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The notions of non-uniform in time robust global asymp-
totic output stability and non-uniform in time input-to-
output stability (10S) are extended to cover a wide class of
control systems with outputs that includes ( finite or infinite-
dimensional) discrete-time and continuous-time control
systems. A small-gain theorem, which makes use of the
notion of non-uniform in time 10S property, is presented.
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1. Introduction

The notion of non-uniform in time robust global
asymptotic output stability (RGAOS) has been proved
to be fruitful for the solution of several problems
in Control Theory concerning finite-dimensional
continuous-time systems (see, e¢.g. [14—17]). In this
paper this notion is generalized in order to be
applicable to a wide class of control systems with
outputs that includes (finite or infinite-dimensional)
discrete-time and continuous-time systems. The class
of systems considered in this paper has the so-called
“boundedness-implies-continuation” (BIC) property,
which roughly speaking, means that

the solution of the system can be continued as
long as it remains bounded.

This property appears in all discrete-time systems
and finite-dimensional continuous-time systems
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described by ordinary differential equations. It also
appears in infinite-dimensional continuous-time sys-
tems described by retarded functional differential
equations with completely continuous dynamics (e.g.
systems that involve delays in their dynamics).
Moreover, since every forward complete system has
the BIC property, it is clear that the class of systems
considered in this paper includes all forward complete
infinite-dimensional continuous-time systems descri-
bed by partial differential equations. The motivation
for the extension of the notion of non-uniform in time
RGAOS to a wide class of control systems that con-
tains all discrete and continuous-time systems with
delays is strong, since such systems are commonly
used to model physical processes (see [2,21]).

A common feature of stability analysis is the
application of small-gain results. Small-gain theorems
for continuous-time finite-dimensional systems
expressed in terms of “nonlinear gain functions” have
a long history (see [6,7,24,25] and the references
therein) that follows the fundamental work of Jiang—
Teel—Praly in [5]. In particular most results make
explicit use of the notion of uniform in time input-
to-state stability (ISS), introduced by Sontag in [19],
or the notion of uniform in time input-to-output
stability (IOS), introduced by Sontag and Wang in
[22,23] and extended in [3]. Recently, a non-uniform
in time small-gain theorem for continuous-time
finite-dimensional systems was presented in [15].
Small-gain theorems, converse Lyapunov theorems
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and the notion of uniform in time ISS for discrete-time
finite-dimensional systems can be found in [8—12].

The present work generalizes the result in [15] to the
wide class of control systems that possess the BIC
property. Moreover, the framework used in this paper
is more flexible compared to that used in [15], in the
sense that the stability analysis of the present work
incorporates outputs as well as “structured uncer-
tainties”. It is expected that the result presented in this
paper will be a useful tool for the stability analysis of
systems in the future.

The contents of this paper are presented as follows.
In Section 2 we provide the notations and definitions
of the notions used and several examples of systems
that have the BIC property. In Section 3 we provide
estimates of the transition maps expressed in norms of
appropriate spaces as well as necessary and sufficient
conditions for non-uniform in time RGAOS. The
reader is introduced to the notion of non-uniform in
time 1OS property and the non-uniform in time small-
gain theorem (Theorem 3.10) is presented. In Section 4
the proof of the non-uniform in time small-gain
theorem is provided and numerical examples demon-
strating the usefulness of the non-uniform in time
small-gain theorem are also presented. Finally,
Section 5 contains the conclusions of the paper. The
proofs of some basic results are given in the appendix.

1.1. Notation

* By || |lx» we denote the norm of the normed linear
space X. By || we denote the euclidean norm of R".

 For definitions of classes K, K.., KL see [18]. K™
denotes the class of positive continuous functions.

e A time set, denoted by 7, is either R* (the set of
non-negative real numbers) or Z " (the set of non-
negative integers). For any pair a,b € 7 with
0<a<bwedefine [a,b] :={t € T: a <t <b}. For
any pair a € 7, b € T U {+oo} with 0<a<b we
define [a,b) :=={t € T: a <t < b}.

e For a given time set 7, by M(7; U) we denote the
set of all locally bounded functions u : 7 — U.

* By C/(4) (C/(4; Q)), where j>0 is a non-negative
integer, we denote the class of functions (taking
values in ) that have continuous derivatives of
order j on A.

2. Control Systems with Outputs and the BIC
Property

In this section, we introduce the reader to the notion of
control systems with outputs used in this paper and the
notion of a robust equilibrium point. Both concepts are
defined in generality and capture the basic continuity

1. Karafyllis

properties needed in order to obtain non-trivial results.
We would like to emphasize that the notion of the
control systems adopted in this paper is similar to the
notions of the topological dynamical systems used in
[13,21], although there are some differences.

Definition 2.1. A control system X :=(7,X,), My,
Mp, ¢, H) with outputs consists of

(i) a time set 7;

(i1) a set U which is a subset of a normed linear space
U with 0 € U and a set My C M(7; U) which is
called the “set of external inputs” and contains at
least the identity zero input wuy€ My, which
satisfies up(r)=0€ U for all t € T,

(iii) a set Mp C M(7T; D) which is called the “set of
structured uncertainties”;

(iv) a pair of normed linear spaces X,) called the
“state space” and the “output space”, respectively;

(v) acontinuous map H: 7 x X x U — ) that maps
bounded sets of 7 x X’ x U into bounded sets of
Y, called the “output map”;

(vi) and the map ¢: A3 — X where A5, C 7 x 7T x
X X My x Mp, called the “transition map”,
which has the following properties:

(1) Existence: For each (¢, xo, u,d) € x T x X x
My x Mp, there exists t € 7, t > t, such that
[lo, l‘] X (Zg, X0, U, d) - A@‘

(2) Identity property: For each (ty, xo,u,d) € T x
X x My x Mp, it holds that ¢(l0, to, Xo,
u, d) = Xp.

(3) Causality: For each (¢, ty, xo, u,d) € A, with
t>ty and for each (u,d) € My x Mp with
(u(7), d(1)) = (u(1),d(t)) for all 7€ [t,1),
it holds that (z, t, xo, u,d) € A, with ¢(t, to,
Xo, U, d) = ¢(l, to, X0, U, d)

(4) Semigroup property: For each (1,1, xo,
u,d)ye A, with t>1, and for all 7€[t,1],
it holds that (7, t, xo,u,d) € A, with ¢(¢, 7,
(T, to, xo, u, d), u, d) = (t, to, xo, u, d).

A control system X := (7,X, Y, My, Mp, ¢, H) with
outputs is called a discrete-time system if 7 = Z* and
is called a continuous-time system if 7 = R,

Among the control systems with outputs there is a
class of control systems, which has a special property
concerning the behavior of the transition map. This
property is termed as the BIC property and is descri-
bed below. There are many control systems that pos-
sess this property, as it will be shown by the examples
in this section. The reader is also introduced to an
important class of control systems with outputs that
possess the BIC property — the class of forward
complete control systems with outputs.
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Definition 2.2. Consider a control system X := (7, X,
Y, My, Mp, ¢, H) with outputs. Let U C U; x U,,
where U,,U, is a pair of normed linear spaces. Let u
denote the identity zero input, that is, ug(f) =0 € U for
all t € 7 and let u, o denote the identity zero input of
the space U,, that is, u, o(f)=0€ U, for all t € 7. Let
also B, := {u; € Up;|lu]|y, <r} denote the closed
sphere in U; with radius r > 0. We say that

(i) The system Y has the BIC property if for each
(tg, xp,u,d) € T x X x My x Mp, there exists a
maximal existence time, that is, there exists #,.x €
T U {+o0}, such that [1, tmax) X (t0, X0, u,d) C Ay
and for all 7>t,.x it holds that (¢, ¢, xo,
u,d)¢ Ay In addition, if #,,x < +oo then for
every M >0 there exists € [fo,lmax) With
||(Z5(l, 1o, Xo, U, d)”)( > M.

(i1) The system X is forward complete if for every
(to,x0,u,d) €T X XX My x Mp, (t,t9,X0,u,d)E A@‘
for all t>1,. Clearly, every forward complete
control system has the BIC property.

(ii1) The system X is simply robustly forward complete
(RFC) if it has the BIC property and for every
r>0, T>0, it holds that

sup{ [|(to + 5, to, X0, uo, d)|| 3 s € [0, 7], [| o <7,
1o €[0,7T),de Mp} < +oc.

(iv) The system X is RFC from the input
uy € M(7T; Uy) if it has the BIC property and for
every r >0, T>0, it holds that

sup{||o(to + 5. t0. X0, (U1, 12,0), )| 13
U] 6 M(TaBr)a (ulzuz,o) 6 MU)

s€[0, 1], ||xolly <120 €[0,T],d € Mp} < 0.

In order to develop results concerning the stability
of control systems we first need to define the notion of
a robust equilibrium point.

