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SUMMARY

This work is devoted to the construction of feedback laws, which guarantee the robust global exponential
stability of the uncongested equilibrium point for general discrete-time freeway models. The feedback con-
struction is based on a control Lyapunov function approach and exploits certain important properties of
freeway models. The developed feedback laws are tested in simulation, and a detailed comparison is made
with an existing feedback law reported in the literature and employed in practice. The robustness properties
of the corresponding closed-loop system with respect to measurement errors are also studied. Copyright ©
2015 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Freeway traffic congestion has become a significant problem for modern societies, which leads to
excessive delays, reduced traffic safety, increased fuel consumption and environmental pollution.
The main traffic control measures employed to tackle traffic congestion are ramp metering (RM)
and variable speed limits (VSL). RM is implemented by use of traffic lights positioned at on-ramps
to control the entering traffic flow [1]. VSL are used for speed harmonization, but recent studies
have demonstrated that it may be used as a mainstream metering device as well [2]. To achieve their
goal, these control measures must be driven by appropriate control strategies. A branch of related
research has considered nonlinear optimal control and model predictive control as network-wide
freeway traffic control approaches; see, for example, [3–6]. However, none of the proposed meth-
ods has advanced to a field-operational tool. Another significant branch of freeway traffic control
research has considered explicit feedback control approaches to tackle congestion problems. A pio-
neering development in this direction was the I-type local feedback RM regulator ALINEA [7],
which has been used in hundreds of successful field implementations around the world; see, for
example, [8, 9]. ALINEA controls the traffic entering from an on-ramp and targets a critical density
in the mainstream merging segment so as to maximize the freeway throughput. Other proposed local
feedback control algorithms for RM include [10–13], to mention just a few. Various extensions and
modifications of ALINEA were proposed and field implemented over the years to address specific
emerging needs. Most relevant in the present context is the extension to a PI-type regulator so as to
efficiently address bottlenecks, which are located far downstream of the merge area [14]; and the
parallel deployment of PI-type regulators to address multiple potential bottlenecks downstream of
the metered on-ramp [15]. On the other hand, feedback control approaches for mainstream traffic
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GLOBAL EXPONENTIAL STABILIZATION OF FREEWAY MODELS 1185

control by use of VSL have been rather sparse; see [16]; see also [17] for a recent extension to the
multiple bottleneck case.

To adequately address the increasing freeway traffic congestion problems, it is essential to investi-
gate, develop and deploy the potentially most efficient methods, and recent control theory advances
should be appropriately exploited to this end. In this work, we provide a rigorous methodology
for the construction of explicit feedback laws that guarantee the robust global exponential stabil-
ity of the uncongested equilibrium point for general nonlinear discrete-time freeway models. We
focus on discrete-time freeway models that are generalized versions of the known first-order discrete
Godunov approximations [18] to the kinematic-wave partial differential equation of the LWR-model
[19, 20] with nonlinear [21] or piecewise linear (cell transmission model (CTM); [22–24]) out-
flow functions (fundamental diagram (FD)). Specifically, the constructed class of freeway models
allows for the following: (i) consideration of generally nonlinear (including piecewise linear) FDs;
(ii) consideration of all possible cases for the relative priorities of the inflows at freeway nodes
[23], and even for time-varying and unknown priority rules; and (iii) modified demand functions
according to [25], to account for the capacity drop phenomenon, which is not reflected in the clas-
sical LWR-model and its Godunov discretization. The construction of the robust global exponential
feedback stabilizer is based on the control Lyapunov function (CLF) approach [26] as well as on
certain important properties of freeway models. In summary, the contribution of the present work
is threefold:

� a CLF is constructed for a class of freeway models; the formulas for the Lyapunov function are
explicit (see formulas (2.19), (2.20) and (2.21)) and can be used in a straightforward way for
various purposes;
� important properties of general nonlinear and uncertain discrete-time freeway models are

proved (see properties (C1), (C2), (C3), (C4) and (C5) in Section 3);
� a parameterized family of global exponential feedback stabilizers for the uncongested equilib-

rium point of freeway models is constructed. The achieved stabilization is robust with respect
to all priority rules that can be used for the inflows.

A comparison is made, by means of simulation, with an existing feedback law proposed in the
literature and employed in practice. More specifically, we consider the random located bottleneck
(RLB) PI-type regulator that was proposed in [15] and is the most sophisticated of the very few
comparable feedback regulators that have been employed in field operations [9]. The simulations,
presented in Section 4 of the present work, study the performance of the corresponding closed-loop
systems, as well as their robustness under the effect of measurement errors. It was found that the
performance and the robustness properties achieved by the proposed feedback law were better than
or comparable with the performance and the robustness properties induced by the RLB PI regulator.
Ongoing work and future work address further robustness issues in presence of modelling errors
and persistent disturbances.

Definitions and notation. In this paper, we adopt the following notation and terminology:

* <C WD Œ0;C1/: For every set S ; Sn D S � : : : � S„ ƒ‚ …
n times

for every positive integer n.

* By C 0.A I �/, we denote the class of continuous functions on A � <n, which take values
in � � <m. By C k.A I �/, where k > 1 is an integer, we denote the class of functions on
A � <n with continuous derivatives of order k, which take values in � � <m.

* The transpose of x 2 <n is denoted by x0. By jxj we denote the Euclidean norm of x 2 <n.

Let S � <n, D � <l be non-empty sets and consider the uncertain, discrete-time,
dynamical system

xC D F.d; x/ ; x 2 S ; d 2 D; (1.1)

where F W D � S ! S is a mapping. The variable x 2 S denotes the state of (1.1), while here
(and throughout the paper), xC denotes the value of the state at the next time instant, that is, (1.1)
describes the recursive relation x.t C 1/ D F.d.t/; x.t//. Let x� 2 S be an equilibrium point
of (1.1), that is, x� 2 S satisfies x� D F.d; x�/ for all d 2 D. Notice that the requirement
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x� D F.d; x�/ for all d 2 D implies that d 2 D denotes a vanishing perturbation, that is, a
disturbance that does not change the position of the equilibrium point of the system. In general, the
decision of which variables are vanishing perturbation or non-vanishing perturbation depends on
the equilibrium point that we have in mind; for example, a perturbation may change the position of
other equilibria but not the position of the equilibrium point that we intend to study.

We use the following definitions throughout the paper.

Definition 1
We say that x� 2 S is robustly globally exponentially stable (RGES) for system (1.1) if there
exist constants M;� > 0 such that for every x0 2 S and for every sequence ¹d.t/ 2 Dº1tD0 the
solution x.t/ of (1.1) with initial condition x.0/ D x0 corresponding to input ¹d.t/ 2 Dº1tD0 (i.e.
the solution that satisfies x.t C 1/ D F.d.t/; x.t// for all t > 0 and x.0/ D x0) satisfies the
inequality jx.t/ � x�j 6M exp.�� t/ jx0 � x�j for all t > 0:

Definition 2
A function V W S ! <C for which there exist constants K2 > K1 > 0; p > 0 and � 2 Œ0; 1/ such
that the inequalities K1 jx � x�j

p 6 V.x/ 6 K2 jx � x�jp and V.F.d; x// 6 �V.x/ hold for all
.d; x/ 2 D � S , is called a Lyapunov function with exponent p > 0 for (1.1).

Remark 1
If a Lyapunov function with exponent p > 0 exists for (1.1), then x� 2 S is RGES. Indeed, if the
state space were <n and not S � <n and if no disturbances were present, then we would be able to
use Theorem 13.2 on pages 765–766 in [27] and conclude that the existence of a Lyapunov function
with exponent p > 0 for (1.1) is a sufficient condition for RGES of x� 2 S . However, because the
uncertain dynamical system (1.1) is defined on S � <n with disturbances d 2 D, we cannot use the
aforementioned theorem. On the other hand, we can use the inequality V.F.d; x// 6 �V.x/ induc-
tively and obtain the estimate V.x.t// 6 �tV.x.0// for every solution of (1.1), for every sequence®
d.t/ 2 Œ0; 1�n�1

¯1
tD0

and for every integer t > 0. The required exponential estimate of the solu-
tion is obtained by combining the previous estimate with the inequality K1 jx � x�j

p 6 V.x/ 6
K2 jx � x

�jp , which directly implies K1 jx.t/ � x�j
p 6 �tK2 jx.0/ � x

�jp , or jx.t/ � x�j 6
M exp.�� t/ jx0 � x�j, where M D .K2=K1/

1=p , � WD � ln.�/
p

for the case � > 0 and arbitrary
� > 0 for the case � D 0.

2. FREEWAY MODELS AND MAIN RESULT

2.1. Model derivation

We consider a freeway that consists of n > 3 components or cells; typical cell lengths may be
200–500 m. Each cell may have an external controllable inflow (e.g. from corresponding on-ramps),
located near the cell’s upstream boundary; and an external outflow (e.g. via corresponding off-
ramps), located near the cell’s downstream boundary (Figure 1). The number of vehicles at time
t > 0 in component i 2 ¹1; : : : ; nº is denoted by xi .t/. The total outflow and the total inflow
of vehicles of the component i 2 ¹1; : : : ; nº at time t > 0 are denoted by Fi;out .t/ > 0 and
Fi;in.t/ > 0, respectively. All flows during a time interval are measured in [veh]. Consequently, the
balance of vehicles (conservation equation) for each component i 2 ¹1; : : : ; nº gives:

xi .t C 1/ D xi .t/ � Fi;out .t/C Fi;in.t/; i D 1; : : : ; n; t > 0: (2.1)

Figure 1. Scheme of the freeway model.
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Each component of the network has storage capacity ai > 0.i D 1; : : : ; n/. Our first assumption
states that the external (off-ramp) flows from each cell are constant percentages of the total exit flow,
that is, there exist constants pi 2 Œ0; 1�, i D 1; : : : ; n, such that�

flow of vehicles
from component i to component i+1

�
D .1 � pi /Fi;out.t/; for i D 1; : : : ; n � 1 (2.2)

�
flow of vehicles from

component i to regions out of the freeway

�
D piFi;out.t/; for i D 1; : : : ; n: (2.3)

The constants pi are known as exit rates, that is, portions of Fi;out .t/ that are bound for the off-
ramp of the i-th cell. Because the n-th cell is the last downstream cell of the considered freeway,
we may assume that pn D 1. We also assume that pi < 1 for i D 1; : : : ; n � 1, and that all exits to
regions out of the network can accommodate the respective exit flows.

