
Non-uniform in time stabilization for linear systems and tracking control for non-holonomic systems

in chained form
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The paper contains certain results concerning non-uniform in time stabilization for linear time-varying systems by means
of a linear time-varying feedback controller. These results enable us to present an explicit solution for the state feedback
tracking control problem of non-holonomic systems in chained form under weaker hypotheses than those imposed in
earlier existing works.

1. Introduction

The paper is a continuation of the authors’ works
(Tsinias and Karafyllis 1999, Tsinias 2000, 2001,
Karafyllis 2002, Karafyllis and Tsinias 2003 a, b) on
the non-uniform in time global stability and feedback
stabilization of time-varying systems. In the present
work we restrict ourselves to the linear case

_xx ¼ AðtÞxþ BðtÞu

x 2 <n; u 2 <m; t � 0

)
ð1Þ

where Að�Þ and Bð�Þ are C0 matrices of dimensions n� n
and n�m, respectively and provide sufficient conditions
for non-uniform in time feedback stabilization of (1)
that enable us to derive a solution for the tracking con-
trol problem for non-holonomic systems under weaker
hypotheses than these made in earlier existing works.

Particularly, the main purpose of } 2 is to provide
sufficient conditions for non-uniform in time global
stabilization for (1) by means of a linear time-varying
feedback controller (Propositions 3 and 4). Among
other things, we establish that:

. If the origin is globally asymptotically stable
(GAS), generally, non-uniformly in time, for the
linear time-varying system

_xx ¼ AðtÞx

x 2 <n; t � 0

)
ð2Þ

where Að�Þ is a C0 matrix of dimension n� n, then
the system above admits a quadratic time-varying
Lyapunov function (Proposition 2).

. If system (1) is controllable, then it is asymp-
totically stabilized with an ‘arbitrary fast’ rate of
convergence at the origin by means of a linear
time-varying feedback (Propositions 3 and 4);

particularly, the origin of the resulting closed-
loop system is, in general, non-uniformly in time,
asymptotically stable. The corresponding feed-
back stabilizer can be explicitly identified.

In } 3 we use the results of } 2 in order to derive
sufficient conditions for the solvability of the state feed-
back tracking control problem by means of a linear
feedback law for non-holonomic systems in chained
form:

_zz ¼ u1

_xxi ¼ u1xiþ1 i ¼ 1; . . . ; n� 1

_xxn ¼ u2

z 2 <; x ¼ ðx1; . . . ; xnÞ 2 <n; ðu1; u2Þ 2 <2

9>>>>>=
>>>>>;

ð3Þ

Tracking control and feedback stabilization for non-
holonomic systems (3) have been considered in many
recent papers (Pomet 1992, Sordalen and Egeland
1995, Jiang and Nijmeijer 1997 a, b, Morin and
Samson 1997, 1999 a, b, 2000, Jiang et al. 1998, Jiang
and Nijmeijer 1999, Lefeber et al. 1999, Morin et al.
1999, Jiang 2000, Loria et al. 2001, Panteley et al.
2001, Sarychev 2001, Sun et al. 2001, Karafyllis and
Tsinias 2003 a). We present here a generalization of
the results that have appeared in the literature concern-
ing the state feedback tracking control problem
(Proposition 5), which is based on weaker hypotheses
than those imposed in the previously mentioned works.

Notation: We denote by xj j the usual Euclidean norm
of a vector x 2 <n, by x0 its transpose and by
Aj j :¼ sup Axj j; x 2 <n; xj j ¼ 1f g the induced norm of a
matrix A 2 <m�n. By L1ðJÞ (L1locðJÞ) we denote the
space of measurable and essentially bounded (locally
essentially bounded) functions uð�Þ defined on
J � <þ :¼ ½0;þ1Þ and taking values in <m. Finally,
Fðt; t0Þ is adopted throughout the paper to denote
the fundamental solution matrix corresponding to (2)
with Fðt0; t0Þ ¼ I (I denotes the identity matrix). For
the reader’s convenience we recall below some elemen-
tary well-known properties of Fðt; t0Þ that will be used
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in the following sections and hold for any triple t; t0,
� � 0:

@F
@t

ðt; t0Þ ¼ AðtÞFðt; t0Þ ð4Þ

@F
@t0

ðt; t0Þ ¼ �Fðt; t0ÞAðt0Þ ð5Þ

Fðt; �ÞFð�; t0Þ ¼ Fðt; t0Þ ð6Þ

2. Results on non-uniform in time asymptotic stability

In this section we establish a Lyapunov characteriza-
tion of (non-uniform in time) GAS for the particular
linear case (2) and we prove that system (1) is control-
lable, if and only if it is stabilizable by means of a linear
time-varying feedback in such a way that the trajectories
of the closed-loop system approach zero with an arbi-
trary fast rate of convergence. However, this type of
GAS is in general non-uniform with respect to initial
values of time. The results constitute generalizations of
well-known facts of linear systems theory, see for
instance (Kalman 1960, Kailath 1980, Anderson and
Moore 1990, Rugh 1996, Sontag 1998).

We provide below the precise notions of GAS and
‘controllability’ that have been adopted throughout the
paper.

Definition 1: Consider the system

_xx ¼ f ðt; xÞ

x 2 <n; t � 0

)
ð7Þ

where f is measurable with respect to t, locally Lipschitz
with respect to x, with f ðt; 0Þ ¼ 0 for all t � 0, and
denote by xðtÞ :¼ xðt; t0; x0Þ its solution at time t,
initiated from x0 2 <n and time t0 � 0. We say that
0 2 <n is globally asymptotically stable (GAS) for (7), if:

I. For every t0 � 0 and x0 2 <n the corresponding
solution xð�Þ exists for all t � t0.

II. For every " > 0 and T � 0, it holds that
sup xðtÞj j: t � t0; x0j j � "; t0 2 ½0;T �f g < þ1
and there exists � :¼ �ð";TÞ > 0 such that

x0j j � �; t0 2 ½0;T � ) xðtÞj j � "; 8t � t0 (Stability)

III. For every " > 0, R � 0 and T � 0, there exists
� :¼ �ð";T ;RÞ � 0 such that

x0j j � R; t0 2 ½0;T � ) xðtÞj j � "; 8t � t0 þ �

(Attractivity)

Definition 2: Consider the system

_xx ¼ f ðt; x; uÞ

x 2 <n; u 2 <m; t � 0

)
ð8Þ

where f is measurable with respect to t, locally Lipschitz
with respect to ðx; uÞ, and denote by xðt; t0; x0; uÞ its
solution at time t that corresponds to the input
uð�Þ 2 L1locð<þÞ, initiated from x0 2 <n at time t0 � 0.
System (8) is controllable, if for every t0 � 0, there exists
a time T > t0 such that for every pair ðx0; yÞ 2 <n � <n,
it holds xðT ; t0; x0; uÞ ¼ y for some uð�Þ 2 L1ð½t0;T �Þ.
Equivalently, (8) is controllable, if for every t0 � 0,
there exists T > t0 such that (8) is completely control-
lable on the interval ½t0;T � (see Sontag (1998) for the
precise definition of complete controllability).

We next recall the following well-known result from
linear control theory (see for instance Theorem 5 in
Sontag 1998, p. 109).

Proposition 1: System ð1Þ is controllable, if and only if
for every t0 � 0, there exists a time T :¼ Tðt0Þ > t0
such that the controllability Gramian of ð1Þ

Wðt; t0Þ :¼
ðt
t0

Fðt0; �ÞBð�ÞB0ð�ÞF0ðt0; �Þ d� ð9Þ

is positive definite for every t � T, i.e.

Wðt; t0Þ > 0; 8t � T ð10Þ

The following elementary result will be used in
Proposition 3 to establish equivalence between control-
lability and feedback stabilization capability for (1). Its
proof is a direct consequence of the result of the pre-
vious proposition.

