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Introductory Note:  
 
This article is directed to those who are interested in the possibilities and 

weaknesses of the efforts for a symbolic-mechanistic reproduction of thinking, 
but it does not require from the reader a deeper occupation with Logic or 
Mathematics.  More specifically, we consider here where we are led by a 
reduction of Arithmetic into a formalism based on Symbolic Logic. In some 
sense, this is a revision of the corresponding chapter (Appendix 4.7) in my book 
THE MECHANISM OF THINKING.: http://www.math.ntua.gr/~jqstel/book1.pdf 

For the understanding of the main text the reader will only need to know 
what are algebraic polynomials. Beyond that only careful reading is needed.  
The text is simplified on purpose by omitting many symbolisms and 
replacement of them by verbal descriptions. However, for the understanding of 
Appendix 2 about the weaknesses of Second Order Logic we need some results 
from Set Theory which are presented in Appendix 1.  

NOTE: Since mathematic notation is not always available we will use here 
where it is necessary appropriate substitutes of these symbols. 

KEYWORDS: Natural Numbers, Models of Natural Numbers, Ambiguousness 
(non-uniqueness) of Natural Numbers, the concept “infinity”, Artificial 
Intelligence, Gӧdel, Skolem, intrinsic, latent, unconventional, non-declarative 
properties of objects and actions.  

 
The non-uniqueness of the concept “infinite” 
 
At first sight, a claim that we don’t actually know what Natural Numbers (in 

short NN) are seems strange, since every child learns to count on his/her fingers 
1, 2, 3, 4, 5, … already from a very early age. However, this indeterminacy 
refers to the formal description of the system of NN and not to their empirical 
perception. I.e., it is a consequence of the possibilities and weaknesses offered 
by a formal logical founding of them in the form of a system based on 
elementary initial principles (axioms).   

The problem lies partially not at the beginning of the sequence of NN but 
at its fictitious “end”, the infinite. As Nietzsche [1] correctly observes, many 
times the fact that we give a specific name to a concept deceives us into 
believing that it describes something uniquely determined. 

Thus, as it will be seen, the concept “infinite” is not uniquely determined1.  

 
1 Already Georg Cantor has shown that there are not denumerable sets, i.e., many kinds of 

infinite (see Appendix 1). However, here we will see an infinite, A, where A+1>A. 
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Surely, if it is indeed hazy and ambiguous we might wish to avoid it by all 
means /totally. However, this is not possible because then not arithmetic 
proposition would hold in general. All mathematical proofs of general properties 
of NN extend necessarily to the infinite. When we say that a relation is valid for 
ALL NN we mean that it is valid for every NN from 1 to the infinite, whatever 
that may be.   

Another side of the impossibility of unique determination of NN by means 
of a formalism is due to the fact that this formalism does NOT preclude the 
parallel existence of sets of magnitudes, which do not belong to the usual 
“chain” of positive integers which is produced by the system of axioms by 
means of the process of succeeding in NN: 1, 2, 3, … 

The first theorems which have upset the hope of unique determination of 
the natural numbers by means of a formalism are theorems of Formal Logic 
due to Leopold Löwenheim (1915) and Thoralf Skolem (from 1920 on). Later, 
in 1931 the much wider known theorems of Kurt Gӧdel have followed. 

However, let us see a very simple example due to Skolem [2] (1929) which 
shows that the formal determination of NN is unattainable. 

 
How we can extend the system of natural numbers  

 
Skolem constructs here a system of some kind of arithmetic magnitudes 

which are different from the natural numbers but fulfill exactly the same axioms 
as they do.  

Axioms are called unproven fundamental assumptions, which determine the 
nature of the magnitudes we study. All other propositions which refer to these 
magnitudes must be logically provable by means of these axioms.  

Skolem has used a variation of the usual axioms of Number Theory, which 
are due to Peano and Dedekind. He considers 1 as the first natural number 
(while others start with 0). Here we simplify them somewhat by omitting their 
formal formulation /expression: 
 (1) The natural numbers are linearly ordered through the relation ‘<’ (the 
distinction of smaller – larger).  
(2) There is a number, 1, who has no previous number.  
(3) For every number x there is a successor of it, Sx (Successor of x), which is 
usually written as x+1 when we define addition.  
(4) There is an operation ‘+’, the addition, which is defined by the recursive 
relation x+Sy=S(x+y), i.e., x+(y+1)=(x+y)+1. 
(5) There is an operation ‘*’, the multiplication, which is determined by the 
recursive relation x*(y+1)=x*y+x. 

(6) Principle of Induction: For formal propositions, Ρ(x), which refer to 
natural numbers x, the following is valid: If Ρ(x) is valid for x = 1 and from its 
validity for x=k it follows that it is also valid for x=Sk=k+1, then the proposition 
is valid for all NN x. 

Fundamental idea of Skolem was to consider sets of functions of NN, i.e., 
functions like x^2 (x square, i.e., x*x) which for every NN x provide us with 
another NN. Such functions fulfill by necessity whatever relations are fulfilled 
by NN, because ultimately the values such functions have are only NN. 
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Thus, he defines the symbol ‘<’ saying that for any functions f(x) and g(x) 
of the natural numbers we will formally write f(x)<g(x) if the value of f(x) is 
smaller than that of g(x) for an infinite set of natural numbers x but not 
necessarily for all of them. 