Our second assumption is dealing with the attempted outflows fi .xi /, that is, the flows that will
exit the cell if there is sufficient space in the downstream cell. We assume that there exist functions
fi W Œ0; ai � ! <C with 0 < fi .xi / < xi for all xi 2 .0; ai � and variables si .t/ 2 Œ0; 1�, i D
2; : : : ; n, so that

Fi�1;out.t/ D si .t/fi�1.xi�1.t//; i D 2; : : : ; n; t > 0 and Fn;out.t/ D fn.xn.t// (2.4)

The variable si .t/ 2 Œ0; 1�, for each i D 2; : : : ; n, indicates the percentage of the attempted
outflow from cell .i�1/ that becomes actual outflow from the same cell. The function fi W Œ0; ai �!
<C is called, in the specialized literature of traffic engineering (see, e.g. [21]), the demand part of
the FD of the i-th cell, that is, the flow that will exit the cell i if there is sufficient space in the
downstream cell iC1. Notice that (2.4) for Fn;out .t/ follows from our assumption that all exits to
regions out of the network can accommodate the exit flows.

Let ui > 0.i D 1; : : : ; n/ denote the attempted external inflow to component i 2 ¹1; : : : ; nº from
the region out of the freeway. Typically, ui , i D 2; : : : ; n correspond to external on-ramp flows that
may be determined by a RM control strategy. For the very first cell 1, we assume, for convenience,
that there is just one external inflow, u1. Let the variables wi .t/ 2 Œ0; 1�, i D 1; : : : ; n, indicate the
percentage of the attempted external inflow to component i 2 ¹1; : : : ; nº that becomes actual inflow.
Then, we obtain from (2.2) and (2.4):

F1;in.t/ D w1.t/u1.t/ and Fi;in.t/ D wi .t/ui .t/C si .t/.1 � pi�1/fi�1.xi�1.t//; i D 2; : : : ; n:
(2.5)

Our next assumption is derived from the Godunov discretization [21], which requires that the
inflow of vehicles at the cell i 2 ¹1; : : : ; nº at time t > 0, denoted by Fi;in.t/ > 0, cannot exceed
the supply function of cell i 2 ¹1; : : : ; nº at time t > 0, that is,

Fi;in.t/ 6 min .qi ; ci .ai � xi .t/// ; i D 1; : : : ; n; t > 0; (2.6)

where qi 2 .0;C1/ denotes the maximum flow that the i-th cell can receive (or the capacity flow
of the i-th cell) and ci 2 .0; 1�.i D 1; : : : ; n/ denotes the congestion wave speed of the i-th cell.

Following [23], we assume that, when the total demand flow of a cell is lower than the supply
of the downstream cell, that is, when ui .t/ C .1 � pi�1/fi�1.xi�1.t// 6 min .qi ; ci .ai � xi .t///
for some i 2 ¹2; : : : ; nº, then the demand flow can be fully accommodated by the downstream cell,
and hence, we have si .t/ D wi .t/ D 1. Similarly, when u1.t/ 6 min .q1; c1.a1 � x1.t///, then we
have w1.t/ D 1. In contrast, when the total demand flow of a cell is higher than the supply of the
downstream cell, that is, when ui .t/C .1�pi�1/fi�1.xi�1.t// > min .qi ; ci .ai � xi .t/// for some
i 2 ¹2; : : : ; nº (or when u1.t/ > min .q1; c1.a1 � x1.t////, then the demand flow cannot be fully
accommodated by the downstream cell, and the actual flow is determined by the supply function, that
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is, we have Fi;in.t/ D min .qi ; ci .ai � xi .t/// (or F1;in.t/ D min .q1; c1.a1 � x1.t////. Therefore,
we obtain:

F1;in.t/ D min .q1; c1.a1 � x1.t//; u1.t// ; t > 0 (2.7)

si .t/ D .1 � di .t//min

�
1;max

�
0;

min .qi ; ci .ai � xi .t/// � ui .t/

.1 � pi�1/fi�1.xi�1.t//

��

C di .t/min

�
1;

min .qi ; ci .ai � xi .t///

.1 � pi�1/fi�1.xi�1.t//

�
;

i D 2; : : : ; n; t > 0 (2.8)

Fi;in.t/ D min .qi ; ci .ai � xi .t//; ui .t/C .1 � pi�1/fi�1.xi�1.t/// ; i D 2; : : : ; n; t > 0;
(2.9)

where

di .t/ 2 Œ0; 1�; i D 2; : : : ; n; t > 0 (2.10)

are time-varying parameters. Note that, if the supply is higher than the total demand, then (2.8)
yields si D 1, irrespective of the value of di , because the total demand flow can be accommodated
by the downstream cell. Thus, the parameter di determines the relative inflow priorities, when the
downstream supply prevails. Specifically, when di .t/ D 0, then the on-ramp inflow has absolute
priority over the internal inflow; on the other hand, when di .t/ D 1, then the internal inflow has
absolute priority over the on-ramp inflow; while intermediate values of di reflect intermediate pri-
ority cases. The parameters di .t/ 2 Œ0; 1� are treated as unknown parameters (disturbances). Notice
that by introducing the parameters di .t/ 2 Œ0; 1� (and by allowing them to be time-varying), we
have taken into account all possible cases for the relative priorities of the inflows (and we also allow
the priority rules to be time-varying); see [28–32] for freeway models with specific priority rules,
which are special cases of our general approach.

All the aforementioned are illustrated in Figure 1. Combining (2.1), (2.2), (2.3), (2.4), (2.7) and
(2.9), we obtain the following discrete-time dynamical system:

xC1 D x1 � s2f1.x1/Cmin .q1; c1.a1 � x1/; u1/

D x1 � s2f1.x1/C w1u1
(2.11)

xCi D xi � siC1fi .xi /Cmin .qi ; ci .ai � xi /; ui C .1 � pi�1/fi�1.xi�1//
D xi � siC1fi .xi /C wiui C si .1 � pi�1/fi�1.xi�1/

; for i D 2; : : : ; n�1

(2.12)

xCn D xn � fn.xn/Cmin .qn; cn.an � xn/; un C .1 � pn�1/fn�1.xn�1//

D xn � fn.xn/C wnun C sn.1 � pn�1/fn�1.xn�1/;
(2.13)

where si 2 Œ0; 1�, i D 2; : : : ; n are given by (2.8). The values of wi 2 Œ0; 1�, i D 1; : : : ; n,
may also be similarly derived from (2.5) when ui > 0, but they are not needed in what follows.
Define S D .0; a1� � .0; a2� � : : : � .0; an�. Because the functions fi W Œ0; ai � ! <C satisfy
0 < fi .xi / < xi for all xi 2 .0; ai �, it follows that (2.11), (2.12) and (2.13) are uncertain control
systems on S (i.e. x D .x1; : : : ; xn/

0 2 S/ with inputs u D .u1; : : : ; un/
0 2 .0;C1/ � <n�1C

and disturbances d D .d2; : : : ; dn/ 2 Œ0; 1�n�1. We emphasize again that the uncertainty d 2
Œ0; 1�n�1 appears in the (2.11), (2.12) and (2.13) only when the supply function prevails, that is,
only when ui .t/ C .1 � pi�1/fi�1.xi�1.t// > min .qi ; ci .ai � xi .t/// for some i 2 ¹2; : : : ; nº.
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Figure 2. Implications of Assumption (H).

We make the following assumption for the functions fi W Œ0; ai �! <C.i D 1; : : : ; n/:

(H) The function fi W Œ0; ai � ! <C satisfies 0 < fi .´/ < ´ for all ´ 2 .0; ai � . There exists
ıi 2 .0; ai � such that fi is continuous and increasing on Œ0; ıi � . Moreover, there exist constants
Li 2 .0; 1/; Qıi 2 .0; ıi � such that fi W Œ0; ai � ! <C is C 1 on .0; ıi /; 1 � Li 6 f 0i .´/ for all
´ 2 .0; Qıi /; f

0
i .´/ 6 1 for all ´ 2 .0; ıi / . Finally, there exists a positive constant f min

i > 0

such that fi .ıi / > fi .´/ > f min
i for all ´ 2 Œıi ; ai �.

Assumption (H) includes the basic properties of the so-called demand function [21] in the
Godunov discretization; whereby ıi is the critical density, where fi .xi / achieves a maximum value.
The implications of Assumption (H) for the demand function are illustrated in Figure 2. In words,
the FD of cell i is composed of the increasing function fi .xi / for xi 2 Œ0; ıi �; and by the non-
increasing supply function min.qi ; ci .ai � xi // for xi 2 Œıi ; ai �. Note, however, that Assumption
(H) includes the possibility of reduced demand flow for overcritical densities (i.e. when xi .t/ > ıi /,
because fi .xi / is allowed to be any arbitrary function (e.g. discontinuous or decreasing or, even,
increasing), taking any values within the bounds mentioned in (H) (corresponding to the grey area
in Figure 2), for xi 2 Œıi ; ai �; this could be used to reflect the capacity drop phenomenon, as it
is treated in some recent works [33, 34]. Figure 2 presents, within the grey area of overcritical
densities, three examples of demand functions, which satisfy assumption (H). In conclusion, the
model (2.11)–(2.13) is a generalized version of the known first-order discrete Godunov approxima-
tion to the kinematic-wave partial differential equation of the LWR-model [19, 20] with nonlinear
[21] or piecewise linear (CTM; [22, 23]) FD. However, the presented framework can also accom-
modate recent modifications of the LWR-model as in [25, 33, 34] to reflect the so-called capacity
drop phenomenon. Notice that the piecewise smooth selections fi .´/ D qiı

�1
i ´ for ´ 2 Œ0; ıi � and

fi .´/ D qi for ´ 2 .ıi ; ai � (i D 1; : : : ; n/ with ai > ıi C c�1i qi allow us to obtain the standard
CTM with: (i) triangular-FD (if ai D ıi C c

�1
i qi / and (ii) trapezoidal-FD (if ai > ıi C c

�1
i qi /. In

the latter case, Assumption (H) holds with arbitrary Qıi 2 .0; ıi �.
Define the vector field QF W Œ0; 1�n�1 � S � .0;C1/ � <n�1C ! S for all x 2 S WD .0; a1� �

: : : .0; an�, d D .d2; : : : ; dn/ 2 D D Œ0; 1�n�1 and u D .u1; : : : ; un/ 2 .0;C1/ � <n�1C :

QF .d; x; u/ D . QF1.d; x; u/; : : : ; QFn.d; x; u//
0 2 <n

with QF1.d; x; u/ W D x1 � s2f1.x1/Cmin .q1; c1.a1 � x1/; u1/ ;

QFi .d; x; u/ D xi � siC1fi .xi /Cmin .qi ; ci .ai � xi /; ui C .1 � pi�1/fi�1.xi�1// ;

for i D 2; : : : ; n � 1;

QFn.d; x; u/ D xn � fn.xn/Cmin .qn; cn.an � xn/; un C .1 � pn�1/fn�1.xn�1// and

si D .1 � di /min

�
1;max

�
0;

min .qi ; ci .ai � xi // � ui
.1 � pi�1/fi�1.xi�1/

��

C di min

�
1;

min .qi ; ci .ai � xi //

.1 � pi�1/fi�1.xi�1/

�
; for i D 2; : : : ; n:

(2.14)
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Notice that, using definition (2.14), the control systems (2.11), (2.12) and (2.13) can be written in
the following vector form

xC D QF .d; x; u/

x 2 S ; d 2 D ; u 2 .0;C1/ � <n�1C :
(2.15)

2.2. Main result

Consider the freeway model (2.15) under Assumption (H). We suppose that there exist u�1 > 0,
u�i > 0.i D 2; : : : ; n/ and a vector x� D .x�1 ; : : : ; x

�
n/ 2 .0;

Qı1/ � : : : .0; Qın/ with

f1.x
�
1 / D u

�
1 ; fi .x

�
i / D u

�
i C.1�pi�1/fi�1.x

�
i�1/D u

�
i C

i�1X
jD1

0
@ i�1Y
kDj

.1 � pk/

1
Au�j .i D 2; : : : ; n/

(2.16)
and

u�1 < min
�
q1; c1

�
a1 � x

�
1

��
; u�i C .1 � pi�1/fi�1.x

�
i�1/ < min

�
qi ; ci

�
ai � x

�
i

��
.i D 2; : : : ; n/:

(2.17)

This is the uncongested equilibrium point of the freeway model (2.15). Notice that Assumption
(H) guarantees that an uncongested equilibrium point always exists for the freeway model (2.15)
when u�1 > 0 and u�i > 0.i D 2; : : : ; n/ are sufficiently small. The uncongested equilibrium point is
not globally exponentially stable for arbitrary u�1 > 0; u�i > 0.i D 2; : : : ; n/; indeed, for relatively
large values of external demands u�1 > 0; u�i > 0.i D 2; : : : ; n/ other equilibria for model (2.15)
(congested equilibria) may appear, for which the cell densities are large and can attract the solution
of (2.15) (see the numerical Example 4.2 in Section 4).

The following result is our main result in feedback design. The result shows that a continu-
ous, robust, global exponential stabilizer exists for every freeway model of the form (2.15) under
Assumption (H).

Theorem 2.1
Consider system (2.15) with n > 3 under Assumption (H) for each i D 1; : : : ; n . Then there
exist a subset R � ¹1; : : : ; nº of the set of all indices i 2 ¹1; : : : ; nº with u�i > 0, constants
� 2 .0; 1�; bi 2 .0; u

�
i / for i 2 R and a constant �� > 0 such that for every � 2 .0; ��/ the feedback

law k W S ! <nC defined by

k.x/ WD .k1.x/; : : : ; kn.x//
0 2 <n with

ki .x/ WD max
�
u�i � �i „.x/; bi

�
; for all x 2 S; i 2 R and ki .x/ WD u

�
i ; for all x 2 S; i … R;

(2.18)

where �i WD ��1.u�i � bi / and

„.x/ WD

nX
iD1

� i max
�
0; xi � x

�
i

�
; for all x 2 S (2.19)

achieves robust global exponential stabilization of the uncongested equilibrium point x� of system
(2.15), that is, x� is RGES for the closed-loop system (2.15) with u D k.x/. Moreover, for every
� 2 .0; ��/, there exist constants Q;h; �; A;K > 0 so that the function V W S ! <C defined by

V.x/ WD

nX
iD1

� i jxi � x
�
i j C A„.x/CK max

 
0;

nX
iD1

Ii .x/ � P.x/

!
; for all x 2 S; (2.20)
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where Ij .x/ WD
jP
iD1

xi for j D 1; : : : ; n and

P.x/ WD Q � � min .h;„.x// (2.21)

is a Lyapunov function with exponent 1 for the closed-loop system (2.15) with u D k.x/.

Although Theorem 2.1 is an existence result, its proof is constructive and provides formulae for
all constants and for the index setR (see following sections). Notice that the index setR is the set of
all inflows that must be controlled in order to be able to guarantee that the uncongested equilibrium
point is RGES; consequently, the knowledge of the index set R is critical.

The importance of Theorem 2.1 lies on the facts as follows:

� Theorem 2.1 provides a family of robust global exponential stabilizers (parameterized by the
parameter � 2 .0; ��// and an explicit formula for the feedback law (formula (2.18)).
� The achieved stabilization result is robust for all possible (and even time-varying) priority rules

for the junctions that may apply at specific freeways; thus, there is no need to know or estimate
the applied priority rules.
� Theorem 2.1 provides an explicit formula for the Lyapunov function of the closed-loop system.

This is important, because the knowledge of the Lyapunov function allows the study of the
robustness of the closed-loop system to various disturbances (measurement errors, modelling
errors, etc.) as well the study of the effect of interconnections of freeways (by means of the
small-gain theorem; see [26]).

The main idea behind the proof of Theorem 2.1 is the construction of the Lyapunov function of
the closed-loop system, which acts as a CLF [26] for the open-loop system. The construction of the
Lyapunov function is based on the observation that there are no congestion phenomena when the
cell densities are sufficiently small, that is,

‘There exists a set � � S of the form � D .0; 	1�� : : :� .0; 	n�, where 	i > 0 for i D 1; : : : ; n are
constants, such that no congestion phenomena are present when x 2 �’.

The existence of the set� � S is important because, when no congestion phenomena are present,
then the freeway model admits the simple (cascade) form:

xC1 D x1�f1.x1/Cu1; x
C
i D xi�fi .xi /C.1�pi�1/fi�1.xi�1/CuiC1; for i D 2; : : : ; n; x 2 �

and a Lyapunov function for the aforementioned form can be a function of the form V1.x/ WD
nP
iD1

� i
ˇ̌
xi � x

�
i

ˇ̌
C A„.x/, where „.x/ WD

nP
iD1

� i max
�
0; xi � x

�
i

�
; and � 2 .0; 1� and A > 0 are

appropriate constants. The Lyapunov function for the freeway model is the linear combination of

the ‘Lyapunov function’ for the uncongested model (i.e. V1.x/ WD
nP
iD1

� i
ˇ̌
xi � x

�
i

ˇ̌
C A„.x// and

Figure 3. Idea behind Theorem 2.1.
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a penalty term, that is, the term max

�
0;

nP
iD1

Ii .x/ � P.x/

�
, that penalizes large cell densities (and

thus penalizes the possibility of the state being out of the set � � S ). The appropriate selection of
the weight of the penalty term K > 0 forces the selected control action to lead the state in the set
� � S (Figure 3). In other words, the construction of the CLF guarantees that the control action
will first eliminate all congestion phenomena and then will drive the state to the desired equilibrium.

3. PROOF OF MAIN RESULT

Assumption (H) has non-trivial consequences. A list of the most important consequences of
Assumption (H) is given in the following. All following consequences are exploited in the proof
of Theorem 2.1.

Consequences of Assumption (H):

(C1) The mappings Œ0; ıi � 3 ´ ! .´ � fi .´// > 0 are non-decreasing for i D 1; : : : ; n:

Property (C1) is a direct consequence of the fact that f 0i .´/ 6 1 for all ´ 2 .0; ıi /.
(C2) For each i D 1; : : : ; n, there exist constants �i 2 .0; 1/; Gi 2 Œ0; 1� such that

jxi � x
�
i � fi .xi /C fi .x

�
i /j 6 �i jxi � x�i j and

jfi .xi / � fi .x
�
i /j 6 Gi jxi � x�i j; for all xi ; x

�
i 2 Œ0;

Qıi �:
(3.1)

Property (C2) is a direct consequence of the fact that there exist constants Li 2 .0; 1/,
Qıi 2 .0; ıi � such that fi W Œ0; ai �! <C is C 1 on .0; ıi / and 1�Li 6 f 0i .´/ for all ´ 2 .0; Qıi /
and f 0i .´/ 6 1 for all ´ 2 .0; ıi /. We conclude that (3.1) holds with �i D Li 2 .0; 1/ and
Gi D 1.

(C3) There exist constants �i > 0.i D 1; : : : ; n) such that fi .´/ > �i´ for all ´ 2 Œ0; ai � and
i D 1; : : : ; n:
Property (C3) is a direct consequence of the fact that fi .´/ > .1�Li /´ for all ´ 2 .0; Qıi � (a
direct consequence of the fact that 1 � Li 6 f 0i .´/ for all ´ 2 .0; Qıi //, the fact that fi .´/ >
fi . Qıi / for all ´ 2 Œ Qıi ; ıi � and the fact that fi .´/ > f min

i for all ´ 2 Œ Qıi ; ıi � (for example, the

selection �i D min
�
1 � Li ;

fi .
Qıi /
ıi

;
f min
i

ai

�
satisfies (C3)).

The following consequence provides a useful linear lower bound on a weighted sum of exit
rates. Its proof is provided in the Appendix.

(C4) For every r2; : : : ; rn > 0 with ri < min .qi ; ciai / for i D 2; : : : ; n, there exists a constant
C > 0 such that the following inequality holds for all x 2 S WD .0; a1� � : : : .0; an�; u 2
U D .0;C1/ � Œ0; r2� � ::: � Œ0; rn�; d D .d2; : : : ; dn/ 2 Œ0; 1�

n�1 with pn D 1 D snC1 W

nX
iD1

.1C pi .n � i// siC1fi .xi / > C
nX
iD1

.nC 1 � i/ xi : (3.2)

Remark 3.1
The proof of Property (C4) implies that the constant C > 0 can be estimated in a straightforward
way. We define the positive constants Yi > 0 (i D 1; : : : ; n/ using the recursive formula:

Yk�1 D min

�
Yk;

1C pk�1.nC 1 � k/

nC 2 � k
lk�k�1;

.nC 1 � k/
�
ak � c

�1
k
rk
�
Yk

2.nC 1 � k/ak C 2.nC 2 � k/ak�1
;

qk � rk

1 � pk�1

1C pk�1.nC 1 � k/

.nC 2 � k/ak�1

�
(3.3)
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for k D n; n � 1; : : : ; 2, with Yn D �n, where �i > 0 (i D 1; : : : ; n/ are the constants involved in
Property (C3) and lk D min

�
1; ckak�rk
2.1�pk�1/fk�1.ık�1/

�
for k D 2; : : : ; n. Then the constant C > 0

can be selected as C D Y1. However, the estimation of the constant C > 0 by the recursive formula
(3.3) is, in general, conservative.

Finally, the last consequence provides useful equalities and inequalities for a weighted sum of all
vehicle densities of the freeway. Its proof is provided in the Appendix.

(C5) The following equality holds for all x 2 S WD .0; a1� � : : : .0; an�; u D .u1; : : : ; un/0 2
.0;C1/ � <n�1C , d D .d2; : : : ; dn/ 2 Œ0; 1�n�1with pn D 1 D snC1 W

nX
iD1

Ii .x
C/ D

nX
iD1

Ii .x/C

nX
iD1

.nC 1 � i/ wiui �

nX
iD1

.1C pi .n � i// siC1fi .xi /; (3.4)

where Ij .x/ WD
jP
iD1

xi for j D 1; : : : ; n. Moreover, for every r2; : : : ; rn > 0 with ri <

min .qi ; ciai / for i D 2; : : : ; n, the following inequality holds:

nX
iD1

Ii .x
C/ 6 .1�C/

nX
iD1

Ii .x/C

nX
iD1

.nC 1 � i/ ui ; for all .x; u; d/ 2 S�U � Œ0; 1�n�1;

(3.5)

where U D .0;C1/ � Œ0; r2� � : : : � Œ0; rn�, and C > 0 is the constant involved in (3.2).