Definition 2.3. Consider a control system > := (7, X,
YV, My, Mp, ¢, H) with 0 € U and uy € M, where u is
the identity zero input, i.e., uy(t)=0 for all 1 € 7.
Suppose that H(z,0,0)=0 for all z € 7. We say that
0 € X is a robust equilibrium point for ¥ if

(1) for every (t,t0,d) € T xT x Mp with t>1t, it
holds that ¢(z, ¢, 0, ug, d) = 0;

(ii) for every >0, T,he€ T there exists 0:=
8(e, T,h) >0 such that if ||x||, <6, 7 €[0,7T],
T € [to,to + h] then (7,1, x,up,d) € A, for all
de Mp and

sup{||¢(, to, x, ug, d)|| ;d € Mp,
T € [to,to + ), 1o € [0, T} < e.
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The reader should not be surprised by the previous
definition of a robust equilibrium point. The usual
definition of equilibrium point does not require
property (ii) of Definition 2.3 to hold. However, in
most cases the control systems satisfy the property of
continuous dependence on the initial conditions of the
transition map, that is,

for each (¢, T,xp,u) €T xT x X x My with
t> T and for every ¢ > 0, there exists 6 > 0, such
that if [|x — x¢||, < 6 then for every (f,d) €
[0, 7] x Mp with (¢, 19, x0,u,d) € A it follows
that (7, to, x, u, d) € A, and sup{||¢(r, 1o, X, u, d)—
(T, t0, X0, u, d)|| v5 (t0,d) € [0, T| x Mp, T € [ty,1]
with (¢, t9, x0,u,d) € Aq‘y} <e.

It can be immediately verified that if the transition
map depends continuously on the initial conditions
then the usual definition of an equilibrium point is
equivalent to Definition 2.3 (since property (ii) of
Definition 2.3 is automatically satisfied). Since, our
effort is to provide results for systems that do not
necessarily satisfy the property of continuous depen-
dence on the initial conditions (e.g. discrete-time sys-
tems with discontinuous dynamics), we do not assume
this property.

Definition 2.3 clarifies the main reason for
which there is a distinction of the inputs acting on
the system in Definition 2.1 of control systems
(“external inputs” and “structured uncertainties”).
The inputs that belong to the “set of structured
uncertainties” (Mp C M(7;D)) do not alter the
position of equilibrium points. On the other hand,
inputs that belong to the “set of external inputs”
(My € M(T; U)) are allowed to alter the position of
equilibrium points. This reminds the difference
between “additive” and “multiplicative” uncertainties
in linear system theory.

The following examples show that the class of
control systems with outputs and the BIC property is
a wide class that contains all discrete-time systems,
finite-dimensional systems described by ordinary dif-
ferential equations, and infinite-dimensional systems
described by retarded functional differential equations
with completely continuous dynamics.

Example 2.4. Consider a discrete-time control
system with outputs X := (Z", X, Y, My, Mp, ¢, H),
with My = M(ZT;U) and Mp = M(Z";D), that
is, the sets of all sequences with values in U
and D, respectively. We notice that by virtue of
the causality and existence properties the map

ft,x,u,d) = ¢(t+ 1,t,x,u,d) is actually defined on

Zt x X x Ux D. We notice that the semigroup and
the causality properties of the transition map imply
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that for every (¢, ty, xg, u, d) € My x Mp, with t >ty it
holds that:

x(t+ 1) = ot + 1, tg, X0, {u(7): 7 € [t0, 1]},

{d(r); 7 € [t0,1]})

= ft, ¢(1, to, xo, {u(7); T € [to, t — 1]},
{d(r); 7 € [to, 1 — 1]}), u(t), d(1))

= flt, x(1), u(1), d(1)),

Y(1) = H(t, ¢(t, to, xo, {u(7); T € [t0, 1 — 1]},

{d(r); 7 € [to, t — 1]}), u(2))

= H(t, x(1), u(1)).

This is the so-called evolution equation of the control
system. Clearly, every discrete-time control system
is forward complete. Moreover, if there exist
funcions a € K, B€ K" such that ||f(z,x,0,d)|, <
a(B(0)||x|| ) for all (t,x,d) € Z" x X x D then 0 € X
is a robust equilibrium point for 3.

Example 2.5. Every pair of continuous mappings
FREXRXxUXxD— R, H:R" xR x U— R~
where 0 UCR”, DCR, with H(:0,0)=0,
f(2,0,0,d) = 0 forall (1,d) € Rt x D and such that the
vector field /Rt x " x U x D — R", satisfies the
following Lipschitz condition:

The function f{(z,x,u,d) is locally Lipschitz with
respect to (x,u), uniformly in d € D, in the sense that
for every bounded interval 7 C " and for every
compact subset S of 1" x U, there exists a constant
L >0 such that:

|f(t’x3”:d)—f(tsy, V,d)| S L|(x—y,u— V)|
Viel Y(x,u;y,v) € Sx S, Vde D

defines a continuous-time control system X :=
(R, R", RE, My, Mp, ¢, H) with outputs and the BIC
property, by the evolution equation:

x(1) = f{t, x(1), u(1), d(1)),
Y(t) = H(t, x(1), u(1)).

This fact is also an immediate consequence of
Proposition 3.7.2 in [21]. In this case My and M)
are the sets of all measurable and locally bounded
functions with values in U and D, respectively. Notice
that 0 € R" is a robust equilibrium point for >.

The following example is an immediate consequence
of Theorems 2.2 and 3.2 in [2], concerning continuous
dependence on initial conditions and continuation of
solutions of retarded functional differential equations,
respectively.

Example 2.6. Every pair of completely continuous
mappings [ RT x CO([~r,0;; R") x U x D — R,
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H:Rx CO([—r,0;R") x U — C°([~r,0]; RF), where
r>0isaconstant,0 € UC R”, D C R with H(z,0,0) =
0, f(¢,0,0,d) =0 for all (¢,d) € R" x D and such that
the vector field f: Rt x CO([—r,0;R") x Ux D — R",
satisfies the following Lipschitz condition:

The function f(¢,x,u,d) is locally Lipschitz with
respect to (x, u), uniformly in d € D, in the sense that
for every bounded interval I C R" and for every
closed and bounded subset S of C°([—r,0]; R") x U,
there exists a constant L > 0 such that:

|t x,u,d) — fit,y, v, d)| < Lju—v|
+ L max |x(1) — y(7)|,
T€[-r,0]

viel, Y(x,y;y,v)eSx S, Yde D

defines a continuous-time control system ¥ := (R*,
CO=r iR, C°((—r0:RY), My, Mp.g,H) with
outputs and the BIC property, by the evolution
equation:

x(t) = fit, {x(t + 7); 7 € [-1, 0]}, u(®), d(1)),
Y(r) = H(t,{x(t + 7); 7 € [—r, 0]}, u(?)).

In this case M and Mp are the sets of measurable
and locally bounded functions with values in U and
D, respectively. Notice that 0 € CO([—r,0; R") is a
robust equilibrium point for 3.

3. Definitions of Stability Notions and
Main Results

In this section we introduce the reader to the notion of a
non-uniformly in time RGAOS system with outputs
and the BIC property and we provide estimates for the
transition maps of such systems. Notice that the defi-
nition of this property requires the external inputs
acting on the control system to be identically equal to
zero, that is, RGAOS is an “internal stability” property.

Definition 3.1. Consider a control system
:=(1T,X,Y, My, Mp, ¢, H)with outputs that has the
BIC property and for which 0 € X is a robust equili-
brium point. Let ) € My be the identity zero input,
that is, up(z) =0 for all 1€ 7. We say that X is
non-uniformly in time RGAOS if ¥ is RFC and the
following properties hold:

Pl X is Robustly Lagrange output stable, that is, for
every ¢ > 0,7 € 7, it holds that

sup{ || H(z, ¢(t, to, X0, tg, d), 0)[|5); t € [to, +00),
[xo0lly < et0 €[0,7],d € Mp} < +oc.

(Robust Lagrange output stability)
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P2 ¥ is Robustly Lyapunov output stable, that is, for
every € > 0,7 € 7T there exists a 6 := (g, T) >0
such that:

[Xollx < 6,2 €[0,7T] =
| H(2, ¢(1, to, X0, uo, ), 0)||y, < €,

Vi € [tg, +00), Vd € Mp.
(Robust Lyapunov output stability)

P3 X satisfies the robust output attractivity property,
that is, for every ¢ > 0,7 €7 and R > 0, there
exists a 7 := 7(¢, T, R) € T, such that:

[Ixo0]ly < R, 29 € [0, 7] =
[ H(z, (1, to, x0, ug, ), 0)|y < e,
Vi € [ty + T, +00), Vd € Mp.

Moreover, if there exists a € K, such that a(||x||y) <
| H(z, x,0)]|y forall (#,x) € T x X, then we say that 3
is non-uniformly in time robustly globally asympto-
tically stable (RGAS).

The following four technical lemmas are proved in
the appendix and are essential for the establishment of
characterizations of RGAOS. Particularly, the fol-
lowing lemma is fundamental for the derivation of the
basic estimates of the solutions of RGAOS control
systems. Its proof is given in the appendix.

Lemma 3.2. Let X, ) a pair of normed linear spaces
and 7 a time set and let H:7 x X' x D — ) a map
that satisfies:

(i) for every bounded set SC7 x X the set
H(S x D) is bounded

(ii) H(1,0,d)y=0for all (1,d) € T x D

(iii) for every € > 0,1 € 7 there exists 6 := d(e, 1) > 0

such that

sup{||H(7,x,d)|y;7 € T,
de D,|t—1t+ x|y < 6} <e.

