r̄ = µh(ḡ)− µ(ḡ), and ē = yh(ḡ)− y(ḡ), we obtain the analog of orthogo-
nality condition (4.4)-(4.5), i.e., for all n = 1, ..., N and for all vh ∈ Pk[t

n−1, tn;Uh],

(ēn1 , v
n
h) +

∫ tn

tn−1

(
− ⟨ē1, vht⟩+ a(ē1, vh) + λ⟨ē1, vh⟩Γ

)
dt = (ēn−1

1 , vn−1
h+ ),

−(r̄n+, v
n
h) +

∫ tn

tn−1

(
⟨r̄, vht⟩+ a(r̄, vh) + λ⟨r̄, vh⟩Γ

)
dt

= −(r̄n−1
1+ , vn−1

h+ ) +

∫ tn

tn−1

(ē, vh)dt,

Using Sobolev’s boundary inequality, the estimates of Theorem 4.5, and the rates of
Proposition 4.13, we obtain the desired estimate, after noting the reduced regularity
of ē.

4.5. Numerical experiments. We consider three numerical examples for the
model problem on Ω× [0, T ] = [0, 1]2 × [0, 0.1]. The first two examples are computed
based on piecewise constants (in time) (k = 0), and standard piecewise linear elements
(l = 1) in space, while the third one with piecewise linear polynomials in both time
and space (k = 1, l = 1). More specifically, we consider three examples with:
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1. Regular initial condition for the state variable (with known exact solution for
the state variable).

2. Discontinuous initial data y0 ∈ L2(Ω): In this case we assume that exact solu-
tion is the solution with time-space mesh dt = 2.71267e−05, h = 5.20833e−03
(3687 and 37249 ndof respectively).

3. A coarse time stepping approach for a problem with known exact solution for
the state variable.

We note that the boundary control does not possesses continuous derivatives at some
points. The examples are based on the one presented in [13]. In all examples we
fix the regularization parameter in the functional as α = π−4. The optimal control
problem is solved by the finite element toolkit FreeFem++ (see [24]) using a gradient
algorithm method in a 4 Six-Core AMD Opteron(tm) Processor 8431, 96 GB RAM
computer.
EXAMPLE 1. Let a = −

√
5. We choose right-hand side

f(t, x1, x2) = π2eaπ
2t
{
−(2x2

2 − 2x2 + 2x2
1 + a+ 1) sin(πx1x2) sin (πx1(x2 − 1))

+ 2(x2
2 − x2 + x2

1) cos(πx1x2) cos (πx1(x2 − 1))
}
,

initial condition y0(x1, x2) = sin(π(1 + x1x2)) sin(πx1(x2 − 1)), and target function
yd(t, x1, x2) = 0.5, in a way to guarantee that the optimal solution (ȳ, ḡ) of the optimal
control problem is given by

ȳ(t, x1, x2) = exp(aπ2t) sin(π(1 + x1x2)) sin(πx1(x2 − 1)),

while ḡ has been computed by using the Robin condition at each component of the
boundary. For this choice of data the corresponding errors for the state and the control
variable for different meshes are shown in the Table 4.1. In this case, the predicted
(theoretical) rates for the L2[0, T ;L2(Ω)] and L2[0, T ;H1(Ω)] norms are O(τ + h3/2),
and O(τ + h) respectively, and they are both verified numerically.

Table 4.1
Experiment 1-Rates of convergence for the 2d solution with τ = h2/2 and regular initial data.

Discretization Error

τ = h2/2 ∥e∥L2[0,T ;L2(Ω)] ∥e∥L2[0,T ;H1(Ω)] J(y, g)

h = 0.2357022 0.018310605 0.070340370 0.002395820

h = 0.1178511 0.004085497 0.031958661 0.001857961

h = 0.0589255 0.001335615 0.016375314 0.001738954

h = 0.0294627 0.000766443 0.008819160 0.001711876

h = 0.0147313 0.000676697 0.005626214 0.001705198

Conv. rate 1.526118558 0.998546583 -

EXAMPLE 2. In this test problem Ω, and T , are the same as in the Example 1.
The difference is that in this example the initial data y0 is a discontinuous function,
defined as follows:

y0 =

{
sin(π(1 + x1x2)) sin(πx1(x2 − 1)) if x1, x2 ≥ 0.5,
10 + sin(π(1 + x1x2)) sin(πx1(x2 − 1)) otherwise.

The results related to the errors are demonstrated in Table 4.2, where the rate of
O(h) when τ ≤ Ch2, for the L2[0, T ;L2(Ω)] norm is verified for the state and adjoint
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Table 4.2
Experiment 2-Rates of convergence for the 2d solution with τ = h2/2 and rough initial data.

Discretization Error

τ = h2/2 ∥e∥L2[0,T ;L2(Ω)] ∥r∥L2[0,T ;L2(Ω)] J(y, g)

h = 0.2357022 0.4093275092 0.008552165422 0.9411555956

h = 0.1178511 0.1555909764 0.005056762072 0.8225865966

h = 0.0589255 0.0714820269 0.002440981965 0.7424795375

h = 0.0294627 0.0302970740 0.001179518135 0.7066657202

h = 0.01473139 0.0100448501 0.001097951813 0.6883517113

Conv. rate 1.2520017243 0.952697386266 -

variable. The results give a little bit better rate of convergence due to the constructive
way of the state variable. Obviously the error norm L2[0, T ;H1(Ω)] doesn’t give a
rate, since the data y0 ∈ L2(Ω) and the initial discontinuity is disseminated through
characteristics in the whole exact solution.

EXAMPLE 3. To illustrate the potential applicability of higher order time step-
ping schemes, we consider a coarse time-stepping approach based on the k = 1 time
stepping scheme. Here, we return to the example 1, with the known smooth solution
ȳ given by ȳ(t, x1, x2) = exp(aπ2t) sin(π(1 + x1x2)) sin(πx1(x2 − 1)) for k = 1, l = 1.
Note that despite the fact that we have chosen smooth state variable, the presence of
a Robin boundary control limits the regularity at least near by the boundary for the
time derivative of the adjoint and control variables. However overall, we expect that
the parabolic regularity will appear as time progresses. Our best approximation type
estimates for “smooth” state, adjoint and control variables yield a convergence rate
with respect to L2[0, T ;H1(Ω)] norm of order O(τ2 + h), when piecewise linears are
considered for both time and space i.e., k = 1, l = 1. In the following experiments we
present the rate based on a coarse time stepping approach. In particular, for τ = h1/2,
which corresponds to very few time steps compared to the standard approaches, the
Table 4.3, clearly indicates that we still obtain a rate, of almost O(h). Of course, it is
expected that the rate is suboptimal due to the lack of smoothness near the boundary.

Table 4.3
Experiment 3-Rates of convergence for the 2d solution with k = 1, τ = h1/2, regular initial data.

Discretization Error

τ = h1/2 ∥e∥L2[0,T ;H1(Ω)] J(y, g)

h = 0.2357022 0.068070558 0.002676642

h = 0.1178511 0.040332082 0.002579619

h = 0.0589255 0.019010050 0.002468955

h = 0.0294627 0.012117836 0.002384007

h = 0.0147313 0.008222888 0.002322462

h = 0.0073656 0.005980212 0.002276926

Conv. rate 0.762328463 -
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[39] F. Tröltzsch, Optimal control of partial differential equations: Theory, methods and applica-
tions, Graduate Studies in Mathematics, AMS, 112, Providence 2010.
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