We are now ready to provide the proof of Theorem 2.1.

Proof of Theorem 2.1
Define ˇn D Qın and ˇi 2 .0; Qıi �, for i D 1; : : : ; n � 1 to be the unique solution of the equation

fi .ˇi / D min

�
fi . Qıi /;

qiC1 � u
�
iC1

1 � pi

�
: (3.6)

Because the inequalities (2.17) and the fact that ˇn D Qın, it follows that ˇi > x�i for i D 1; : : : ; n.
Define !i D ci

�
ai � x

�
i

�
�u�i �.1�pi�1/fi�1.x

�
i�1/ for i D 2; : : : ; n and !1 D c1

�
a1 � x

�
1

�
�u�1 .

Next define:

	i D min

�
ˇi ; x

�
i C

!i

2ci
; x�i C

!iC1

2.1 � pi /

�
for i D 1; : : : ; n � 1 and 	n D min

�
ˇn; x

�
n C

!n

2cn

�
:

(3.7)

Again, because the inequalities (2.17) and the fact that ˇi > x�i for i D 1; : : : ; n, it follows that
	i > x

�
i for i D 1; : : : ; n.

It follows from (2.5), (2.7), (2.8), (2.9), (2.11), (2.12), (2.13), (3.6) and (3.7) that the following
equations hold when x 2 � D .0; 	1� � : : : � .0; 	n� and ui 2 Œ0; u�i � for i D 1; : : : ; n:

wi D 1; for i D 1; : : : ; n and si D 1; for i D 2; : : : ; n (3.8)

xC1 D x1�f1.x1/Cu1; x
C
i D xi�fi .xi /C.1�pi�1/fi�1.xi�1/CuiC1; for i D 2; : : : ; n: (3.9)

To see this, notice that for all x 2 � D .0; 	1� � : : : � .0; 	n� and u 2 Œ0; u�1� � : : : � Œ0; u
�
n�

we have u1 6 min .q1; c1.a1 � x1// and ui C .1 � pi�1/fi�1.xi�1/ 6 min .qi ; ci .ai � xi // for
i D 2; : : : ; n. Indeed, Assumption (H) in conjunction with (2.17) and definition (3.7) implies that

ui C .1 � pi�1/fi�1.xi�1/ 6 u�i C .1 � pi�1/fi�1.	i�1/ 6 u�i C .1 � pi�1/fi�1.ˇi�1/ 6 qi
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for i D 2; : : : ; n and for all x 2 � D .0; 	1� � : : : � .0; 	n� and u 2 Œ0; u�1� � : : : � Œ0; u
�
n�. The

inequality u1 6 u�1 6 q1 is directly implied by (2.17). Moreover, Assumption (H) (and particularly
the fact that fi is increasing on Œ0; ıi � with f 0i .´/ 6 1 for all ´ 2 .0; ıi / for i D 1; : : : ; n/ in
conjunction with (2.17) and definition (3.7) implies that

ui C .1 � pi�1/fi�1.xi�1/ 6 u�i C .1 � pi�1/fi�1.x�i�1/
C .1 � pi�1/

�
fi�1.xi�1/ � fi�1.x

�
i�1/

�
6 u�i C .1 � pi�1/fi�1.x�i�1/C .1 � pi�1/max

�
0; xi�1 � x

�
i�1

�
6 u�i C .1 � pi�1/fi�1.x�i�1/C

!i

2
D
1

2
ci
�
ai � x

�
i

�
C
1

2
u�i C

1

2
.1 � pi�1/fi�1.x

�
i�1/Dci

�
ai� x

�
i

�
�
!i

2
6 ci

�
ai � x

�
i

�
� ci max

�
0; xi � x

�
i

�
6 ci

�
ai � x

�
i

�
C ci

�
x�i � xi

�
D ci .ai � xi /

for i D 2; : : : ; n and for all x 2 � D .0; 	1� � : : : � .0; 	n� and u 2 Œ0; u�1� � : : : � Œ0; u
�
n�. The

inequality u1 6 u�1 6 c1.a1 � x1/ is a consequence of (2.17), definition (3.7) and the inequalities

u�1 6 1
2
u�1 C

1
2
c1
�
a1 � x

�
1

�
D c1

�
a1 � x

�
1

�
� !1

2
6 c1

�
a1 � x

�
1

�
� c1 max

�
0; x1 � x

�
1

�
6 c1

�
a1 � x

�
1

�
C c1

�
x�1 � x1

�
D c1 .a1 � x1/ :

Let �i 2 .0; 1/,Gi 2 Œ0; 1� (i D 1; : : : ; n/, be the constants involved in Property (C2). Let � 2 .0; 1�
be a constant so that

L WD max

�
�n; max

iD1;:::;n�1
.�i C �Gi .1 � pi //

�
< 1: (3.10)

Notice that max

�
�n; max

iD1;:::;n�1
.�i C �Gi .1 � pi //

�
< 1 for all � 2 .0; 1/. In what follows, we

have pn D 1 D snC1. Let ri D u�i for i D 2; : : : ; n, and let C > 0 be the constant involved in
(3.2). Let R � ¹1; : : : ; nº be a subset of the set of all indices i 2 ¹1; : : : ; nº for which u�i > 0 and
such that X

i…R

.nC 1 � i/ u�i < min
iD1;:::;n

�
..n � i/ pi C 1/ fi .x

�
i /
�

and

X
i…R

.nC 1 � i/ u�i < C min
iD1;:::;n

..nC 1 � i/ 	i / ;
(3.11)

where 	i > x�i for i D 1; : : : ; n are the constants defined by (3.7). Such a set R � ¹1; : : : ; nº
always exists (for example, R � ¹1; : : : ; nº can be the set of all indices i 2 ¹1; : : : ; nº for which
u�i > 0/. Inequalities (3.11) imply that there exist constants " 2 .0; 1/ and bi 2 .0; u�i / for i 2 R
such that

P
i2R

.nC 1 � i/ bi C
P
i…R

.nC 1 � i/ u�i 6 min
iD1;:::;n

�
..n � i/ pi C 1/ fi .x

�
i /
�

andP
i2R

.nC 1 � i/ bi C
P
i…R

.nC 1 � i/ u�i 6 "C min
iD1;:::;n

..nC 1 � i/ 	i / :

(3.12)
We next define the following parameters:

� Define h WD min
iD1;:::;n

�
� i
�
	i � x

�
i

��
.
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� Define

Q WD max

 
min

iD1;:::;n
.	i .nC 1 � i// ; .1 � C/

nX
iD1

Ii .x
�/

C.1 � C/h max
iD1;:::;n

�
.nC 1 � i/��i

�
C

nX
iD1

.nC 1 � i/ u�i

!

and � WD h�1
�
Q � " min

iD1;:::;n
..nC 1 � i/ 	i /

�
:

� Define �� WD min

�
h; .�L/�1

P
i2R

.nC 1 � i/
�
u�i � bi

��
and let � 2 .0; ��/.

� Define A WD 1C .1 � L/�1
P
i2R

� i�i , where �i WD ��1.u�i � bi / for i 2 R.

� Define K WD

nP
iD1

� i max.ai�x�i ;x
�

i /CA
nP
iD1

� i.ai�x�i /�.ACL/h

.1�"/C min
iD1;:::;n

..nC1�i/�i /
.

We next prove the implication:

If x 2� D .0; 	1��: : :�.0; 	n�; d 2 Œ0; 1�
n�1and u 2 Œ0; u�1��: : :�Œ0; u

�
n� then „.xC/ 6 L„.x/;

(3.13)

where L 2 .0; 1/ is defined by (3.10) and xC D QF .d; x; u/. Indeed, using (3.9) and definition
(2.19), we acquire for all x 2 � D .0; 	1��: : :�.0; 	n�, d 2 Œ0; 1�n�1 and u 2 Œ0; u�1��: : :�Œ0; u

�
n�:

„.xC/ D

nX
iD2

� i max
�
0; xi � fi .xi /C .1 � pi�1/fi�1.xi�1/C ui � x

�
i

�
C � max

�
0; x1 � f1.x1/C u1 � x

�
1

�
6

nX
iD1

� i max
�
0; xi � fi .xi /C fi .x

�
i / � x

�
i

�

C

nX
iD2

� i .1 � pi�1/max
�
0; fi�1.xi�1/ � fi�1.x

�
i�1/

�
:

(3.14)

Using (3.1), the fact that 	i 6 Qıi for i D 1; : : : ; n (a consequence of (3.6) and (3.7)) and the fact
that fi is increasing on Œ0; Qıi � for i D 1; : : : ; n (a consequence of Assumption (H)), we obtain

max
�
0; fi .xi / � fi .x

�
i /
�
6 Gi max

�
0; xi � x

�
i

�
; for all xi 2 Œ0; 	i �; i D 1; : : : ; n: (3.15)

Using Properties (C1) and (C2) and the fact that 	i 6 Qıi for i D 1; : : : ; n (a consequence of (3.6)
and (3.7)), we obtain

max
�
0; xi � fi .xi /C fi .x

�
i / � x

�
i

�
6 �i max

�
0; xi � x

�
i

�
; for all xi 2 Œ0; 	i �; i D 1; : : : ; n:

(3.16)

Combining (3.10), (3.14), (3.15) and (3.16), we obtain implication (3.13).
Next, we show the implication:

If x 2 S; d 2 Œ0; 1�n�1 and u 2 Œ0; u�1� � : : : � Œ0; u
�
n� then P.xC/ > P.x/; (3.17)

where xC D QF .d; x; u/. Indeed, (3.17) is a direct consequence of (3.13) and definition (2.21) when
x 2 � D .0; 	1� � : : : � .0; 	n�. On the other hand, when x 2 Sn�, there exists at least one i 2
¹1; : : : ; nº for which xi > 	i . Therefore, definition (2.19) implies „.x/ > min

iD1;:::;n

�
� i
�
	i � x

�
i

��
,

and consequently definition (2.21) gives P.x/ D Q � �h (a consequence of the fact that
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h D min
iD1;:::;n

�
� i
�
	i � x

�
i

��
/. Because P.x/ > Q � �h for all x 2 S (a consequence of (2.21)), we

obtain P.xC/ > Q � �h D P.x/ when x 2 Sn�.
In what follows, we have xC D QF .d; x; k.x//. Next, we make the following claims. Their proofs

can be found in the Appendix.