For instance, we will write, x+100<x^2 because this is true for every NN 
from 11 on.  

Thus we may extend the sequence of NN in the following way: 
1<2<3<…<x<x+1<x+2<…<x+100<…<2x<2x+1<…<x^2<x^2+1<… 
<x^2+x+1<…<x^3< x^3+1<…< 2x^3+3x^2+4x+5<…<x^4< 

x^4+1<… 
Where 1, 2, 3, … are now considered simply as functions with constant 

value.  
The symbolism x^n means x*x*x*…*x with x repeated n times. I.e. x is 

multiplied n-1 times by itself. Thus, x^2=x*x, x^3=x*x*x and so on. 
More descriptively we may write: 
[1]<[2]<[3]<…<[x]<[x+1]<[x+2]<…<[x+100]<…<[2x]<[2x+1]<…< 

[x^2]< [x^2+1]<… <[x^2+x+1]<…<[x^3]< [x^3+1]<…< 
[2x^3+3x^2+4x+5]<…<[x^4]< [x^4+1]<… 
Where we put the functions in brackets in order to declare that they are 
ordered through ‘<’ as entities and not pointwise. Of course, this symbolism is 
interpretative informal, or extra-formal! I.e., it serves only to show the 
structure of the model we have created! The formalism knows nothing about 
this interpretation. 

Obviously, when we compare functions of NN in this way, the symbol “<” 
has a meaning different from the established one. However, this does not 
change anything in the formalism, because the formalism only uses this 
symbol and is not interested in interpreting it! The axioms, which contain this 
symbol are invariably valid also for the new system of magnitudes. 

The above ordered set fulfills all the established axioms for NN but does 
not have the same structure as they (it is not isomorphic), because here there 
are terms like x and 2x, between of which there are infinitely many 
intermediate terms: x+1, x+2, x+3, …, while between two NN there is always 
a finite number of intermediate integers.  The members of this system of 
numerical magnitudes were later called superintegers. 

Based on this interpretation we could say that in this arrangement the 
expressions x, x+1, x+2, … constitute an extension of the set of NN. They are 
distinct from each other, but they are “hyper-finite numbers”, since they lie in 
this arrangement beyond the finite NN. Thus, they are distinvt from eavh 
other static kinds of infinite. Thus, the term “infinite” characterizes different 
kinds of mathematical magnitudes.  

Here we must note that these numbers do not result directly from the 
given axioms, but they are also not opposed to them. Based on the extra-
formalist (beyond formalism) interpretation of this symbolism we can also 
define  the sum and the product of such magnitudes in the following way:  

 
[f(x)]+[g(x)]:=[f(x)+g(x)] ,  [f(x)]*[g(x)]:=[f(x)*g(x)] 
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As said before, the brackets declare that the functions are meant as 
entities, while the operations on the right side are the usual algebraic 
operations.2 

For instance, in this way it will be: [2x]+[x]=[3x] και [x]*[x]=[x*x]=[x^2] 

However, we must note that these rules are our own choices, because 
there is no way to go [2x] steps further than [x] adding each time 1 and 
reach in this way [3x]. This is possible only for the classical NN. For instance, 
in order to add 2 to 3 we write: 

3+2=3+(1+1)=(3+1)+1=4+1=5 
In this way we step two places beyond 3 and reach 5. 
The axiomatic definition of addition presupposes the continuation of the 

sequence of NN by adding each time one unit. However, the new magnitudes 
which we insert in the sequence of NN by re-interpreting the symbol “<” are 
hyper-finite. We cannot reach them by means of successive additions of 1. 
However, they do also not oppose the above axioms.  

We should note that the interpretation which allows us the above extension 
is performed extra-formally! The formalism is a blind mechanism which simply 
follows the rules set by the axioms without interpreting them. I.e., it operates 
like the interior of a vehicle with closed windows; we may know everything 
about what happens in the vehicle but, if we do not look out, we do not know 
where we are and what is outside this vehicle.  

Similarly, the formalism allows us to produce as many formal propositions 
as we like, but it is unable to distinguish from each other the magnitudes it 
uses. Only when we climb to a higher level and consider the objects of the 
formalism as sets we are able to establish, like Skolem did, that there are totally 
different sets which fulfill the same axioms and validate all the propositions 
produced by the formalism.  

It is also obvious that nothing changes even if we add more axioms to the 
original set of axioms (i.e. fundamental assumptions), because the magnitudes 
that have been constructed have only NN as values and will verify any 
proposition which holds for NN. Whatever happens for NN happens also for the 
Ordered set of natural number Polynomials (OP), because ultimately their 
values are only natural numbers. However, it is not certain that all properties 
of Ordered Polynomials are also properties of the natural numbers, because 
Ordered Polynomials have a different structure. As we have seen, there are 
properties of OP which are not shared by NN. 

What is more, Skolem has shown that we can construct much wider sets of 
magnitudes which fulfill the same axioms as the NN. According to a theorem of 
Skolem published in 1935, even a (countably) infinite system of axioms cannot 
define uniquely the natural numbers.  