Then there exists a pair of functions ¢ € K, and
B € K* such that:

[ H(z, x, d)||y, < CBOx] ),

Y(t,x,d) € T x X x D. 3.1

The next lemma shows an essential property of
robust equilibrium points of control systems with
outputs and the BIC property. Robust forward com-
pleteness and robust output attractivity guarantee
robust Lyapunov and Lagrange output stability.

Lemma 3.3. Consider the control system X =
(T,X,Y, My, Mp,p, H) with outputs and the BIC
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property and for which 0 € X is a robust equilibrium
point. Suppose that 3 is RFC and satisfies the robust
output attractivity property (property P3 of Definition
3.1). Then ¥ is non-uniformly in time RGAOS.

The next lemma provides an estimate of the output
behavior for non-uniformly in time RGAOS systems.

Lemma 3.4. Suppose that the control system
=T, X,Y,My,Mp,p, H) with outputs is non-
uniformly in time RGAOS. Then there exist functions
o € KL, 3 € K™ such that the following estimate holds
for all (79, x0,d) € T X X x Mp and ¢ € [t, +00):

[[H(t, (1, 10, x0, 0,d), 0) ||y, < o(B(10) | 0| ., = t0)-
3.2)

Finally, the following lemma provides an estimate
for the transition map, which turns out to be a neces-
sary and sufficient condition for robust forward
completeness. It should be emphasized that the notion
of robust forward completeness and its character-
ization provided by the following lemma apply also
to control systems for which 0 € X" is not necessarily
an equilibrium point. Notice that similar character-
izations are given in [1,17] for the case of finite-
dimensional continuous-time systems with locally
Lipschitz dynamics.

Lemma 3.5. Consider a control system
>:=(T,X,Y,My, Mp,p, H) with outputs and the
BIC property. Let U C U, x U,, where Uy, U, is a pair
of normed linear spaces. Let u, denote the identity
zero input of the space U,, that is, uy () = 0 € U, for
allt € 7.

(i) ¥ is RFC from the input u; € M(7; U;) if and
only if there exist functions € K*,a € K., and a
constant R > 0 such that the following estimate
holds for all u; € M(7T; U;) with (u1,uz2.0) € My
and (ZQ,XO,d) €T x X x Mp:

llp(2, to, xo, (1, 12,0), )| »
< u0a(Ro+ Il -+ sup ()
TE|l,

V1 € [ty, +00). (3.3)

(i) X is RFC, if and only if, there exist functions
e K", ae K, and a constant R > 0, such that
for every d € Mp,(ty, x9) € T x X, we have:

(1, 10, X0, o, d)|| v < p()a(||xo] » + R),

Vit € [t, +00). (3.4)

Moreover, if 0 € X is a robust equilibrium point for ¥
then inequality (3.4) holds with R = 0.
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The following theorem combines the estimates
provided by Lemmas 3.2—-3.5 in order to obtain less
conservative estimates for the transition map and the
output and provide alternative characterizations of
RGAOS.

Theorem 3.6. Consider a control system X := (7, X, ),
My, Mp, ¢, H) with outputs and the BIC property and
for which 0 € X' is a robust equilibrium point. Let
uy € M be the identity zero input, that is, uy(z) =0 for
all 1 € T. Then the following statements are equivalent:

(1) ¥ is RGAOS.

(ii) There exist functions u, 3€ K", 0 € KL, such
that for every (f9,x9,d) €T x X x Mp, we
have:

HH(Z: ¢(Za 1o, X0, Uo, d)v O)Hy
+ (|| p(2, 10, x0, uo, d) |

< a(B(to)||xol x» t — t0), V1t € [tg,+00). (3.5)

(iii) There exist functions p, 3 € K*, ¢ € KL,
a € K, and a constant r > 0 such that for every
(tg, x0,d) € T x X x Mp, we have:

HH(I’ ¢(t’ t()»an up, d)a O)Hy

< a(B(to)(|[xolx + 1)t — 10), V1 € [t, +00),
(3.6a)

H(b(ta ZO,XO,MO, d)ao)”/\f
< u(a(||xolly +r), Vi€ [tg,+0). (3.6b)

Proof. The implication (i) = (iii) is obvious. The
implication (iii) = (i) follows immediately by applying
the results of Lemmas 3.3 and 3.5. To be more precise,
notice that (by virtue of Lemma 3.5) estimate (3.6b)
implies that 3 is RFC and (by virtue of the properties
of the KL functions) estimate (3.6a) implies that 3
satisfies the robust output attractivity property. Con-
sequently, since 0 € A" is a robust equilibrium point,
it follows by virtue of Lemma 3.3 that ¥ is RGAOS.

Next we prove implication (i) = (ii). Suppose that
¥ is RGAOS. Then Lemmas 3.4 and 3.5 guarantee
that there exist functions o € KL, 8,1 € Kt,a € K.,
such that the following estimates hold for all
(tg, x0,d) € T x X x Mp and t € [tg, +0):

HH(Za (b(ls ty, Xo, Up, d)s O)Hy

< 5 (B(to)l|xolx- 1 = 1),

H(b(la to, Xo, Uo, d)HX S ﬁ(t)a(HxOHX)

(3.7a)
(3.7b)

Estimates (3.7a) and (3.7b) imply (3.5) for

o(s, 1) := o(s, 1)+ exp (= D)als), p(1) := (exp(—1)/ (1)) €
K" and (1) := (1) + 1. The proof is complete. O
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Next the reader is introduced to the notion of non-
uniform in time IOS property for a control system
with outputs and the BIC property. This notion is
concerned with the qualitative behavior of a control
system subject to the presence of external inputs
acting on the control system (i.e. IOS is an “external
stability” property).

Definition 3.7. Consider a control system X :=
(T,X, Y, My, Mp, ¢, H) with outputs and the BIC
property and for which 0 € X is a robust equilibrium
point. Let UC U, x U,, where U;, U, is a pair of
normed linear spaces. Let u, o denote the identity zero
input of the space U,, that is, u, (1) =0¢€ U, for all
t € T. We say that X satisfies the non-uniform in time
10S property from the input u; € M(7;U)) if X is
RFC from the input u; € M(7; U;) and there exist
functions o€ KL, (3, yeK", peK, such that
the following estimate holds for all u; € M(T; Uy)
with (ul,ug’()) e My, (ty,xo,d) € T x X x Mp and
1 € [to, +00):

([ H(2, $(1, t0, X0, (1, u2,0), d), (u1(2), 0))][,

< max {o(B(t0) %o .t = 1),

sup U(ﬂ(T)p('y(T)Hul(7')||U1), t— 7') }

TEto, 1]

(3.8)

Moreover, if there exists @ € K, such that a(||x||,) <
| H(2,x, (u1,0))]|y for all (,x,u1)€T x X x U; with
(u;,0)eU, then we say that X satisfies the
non-uniform in time ISS property from the input
up € M(T, U]).

It is clear by if X satisfies the non-uniform in
time IOS property from the input u; € M(7; Uy)
then ¥ is RGAOS and ¥ is RFC from the input
uy € M(7;U,). The converse statement holds for
autonomous finite-dimensional systems described by
ordinary differential equations (see [15]) when the
output is considered to be the whole state vector.

Usually the functions o € KL, 3,v€ K and p€ K,
which are involved in (3.8) are determined by using a
Lyapunov functional for the system X (see [15] as well
as the numerical examples of the following section of
the present paper). However, this important issue will
not be addressed directly in this paper. In the present
paper the emphasis is placed on the existence of such
functions.

The IOS property plays a fundamental role in the
stability analysis of interconnected systems. We next
give the notion of the interconnection or feedback
connection of control systems.
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Definition 3.8. Consider a pair of control systems
1 =(T,X, Y1, Ms,xv, Mp, 1, H1), % = (T, X2, ),

Ms, xu, Mp, ¢>, Hy) with outputs Hy : 7 x Xy x U —
Slgyl,HleXX2xy1XU—>S2gy2 and the
BIC property and for which 0 € X; i=1,2 are robust
equilibrium points. Suppose that there exists a unique
map ¢ =(¢1,¢2): Ay — X where 4, C7T xT x Xx
Myx Mp and X =X x X>, such that for every
(,t9,x0,u,d) € Ag with 7> 19, x9 = (x1,x2) € X1 X X
it holds that:

“there exists a pair of external inputs v; C
M(T;S;)i=1,2 with vi(r)=H(7,¢1(7,ty,X0,
u,d),u(1)), 1va2(1)=Ha(T,92(7, 10, X0,u,d), 11(T),
u(t)) for all 7€ (1, 1], (vi,u)e M,y i=1,2 and
&1(7,10,X0,u,d) = P1(7, 10, X1, (v2,u), d), p2(T, 1o, X0,
H,d):¢2(T,ZO,X2,(V1,U),d) for all TE [t()s t]'”

Moreover, suppose that > := (7, X, ), My, Mp, ¢, H)
is a control system with outputs and the BIC property,
where Y =Y, x V), H(t, x1,x2,u) = (H(t,x1,u),
Hy(t, x5, Hi(t,x1,u),u)) for all (¢, x, xo,u) € T x Xy X
X, x U, for which 0 € X is a robust equilibrium point
and that there exists a constant K > 0 such that

K([ Yy, +1¥2lly,) = [l

> max{ [y, V1l ).

forall Y= (Y, Y2) €V XV, (3.92)
K(llxillx, + lx2lle,) = [l 2

> max{||xi] y,. [|x2] x, }-

for all x = (x1,x2) € X} x X». (3.9b)

Then system X is said to be the feedback connection or
the interconnection of systems ¥; and X,.