(Claim 1): For all x 2 S; d 2 Œ0; 1�n�1; the following inequality holds:

V.xC/ 6 V.x/ � .1 � L/
nX
iD1

� i jxi � x
�
i j : (3.18)

(Claim 2): There exist constants K2 > K1 > 0 such that the following inequality holds:

K1 jx � x
�j 6 V.x/ 6 K2 jx � x�j for all x 2 S: (3.19)

Using (3.18), the fact that � 2 .0; 1�, and (3.19), we obtain for all x 2 S , d 2 Œ0; 1�n�1:

V.xC/6 V.x/�.1�L/
nX
iD1

� i jxi � x
�
i j6 V.x/�.1�L/�n jx � x�j6

�
1 � .1 � L/�nK�12

�
V.x/:

The aforementioned inequality implies that the inequality

V. QF .d; x; k.x/// 6 QLV.x/ for all x 2 S; d 2 Œ0; 1�n�1 (3.20)

holds with QL WD 1 � .1 � L/�nK�12 . Notice that QL 2 .0; 1/. Inequalities (3.19) and (3.20) show
that the function V W S ! <C is a Lyapunov function with exponent 1 for the closed-loop system
(2.15) with u D k.x/. Remark 1.3 guarantees that x� is RGES for the closed-loop system (2.15)
with u D k.x/. The proof is complete.

Remark 3.2
The proof of Theorem 2.1 provides a methodology for obtaining an estimation of the set R �
¹1; : : : ; nº, the constant � 2 .0; 1� and the critical constant �� > 0. Let ri D u�i for i D 2; : : : ; n
and let C > 0 be the constant involved in (3.2). Select R � ¹1; : : : ; nº to be a subset of the set of
all indices i 2 ¹1; : : : ; nº, for which u�i > 0 and for which there exist bi 2 .0; u�i / such thatX

i2R

.nC 1 � i/ bi C
X
i…R

.nC 1 � i/ u�i 6 min
iD1;:::;n

�
..n � i/ pi C 1/ fi .x

�
i /
�

and

X
i2R

.nC 1 � i/ bi C
X
i…R

.nC 1 � i/ u�i < C min
iD1;:::;n

..nC 1 � i/ 	i / ;

where 	i > x�i , for i D 1; : : : ; n, are the constants defined by (3.6). Let " 2 .0; 1/ be a constant that
satisfies

P
i2R

.nC 1 � i/ bi C
P
i…R

.nC 1 � i/ u�i 6 "C min
iD1;:::;n

..nC 1 � i/ 	i /. The estimation of

the critical constant �� > 0 may be carried out in the following way:

� Select � 2 .0; 1� so that L D max

�
�n; max

iD1;:::;n�1
.�i C �Gi .1 � pi //

�
< 1, where �i 2

.0; 1/; Gi 2 Œ0; 1�.i D 1; : : : ; n/, are the constants involved in Property (C2).
� Define h WD min

iD1;:::;n

�
� i
�
	i � x

�
i

��
.

� Define Q WD max

�
min

iD1;:::;n
.	i .nC 1 � i// ;

.1 � C/
nP
iD1

Ii .x
�/ C .1 � C/h max

iD1;:::;n

�
.n C 1 � i/��i

�
C

nP
iD1

.n C 1 � i/ u�i

�
and

� WD h�1
�
Q�" min

iD1;:::;n
..nC1�i/ 	i /

�
, where Ij .x/ WD

jP
iD1

xi for j D 1; : : : ; n.
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The estimated value of �� > 0 is given by �� WD min

�
h; .�L/�1

P
i2R

.nC 1 � i/
�
u�i � bi

��
. How-

ever, the estimated value of �� > 0, which is obtained by applying the aforementioned methodology,
may be conservative (significantly smaller than the actual value).

4. ILLUSTRATIVE EXAMPLES

The issue of the selection of which specific inflows must be controlled for the stabilization of
the uncongested equilibrium point of a freeway is crucial. The following example illustrates how
Theorem 2.1 can be used for such a selection.

Example 4.1
Consider a freeway model of the form (2.11), (2.12), (2.13) and (2.8) with n D 4 cells. The first
and the third cell have one on-ramp, while there are no intermediate off-ramps (i.e. pi D 0 for
i D 1; 2; 3/. Each cell has jam density ai D 80 [veh] and is characterized by the same demand
functions that are given by

fi .´/ D

8<
:

.9=10/´ for ´ 2 Œ0; 40�
.9=10/.80 � ´/ for ´ 2 .40; 370=9� .i D 1; : : : ; 4/:

35 for ´ 2 .370=9; 80�

Assumptions (H) hold with ıi D Qıi D 40 [veh], ci D 9=10, qi D 36 [veh] (leading to a triangular-
shaped FD) and Li D 1=10 (i D 1; : : : ; 4/. Property (C3) holds with �i D 7=16 for i D 1; : : : ; 4.
The value of constant C > 0 that satisfies (3.2) was estimated by applying the procedure described
in Remark 3.1 with r1 D 35:9 [veh], r2 D r4 D 0 [veh] and r3 D 1 [veh]. It was found that
C > 0:005.

Next, we consider inflows u�1 D 35:5 [veh], u�2 D u�4 D 0 [veh] and u�3 > 0 [veh]. The uncon-
gested equilibrium point exists for all u�3 < 0:5 [veh]. However, for constant inflow u1 D 35:5 [veh],
the uncongested equilibrium point is not globally exponentially stable because of the existence of
congested equilibria. Therefore, there is a need for controlling the main inflow u1. At this point, the
following question becomes crucial:

‘For what values of u�
3
2 .0; 0:5/ can the uncongested equilibrium point be globally exponentially

stabilized by controlling only the inflow u1, i.e., for what values of u�
3
2 .0; 0:5/ do we have

R D ¹1º?’.

We checked numerically the inequalities (3.11) by computing the values of	i from (3.6) for given
values of u�3 . It was found that inequalities (3.11) hold for R D ¹1º, provided that u�3 < 0:1 [veh].
Therefore, we conclude that the uncongested equilibrium point can be globally exponentially stabi-
lized by controlling only the inflow u1 for u�3 < 0:1 [veh]. The answer may be conservative, since
the estimation of the constant C > 0 that satisfies (3.2) is conservative.

Example 4.2
Consider a freeway model of the form (2.11), (2.12), (2.13) and (2.8) with n D 5 cells. The freeway
stretch considered for the simulation test is 2.5 km long and has three lanes. The cells are homoge-
neous; thus, each cell is 0.5 km, and it has no intermediate on/off-ramps (i.e. ui .t/ � u�i D 0 for
i D 2; 3; 4; 5 and pi D 0 for i D 1; : : : ; 4/ (Figure 4). Consequently, the only control possibil-
ity is the inflow u1 of the first cell. The simulation time step is set to T D 15 s. However, because
all flows and densities are measured in [veh] (as imposed by the form of the model (2.11), (2.12),
(2.13) and (2.8)), the cell length, the time step and the number of lanes do not appear explicitly, but
they are only reflected implicitly in the values of every variable and every constant (e.g. critical den-
sity, jam density, flow capacity and wave speed) corresponding to density or flow. Each cell has the
same critical density ıi D 55 [veh] (i D 1; : : : ; 5/ (corresponding to 36.7 [veh/km/lane] with the
aforementioned settings) and the same jam density ai D 170 [veh] (i D 1; : : : ; 5/ (corresponding to
113.3 [veh/km/lane]). We also suppose that the cell flow capacities are qi D 25 [veh] i D 1; 2; 3; 4
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Figure 4. Freeway stretch.

Figure 5. Fundamental diagram of every cell.

and q5 D 20 [veh] (corresponding to 2000 [veh/h/lane] and 1600 [veh/h/lane], respectively). Note
that the last cell has 20% lower flow capacity (e.g. due to grade or curvature or tunnel or bridge)
than the first four cells and is therefore a potential bottleneck for the freeway. Furthermore, the con-
gestion wave speed is ci D 25=115.i D 1; : : : ; 4/ and c5 D 20=115 (corresponding to 26 and
20.9 [km/h], respectively).

Figure 5 depicts the triangular FDs for the aforementioned model. The dash-dotted line cor-
responds to the demand function, while the solid line corresponds to the supply function. More
precisely, the demand part for every cell is given by the following functions

fi .´/ D

8<
:

.5=11/´ ´ 2 Œ0; 55�
.25=115/.170 � ´/ ´ 2 .55; 87:2�

18 ´ 2 .87:2; 170�

.i D 1; : : : ; 4/; f5.´/ D

8<
:

.4=11/´ ´ 2 Œ0; 55�
.20=115/.170 � ´/ ´ 2 .170; 72:25�

17 ´ 2 .72:25; 170�:

Notice that the capacity drop phenomenon has been taken into account by considering a partly
decreasing demand function for overcritical densities xi 2 .55; 170�.

Assumption (H) holds with ıi D Qıi D 55 [veh] (i D 1; : : : ; 5/, Li D 6=11 (i D 1; : : : ; 4/, L5 D
7=11. The uncongested equilibrium point x�i D 11u�1=5[veh] (i D 1; : : : ; 4/, x�5 D 11u�1=4 [veh],
exists for u�1 < 20 [veh]. Simulations showed that the open-loop system converges to an uncon-
gested equilibrium point for main inflow u�1 less than 17 [veh]. For higher values of the main inflow,
the uncongested equilibrium point is not globally exponentially stable due to the existence of addi-
tional (congested) equilibria. This is shown in Figure 6, where the evolution of the Euclidean norm
of the deviation of the solution of the open-loop system, with constant inflow u�1 D 19:99 [veh],
from the uncongested equilibrium point is depicted. In this test, the solution is attracted by the
congested equilibrium .91:8; 91:8; 91:8; 91:8; 72:25/0 [veh] for which the value of the Euclidean
norm of its deviation from the uncongested equilibrium point is 97.12 [veh]. The components of
the uncongested equilibrium for u�1 D 19:99 [veh], are x�i D 43:978 [veh] .i D 1; : : : ; 4/ and
x�5 D 54:9725 [veh]. Therefore, if the objective is the operation of the freeway with large flows,
then a control strategy will be needed.

We next notice that Property (C2) holds with �i D 6=11;Gi D 5=11.i D 1; : : : ; 4/; �5 D 7=11

and G5 D 4=11. Therefore, we are in a position to achieve global exponential stabilization of the
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Figure 6. The evolution of the Euclidean norm of the deviation x.t/� x� of the state from the uncongested
equilibrium, i.e., jx.t/�x�j, for the open-loop system with constant inflow u�

1
D 19:99 [veh] and with fully

congested initial condition x0 D .a1; a2; a3; a4; a5/
0.

uncongested equilibrium point for model by using Theorem 2.1. Indeed, Theorem 2.1 guarantees
that for every � 2 .0; 1�, there exists a constant b1 2 .0; u�1/ and a constant � > 0 such that the
feedback law k W .0; 10�5 ! <C defined by

u1 D max

 
u�1 � �

5X
iD1

� i max
�
0; xi � x

�
i

�
; b1

!
(4.1)

achieves robust global exponential stabilization of the uncongested equilibrium point x� D
.x�1 ; : : : ; x

�
5 /
0 2 .0; 55/5 for the closed-loop system.