However, here we must also note a property which distinguishes the 
traditional set of natural numbers from other sets that fulfill Peano’s axioms: 
According to a theorem due to Stanley Tennenbaum (1959) in nonstandard 
models of Arithmetic it is not always possible to compute the sums and products 
of magnitudes belonging to such a  set only by means of the given axioms [3].  

 
2 If we don’t use brackets then the expression f(x)+g(x):=f(x)+g(x) does not clarify how 

these operations are performed. 



Formal Indeterminacy of NN and AI 24/03/2020 10:01 5 
  

Thus, the traditional NN are distinguished as the only set which allows the 
performance of these operations always. In the above definitions of sums and 
products of polynomials the arithmetic operations are performed only on the 
coefficients. We cannot add x to x+1 by going x numbers further, as we do for 
the usual NN. 

The establishment of the formal indeterminacy of natural numbers is a 
problem for many theorists, because it opposes the intention of knowing what 
we are speaking about. Inwardly, we wish to believe that the concepts are 
unique, so that the communication between us is clear. Ultimately, we seek 
something, which we call “absolute truth”. 

In order to ensure uniqueness of the traditional /classical system of Natural 
Numbers some researchers of formal logic were lead to adopting a more 
general than the usual formal logic which is called “Second Order Predicate 
Logic” (SOL). This formalism guarantees indeed the formal uniqueness of the 
set of NN and restores thus the feeling of a safe determination of the meanings 
at least in the field of NN. However, as we shall show in Appendix 2, this is an 
illogical /absurd logic, because it fails to fulfill the basic requirement from any 
logic, the possibility of logical control /checking of the validity of propositions 
subjected to its judgment. 

The proof of such results is, of course, conducted formally and with great 
care. However, here we will adopt a more intuitive and insightful justification 
based on the Theory of Sets. We will, therefore, describe in Appendix 1 some 
elementary results of this theory which refer to infinite sets. Based on these 
results we will then attempt to explain in Appendix 2 why the extension of 
formal logic ends up in an interpretative impasse (why it becomes absurd).   

 
How are these results related to the, so called, Artificial Intelligence? 
 
In spite of objections of important thinkers like Friedrich Nietzsche and 

Ludwig Wittgenstein (in his later period) 3  in many people a view still persists 
that our conceptual system can be fully determined formally and thus become 
understood by a computer. Novels or movies which assume that a man’s 
memory can be digitally stored in a computer’s memory are essentially based 
on this delusion. However, the only way to store and process information in a 
computer is symbolic, i.e. formal. The impression that the concepts are 

 
3 Nietzsche: ‘On Truth and Falsity in their Extra-Moral Sense’, 1873 p.4/9: “What, then, is 

truth? A mobile army of Metaphors, metonyms, and anthropomorphisms—in short, a sum of 
human relations which have been enhanced, transposed, and embellished poetically and 

rhetorically, and which after long use seem firm, canonical, and obligatory to a people: truths 

are illusions about which one has forgotten that this is what they are; Metaphors which are 
worn out and without sensuous power; coins which have lost their pictures and now matter 

only as metal, no longer as coins”. 
Wikipedia: Wittgenstein: In his Philosophical Investigations, published posthumously in 

1953 in two parts, Wittgenstein urges the reader to think of language as a multude of 
language games within which parts of the language develop and operate. He argues that 

philosophical problems are illusions resulting from misguided attempts of the philosophers to 

consider the meaning of concepts independent from the context, the usage and the 
grammar, something which he calls “language going for vacations”.  

.  
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determined by appropriate definitions and thus can be stored formally is, 
obviously, created by the existence of Interpretative and Encyclopedic 
Lexicons. However, the empirical knowledge, which we store in our memory 
is usually unwritten and not verbally translatable, because it is based on direct 
experience. For instance, try to describe all the movements of a bicyclist as 
well as the body’s position by means of which he/she manages to balance 
each time on two wheels. Such a thing is impossible. This is why we learn the 
use of a bicycle by direct experience and not by reading appropriate treatises 
of bicycling. We are also able to recognize faces and other shapes 
automatically, without being able to describe them geometrically. Even more 
elementarily we unconsciously know that a potato or a plate can be used as 
projectiles, while a broken plate can be used in order to cut or scratch. These 
properties are nowhere mentioned in the  definition of the potato and the 
plate. Beyond the lexicographic there is also an associational content of each 
object’s conception. This is related to all possible interactions which an object 
can have with all other objects of our environment and it is learned only 
empirically.  

But let us discuss the range and the possibilities of the formal systems 
which refer to natural numbers (NN), i.e., the non-negative integers. 

The study of these systems has shown that the set of natural numbers 
CAN NOT be formally determined in a unique way unless it is done by means 
of a requirement which is beyond the axiom system: that the operations of 
addition and multiplication are always performable, i.e., that they have a 
definite outcome (Tennenbaum). 

If the computer’s knowledge is restricted to the usual axioms then it does 
not know what magnitudes it handles. The realization that its arithmetic 
operations are always possible does not result from these axioms but from 
the extra-arithmetic study of the structure of the models, the sets of 
magnitudes which satisfy these axioms. This is how Tennenbaum proved his 
theorem. I.e., a computer does not have a deeper understanding of what it 
does, unless it is given by means of programming extra-arithmetic rules for 
evaluating structures. 