Remark 3.9. Notice that there is a difference between
Definition 3.8 and 7.2.3 in [21]: we do not exclude
interconnections of control systems that may have
finite escape time. Moreover, notice that we can allow
subsystem X, = (7, X2, Vo, My, v, Mp, ¢2, H>) to be
just a continuous map from 7 x ) into ), (this is
allowed as well by Definition 7.2.3 in [21]). Of course,
usually continuity of this map is not enough to guar-
antee that there is an interconnection of two sub-
systems. More specifically, in order to guarantee the
uniqueness of the map ¢ = (¢1,¢2): Ay — X1 x X
other regularity properties must be satisfied as well
depending on the nature of the overall system (e.g. for
systems described by ordinary differential equations
this map must be locally Lipschitz).

The following theorem generalizes the non-uniform
in time small-gain theorem in [15], since it considers
interconnections of the wide class of control systems
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that satisfy the BIC property and allows greater
flexibility since the outputs of each subsystem are
not required to be identically the state of each
subsystem.

Theorem 3.10. Let u, denote the identity zero input,
ie., u(t)y=0€ U for all r€7. Suppose that
¥ :=(7T,X,)Y,My, Mp, ¢, H) is the feedback connec-
tion of systems X = (7, X1, V1, Ms,xv, Mp, ¢1, H1)
and X = (7, X5, Vs, MS] <U> Mp, ¢, H>) with outputs
H1:T><Xl X U—)Sl gy],HQ:TXXz Xyl xU —
S> C V,. We assume that:

H1 Subsystem X, satisfies the non-uniform in time
10S property from the input v, € M(7;S5).
Particularly, assume that there exist functions o €
KL, B31,71€K", p1 € Ky such that the following
estimate holds for all  (z9, x1, (v2, up),d) €
T X Xy X Mg,xy X Mp and t € [tg, +00):

[ H (1, $1(1, 10, X1, (v2, u0), ), 0)|
< max {01(51(10)HX1 2,5 — 10),

sup o1 (AP (D ly). = 1.

relto, 1)

(3.10)

H2 Subsystem 3, satisfies the non-uniform in time
10S property from the input vy € M(7;.S)).
Particularly, assume that there exist functions o, €
KL, 3,7, € K', p; € K, such that the following
estimate holds for all (¢, x2, (vi,up),d) € T X
X2 X Mg,y x Mp and 1 € [y, +00):

[ Ha(t, a1 to, X2, (v1. ug). ), v1(2), 0)]| 5,

< max {2 (B ()| s~ 10),

sup a2(B (M) (D))t = 1.

relto, 1]

(3.11)

H3 In addition we assume that the following proper-
ties hold for all 7y, s > 0:

Jim Gi(0p1(n(Doals, 1 = 10)) = 0, (3.12a)
Jim Ga(Dp2(n2(t)oi(s, t = 10)) = 0. (3.12b)

H4 Moreover, there exists a function a of class K,
with
Vs > 0.

a(s) < s, (3.13)
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such that the following inequalities are satisfied for
all o Z 0:

sup a1 (Bi(Dp1(11(H)o2(Ba(10)

1€y, +00)

X pa(12(10)s), 1 — 1)), 0) < afs), Vs 20 (3.14a)
[sup )az(ﬁz(f)pz(w(l)al(ﬁl(lo)

te|ty, +00
X pr(1(10)s), 1 — 1)), 0) < a(s), Vs >0  (3.14b)

Then system X is non-uniformly in time RGAOS.

Remark 3.11

(i) Obviously, when 3; v; (i=1,2) bounded over R™"
(case of uniform in time ISS property), then
Hypothesis H3 is automatically satisfied. Fur-
thermore, if we define i=1,2 r;:= sup,( Bi(1),
i i= SuP YD), Ci(s):=0i(ripi(puis), 0),  then it
can be easily established that Hypothesis H4 is
satisfied as well, provided that

G(GE) <s, V¥s>0

(3.15)
which is exactly the same condition imposed in [5]
for the Small-Gain Theorem in the uniform in
time case. Indeed, if (3.15) holds, then by virtue of
definitions of r;, u; and (; above, inequalities
(3.14a.b) are satisfied with

a(s): = max{Gi(¢(5)). G(G1(9)), s}

(i) Hypothesis H3 is needed because the non-
uniform in time IOS property does not guarantee
the converging input converging output (CICO)
property. Notice that this is an essential differ-
ence between the non-uniform in time and the
uniform in time IOS properties.

4. Proof of the Non-Uniform in Time
Small-Gain Theorem and Numerical
Examples

First, the proof of the non-uniform in time small-
gain theorem (Theorem 3.10) is provided. Let us
denote by Y (1) := H (¢, ¢1(t, ty, x0, o, d),0), Y(t) :=
H(t, §a(1, 19, X0, 19, d), Y1(1),0) and Y(1) = Y1(1), Y2(1))
the outputs of system X for some xo=(x,x])€
X1 X Xa,(t, 19, x0,d) € Ay With ¢ € [ty,+00). The fol-
lowing claim is proved in the appendix and provides
essential estimates for the trajectories of system X.
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Claim. Under hypotheses H1-H4, ¥ is RFC and there
exist functions B; € KL,(3; € K"(i =1,2) such that
the following estimates hold for all) ¢ € [z, +00):

1710y, < max { BB (1) [x0ll - = 10)

a( sup [Vi@lly, )} @1a)

relto, 1]

120, < max { BBoteo)l| ol -t — 10)

a( sup, I Yz(l)Hyz) } (4.1b)

r€lto, t
1Y1(0)]ly < Bi(Bi(10)]x0] 1- 0), (4.2a)
1Y2(0)]5 < Ba(Bo1t0)|x0]] 1+ 0), (4.2b)

where a is the function involved in (3.13) and (3.14a,b).

Next we prove that under hypotheses H1-H4,
system 3 is non-uniformly in time RGAOS. Without
loss of generality we may assume that the functions
Bii=1,2 (involved in (4.1a,b) and (4.2a,b)) are
both non-decreasing. Let K>0 be the constant
that satisfies K(||Y1lly, + | Y2lly,) > ||Y]]y for all ¥ =
(Y1, Y2) € Y1 x YV, Using the estimates (4.2a,b) we get:

1 Y1)y < KB1(B1(t0)||x0]| > 0)

+ KBa(Ba(to) | xo]| - 0),
Yt € [ty, +00)

X0

4.3)

Inequality (4.3) shows that ¥ is Robustly Lagrange
and Lyapunov Output Stable. Next we establish that
3} satisfies the Robust Output Attractivity property.
Consider the following functions defined for all
TeT, TeT and s>0:

xi(r Tos) i=sup { [ V110 + ) d € M),
X0l < 5,10 € [0, T]},
X7, Tos) i= sup { || Yatto + 7);d € Mp,

xol| ¢ < 5. 70 € [0, T]}. (4.4)

In order to establish the robust output attractivity pro-
perty, it suffices to show that lim,_ . xi(7, T,s) =0
for i=1,2. Clearly, by virtue of (4.2a,b), both
xi(7, T,s) are bounded, thus lim,_ . xi(7,T,s)=
l; < 400 for i=1,2. It turns out that for every ¢ > 0
there exists & := &(e, T,5) € T such that for i=1,2 it
holds:

< sup xi7,T,s) <l +e.
TE[E, +00)

(4.5)
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Exploiting (4.1a,b), we get:
[ Y1(Dlly,
<max{ B (Bi(t+E) |6t to.x0.100-) | .1~ 10 =),
a sup Yl([0+T)|
<re[£z to) H |y )}
Y201l
Smax{Bz(gz(loJrﬁ)||¢(10+€,10,X0,u0,d)||Xal*l0*§),
a( sup || Y2(10+T)||ya) }

Te[&t—10]

Vi€ [to+E,+00).

(4.62)

(4.6b)

By (4.4), (4.5), (4.6a,b) and the fact that ¥ is RFC,
it then follows:

L<a(li+¢), i=12. 4.7)

But we have assumed in (3.13) that a(s) < s forall s >0
and since ¢ >0 is arbitrary, we conclude from (4.7)
that /; = lim,_ o xi(7, T, s) = 0, for i=1,2, thus sys-
tem X satisfies the robust output attractivity property.
The non-uniform in time Small-Gain Theorem 3.10
is an important tool for analyzing the stability
properties of control systems that possess the BIC
property and particularly control systems that involve
delays. In Example 2.6, we showed that if the dynamics
of such systems are locally Lipschitz and completely
continuous then they satisfy the BIC property.

Example 4.1. Consider the nonlinear planar system

X(t) = =X (1) + bi(O)x()¥(t — 1 (1)),
Y(1) = ba(t)x*(t — (1)) — ¥(1) + (),

where 7, € CO(R";[0,¢]) i=1,2 for some ¢ >0. For
the case 7(0)=0 i=1,2, bi(t)=1 and by(t)=b,
(constant), the stability behavior of (4.8) is studied in
[4] by applying the small-gain theorem of Jiang—Teel—
Praly. It is proved that, if |b| <1, then system (4.8)
satisfies the uniform in time ISS property from the
input v. This system is also studied in [15], by applying
the non-uniform in time small-gain theorem in [15]
for the case (1) =0 i=1, 2, under the following more
general hypothesis:

Al by and by: RT — R are C° functions and there
exist a constant K> 0 and a positive non-decreasing
function ¢ € C'(R™; (0, +00)) such that
o)
=su <1
= C(0)

|b1(1)| < C(1), |b2(t)|—§([) vt > 0.