We selected u�1 D 19:99 [veh], which is very close to 20 [veh], the capacity flow of cell 5. The
value of the constant b1 2 .0; u�1/ was chosen to be 0.2 [veh]; this is a rather low minimum flow
value in practice but allows us here to study the dynamic properties of the regulators in a broader
feasible control area. Various values of the constants � 2 .0; 1� and � > 0were tested by performing
a simulation study with respect to various initial conditions. Low values for � 2 .0; 1� require large
values for � > 0 in order to have global exponential stability for the closed-loop system. Moreover,
in order to evaluate the performance of the controller, we used as a performance criterion the total
number of vehicles exiting the freeway (VEF) on the interval Œ0; N �, that is,

VEFN D

NX
kD0

f5.x5.k � T //: (4.2)

Notice that the freeway performs best (and total delays are minimized) if VEF is maximized; the
maximum theoretical value for VEF is 20 � .N C 1/, which is achieved if cell 5 is operating at
capacity flow (q5 D 20 [veh]) at all times. For N D 200, the maximum theoretical value of VEF is
4020 [veh].

All the following tests of the proposed regulator (4.1) were conducted with the same values
� D 0:7 and � D 0:6. The response of the density of the fifth cell for the closed-loop system
with the proposed feedback regulator (4.1) and initial condition x0 D .60; 57; 58; 60; 62/

0 is shown
in Figure 7 (solid line). The densities of all the other cells have similar responses and therefore
are omitted. Notice that all initial cell density values are slightly over-critical (slightly congested).
For this case, we had VEF200 D 3979:8 [veh]. The feedback regulator is seen to respond very
satisfactorily in this test and achieves an accordingly high performance.

A detailed comparison of the proposed feedback regulator (4.1) was made with the RLB PI reg-
ulator, which was proposed in [15]. The RLB PI regulator for the present system is implemented
as follows:

vi .t/ Dmin
�
umax;min .q1; c1.a1 � x1.t � 1//; u1.t � 1//

C ;max
�
umin; vi .t � 1/ �Kp .xi .t/ � xi .t � 1//CKI .ıi � xi .t//

�� (4.3)
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Figure 7. The response of the density of the fifth cell for the closed-loop system with initial condition
x0 D .60; 57; 58; 60; 62/0 using: the proposed feedback regulator (4.1) (solid line); and the random located

bottleneck PI regulator (dash-dotted line).

for i D 1; : : : ; 5,

vsmi .t/ D #vi .t/C .1 � #/ v
sm
i .t � 1/; for i D 1; : : : ; 5 (4.4)

j.t/ D min

²
l 2 ¹1; 2; 3; 4; 5º W vsml .t/ D min

iD1;:::;5

�
vsmi .t/

�³
(4.5)

u1.t/ D vj.t/; (4.6)

where  ;Kp; KI > 0 and # 2 .0; 1/ are constant parameters. Essentially, (4.3) reflects the par-
allel (independent) operation of five bounded PI-type regulators, one for each cell, while (4.4)
performs an exponential smoothing of the respective obtained inflows (with smoothing parameter
#/. Eventually, the smoothed inflow values are compared in (4.5) in order to pick the currently most
conservative regulator; whose (unsmoothed) inflow is finally actually activated as a control input
in (4.6); see [15] for the background and detailed reasoning for this approach. The parameters for
the RLB PI regulators are set (as proposed in [15] – with the suitable transformation in the cur-
rent units) to be Kp D 5=18;KI D 1=90, while  D 4 [veh], # D 0:5; umin D 0:2 [veh] and
umax D 25 [veh]. These values were indeed tested, before being adopted, and were indeed found
to be near optimal. Notice that all PI regulators were given the same gain values for simplicity and
convenience, as suggested in [15]. In all reported tests, the initial condition for the RLB PI regulator
was vi .�1/ D vsmi .�1/ D u1.�1/ D 20 [veh], for i D 1; : : : ; 5, and x.�1/ D x.0/ D x0, where
x0 is the vector of the initial values for the densities of every cell.

When applied to the same initial condition x0 D .60; 57; 58; 60; 62/0, the RLB PI regulator
(Figure 7, dash-dotted line), led to slower convergence compared with the proposed regulator (4.1)
(Figure 7, solid line). This is also reflected in the computed value of VEF200 D 3785:9 [veh] for
RLB PI regulator. In general, conducting a simulation study with various levels of initial condi-
tions, the proposed regulator (4.1) exhibited faster performance than the RLB PI regulator. For
example, Figure 8 shows the evolution of the Euclidean norm jx.t/ � x�j for the closed-loop sys-
tem with the proposed feedback regulator (4.1) (solid line) and for the closed-loop system with
the RLB PI regulator (4.3), (4.4), (4.5) and (4.6) (dash-dotted line), when starting from the ini-
tial condition x0 D .a1; a2; a3; a4; a5/

0, reflecting a fully congested original state. It is again clear
that the proposed feedback regulator (4.1) achieves faster convergence and higher performance of
VEF200 D 3845:2 [veh], while VEF200 D 3007:8 [veh] resulted for the RLB PI regulator.

We next investigated the robustness of the proposed feedback regulator with respect to measure-
ment errors. The applied formula for the measurements is

Qx.t/ D P .x.t/C Ae.t// ; (4.7)
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Figure 8. The evolution of the Euclidean norm of the deviation x.t/� x� of the state from the uncongested
equilibrium, that is, jx.t/ � x�j, for the closed-loop system and initial condition x0 D .a1; a2; a3; a4; a5/0

for two cases, for the proposed feedback regulator (4.1) (solid line) and for the random located bottleneck
PI regulator (4.3), (4.4), (4.5), (4.6) (dash-dotted line).

where P is the projection operator on the closure of S; e.t/ is a normalized vector and A > 0 is the
magnitude of the measurement error. In this case, the feedback law (4.1) was implemented based on
the state measurement Qx.t/ given by (4.7), that is,

u1.t/ D max

 
u�1 � �

5X
iD1

� i max
�
0; Qxi .t/ � x

�
i

�
; b1

!
: (4.8)

For comparison purposes, we also present the performance of the RLB PI regulator for the same
system, under the same measurement errors. In this case, (4.3) is replaced by the equation

vi .t/ D min .umax;min .q1; c1.a1 � x1.t � 1//; u1.t � 1//

C  ;max .umin; vi .t � 1/

�Kp . Qxi .t/ � Qxi .t � 1//

CKI .ıi � Qxi .t////

(4.9)

for i D 1; : : : ; 5, where the state measurement Qx.t/ is given by (4.7).
Figure 9 shows the evolution of the Euclidean norm of the deviation of the state from the uncon-

gested equilibrium point for two cases: for the closed-loop system with the proposed feedback
regulator (4.8) (solid line); and for the closed-loop system with the RLB PI regulator (4.9), (4.4),
(4.5) and (4.6) (dash-dotted line), where the state measurement in both cases is given by (4.7) with
A D 10 [veh], e.t/ D cos.! t/

p
5
.1; 1; : : : ; 1/, ! D 
 . The initial condition was the uncongested

equilibrium point.
In this test, the RLB PI regulator is less sensitive to measurement errors than the proposed feed-

back regulator (4.8), the latter producing a higher offset (Figure 9, solid line). This is also reflected
in the computed values of VEF200 D 3789 [veh] for the proposed feedback regulator (4.9) (which
is 6% less than the maximum value of VEF200/ and VEF200 D 4016:8 [veh] for the RLB PI reg-
ulator (which is 0.8% less than the maximum value of VEF200/ because of the measurement error.
The ultimate mean values of the states are much closer to the equilibrium values for the RLB PI reg-
ulator than for the proposed feedback regulator (4.8), indicating that the RLB PI regulator achieves
a much smaller mean offset in this case. It should be noted at this point that various frequencies !
were tested for measurement errors. While Figure 9 is typical for medium and high frequencies (the
RLB PI regulator achieves a smaller mean offset than the proposed feedback regulator (4.8)), the
results indicate higher sensitivity of the RLB PI regulator with respect to measurement errors at low
frequencies (Figure 10). For low frequency measurement errors, the proposed feedback regulator
(4.8) achieves a smaller mean offset than the RLB PI regulator, as shown in Figure 10. Figure 10
shows the evolution of the Euclidean norm of the deviation of the state from the uncongested
equilibrium point for two cases: for the closed-loop system with the proposed feedback regulator
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Figure 9. The evolution of the Euclidean norm of the deviation x.t/� x� of the state from the uncongested
equilibrium, i.e., jx.t/ � x�j, for the closed-loop system and initial condition the uncongested equilibrium
point for two cases: for the proposed feedback regulator (4.8) (solid line); and for the random located bot-
tleneck PI regulator (4.9), (4.4), (4.5) and (4.6) (dash-dotted line). In both cases, the state measurement is

given by (4.7) with A D 10 [veh], e.t/ D
�

cos.! t/=
p
5
�
.1; 1; : : : ; 1/ and ! D 
 .

Figure 10. The evolution of the Euclidean norm of the deviation x.t/�x� of the state from the uncongested
equilibrium, i.e., jx.t/ � x�j, for the closed-loop system and initial condition the uncongested equilibrium
point for two cases: for the proposed feedback regulator (4.8) (solid line); and for the random located bot-
tleneck PI regulator (4.9), (4.4), (4.5) and (4.6) (dash-dotted line). In both cases, the state measurement is

given by (4.7) with A D 10 [veh], e.t/ D
�

cos.! t/
.p

5
�
.1; 1; : : : ; 1/ and ! D 0:1.

(4.8) (solid line), and for the closed-loop system with the RLB PI regulator (4.9), (4.4), (4.5) and
(4.6) (dash-dotted line), where the state measurement in both cases is given by (4.7) with A D
10 [veh], e.t/ D

�
cos.! t/

.p
5
�
.1; 1; : : : ; 1/ ; ! D 0:1. The initial condition is the uncongested

equilibrium point.
The conclusions of this simulation study are as follows:

� The proposed feedback regulator (4.1) can achieve a faster convergence of the state to the
equilibrium compared with the RLB PI regulator in the absence of measurement errors.
� The proposed feedback regulator (4.1) is quite robust to measurement errors. However, it is

more sensitive to measurement errors with high frequency than the RLB PI regulator, but it is
less sensitive to low-frequency measurement errors than the RLB PI regulator. Intended future
extensions are expected to improve the properties of the proposed feedback regulator in this
respect, as well as in cases of modelling errors or persisting disturbances.

5. CONCLUSIONS

This work provided a rigorous methodology for the construction of a parameterized family of
explicit feedback laws that guarantee the robust global exponential stability of the uncongested equi-
librium point for general nonlinear and uncertain discrete-time freeway models. The construction
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of the global exponential feedback stabilizer was based on the CLF approach as well as on certain
important properties of freeway models.