Here there may possibly be an objection: The computer produces anyway 
only classical NN! It does not care whatever other number systems are 
formally possible!4 This is true! The interpretation of a formal system is a 
concern of people and not of computers. We are the seekers of sense. 

What properties and what shortcomings does Second Order Arithmetic 
(i.e., the Arithmetic which is based on Second Order Logic) have? 

 
The theorems of Löwenheim - Skolem, and Gödel 
Skolem’s theorems, which we have already mentioned assume that 

Arithmetic is built up by means of the more restricted Predicate Logic of the 

 
4In rder to have a computer that is able to consider the structure of such system, we must equip it with an 

appropriate formal tool for studying properties of the formal system which produces the NN and not only the NN 
themselves. This tool is called Second Order Propositional Logic and it studies properties of properties, i.e. categories 
of properties. This logic should be combined with a system that formalizes the study of algebraic structures so that it 
may reach similar conclusions as those to which we came above. This endeavor would be a formal analogon of what 
we call “Meta-mathematics” or Model Theory and it would be burdened with all shortcomings of a Second Order 
System. 
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First Order. However, as we have already said, Second Order Logic is not always 
accepted as a tool, because it does not have the basic property that we require 
from any Logic: the ability of verifying propositions we subject to its judgment.  

However, there is another theorem of mathematical logic, which upsets our 
feeling that we know what the natural numbers are; Kurt Gӧdel’s 
Incompleteness theorem, which is valid for all kinds of formal logic. 

This theorem says that, no matter how many fundamental assumptions 
(axioms) for natural numbers we make, there are always propositions of 
Arithmetic, which we can neither prove, nor disprove. It even tells us how we 
can construct such formal propositions, which are called “undecidable”. 

Of what kind are these propositions?  
For instance, such an undecidable proposition can be of the form: A certain 

polynomial of many variables p(x,y,z,…) with integer coefficients does not 
vanish for any combination of integer values for x,y,z, …[4]. 

However, this theorem of Gӧdel leaves open the possibility that the natural 
numbers are a unique set even with an infinity of unprovable properties. May 
be, the natural numbers exist somehow in a Platonic world of ideas. 

Thus, we don’t know finally what the natural numbers are or we cannot 
determine it by means of a finite number of fundamental properties (axioms) 
of them.  

 
How does man understand the natural numbers? 
 
You may, of course note: 
Man has is then in the same position as a computer; he does not understand 

what he speaks about.  
This is partially true! For people there are also no logical properties of the 

concepts available, which determine them uniquely.  However, people 
determine concepts not logically, but functionally (based on sensorimotor 
procedures), i.e. by means of the usually imperceptible, unconscious 
associative knowledge of how he can use the various objects. For instance, the 
first ten natural numbers are essentially determined by their correspondence 
with the fingers in our hands. This is how we learn to count and not by 
memorizing certain properties of natural numbers. 

Usually people claim that they understand these concepts by means of a 
strange property of the mind, which they call “intuition”. Thus, even many 
logicians believe that the natural numbers 1, 2, 3, … are “intuitively” determined 
although it has been proved that they cannot be uniquely determined by means 
of formal systems (This seems to have been also what Gӧdel himself believed).  

People do not have better logical definitions of the concepts and particularly 
of the natural numbers, but they memorize and handle, i.e. understand 
concepts empirically as procedures. Very few people know exactly Peano’s 
axioms (stated in 1899). However, this does not hinder us to make any kind of 
calculations using automatically and unconsciously empirical thought schemata 
compatible with those axioms, but also with many other properties of natural 
numbers, which we consider as obvious. 

We do not need the uniqueness of natural numbers in order to prove any 
theorems of Arithmetic. Indeed, all known theorems are valid  also for the new 
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systems of magnitudes which we may invent by adding new axioms to the 
already established. There is no hindrance in the performance of formal proofs.  

However, formal proofs are secondarily important for us. The way in which 
we “discover” new properties of NN before we prove them is not formalistic. It 
is rather “intuitive” (whatever that may be). For instance, there is no formalism 
that inspires us with Goldbach’s conjecture (made in 1742), a seemingly simple 
eventual property of NN which is still unproven after 275 years.  This conjecture 
says that each even number: 2, 4, 6, 8, … is a sum of two prime numbers, i.e. 
of numbers like 1, 3, 5, 7, 11, 13, 17, 19, 23, …, which have no other divisors 
except themselves and 1.  