(4.8)

(4.92)

(4.9b)
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It is proved that if K < %(1 —r) then system (4.8)
satisfies the non-uniform in time ISS property from
the input v.

Here, we prove that under hypothesis Al and if
Kexp(c) < 5(1 —r) then there exists ¢ € (0,1) such
that system (4.8) with

(1) = eexp (—6)<d1(l) sup |y(t+0)|

Oel—c,0]

dy(1)
— 0
T2 o0y )'>

— cexp(=0) (dm Iyl + Z(()) ||x(r>|2),

where d=(d,,d>) € Mp (Mp is the class of all con-
tinuous functions d : R — [—1,1]%), namely

X(t) = =X (1) + b (D)Xt — 11 (1)),
¥(1) = ba()x*(t — (1) — (1)
+eexp (— o)di(1)]|y()||

(1)

oy SO
is RGAS (i.e. we consider system (4.10) with output
the whole state (x,y) € C%([—c,0]; R?)).

First, we consider the auxiliary subsystem %{"* :=
(9%+9 CO([_Cs OL "R)’ CO([_Cs O]a SR)’ MU, MD! (bls Hl)
where C°([—¢,0];R) is a normed linear space with
the sup norm, which is described by the following
evolution equation:

+eexp(—oc)—= (4.10)

X(1) = —x (1) + bi()x(t)va(2),
Yi(1) = Hy(t, x(1)) := {x(t + 0);0 € [—c,0]}
€ C([—c,0]; N), 4.11)

where U =R, My is the class of all continuous
functions vy: BT — R and M, is irrelevant. We con-
sider the Lyapunov function for this subsystem
(1, x) := x*/2 and by virtue of (4.9b) we find that the
derivative of this function along the trajectories of
3, satisfies for all £, € (0,1):

V< 41—V, Y(t,x) € RT xR,

1/2
provided that (C( ) [v2 |) < |x].

This inequality shows that the system x(7)=
— X(0) + £1d(0)(b1(1)/C(1)x*(7), where d(r)e[—1,1] is
RGAS and using equivalence of statements (ii) and
(ii1) of Proposition 2.5 in [15] in conjunction with
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equivalence of statements (ii) and (iii) of Proposition
3.1 in [15], we establish the following estimate:

|x(0)]
< max {a1(31(10)|x(t0)].  — 10),
sup a(Bi(m)p1(vi(N)|va(7), 1 = 1)},

T€(19,1]

YVt > 1

with  v,(1):=C(), B{):=1, pi(s):=(s/e))'* and

a(s, 1) :=s/y/1 +2(1 — g)s*t for arbitrary choice of
g1 € (0,1). Estimate (4.12a) implies that the solutions
of subsystem (4.11) satisfy the estimate:

[ x(D)]
< max {Ul(ﬁl(IO)HX(IO)Hn t — 1y),

(4.122)

sup o1(By (P (1 (Da(r])s £ — r)},

T€(t0, 1]

Yt > ty. (4.12b)

Estimate (4.12b) in conjunction with the fact that ( is
non-decreasing implies (3.3) and (3.10) with

O 1= o,
s =1 ne=(2)"

a(s) :==s++/s, R:=0

w(t) :=exp(ec) max{ 1,

and
exp(b(c—1)s if0<t<c
O’](S,Z) = s ift>c
V 14+2(1—¢)s2(1—c)

for arbitrary 6 > 0.

Next we consider the subsystem X := (R, C°
([=¢, 01 M), C—c,0]; R), My, Mp, $1H,), where
C%([~c,0]; M) is a normed linear space with the sup
norm, which is described by the following evolution
equation:

X(1) = —x3(0) + bi(Ox(t)vat — 71(2)),
Yi(t) = Hy(t, x(2)) := x(1)
={x(t+6);0 € [—¢,0]}

€ CO[—c,0); R). (4.13)
where U = C°([—c,0]; R), My is the class of all con-
tinuous functions u: RT — CO([—c, 0]; M) and Mp is
irrelevant. By virtue of the previous analysis for the
auxiliary subsystem X{"%, it follows that system (4.13)
satisfies estimate (4.12b) with supyc_ o [v2(7 + 0)| in
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place of |v2(7)|. Thus, subsystem ¥; satisfies (3.3) and
(3.10) with the same u,v1, 01, p1, @, R, 01 and arbitrary
e1€(0,1), 6>0. It follows from Lemma 3.5 that
subsystem 3, is RFC from the input v,. Thus sub-
system ; satisfies the non-uniform in time IOS
property from the input v,.

The following step is to consider subsystem ¥, :=
(i}{+’ CO([_C’ 0]’ 9{)9 CO([_C9 0]: YR), MU» MD: ¢2’ H2)v
where C([—¢, 0];R), is a normed linear space with
the sup norm, which is described by the following
evolution equation:

¥(t) = ba(t)vi(t — (1)) — ¥(t)
+ ¢ exp( — o)di (0)||y(1)]|

e exp(— o) g((l))ll O,
Yo(t) = Ha(t, y(1)) := {y(t + 0); 6 € [—c,0]}

€ C°([-c.0; R),

(4.14)

where U = C%([~¢,0]; R), My is the class of all con-
tinuous mappings u : R* — C%([—¢,0]; R) and M, is
the class of all continuous functions d : R* — [—1, 1]%.
It is clear from (4.9b) that the solution of (4.14)
satisfies the following estimate for all #>1¢, and
d:(dl, d2)€MDI

exp ()|y(0)] < exp (19)[y(to)|
Feexp (o) / exp (7)[y(r)][dr

+ (Kexp(c)+e)exp(—c)

[ontzela

Thus for every yo € C%(—c,0;R) and 7, >0 we
obtain:

exp ()| y(1)]|

t
< exp(c+10)lvoll + ¢ / exp (7)[y(0)][dr
to

+ (K exp(c)+¢) ></ exp (T )”VéET;H

—dr,
YVt > 1.

Applying Gronwall’s we obtain the

following estimate:

inequality,

O < exp(—(1 — )t — 1)) exp Lol
+ (Kexp() + 2) / exp(—(1— &)t — 7))

vi(n)]>
X ) dr,

Vi > 1o,
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which implies

(D] < exp(—=(1 — &)z — 10)) exp ()]0l
b (Kexp(c)+¢)

+ su
r€(to, 1) 15
x exp(—(1 —e — )t — 7)) ||V1(T)||2
¢(r)
viz o, 4.15)

for all 0 <&, <1 —e. Using the elementary inequality
51+ 85 <max{2s;, 2s,}, in conjunction with estimate
(4.15), we conclude that system (4.14) satisfies (3.3)
and (3.11) with a(s):=s+ s>, R:=0,

1\ 12
(1) = (@) s B =1,

pals) = Wexp (- s,
o K+e€
(1) :=exp (c)(l + EzC(O)) and

oa(s,1) :=2s exp(c — (1 — e — &)1)

for arbitrary 0 < e, < 1 — ¢. It follows from Lemma 3.5
that subsystem Y, is RFC from the input v;. Thus
subsystem 3, satisfies the non-uniform in time I0S
property from the input v;.

It is clear that system (4.10) is the interconnection
of systems X; and X,. Moreover, notice that by
virtue of (4.9a) we have ((7) < {(ty) exp(r(t — ty)) for all
t>1y>0. This observation, in conjunction with the
fact that ¢ is non-decreasing and the definitions of ~;,
o, B;, pi i=1, 2 implies that (3.12a,b) are satisfied if

eter<l—r (4.16a)
On the other hand, setting a(s):=Ls for certain
Le(0,1), we obtain by evaluating (3.14a,b) and
assuming that (4.16a) holds:

e <lejer L exp (—6c) — Kexp (o). (4.16b)
Inequalities (4.16a,b) in conjunction with the fact
that the constants 6 >0, £, €(0,1) and L€ (0,1) are
arbitrary, show that if Kexp (¢) < %(1 — r) then there
exists € > 0 such that system (4.10) is RGAS.

The following example is an application of the non-
uniform small-gain theorem in discrete-time finite-
dimensional systems.
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Example 4.2. Consider the planar continuous-time
system

D) = xt) + aexp(—)y(n). (@17a)

dz,

%(’r) = ax(1 4+ 1,)x(t;) — Ky(1y), (4.17b)

where ¢; (i=1,2) and K> 0 are constants satisfying

] < Kexp (2
aray 8 p 2.