Simulation-based comparisons were made with an existing feedback law, which was proposed in
the literature and has been in practical use. More specifically, we compared the performance and
some robustness properties of the closed-loop system under the effect of the proposed feedback law
and under the effect of the RLB PI regulator [15]. In most cases, it was found that the performance
and the robustness properties guaranteed by the implementation of the proposed feedback law were
good and comparable with or better than the performance and the robustness properties induced by
the RLB PI regulator.

Future research will address robustness issues in a rigorous way: the knowledge of a Lyapunov
function for the closed-loop system can be exploited to this purpose. Finally, the present approach
does not consider the impact of inflow control on upstream traffic flow conditions (e.g. queue form-
ing at on-ramps); future extensions will address these issues appropriately. Testing of the proposed
feedback approach with other (e.g. second-order) traffic simulation models is also under way.

APPENDIX

Proof of (C4): We prove the following claim:
(Claim): For all m D 1; : : : ; n � 1, there exists a constant Cm > 0 such that the following

inequality holds for all x 2 S WD .0; a1� � : : : � .0; an�, u 2 U D .0;C1/ � Œ0; r2� � : : : � Œ0; rn�,
d D .d2; : : : ; dn/ 2 Œ0; 1�

n�1:

nX
iDm

.1C pi .n � i// siC1fi .xi / > Cm
nX

iDm

.nC 1 � i/xi : (A.1)

Property (C4) is a direct consequence of the aforementioned claim.
First, we prove the claim for m D n � 1. Define ln D min

�
1; cnan�rn
2.1�pn�1/fn�1.ın�1/

�
. Indeed,

using Property (C3), we acquire for all .xn�1; xn/ 2 .0; an�1� � .0; an�, u 2 U D .0;C1/ �
Œ0; r2� � : : : � Œ0; rn�, d D .d2; : : : ; dn/ 2 Œ0; 1�n�1 with sn > ln:

fn.xn/C .1C pn�1/ snfn�1.xn�1/
> ln .1C pn�1/ �n�1xn�1 C �nxn
> .xn C 2xn�1/min

�
�n;

1Cpn�1
2

ln�n�1

�
:

(A.2)

On the other hand, for all .xn�1; xn/ 2 .0; an�1� � .0; an�; u 2 U D .0;C1/ � Œ0; r2� �
: : : � Œ0; rn�; d D .d2; : : : ; dn/ 2 Œ0; 1�n�1 with sn < ln, it follows from (2.8) that .1 �
pn�1/fn�1.xn�1/C un > min .qn; cn.an � xn//. We distinguish the cases:

� min .qn; cn.an � xn// D cn.an � xn/: In this case, we have an � c�1n qn 6 xn. Assumption
(H) in conjunction with the fact that un 6 rn < cnan implies that ln.1 � pn�1/fn�1.ın�1/C
rn > cn.an � xn/, which by virtue of definition ln D min

�
1; cnan�rn
2.1�pn�1/fn�1.ın�1/

�
, gives

xn >
1
2

�
an � c

�1
n rn

�
. Using Property (C3), we acquire

fn.xn/C .1C pn�1/ snfn�1.xn�1/

> �nxn > �n
1

2

�
an � c

�1
n rn

�
> �n

1

2

�
an � c

�1
n rn

� xn C 2xn�1
an C 2an�1

:

� min .qn; cn.an � xn// D qn. In this case, we obtain from (2.8) and the fact that un 6 rn < qn
the inequality sn > qn�rn

.1�pn�1/fn�1.xn�1/
. Using Property (C3), we acquire
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fn.xn/C .1C pn�1/ snfn�1.xn�1/ > �nxn C .1C pn�1/ qn�rn1�pn

> �nxn C .1C pn�1/ qn�rn1�pn

2xn�1
2an�1

> .xn C 2xn�1/min
�
�n;

qn�rn
1�pn

1Cpn�1
2an�1

�
:

It follows from (A.2) and the aforementioned inequalities that (A.1) holds with Cn�1 WD

min

�
�n;

1Cpn�1
2

ln�n�1;
�n.an�c�1n rn/
2.anC2an�1/

; 1Cpn�1
1�pn�1

qn�rn
2an�1

�
.

Next, we suppose that the claim holds for m D k 2 ¹2; : : : ; n � 1º, and we show that the claim

holds for m D k � 1. Define lk D min
�
1; ckak�rk
2.1�pk�1/fk�1.ık�1/

�
. Using (A.1) for m D k and

Property (C3), we obtain for all x 2 S WD .0; a1�� : : :� .0; an�, u 2 U D .0;C1/� Œ0; r2�� : : :�
Œ0; rn�, d D .d2; : : : ; dn/ 2 Œ0; 1�n�1 with sk > lk :

nX
iDk�1

.1C pi .n � i// siC1fi .xi /

D

nX
iDk

.1C pi .n � i// siC1fi .xi /C .1C pk�1.nC 1 � k// skfk�1.xk�1/

> Ck
nX
iDk

.nC 1 � i/xi C .1C pk�1.nC 1 � k// lk�k�1xk�1 >

> min

�
Ck ;

1C .nC 1 � k/pk�1

nC 2 � k
lk�k�1

� nX
iDk�1

.nC 1 � i/xi :

(A.3)

On the other hand, for all x 2 S WD .0; a1� � : : : � .0; an�; u 2 U D .0;C1/ �

Œ0; r2� � : : : � Œ0; rn�; d D .d2; : : : ; dn/ 2 Œ0; 1�n�1 with sk < lk , it follows from (2.8) that
lk.1 � pk�1/fk�1.xk�1/C uk > min .qk; ck.ak � xk//. We distinguish the cases:

� min .qk; ck.ak � xk// D ck.ak � xk/. Assumption (H) in conjunction with the fact that uk 6
rk < ckak implies that lk.1 � pk�1/fk�1.ık�1/ C rk > ck.ak � xk/, which by virtue of
definition lk D min

�
1; ckak�rk
2.1�pk�1/fk�1.ık�1/

�
, gives xk >

1
2

�
ak � c

�1
k
rk
�
. Using (A.1) for

m D k and Property (C3), we acquire

nX
iDk�1

.1C pi .n � i// siC1fi .xi / >
nX
iDk

.1C pi .n � i// siC1fi .xi /

> Ck
nX
iDk

.nC 1 � i/xi D Ck

nX
iDkC1

.nC 1 � i/xi C Ck.nC 1 � k/xk

> Ck
nX

iDkC1

.nC 1 � i/xi C Ck.nC 1 � k/
1

2

�
ak � c

�1
k rk

�

> Ck
nX

iDkC1

.nC 1 � i/xiC Ck.nC 1 � k/
1

2

�
ak � c

�1
k rk

� .nC 1 � k/xk C .nC 2 � k/xk�1
.nC 1 � k/ak C .nC 2 � k/ak�1

> Ck min

 
1;

.nC 1 � k/
�
ak � c

�1
k
rk
�

2.nC 1 � k/ak C 2.nC 2 � k/ak�1

!
nX

iDk�1

.nC 1 � i/xi :

� min .qk; ck.ak � xk// D qk . In this case, we obtain from (2.8) and the fact that uk 6 rk < qk
the inequality sk > qk�rk

.1�pk�1/fk�1.xn�1/
. Consequently, we acquire
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nX
iDk�1

.1C pi .n � i// siC1fi .xi /

D

nX
iDk

.1C pi .n � i// siC1fi .xi /C .1C pk�1.nC 1 � k// skfk�1.xk�1/

> Ck
nX
iDk

.nC 1 � i/xi C .1C pk�1.nC 1 � k//
qk � rk

1 � pk�1

> Ck
nX
iDk

.nC 1 � i/xi C .1C pk�1.nC 1 � k//
qk � rk

1 � pk�1

.nC 2 � k/xk�1

.nC 2 � k/ak�1

> min

�
Ck ;

qk � rk

1 � pk�1

1C pk�1.nC 1 � k/

.nC 2 � k/ak�1

� nX
iDk�1

.nC 1 � i/xi :

It follows from (A.3) and the aforementioned inequalities that the claim holds for m D k � 1 with

Ck�1 D min

�
Ck;

1C pk�1.nC 1 � k/

nC 2 � k
lk�k�1 ;

�
.nC 1 � k/Ck

�
ak � c

�1
k
rk
�

2.nC 1 � k/ak C 2.nC 2 � k/ak�1
;

�
qk � rk

1 � pk�1

1C pk�1.nC 1 � k/

.nC 2 � k/ak�1

�
:

Proof of (C5): The following equations hold for all x 2 S WD .0; a1� � : : : .0; an�; u D
.u1; : : : ; un/

0 2 .0;C1/�<n�1C ; d D .d2; : : : ; dn/ 2 Œ0; 1�
n�1 with pn D 1 D snC1 and are direct

consequences of (2.11), (2.12), (2.13) and definitions Ij .x/ WD
jP
iD1

xi for j D 1; : : : ; n:

Ij .x
C/ D Ij .x/C

jX
iD1

wiui �

j�1X
iD1

siC1pifi .xi / � sjC1fj .xj /; for j D 2; : : : ; n � 1 (A.4)

In.x
C/ D In.x/C

nX
iD1

wiui �

n�1X
iD1

siC1pifi .xi / � fn.xn/: (A.5)

Equality (3.4) is a consequence of (2.7), (A.4), (A.5) and definitions pn D 1 D snC1.
Combining (3.4) and (3.2), we acquire

nX
iD1

Ii .x
C/ 6

nX
iD1

Ii .x/ � C

nX
iD1

.nC 1 � i/ xi

C

nX
iD1

.nC 1 � i/ wiui ; for all .x; u; d/ 2 S � U � Œ0; 1�n�1:

(A.6)

Because wi 2 Œ0; 1� (i D 1; : : : ; n/ and
nP
iD1

Ii .x/ D
nP
iD1

.nC 1 � i/ xi , it follows from (A.6) that

(3.5) holds.
Proof of the Claim 1 made in the proof of Theorem 2.1: We distinguish two cases.

Case 1: x 2 � D .0; 	1� � : : : � .0; 	n�; d 2 Œ0; 1�n�1.
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Definition (2.20) and equations (3.4), (3.8), (3.9) with ui D ki .x/ 6 u�i give:

V.xC/ D � jx1 � f1.x1/C u1 � x
�
1 j C

nX
iD2

� i jxi � fi .xi /C .1 � pi�1/fi�1.xi�1/C ui � x
�
i j

CK max

 
0;

nX
iD1

Ii .x/ �

nX
iD1

.1C .n � i/pi / fi .xi /C

nX
iD1

.nC 1 � i/ ui � P.x
C/

!