How do we discover new properties of the natural numbers? 
Very often through the observation of geometric or symbolic-algebraic 

forms. For instance, the observation of triangular arrangements of points has 
shown already to the Pythagoreans that the sum of the arithmetic sequence of 
‘odd integers’ is always a perfect square. Odd integers are called those that are 
not divisible by 2, i.e., have the form 2k+1, where k is a natural number. Thus 
we have:  

1+3=4=2^2, 1+3+5=9=3^2, 1+3+5+7=16=4^2, 
1+3+5+7+9=25=5^2, … 

If we depict in a triangular arrangement rows of equally spaced points 
whose numbers are the successive odd integers we see immediately that we 
can move the right part of this arrangement to complete the left part so that 
we obtain a square arrangement of points. This property can then be strictly 
proved by means of the axiom of induction and the relation:  

k^2+(2k+1)=(k+1)^2 
Even a proof of Pythagoras’s theorem which is supposedly due to him is 

purely imaginal (visual – kinetic). See [5].  
Although the formalism allows us the strict formulation of a proof, it does 

not show us how we can find it. This is something we may achieve primarily 
by exploiting mainly our sense for the symmetry of various algebraic or 
geometric forms /figures and our imaginal and kinetic perception of various 
magnitudes. For instance, in geometric proofs it is almost allways necessary 
to imagine auxiliary straight lines or circles which reveal to us various initially 
hidden properties of the figure we study. 

 
In what way does human thought differ from the processing of symbols 

made by a computer? Why can’t a robot think like a man? 
 
There are indeed impressive achievements of Artificial Intelligence in fully 

controlled environments, i.e. environments built up so that they can me 
described sufficiently well for our needs in a symbolic language used by the 
computer. However, no mathematical technique of processing information will 
ever produce an “intelligent” robot able to realize the intrinsic, but 
imperceptible latent unconventional and unexpected properties which are 
inherent in a not controlled environment and the objects existing in it.  

They are mostly non-declarative. The reason is simple. We do not store in 
our memory concepts and attributes /features of the objects as logical 
properties but as procedures for interacting with the environment. For 
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instance, in lack of a hammer we seek almost instantly and without extensive 
logical analysis a heavy compact object to use instead, e.g. a stone or an ash 
tray and in lack of a sweep, we may use a newspaper or a journal in order to 
remove crumbles from a table top. From what logical definition of a stone or 
a newspaper are such uses implied? A broken plate can be used, as we have 
said, in order to cut or scratch. Is this implied from a logical definition of a 
plate or immediate experience? 

Actually, all objects are mentally stored (not only by logical definitions, but 
also) in terms of hierarchies of procedures for interacting which proceed from 
an associatively not so specialized schema of interaction to more specialized 
ones. However, something which is associatively general, i.e. unspecific,  
unspecialized, is not also by all means logically general. Thus, concepts like 
“nut shell” or “thimble” and “water glass” have partially a common associative 
content although they are logically unrelated. The nut shell as well as the 
water glass are characterized by a sensorimotor (or sensory-motor) procedure 
which recognizes approximately convex (i.e., hollow) objects, objects in which 
we can insert our fingers. The differentiation of these objects happens 
subsequently by additional procedures which distinguish one from the other. 
Thus, a very young child may use in play without much reflection a nut shell 
as a substitute for a water glass.  

In order to perceive things in the way we do we must gradually and for a 
long period of time collect even more specialized experiences of interaction 
with the objects. This is the way in which children learn to handle objects. In 
particular, as Peter Wasson and Phillip Johnson-Laird have experimentally 
established, in order to evaluate a situation we must build up in our mind a 
Mental Model or script /scenario of this situation, and play it out in our mind 
in order to see where it leads to. Thus, the intrinsic, latent properties of all 
objects are stored in our mind associatively.  

 
To what extent can this kind of thinking be reproduced by a computer? 
 
If we naively think that all objects of our environment and all our actions 

correspond to words or verbal descriptions, then for every word we may 
declare as code-number a natural number. Thus, if we teach a computer or 
rather a robot (a machine controlled by a computer) to use grammar and 
syntactic analysis of sentences can we, possibly, teach them also how to 
evaluate situations as we do?  

No! We can teach them how to follow instructions based on an elementary 
image of the environment but we cannot teach them the intrinsic, latent, and 
not immediately perceptible properties of the objects surrounding it. Each 
new and not recognizable object which enters in their perceptual field will 
cause in them confusion. Even a recognition of known objects from a different 
angle of view will be extremely difficult for them. No extent of formal coding 
is able to “grasp” the properties of objects and procedures relative to each 
other, i.e., each object’s properties in relation to all others. 

The inability of simulating human thought by a robot is, thus, not a matter 
of uniqueness or not of the numerical code it uses for the language, but it is 
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due to being unfamiliar with the latent properties of objects especially when 
they interact with each other and with their environment. 

The “intelligent” robots or “thinking robots” will have to learn to handle 
and examine their environment building up appropriate associations and 
storing them in their memory as hierarchies of sensorimotor processes. Later 
on they will have also to be taught names for the sensorimotor schemata they 
have formed, i.e. a language of memorizing scripts and communicating. 

Thus, we will have to educate a robot just like we educate a young child. 
However, here there is a fundamental difficulty. The exploration /examination 
of the environment by people does not happen in a chaotic, anarchic way, but 
it is guided by motives, e.g. the survival instinct. “Thinking” robots must 
therefore acquire motives similar to those of people. An instruction “try 
anything and everything” is not enough, because the experiences being 
collected must be evaluated. Man does not hoard randomly experiences, but 
he evaluates and orders them according to their value for his biological 
survival and the control of the environment they allow him. This is why, like 
all mammals, he has a close relation with his parents by whom he is taught 
how to distinguish the essential from the inessential as well as the language 
which allows his communication with them. First of all, a robot does not have 
motives for the evaluation and hierarchic ordering of experiences.  The 
“thinking robots” must, therefore, be equipped with motives similar to those 
of people. They should even      have a close relationship with some educator 
or trainer.  However, then they will be independent of our wishes and their 
behavior will be just as unpredictable as the behavior, the reactions of our 
fellow men. 5  

  
Appendix 1: What is a non-denumerable set? Are there different 

kinds of infinite? 
 