We have used the notation ¢, € ™ to denote the time
of the continuous-time system instead of ¢ which is
used to denote the time of the discrete-time system
that we are going to study. In [15] we showed that
under hypothesis (4.18), the linear continuous-time
system (4.17) is non-uniformly in time RGAS. If one
tries to simulate system (4.17) using the explicit Euler
method with constant step size min {1, L} >/ >0,
initiated at time ¢,o=h o (for certain to€ Z™), from
(x(tr.0), ¥(tr.0)) = (x0,10) € R* then the following dis-
crete-time planar system arises:

(4.18)

x(t+1) =1 —h)x(t) + ha, exp (—ht)y(1),
(4.192)
y(t+ 1) = hary(1 + ht)x(t) + (1 —hK)y(1)
(4.19b)

with initial condition (x(¢y), y(f9)) = (xo, ¥o). Here we
prove that the discrete-time system (4.19) is RGAS,
provided that

1++V1—h K

T OREE (4.20)

|ayas |
This is an important information for simulation pur-
poses, since the simulated system must have the same
qualitative properties with the original system. We
set ¢;:=—log(1—h)>0 and c¢,:=—log(1 — Kh) > 0.
Then it can be inductively proved that subsystems
(4.19a,b) satisfy the following estimates for all
t € [ty, +00):

|x(1)] <exp(—ci(t — t9))|xo| + hlai| exp (c1)

x Y exp(—ci(t = 7)) exp (—h7)|y(7).

T=1y
(4.21a)
()] <exp(=ca(t — 10))|yo| + hlaz| exp (c2)

x> exp (et — 1)1+ h7)|x(r)].

T=1y

(4.21b)
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Let 1€ (0, ¢;) and g, € (0, ¢,) be arbitrary constants.
Estimates (4.21a,b) imply the following estimates for
all ¢ € [ty, +00):

|x(1)| <exp(—(cr —e)(t—to))|x0]
hla;|exp(ci +€1)

xpE)—1 o (exp(—(c; —e)(t—7))

TEt0,1]

x exp(—h7)|y(7)]), (4.22a)

()| <exp(—(ca—e2)(t— 10))|vo]

hlas]exp(es + £2) sup (exp(—(c2—ex)(t—7))

exp(e2) — 1 r€lt0,1]
X (14 h7)|x(7))). (4.22b)
Using the elementary inequality s+, <

max{2sy, 2s,}, in conjunction with estimates (4.22a,b),
we conclude that inequalities (3.10) and (3.11)
are satisfied with os, 1):=2 exp(—(c;—&)1)s,
pils) := ((hlaiexp(c; + €;)/(exp(e;) — D)s, B0 =1,
i=1,2, vi(t):=exp(—ht) and v,(t):=1+ht. More-
over, it follows from Lemma 3.5 that subsystem
(4.19a) is RFC from the input y, since it satisfies
(3.3) with (1) == 1 + ((hlay[exp(e; + en)/(exp(er) — 1)),
a(s):=s and R:=0. Similarly, it follows from
Lemma 3.5 that subsystem (4.19b) is RFC from
the input x, since it satisfies (3.3) with w(f):=
1+ ((h|as|exp(ca + £2))/(exp(e2) — 1)) (1 + A1), a(s):=s
and R:=0. Consequently, both subsystems (4.19a)
and (4.19b) satisfy the non-uniform in time IOS
property from the inputs y and x, respectively. Taking
into account the previous definitions we conclude that
properties (3.12a,b) hold. On the other hand, using
a similar approach as in Example 5.2 in [15], we
guarantee that inequalities (3.14a,b) are satisfied with
a(s):=Ls for certain L€(0,1), provided that the
following inequality is satisfied:

sup
lheT

{4h2|a1azexp(01 +erte+er)
(exp(e1) — D)(exp(e2) — 1)
x sup (exp (—h1)exp(—(c2 — &)t — 1p))).

1>1y

xsup((1 +ht)exp(—(c; —e)(t — lo)))} < 1.

1>1y

Making use of the elementary inequality

sup ((1 +hl)exp(—%lt>> g%exp(— Dexp(ci/2h),

>t 1

as well as the facts 0 < £ <% and ¢;:=—log(l —h)
(which imply ¢;>h>(c/2)), it follows that the
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previous inequality is satisfied for ) = ¢1/2, provided
that the following inequality is satisfied:

8h*|ayaz| exp((3e1/2) + 2¢2)

< 1.
(exp(c1/2) = 1)(exp(c2) — 1)
By making use of the definitions ¢; := — log(1 — /) and
¢r:= —log(1 — K h), it can be verified that the latter

inequality is equivalent with (4.20). It is clear that
inequality (4.20) is “more demanding” than inequality
(4.18) and this shows the limitations of the explicit
Euler method with constant step size.

5. Conclusions

The notions of non-uniform in time RGAOS and non-
uniform in time IOS are extended to cover a wide class
of control systems with outputs that includes a wide
class of discrete- and continuous-time control systems
that possess the property that “the solution of the
system can be continued as long as it remains bounded”
(BIC property). A non-uniform in time small-gain
theorem, which makes use of the notion of non-
uniform in time IOS property, is presented. The
results are illustrated by examples that show the use-
fulness of the non-uniform in time small-gain theorem
for the stability analysis of interconnected systems.
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Appendix

Proof of Lemma 3.2. First notice that without loss of
generality we may assume that 7 = R*, since for the
case T = Z* we may replace H : T x X x D — ), by
the map H:R" x X xD— ), which satisfies
H(t,x,d) = H(t,x) for all (,x) € Z* x X xD and
H(t,x,d) .= (1 —t+ [())H([1], x,d) + (¢ — [{))H([¢] + 1,
x,d)y for all (1,x)e(R"\Z")x X x D, where
[1] := max{T € Z*;7 <t} denotes the integer part of
t € ®*. Notice that the map H: R" x X x D — Y
satisfies the properties (i)—(iii) with 7 = R™*.
Let a:R" x Rt — N be defined as

a(t, s) := sup{||H(T, x, )| ;
de D,7 0,1, ||x] 4 < s}.

Since for every (z,5) € R x R" the set {(r,x) €
Rt x X;7€ 0,7, ||x]|y < s} € R x Xis bounded, it
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follows from assumption (i) that the set {y € V;d € D,
70,7, ||x]|y < s,y =H(r,x,d)} CY i3 bounded,
and thus a(r, s) < +oo for all (z,5) € RT x RT. More-
over, we have that:

(a) a(t, 0)=0 for all 1> 0.

(b) For each fixed >0, the functions a(z,-) and
a( -, t) are non-decreasing.

© |[H(tx.d)ly < a(t.|x]y) for all
RT x X x D.

(t,x,d) €

We finally show that limg .o+ a(z,s) =0 for all 1> 0.
Equivalently, we show that for every 7 >0, € > 0 there
exists 6(c, ) > 0 such that a(z,6(c, 1)) <e. Let t>0
and e > 0 be arbitrary. It follows from assumption (iii)
that for every ¢; € [0,1] there exists é(e, #;) > 0 such
that: if (7,x) € R x X with |7 — 4| + ||x||y < (e, 1;)
then  supyepl||H(7,x,d)||,, <e. Let N(t,¢):=
{reRt|r—t| <16, 1)}. Clearly, there exists
a finite positive integer N and a sequence of times
t; € [0, l], i=1,...,N such that [O, l} =Uji=1,.,N
N(tj,¢). Let 8(e, 1) :=4min,_y _ y6(e, ;). Obviously,
O(e,t) >0 and for every 7€[0,¢] there exists
t;€[0,¢,i=1,...,N such that 7€ N(#;,e). Thus,
ift [|x|ly < &(e, ) we have |7 — ;] + ||x]|4 < 8(e, 1),
and consequently sup,cp|/H(7,x,d)|y, <e. This
property in conjunction with the definition of
a: Rt x RT — R implies a(t, 6(e, 1)) < e.

Clearly, a: Rt x R — R satisfies all requirements
of Lemma 2.3 in [14] and consequently there exists a
pair of functions ¢ € K, and € K" such that:
a(t,s) < ((B(r)s) for all (1,s) € RT x RT. The latter
inequality in conjunction with property (c) above,
gives the desired inequality (3.1).

Proof of Lemma 3.3. It suffices to show that X is
robustly Lagrange and Lyapunov output stable, that
is, it satisfies properties P1 and P2 of Definition 3.1.
First we show that ¥ is robustly Lagrange output
stable, by showing that a(7,s) < +oo for all T € T,
s > 0, where

a(T,s) := sup{||H(t, B(t, to, X0, o, d), 0)[| 5, :

de Mp,1 € [ty, +00), ||xo0]| v < s,
ly € [0’ ’T]}

Notice that by virtue of robust output attractivity
property we have for every € > 0:

a(T,5) < & + sup { | H(t, 601, 10, x0. 10, ). 0} :
de Mp,t €, to+7(e, T, 9)],

loll < 510 € 0,71},
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where 7:=7(g, T, R) € 7 is the time involved in the
robust output attractivity property of Definition 3.1.
Notice that, by virtue of robust forward completeness
(which implies that the set {&(z, to, X0, U, d); 1 €
[to, t0, + 7], || X0l v < 5,20 € [0, T],d € Mp} is bounded)
and since H: 7 x X x U — Y maps bounded sets of
T x X x U into bounded sets of ), we obtain

sup{ || H(t, (2, to, X0, o, ), 0)
de Mp, te [lo,lo + 7(e, T,S)],

X0l < 5,20 € [0, T]} < +o0.

Combining the previous inequalities we obtain that
a(T,s)<+oo forall T € 7,5 > 0, or equivalently that
¥ is robustly Lagrange output stable.