C A„.xC/
(A.7)

with pn D 1. Using (3.13), Property (C2), the fact that 	i 6 Qıi for i D 1; : : : ; n (a consequence of
(3.6) and (3.7)) and definition (3.10), we obtain from (A.7)

V.xC/ 6 L
nX
iD1

� i jxi � x
�
i j C

nX
iD1

� i jui � u
�
i j C LA„.x/

CK max

 
0;

nX
iD1

Ii .x/ �

nX
iD1

.1C .n � i/pi / fi .xi /C

nX
iD1

.nC 1 � i/ ui � P.x
C/

!
:

(A.8)
It follows from the combination of (2.18) and inequality (A.8) that the following inequality holds
for all x 2 �

V.xC/ 6 L
nX
iD1

� i jxi � x
�
i j C

X
i2R

� i min
�
�i„.x/; u

�
i � bi

�
C LA„.x/

CK max

 
0;

nX
iD1

Ii .x/ �

nX
iD1

.1C .n � i/pi / fi .xi /C

nX
iD1

.nC 1 � i/ ui � P.x
C/

!
:

(A.9)
Inequality (3.2) and (3.8) imply that:

nX
iD1

.1C .n � i/pi / fi .xi / > C
nX
iD1

Ii .x/: (A.10)

Using (A.8) and (A.10), we acquire

V.xC/ 6 L
nX
iD1

� i jxi � x
�
i j C

X
i2R

� i min
�
�i„.x/; u

�
i � bi

�
C LA„.x/

CK max

 
0; .1 � C/

nX
iD1

Ii .x/C

nX
iD1

.nC 1 � i/ ui � P.x
C/

!
:

(A.11)

We next distinguish two cases:
Case 1(i): „.x/ 6 � . In this case, we have �i„.x/ 6 u�i � bi for all i 2 R. Because „.x/ 6 h

(a consequence of � < �� 6 h/, we acquire from (3.13) and definition (2.18) that ui D ki .x/ D
u�i � �i „.x/ > bi for all i 2 R and min

�
h;„.xC/

�
6 Lmin .h;„.x//. Using the definitions

Ij .x/ WD
jP
iD1

xi for j D 1; : : : ; n; P.x/ WD Q � � min .h;„.x// and the facts

� Q > .1 � C/
nP
iD1

Ii .x
�/C .1 � C/h max

iD1;:::;n

�
.nC 1 � i/��i

�
C

nP
iD1

.nC 1 � i/ u�i ;

�
P
i2R

.nC 1 � i/ �i D ��1
P
i2R

.nC 1 � i/
�
u�i � bi

�
> .��/�1

P
i2R

.nC 1 � i/
�
u�i � bi

�
>

�L (a consequence of � 6 �� 6 .�L/�1
P
i2R

.nC 1 � i/
�
u�i � bi

�
);
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�
nP
iD1

.nC 1 � i/ .xi � x
�
i / 6

nP
iD1

�
.nC 1 � i/��i

�
� i max.0; xi � x�i / 6 max

iD1;:::;n
..nC 1

�i/ ��i
�
„.x/ for i D 1; : : : ; n(a consequence of definition (2.19));

we acquire

Q > .1 � C/
nX
iD1

Ii .x
�/C .1 � C/h max

iD1;:::;n

�
.nC 1 � i/��i

�
C

nX
iD1

.nC 1 � i/ u�i )

Q > .1 � C/
nX
iD1

Ii .x
�/C .1 � C/„.x/ max

iD1;:::;n

�
.nC 1 � i/��i

�
C

nX
iD1

.nC 1 � i/ u�i )

Q > �L„.x/ �
X
i2R

.nC 1 � i/ �i„.x/C .1 � C/

nX
iD1

Ii .x
�/

C .1 � C/

nX
iD1

.nC 1 � i/ .xi � x
�
i /C

nX
iD1

.nC 1 � i/ u�i )

Q > � min.h;„.xC//C .1 � C/
nX
iD1

Ii .x/

C
X
i2R

.nC 1 � i/ .u�i � �i„.x//C
X
i…R

.nC 1 � i/ u�i )

0 >
nX
iD1

.nC 1 � i/ ui C .1 � C/

nX
iD1

Ii .x/ � P.x
C/:

Combining (A.11) with the aforementioned inequality, we obtain

V.xC/ 6 L
nX
iD1

� i jxi � x
�
i j C

X
i2R

� i�i„.x/C LA„.x/: (A.12)

It follows from (A.12) and the fact that A > .1 � L/�1
P
i2R

� i�i that (3.18) holds when „.x/ 6 � .

Case 1(ii): „.x/ > � . In this case, �i„.x/ > u�i � bi for all i 2 R. Definition (2.18) implies that
ki .x/ D bi for all i 2 R. Moreover, in this case, there exists at least one i 2 ¹1; : : : ; nº for which
xi > x�i . Because fi is increasing on Œ0; 	i � for i D 1; : : : ; n (a consequence of (H) and the fact
that 	i 6 Qıi /, we conclude that there exists at least one i 2 ¹1; : : : ; nº for which fi .xi / > fi .x

�
i /.

Consequently, we obtain from (3.12) and the fact that ui D ki .x/ D bi for all i 2 R:
nX
iD1

.nC 1 � i/ ui D
X
i2R

.nC 1 � i/ bi C
X
i…R

.nC 1 � i/ u�i

6 min
iD1;:::;n

�
..n � i/ pi C 1/ fi .x

�
i /
�

6
nX
iD1

..n � i/ pi C 1/ fi .xi /:

Combining (3.17) and (A.9) with the aforementioned inequality and using the fact A > .1 �

L/�1
P
i2R �

i�i , we conclude that (3.18) holds when „.x/ > � .
Case 2: x 2 Sn�; d 2 Œ0; 1�n�1.
In this case, there exists at least one i 2 ¹1; : : : ; nº for which xi > 	i . Therefore, defini-

tion (2.19) implies „.x/ > h D min
iD1;:::;n

�
� i
�
	i � x

�
i

��
, and consequently, definition (2.21) gives

P.x/ D Q � �h. Moreover, definition (2.18) gives ki .x/ D bi for all i 2 R (a direct consequence
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of the facts that � < �� 6 h and �i D ��1
�
u�i � bi

�
> h�1

�
u�i � bi

�
/. Combining, we obtain from

definitions (2.20) and (3.17)

V.xC/ D

nX
iD1

� i
ˇ̌
xCi � x

�
i

ˇ̌
C A„.xC/CK max

 
0;

nX
iD1

Ii .x
C/ � P.xC/

!

6
nX
iD1

� i
ˇ̌
xCi � x

�
i

ˇ̌
CK max

 
0;

nX
iD1

Ii .x
C/ �QC �h

!
C A„.xC/:

(A.13)

Using (3.5), the facts that ui D ki .x/ D bi for all i 2 R;Q � �h D " min
iD1;:::;n

..nC 1 � i/ 	i /

and
P
i2R

.nC 1 � i/ bi C
P
i…R

.nC 1 � i/ u�i 6 "C min
iD1;:::;n

..nC 1 � i/ 	i / (which both imply thatP
i2R

.nC 1 � i/ bi C
P
i…R

.nC 1 � i/ u�i 6 C .Q � �h/), we acquire

max

 
0;

nX
iD1

Ii .x
C/ �QC �h

!
6 .1 � C/max

 
0;

nX
iD1

Ii .x/ �QC �h

!
: (A.14)

Combining (A.13) and (A.14), we obtain

V.xC/ 6
nX
iD1

� i
ˇ̌
xCi � x

�
i

ˇ̌
CK.1 � C/max

 
0;

nX
iD1

Ii .x/ �QC �h

!
C A„.xC/: (A.15)

Definition (2.19) in conjunction with (A.15) implies that the following inequality holds

V.xC/ 6
nX
iD1

� imax
�
ai� x

�
i ; x
�
i

�
CK.1�C/max

 
0;

nX
iD1

Ii .x/ �QC �h

!
CA

nX
iD1

� i
�
ai � x

�
i

�
:

(A.16)

The fact that there exists at least one i 2 ¹1; : : : ; nº for which xi > 	i , implies that

nX
iD1

Ii .x/ D

nX
iD1

.nC 1 � i/ xi > min
iD1;:::;n

..nC 1 � i/ 	i / : (A.17)

Using (A.16), (A.17) and the fact that Q � �h D " min
iD1;:::;n

..nC 1 � i/ 	i /, we obtain

V.xC/ 6
nX
iD1

� i max
�
ai � x

�
i ; x
�
i

�
CK max

 
0;

nX
iD1

Ii .x/ �QC �h

!

C A

nX
iD1

� i
�
ai � x

�
i

�
�KC .1 � "/ min

iD1;:::;n
..nC 1 � i/ 	i / :

(A.18)

Because K >
Pn
iD1 �

i max.ai�x�i ;x
�

i /CA
Pn
iD1 �

i.ai�x�i /�.ACL/h
.1�"/C min

iD1;:::;n
..nC1�i/�i /

;
nP
iD1

� i
ˇ̌
xi � x

�
i

ˇ̌
> „.x/ > h, we

conclude from (A.18) and definition (2.20) that (3.18) holds. The proof is complete.

Proof of the Claim 2 made in the proof of Theorem 2.1: Because � 2 .0; 1�, we acquire for
all x 2 S

�n jx � x�j 6
nX
iD1

� i jxi � x
�
i j 6 jx � x�j

nX
iD1

� i : (A.19)
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Similarly, using definition (2.19), we obtain for all x 2 S

0 6 „.x/ 6
nX
iD1

� i jxi � x
�
i j 6 jx � x�j

nX
iD1

� i : (A.20)

Using (A.20), the fact that Ij .x/ WD
Pj
iD1 xi for j D 1; : : : ; n, definition (2.21) and the fact

that Q >
Pn
iD1 Ii .x

�/ (a consequence of (3.5) and the fact that Q > .1 � C/
Pn
iD1 Ii .x

�/ CPn
iD1 .nC 1 � i/ u

�
i ), we obtain for all x 2 S

max

 
0;

nX
iD1

Ii .x/ � P.x/

!
6 max

 
0;

nX
iD1

Ii .x/ �

nX
iD1

Ii .x
�/

!
Cmax

 
0;

nX
iD1

Ii .x
�/ � P.x/

!

6 max

 
0;

nX
iD1

.nC 1 � i/ .xi � x
�
i /

!
Cmax

 
0;

nX
iD1

Ii .x
�/ �QC � min .h;„.x//

!

6
nX
iD1

.nC 1 � i/ jxi � x
�
i j Cmax

 
0;

nX
iD1

Ii .x
�/ �Q

!
C � min .h;„.x//

6
nX
iD1

.nC 1 � i/ jxi � x
�
i j C � „.x/ 6 jx � x�j

nX
iD1

.nC 1 � i/C � jx � x�j

nX
iD1

� i :

(A.21)

It follows from definition (2.20), (A.19), (A.20) and (A.21) that there exist constants K2 > K1 > 0
such that inequality (3.19) holds. The proof is complete.
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