The revolutionary discovery made by Georg Cantor in 1874 is that there 

are different kinds of infinite. More precisely, he proved in a simple and 
ingenious way that the real numbers of the interval between 0 and 1 are in a 
certain sense more numerous than the natural numbers.  

He achieved this by “reductio ad absurdum”: 
Suppose that to every real number of the interval between 0 and 1, i.e., to 

every decimal number with integer part 0, like 0,3241597683…, corresponds 
a natural number. Then we can write all these real numbers in a table 
according to the order of their correspondence to NN. 

For instance, suppose that the above table has the form  
1<>0,135791113…. 
2<>0,2468101214…. 
3<>0,3282131415…. 
4<>0,43272531415…. 
Here x<>y means correspondence of x to y.  

 
5 The challenge for a learning robot is how to simulate the heuristic methods implicit in 

human understanding. 
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We assumed that all real numbers of the interval between 0 and 1 should 
be contained in this table. However, it is very easy to construct decimal 
numbers that do not belong to the above table. In order to construct such a 
number, say b, we choose as a first digit (after 0) one that differs from the first 
digit of the first decimal number in the table. As a second digit we choose one 
that differs from the second digit of the second decimal number in the table, 
and so on. Generally, we choose as digit for the n-th place (n=1, 2, 3, 4, …) a 
digit that differs from the digit at the n-th place of the n-th decimal number of 
the above table.  

For instance, the number b, could have here the initial digits 0,2546... 
which are different from those that are underlined in the table. The first one 
differs from the first digit of the first real number in the table 0.135…  The 
second one differs from the second digit of the second number 0,246… The 
third digit of b differs from the third digit of the third real number in the table 
and so on. Every such number b cannot belong to the above table, because 
every digit of it will differ from some digit of every decimal number in the 
table. 

Thus, the set of real numbers of the interval between 0 and 1 necessarily 
has a contain much more numbers than the set N of natural numbers.  

Such a set of numbers which cannot be put into correspondence to the 
natural numbers is called uncountable.  

The proof that the set P of subsets of the natural numbers is  uncountable 
is similar.  

Suppose that to every subset of N, like the subset {0, 3, 24, 15, 9, 176, 
283…}, corresponds a natural number. Then we may write all these sets in a 
table according to the order of their correspondence to the natural numbers. 
For instance, let 

1<>{13, 57, 91, 113,….} 
2<>{24, 68, 101, 214….} 
3<>{13, 21, 28, 31, 415,….} 
4<>{27, 43, 253,1415….} 
 
NOT included in this table is every set, s, of the form: {s1, s2, s3, …} where 

the element s1 differs from the first element of the first set in this table, the 
second element s2 differs from the second element of the second set in this 
table and generally, the element sn (with n=1,2,3,4,…) differs from the n-th 
element of the n-th set in this table.    

For instance, such a set may have elements larger by 1 from the 
corresponding element of every set in the table: 

s1=13+1=14, s2=68+1=69, s3=28+1=29, s4=1415+1=1416, …. I.e.,  
s={14, 69, 29, 1416, …}. This set differs from the first set in the table by its 
first element, from the second set by its second element and, generally, from 
the n-th set by its n-th element. Thus, the set P of the subsets of the natural 
numbers, which is called “powerset” of the natural numbers, has by all means 
a greater number of members than the set N of the natural numbers.  
 
Why the set of properties of the Natural Numbers is uncountable. 
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Now we can also see why the set of properties of the natural numbers is 
uncountable: 

From the standpoint of set theory we can see every property of the 
natural numbers as corresponding to the set of natural numbers, which have 
this property. Thus, for instance, the property “square of a natural number” 
corresponds to the set of squares of natural numbers: {1, 4, 9, 16, 25, 36, 
49, 64, ….}. However, the same set corresponds also to the property 
(predicate) “sum of successive odd natural numbers” (see p.8) 6.  

Of course, this means that each subset of natural numbers corresponds at 
least to one of their properties. Thus the set of their properties is at least as 
large as the set P of their subsets, which is uncountable. 
 
OBSERVATION: In spite of the illusion that Skolem’s set of ordered 
polynomials is more numerous than the set of natural numbers, it is a 
countable set. I.e., its elements can be placed into correspondence to the 
natural numbers.  
 
Why Skolem’s Ordered Polynomials are a countable set 

 
Although the set of Skolem’s Ordered Polynomials is not isomorphic to the 

set of NN, it is, nevertheless, countable, because we can write it in the form:  
  1 <   2   < 3   < 4 <… 
<x < x+1<x+2 <… 
<x^2<x^2+1<x^2+2<… 
<x^3<x^3+1<x^3+2<…  
<x^4<x^4+1<x^4+2<… 
Then we can rearrange it in the following ordering: (1),(2, x),(3, x+1, 

x^2),(4, x+2, x^2+1, x^3),… It follows the successive anti-diagonals of the 
above table (the diagonals that go from the top right to the bottom left). In 
this last arrangement we can place the members of this set into correspondence 
to the NN, i.e., we can count them all. 