Next we show that ¥ is robustly Lyapunov output
stable. Since the map H(t, x, 0) is continuous and maps
bounded sets of 7 x X into bounded sets of ) with
H(1,0,0)=0 for all r € 7, by virtue of Lemma 3.2,
there exist functions ¢ € K, and v € K such that

[H(z, x,0)lly < Cv@lx] ),

Y(t,x) e T x X. (A1)
Let arbitrary e >0 and 7 € 7. By virtue of the robust
output attractivity property there exists 7:=

7(e, T) € T, such that:

Ixolly <e&,20 €[0,7] = ||H(t, (2, 20, X0, U0, d), 0)|| 5
<e, Vt€[to+T1,+00), Vde Mp. (A2)
Since 0 € X' is a robust equilibrium point for X, it

follows that for every ¢ >0 and 7 € 7 there exists
6 >0 such that

sup{ 167 10, x, o, )| d € M,
T € [to, o + 7(, T)], 1y € [0, T]}
')

max t
0<1<7(e, 7T) 10

provided that||x||, < &',

where 7:= 7(¢,T) € T is the time involved in (A2).
The latter inequality in conjunction with (A1) gives:

sup{ || (7, (7, 10, %.0,),0)

de Mp,T€[to,to+7(, 1), 1[0, T} <e

provided that||x|| , < ¢ (A3)

X

It is clear from (A2) and (A3), that robust Lyapunov
output stability property is satisfied for o(e, T) =
min {e, § }. The proof is complete. O
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Proof of Lemma 3.4. As in the proof of Proposition
221in [14], let &, T € 7,5 > 0 and define:

a(T, 5) i= sup{ || H(t, (0, t0, X0, 0, ), )]
de Mp,t € [tg, +0),
olly < .0 € (0. 7]}, (A%)

M(& T.5) = sup{ || H(to + & 6 (10
+ € 10, X0, g, d), 0)||y: d € M,
HMMS&memT@
(AS)

First notice that by virtue of robust Lagrange output
stability a is well defined, that is, a(7, s) < +oc for every
T 7T, s>0. Furthermore, notice that M is well
defined, since by definitions (A4) and (AS5) the follow-
ing inequality is satisfied for all £, 7 € 7 and s> 0:

M T,s) <a(T,s). (A6)

Notice also that, for the case 7 = Z* we may extend
the domain of a: 7 x T — N, to RT x T, using the
continuous extension a(t,s) := (1 — ¢+ [t])a([7], s) +
(t = [Da(f] +1,5) for all (1,5) € RT\ZT) x R,
where [7] := max{7 € Z*;7 < ¢} denotes the integer
part of 1 € RT. Moreover, a satisfies all hypotheses of
the Lemma 2.3 in [14], namely for each fixed s > 0
a( -, s) is non-decreasing, for each fixed 7 > 0, a(7, -)
is non-decreasing and satisfies a(-, 0)=0. Further-
more, robust Lyapunov output stability asserts that
for every T > 0 lim;_o+ a(T,s) = 0. It turns out from
Lemma 2.3 in [14], that there exist functions (; € K.,
and v € K such that

a(T,s) < G((Ds), W(T,s) € (RY).

Next we proceed exactly as in the proof of Proposition
2.2 in [14] to establish that:

(A7)

MET,s) < wNT,s), VseR', T.£€T, (A8)

where (T, s):=p(T)g({1(Y(T)s)), p€ K™ is a strictly
decreasing function with limg o u(§) =0,p € K*
is a non-decreasing function with p(0)=1 and
lim, o p() = +oo and g(s) := /s +s>. Applying
again Lemma 2.3 in [14], we conclude that there exist
functions ¢, € K., and #€ K" such that
0(T,s5) < G(B(T)s), Y(T,s) € (R

Define the KL function o(s, t) := u(2)(5(s). The desired
(3.2) is a consequence of (A5), (A8) and the inequality
above. O
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Proof of Lemma 3.5 (i) Suppose first that ¥ is RFC
from the input u; € M(7; U)). Let also B,:={u; € Uy;
lur||, < r} denote the closed sphere in U; with radius
r>0. We define:

w(T,r) ::sup{||¢(to + h, to, xo, (1, u2,0), d)|| s
||X0||X <ru € M(T;B,),
(u1,u2,0) € My, ty € [0, T],

hel0,T).de Mp}. (A9)
Notice that by virtue of robust forward completeness
from the input u; € M(7;U,), the function w:7 x
RT — RT is finite valued and for each fixed >0
the mappings w(z,-) and w(-,?) are non-decreasing.
Notice that, for the case 7 = Z* we may extend
the domain of w:7 x R — RN, to RT x NT, using
the continuous extension w(t, s) := (1 — ¢ + [f])w([7], 5) +
(t—[)w [+ 1,s) forall(z,s) € (RT\ZT) xR", where
[f]:=max{r € Z*; 7<1t} denotes the integer part of
t € RT. Moreover, definition (A9) in conjunction
with the causality property for system ¥, implies that
for every u; € M(T;U;) with (u1,us0) € My and
(to, x0,d) € T x X x Mp, the transition map satisfies:

||¢(Za ZOa X0, (ula UZ,O)a d)”X

< w(t, ||xolly + sup [[ur(D]|y,)s
T€(t9, 1]

Yt € [ty, +00). (A10)

Since for each fixed >0 the mappings w(z,-) and
w( -, t) are non-decreasing, inequality (A10) implies:

||¢(ly th X0, (uh u2.0)’ d)”){'

S w(t, )+ w(llxolly + sup [lur(D)]ly,, [Ixoll
T€to, 1]
+ sup [ur(Dly,), V> to. (A1)

TEty, 1]

Let 4 € K" be a non-decreasing continuous function
that satisfies 1 4+ w(s, s) < p (s) for all s > 0 and define

— s(1 + 1(0)),
a(s) '_S+{l+u(s— .

for0 <s <,
for s > 1

with a € K. It follows that the following inequalities
hold for all s, t>0:

w(t, 1) + w(s,s) < p(0) + pls) < p(O(1 + pis))
< u(Da(l + s). (A12)

Inequalities (A11) and (A12) imply inequality (3.3)
with R=1.
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Conversely, suppose that (3.3) is satisfied for the
transition map of X. Clearly, by virtue of the BIC
property,  for  each  (#,xo,d,(u1,uz)) € T x
X x Mp x My with uy € M(7T;U,), there exists a
maximal existence time, that is, there exists fy.x €
T U {+o0o}, such that [ty, fmax) X (fo, Xo, U, d)C Ay
and for all 7> f,,,x it holds that (¢, 1, xo, ug, d) ¢ Ay.
In addition, if #,,,x < 4oc then for every M >0 there
exists 7 € [1, Imax) With [|@(2, 10, X0, u, d)|| > M. Sup-
pose that 7,,,x < +oo, for some (o, xo, d, (u, u2,0)) €
T x X x Mp x My. Then there exists € [ty, lmax)
with (9t fo, x0, 1, DIl > al|XolL + 5UPrey o
lur(Dly, + R) maxeo, (). On the other hand
since (3.3) holds we obtain

llo(t, to, X0, (u1, u1,0), d)|| 5

<a(lxollet s o, +R) max uo).

75[10, [max] , Imax

which is clearly a contradiction. Thus, since (3.3)
holds we must have fy,x= +oo for all (#,xo,d,
(ul,uz’o)) €T x XX Mpx My with uy € M(T;Uy).
Moreover, using (3.3) for alle > 0,7 € 7, we obtain

sup{||¢(to + 5, 10, X0, (U1, u2,0), d)|| x; 5 € [0, T],
uy € M(T; B:), (u1,u2,0) € My, ||xo0||
<ety€l0,7T),de MD}

< a(R+ 2¢) max pu(t) < +oo,
1€[0,27]

that is, the property of robust forward completeness
from the input u; € M(7T; U)) is satisfied.

The proof statement (ii) is identical with proof of
statement (i) (simply set #;=0 in the previous
inequalities). For the case that 0 € X' is a robust equili-
brium point for ¥, then we follow the following
procedure. Suppose that (3.4) is satisfied for appro-
priate u € K, a € K. and constant R > 0. ( Consider the
control system ¥/ := (7, X, X, My, Mp, ¢, H), where

g(lz l(), Xo, U, d)
- %w, o, plto)explio)xo,d),  (Al3)
H(t,x,u) := x. (A14)

It can be immediately verified that ¥ := (7, X, X,
My, Mp, ¢, His a control system with outputs and the
BIC property, for which 0 € X is an equilibrium
point. Moreover, by virtue of (3.4) we obtain the
following estimate for all (¢p,x9,d) € 7 x X x Mp
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and ¢ €[ty, +00):

H(g([, 1o, X0, Uo, d)HX
= ||H(t, (1, t0, X0, o, d), 0)]|
<exp( — (¢ — to))a(w(to)||xoll x + R)

where w(r) := (1) exp(r) € K. Estimate (A15) shows
that ¥/ .= (7, X, X, My, Mp, ¢, H) is RFC and satis-
fies the property of robust output attractivity. Thus,
since 0 € X is an equilibrium point for Y, it follows
by Lemma 3.3 that Z, is RGAOS. Consequently,
Lemma 3.4 guarantees the existence of functions
7 € KL, 3 € K* such that the following estimate holds
for all (19, x0,d) € T x X x Mp and t €[t,, +00):

|| H(t, §(t, to, X0, o, ), O||

— ||$Ez, 10, X0, o, )| y
< a(B(10)[|x0[ - T — to)-

Defining (7)) := (exp(—1)/u(t)) € K™ and using defi-
nition (A13) in conjunction with estimate (A16), we
obtain the following estimate for all (¢, x¢,d) €
T x X x Mp and t €[ty, +00):

ﬁ(l)||¢(Z:ZOD X0, Ug, d)”){
< a(B(10)u(to)||xol| x t = o). (A7)

Applying Corollary 10 and Remark 11 in [20] to the
function @(s,0), we obtain a function a € K, that
satisfies & (rs, 0) < a(r)a(s) for all r, s > 0. By virtue of
(A17), we conclude that (3.4) is satisfied for ¥ with
R=0, u(t):=a(maxo<,<,B(m)u(r))/1u(t) and a(s)=a(s).
Proof of Claim made in the proof of Theorem 3.10.
Since subsystem >; is RFC from the input
vy € M(T;)>,) and subsystem ¥, is RFC from the
input vi € M(7;Y)), it follows from Lemma 3.5 that
there exists functions p;, € K, a1, a» € K, and
constants R, R, >0 such that the following estimates
hold for all (g, x, (v2, 1), X2, (Vi,up),d) € T x X%
My, X Xy x My, wu x Mp and ¢ €[ty, +00):

(A15)

(A16)

(|, (2. 10, X1, (2, u0), d|| y,
< m(ar (Ri + [xilly, + sup [y, ).

TEt0,1]
N (A18)
|$2(2, 20, X2, (v1, 1), d| x,

< patas(Re+ [y, + sup [y, ).
TE |l

(A19)
We next proceed by first establishing the following
property:
Property. Under Hypothesis H3 of Theorem 3.10,
there exists functions B; € KL and 3; € K* (i =1, 2)
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such that for all sy, so>0 and >, the following
inequalities hold:

a1(B1(to)s1, t — to) + sup o1(B1(7)p1(1(7)

T€E 10,1
X 02(B2(t0)s2, T — 1)), t — T)
< Bi(By(t9) max (s1, 52), 1 — to),

o2(Ba2(t0)s1, £ — 19) + sup o2(B2(7)pa(1(7)

T€Et0,1]
X o1(B1(to)s2, T — ty)), t — T)
< Bao(Bs(10) max (s1, 52), 1 — fo).

(A20)

(A21)

Proof: By using Fact VII in [15] and Hypothesis H3,
there exists functions S; € KLand §; € K* (i = 1,2)
such that

Bi1O)p1(n(T)oa(s, t — tg)) < S1(61(t0)s, t — 1o),
Vi > 1y, s> 0, (A22)

Ba(D)p2(n1(T)a1 (s, t — tg)) < Sa2(62(t0)s, t — 1o),
Vi > 1y, s>0. (A23)

Furthermore, by using Fact VI in [15], there exists
functions R; € KL (i = 1, 2) such that
sup o1(Si(s, 7 —t9), t — 7) < Ri(s,t — 1),
TE[10,1]

Vi> 1, 5> 0, (A24)

Sup 0'2(52(5,7' - [0), 1 — T) S RZ(S) 1 — l()),
TEt0,1]

Vi >y, s> 0. (A25)

We define §,(1) := 6:(B:(0) + fi(r) and Ba(r) ==
o (0)B1(t) + (a(1). Inequalities (A22)—(A25) along
with previous definitions, imply that for all s > 0 and
t > to the following inequalities hold:

sup o1(B1(T)p1(n(7)o2(Ba(to)s, T — 1)), 1 — T)

TE[t0,1]
S Rl(ﬂl(to)sa r— t()),

sup o2(Ba(T)p2(72(T)a1(Bi(to)s, T — ty)), t — T)

T€E[10,1]

< Ro(Bs(10)s, 1 — 10).

(A26)

(A27)

We define for i =1, 2, the functions of class KL,
Bi(s, t):= R{s, t) + ois, t). The previous definitions in
conjunction with inequalities (A26) and (A27) imply
the desired (A20) and (A21).

We are now in a position to prove our claim.
Clearly, since ¥ has the BIC property, it follows
that for every (g, xo,d) € T x X x Mp, there exists
a maximal existence time, that is, there exists f.x €
T U {+OO}, such that [l(), tmax) X (lo, Xo, Up, d) - Aq)
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and for all 1 > t,,,« it holds that (¢, ¢y, x¢, 1o, d) ¢ A,.
In addition, if #,.x<-+oo then for every M >0
there exists 7 € [to, tmax) With [|¢(z, to, X0, u, d|| , > M.
Let (29, x0,d) €T x X x Mp with xo=(x1,x3) € X| X X3
and 7 <ty be arbitrary. Since ¢1(7, %, Xo,uo, d) =
G1(7, t0, X1, (Ya,u0), d), (T, 19, X0, thg, d) = b (7, 19, X2,
(Y1,up),d) for all 7 € [t, t], by exploiting (3.10) and
(3.11), we obtain the following estimates:

Y1)y, < max{ai,a, a3},

ay := o1(Bi(to)l| X1l x,» 1 = 1),
a = Sl[lp]Ul(/Bl(T)pl('Vl(T)
x o2(Ba(to)| X2l x,» T — 20))s t = T),

a3 := sup o (Bi(M)p1(11(1) sup o2(Ba2()

T€l10,1] &€lto,7]

X POVl y). T = &), 1 — 7).
(A28)

by := aa(Ba(to)l| X2l ,» t — 10)s

by == sup o2(Ba(7)p2(72(7)

T€(t9,1]

x a1(Bi(to)|Ixtll v, 7 — t0))t = 7),

by :== sup o (ﬂz(f)pz (72(7) sup o1(51(§)

T€[to,1] &€lto,7]

|| Yz(l‘)Hy2 < max{b1 by, b3},

< @ Va7 = €) )1 = 7):

(A29)
Exploiting inequalities (3.14a,b) we obtain:
Sl[lp] a1 (Bi(m)p1((7) gs[up ] 02(52(€)p2
X (OIY1Olly) 7= &)1 —7)
<a( swp IV (A30)
51[113] a2(Ba(T)p2(72(T) ES[UP ] a1(Bi1(©p
X (OIY2)ly,). 7= &)1 —7)
<a( sup [72(D)lly,) (A31)

TE[10,1]

where « is the function involved in (3.13) and (3.14a,b).
Furthermore, by virtue of (A20), (A21), (A30) and
(A31) and since |[x1 |, < [Ix0llxs [[X2l[x, < lIX0]lx. We
obtain:

1Y1(0)], < max {Bmﬁlwnxou, (1),

o swp IM0l,) f. (A2)

TEt,1]
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1720y, < max { Ba(Bato) [xoll s = t0)

a( sup ||Yz(r)||y2)}- (A33)

TE[10,1)

Clearly, the above inequalities imply that:

TE[10,1]

sup (110l < max {81 (Buo)xal.0).

a( swp MOy

TE[to,1]

}

sup || V2(r)y, < maX{Bz (B’zamxonx,o),

T€[19,1]
o swp 17201, b

T€Etg,1]

which in conjunction with our hypothesis (3.13) gives:

sup V10, < B (Bitolxolle0).  (A34)
TE lol
sup [[V2(0)ly, < Ba (Bato)lxoll,0). (A39)
TEto,1]

Let K>0 be the constant that satisfies K(||x||y, +
Hx2HX2) > HXOHX for all Xg = (X],Xz) GNX1 X Xs.
Defining  a(s) := ai(s) + a2(s),a € K, B(1) := 1+
Bi() + Bo(0), B KT\ p(t) == Kmax{m(D), pa(d)},
w € Kt and B(s) := a (25 + Bi(s, 0) + Bs(s,0)),B €
Ky, R := max{R;, R} and since ¢:(7, to, X0, ttg, d) =
é1(7, 10, X1, (Y2, uo), d), 42(T, 10, X0, tho, d) = ¢2(T, 10, X2,
(Y1,up),d) for all 7 € [ty 1], we obtain by exploiting
(A18) and (A19) and inequalities (A34) and (A35):

llo(2, t0, X0, uo, d)|| 5
< j(O)B(R + B(10)||x0]| -

Suppose that f,,,x < +oo, for some (#y,xp,d) € T x
X x Mp. Then there exists 1€[ty, Imax) With
lp(2, 10, x0, u, )|l > B(R + B(to)[|Xol| x) MaXefo, 1]
u(t). On the other hand since (A36) holds we obtain
llp(2, 10, X0, u, Al < BR + B(t0)||x0ll 1) MaXe(0, tmay
(1), which is clearly a contradiction. Thus, since
(A36) holds we must have f7,,=+oo for all
(to, x0,d) € T x X x Mp. Moreover, using (A36)
foralle, T > 0 we obtain

(A36)

sup{||é(to, + 5. to, X0, to, d)|| yi 5 € [0, T1, [|xo]|
<ety€[0,T],de Mp}

< B(R +e€ max ﬂ(to)> n})ax w(t) < 4o0,
which directly implies that ¥ is RFC.Thus we may

conclude that inequalities (A32)—(A35) are satisfied
for all ¢ € [ty, +00).