However, it can be shown that within the frame of the same formalism (i.e., 
of the Arithmetic with First Order Predicate Logic) there are also UNCOUNTABLE 
sets of magnitudes which fulfill the same axioms as well as all extensions of the 
axiom system. 
 
Appendix 2: Second Order Logic and its Shortcomings.  
 

The theorems of Löwenheim, Skolem and Gödel, have troubled /puzzled 
very much those who wish to reduce thinking to some formalism, no matter 

 
6 Another example of how predicates are determined by a set of NN is the following: The 
relation “lengths of the sides of an orthogonal triangle” is satisfied by the set (3,4,5). 

However, (3, 4, 5) are also divisors of 60, or 120, or 180, … They are also successive natural 
numbers. Thus, there are more than one properties or relations, which characterize the same 

set of numbers. On the other hand, the relations of this example are also fulfilled by other 

natural numbers. Thus, there are many correspondences between sets of numerical relations 
and subsets of the natural numbers. 
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whether they are logicians or researchers of Artificial Intelligence. Of course, 
they  understand that the non-uniqueness of the formal axiomatic systems is 
valid for the human as well as for the artificial brain. However, they are not 
concerned about the question if and why the human brain has a more clear 
“intuitive” conception of the natural numbers. They cannot accept the 
existence of meanings which do not accept a full formal description. They 
cannot conceive conceptual systems, which may not be mechanically 
reproducible, perhaps because they are dreaming of a future triumph of the 
mechanical reproduction of thinking, i.e. of the, so called, artificial 
intelligence.  

Thus, many of them were led to the use of a system of formal logic which 
indeed rejects the non-uniqueness of the natural numbers. However, this 
logic, the, so called, Second Order Predicate Logic has many important 
inherent shortcomings, which we will describe subsequently. 

It is an irrational logic! 
So let us consider in short what a formal logic intends and what 

possibilities it offers. Initial goal of formal logic was to relieve our syllogisms 
from the inherent ambivalence of language. The replacement of words by 
symbols would allow the resolution of all disputes as Leibniz hoped in the 17th 
century. The aim of reducing all logic to a formalism was greatly enhanced in 
the 19th century by George Boole and Gotlob Frege. However, the further 
progress of mathematical logic in the 29th century led to a strange situation: 
The formal formulations of logic do not coincide with what we would call 
common logic. What is more, it does not seem that such a system exists. 
More specifically, no variation of the established Predicate Logic has all the 
properties we would wish a safe system of reasoning to have. Thus, we are 
obliged to settle with formal systems which, either lead us to unexpected new 
worlds of objects of thinking (like the so called “Nonstandard Number 
Systems”), or do determine exactly what we mean, but lead us to an world of 
unsafe conclusions and uncertainty about the validity of its propositions.  

In particular, the theorems of Löwenheim and Skolem tell us that, if we 
use the basic complete7 system of logic, the First Order Predicate Logic, then 
we cannot determine precisely what the natural numbers are.  There are 
infinitely many systems of magnitudes which fulfill all the fundamental 
assumptions of Arithmetic (they are different from each other either with 
respect to the number or with respect to the arrangement of their elements). 
What is more, this result is even valid when we add as many as we like new 
axioms to the usual axioms of Arithmetic.  

We can avoid this conclusion only when we use as a fundament a more 
demanding logic, the so called Second Order Logic. However, this logic has 
the unreasonable property that, contrary to the First Order Logic, it does not 
have a method for rejecting false propositions subjected to its judgement. 
Beyond this, it produces formulas with no meaning at all. They are not valid 
for any system of magnitudes, i.e. for no interpretation (called “model”) of 
the formal expressions. We express these shortcomings more disguised and 

 
7 Complete system of axioms is called a system which allows the formal rejection of not 

satisfiable propositions, i.e., the formal proof of their unsatisfiability. 
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more elegantly by saying that “for Second Order Logic the syntactic (= 
formalistic) and semantic truth do not coincide”.  

 
The relation of Second Order Logic to Semantics 
 
In order to conduct formal proofs of numerical propositions it is necessary 

to include to the formal axioms of Arithmetic the axioms of an appropriate 
formal logic, which will allow the production of new propositions “without 
words”, i.e., expressed only by symbols. As we have said, in this way we will 
avoid ambivalent verbal expressions.  

We speak about First Order Arithmetic when we include the usual system 
of axioms of Arithmetic to the set of axioms of First Order Logic, which refers 
to properties (predicates) of mental objects. Then we speak of First Order 
Arithmetic. If we include the axioms of Arithmetic to the (appropriately 
adjusted) system of axioms of Second Order Logic, which refers to properties 
of properties, i.e. sets of properties, then we speak of Second Order 
Arithmetic. 

The seeking of the creation of a formal theory of meaning of the natural 
numbers, which could become part of a more general formal theory of 
meaning, has ended up after investigations which lasted for one century to 
the following impasse: 

The First Order Arithmetic (FOA)  is indeed a system of conducting and 
verifying proofs, but it does not determine uniquely the objects (the 
magnitudes) to which it refers. There are radically different interpretations, 
radically different models, which satisfy this formal system. This is even true 
when we add to the original ones as many fundamental assumptions 
(axioms). 

The Second Order Arithmetic (SOA) avoids this non-uniqueness; it defines 
uniquely (up to isomorphy) the objects to which it refers. However, in SOA no 
effective proof tools are available beyond those of FOA and, in general,  it 
cannot judge the validity of a given supposed proof.  

Ultimate purpose of using SOA was to establish a formal semantics of 
natural numbers, i.e. to define uniquely the objects of arithmetic 
considerations, i.e., at least, of arithmetic thinking. However, this is 
counterbalanced by an inability to verify proofs and by an incompatibility of 
syntactically produced formulas with semantically true propositions, i.e. 
propositions which are verifiable for some kind of arithmetic magnitudes 
(some model of arithmetic).  

Formal semantics is refers here to the existence or absence of a mental 
model which fulfills a formula produced within the formalism.  

 
Why do these happen? 
 
The most basic difference of First Order and Second Order Formal 

Arithmetic, is the form which the, so called, “Axiom of Induction” takes. This 
axiom is the basic instrument for proving a relation for all natural numbers. In 
simple words, it says that if a relation holds for 1 and from its validity for the 
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number k follows its validity also for its successor, k+1, then this relation is 
valid for all natural numbers. 

In First Order Formal Arithmetic the induction axiom is not a single 
formula, but, in reality a formula corresponding to each constructible formal 
expression, φ, i.e., an expression we can construct formally in such way that 
it can be computed for every given natural number. This is why it is called, 
not an axiom, but an “axiom schema”. On the other hand, in Second Order 
Formal Arithmetic it is a single formula which refers to any predicate 
(property of NN), P, no matter whether we can construct it with our 
formalism or not!  

However this has important consequences for the whole system. When we 
try to interpret the Second Order Axiom of Induction, we must indicate to 
what predicates, P, the term “for all P”, which is contained in it, refers (where 
P symbolizes some property of natural numbers). I.e., we must define the 
universe of predicates, P, which refer to natural numbers (NN). If we choose 
this universe to consist of all possible predicates constructible or not (all 
possible relations of NN), then, according to the set theoretic interpretation of 
natural number properties (predicates) as subsets of natural numbers, their 
set is “uncountable”, just as the real numbers between 0 and 1 (see Appendix 
1).  

There is no way to arrange them all in a sequence which can be scanned 
through. But an uncountable set of properties of the NN is extremely 
problematic. There is no systematic way to test if a formula is valid or not, 
because there is no systematic way of running through all the predicates.  

We cannot arrange the set of predicates in a table and run through them 
testing, for instance, whether there is a property (predicate) that fulfills the 
formal expression under consideration or not.  

When a formula says that there exists a predicate of the NN which fulfills a 
certain proposition, we must run through all possible propositions until we 
find one that fulfills the proposition. But there is no way to do so, because 
they are uncountable. When a formula says that a certain proposition is 
fulfilled by all predicates of the NN, we must run through all possible 
propositions verifying this statement. But, again, there is no way to do so, 
because they are uncountable. 

This lies ultimately the fundamental shortcoming of Second Order Logic 
and of the Arithmetic which is based on it. Thus, we have uniqueness of the 
natural Numbers in Second Order Arithmetic, but only with by admitting as a 
counterbalance the acceptance of an unconceivable and not constructible set 
of properties of them. If we restrict again the universe of predicates to a 
countable and constructible set, then we have again nonstandard models.  

 Thus, the second order Arithmetic is necessarily incomplete, not only 
because its formalism is unable to construct appropriate formal proofs, but 
because most of its relations are not constructible. There is no systematically 
(algorithmically) constructible set, which determines them. 

  
The deeper cause of the formal indeterminacy of NN 
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This is the fact that all possible arithmetic predicates (properties) are, 
according to their set theoretic interpretation NOT COUNTABLE. Therefore, 
also all propositions that refer to relations of these predicates are not 
countable. On the contrary, all possible formal expressions with finite length 
which are produced by means of a finite or countably infinite set of symbols  
are ONLY COUNTABLE, because they can be ordered lexicographically8.  

Thus, all elementary expressions which result from a formal proposition in 
combination with the given axioms can be produced systematically one by 
one and we can examine each time if each one is in agreement with the 
proposition or not.   

 
What did Skolem and Gӧdel add to this observation?  
 
Gӧdel says something more specific: That for every finite system of formal 

axioms there are finite formal expressions which can neither be proved nor 
disproved!  

On the other hand, Skolem says something else: That no finite (or 
countably infinite) system of axioms is enough in order to characterize 
uniquely the set of natural numbers. There are always other sets of 
Hyperintegers (countable as well as uncountable) which satisfy these axioms. 
This leaves open the possibility to distinguish such number systems by adding 
axioms which are valid for one, but not for another! 
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of the size of the chain of their indices, where in order to separate the indices we use the 

digit 0, which has been omitted in the unified symbolism. For instance, the symbol chain 
s1s3s15s1s2 will have the composite index 1030150102. Thus, all symbol chains of a certain 
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