Lemma 1: System ð1Þ is controllable if and only if
there exists a pair of non-decreasing C1 functions
a; �:<þ ! ð0;þ1Þ such that

0 < Wðtþ �ðtÞ; tÞ � aðtÞI ; 8t � 0 ð11Þ

Proof: Proposition 1 asserts that for every t0 � 0
there is a positive constant �0 > 0 such that
Wðt0 þ �0; t0Þ > 0, thus continuity of Wð�Þ implies
Wðtþ �0; tÞ > 0 for all t 2 It0 , where It0 � <þ is a
neighbourhood of t0. It turns out that for any com-
pact interval I � <þ there exists a constant �I > 0 such
that Wðtþ �I ; tÞ > 0 for all t 2 I . By employing
this property, we can find a piecewise constant
function ���:<þ ! ð0;þ1Þ such that Wðtþ ���ðtÞ; tÞ > 0
for all t � 0. For instance, we may take ���ðtÞ :¼ �½n;nþ1�,
for t 2 ½n; nþ 1Þ, n ¼ 0; 1; 2; . . . . The left-hand side in-
equality of (11) follows by constructing a non-decreas-
ing C1 function �:<þ ! ð0;þ1Þ with �ðtÞ � ���ðtÞ for
all t � 0 and taking into account that
Wðtþ �ðtÞ; tÞ � Wðtþ ���ðtÞ; tÞ > 0 for all t � 0. The
existence of a C1 non-decreasing function
a:<þ ! ð0;þ1Þ, such that the right-hand side in-
equality of (11) holds, is immediate. &

We next give a Lyapunov characterization of GAS
for case (2).
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Proposition 2: The following statements are equivalent:

(i) Zero 0 2 <n is GAS for ð2Þ.
(ii) There exist a C0 function l:<þ ! ð0;þ1Þ withðþ1

0

lðsÞ ds ¼ þ1 ð12Þ

and a non-decreasing C0 function �:<þ !
ð0;þ1Þ , such that, if xðtÞ denotes the solution
of ð2Þ with xðt0Þ ¼ x0 , the following holds

xðtÞj j � exp �
ðt
0

lðsÞ ds
� �

� t0ð Þ x0j j; 8t � t0; x0 2 <n

ð13Þ

(iii) There exists a positive definite C1 matrix
Pð�Þ 2 <n�n such that

PðtÞ � I ð14Þ
_PPðtÞ þ PðtÞAðtÞ þ A0ðtÞPðtÞ þ 2lðtÞPðtÞ � 0; 8t � 0

ð15Þ

where l:<þ ! ð0;þ1Þ is any C0 function satis-
fying ð12Þ and ð13Þ and I is the unit matrix of
dimension n� n.

Proof: ðiÞ ) ðiiÞ Suppose that 0 2 <n is GAS for
(2). Then the fundamental solution matrix Fð�Þ of (2)
satisfies limt!þ1 Fðt; 0Þj j ¼ 0 and thus, we may define

!ðtÞ :¼ sup
��t

Fð�; 0Þj j ð16Þ

Obviously, !:<þ ! <þ is a C0, non-increasing function
and satisfies limt!þ1 !ðtÞ ¼ 0. Consequently, there
exists a C1, strictly decreasing, positive function
�:<þ ! ð0;þ1Þ, with !ðtÞ � �ðtÞ, _��ðtÞ < 0, for all
t � 0 and in such a way that limt!þ1 �ðtÞ ¼ 0. Let

lðtÞ :¼ �
_��ðtÞ
�ðtÞ ð17Þ

Obviously, l is C0 and satisfies (12). Moreover, from (16)
and (17) it follows that

Fðt; 0Þj j � �ðtÞ ¼ �ð0Þ exp �
ðt
0

lðsÞ ds
� �

; 8t � 0

ð18Þ

It turns out from (18) and by making use of (5) and (6)
that

Fðt; t0Þj j � �ð0Þ exp �
ðt
0

lðsÞ ds
� �

Fð0; t0Þj j

� �ðt0Þ exp �
ðt
0

lðsÞ ds
� �

; 8t � t0 ð19Þ

where

�ðtÞ :¼ �ð0Þ exp
ðt
0

AðsÞj j ds
� �

ð20Þ

The desired (13) is a direct consequence of (19).
ðiiÞ ) ðiiiÞ Estimation (13) is equivalent to

Fðt; 0Þj j � �ð0Þ exp �
ðt
0

lðsÞ ds
� �

; 8t � 0

which implies that

Fð0; tÞxj j � 1

�ð0Þ exp
ðt
0

lðsÞ ds
� �

xj j; 8t � 0; 8x 2 <n

ð21Þ

Define

PðtÞ :¼ �2ð0Þ exp �2

ðt
0

lðsÞ ds
� �

F0ð0; tÞFð0; tÞ ð22Þ

Clearly, by (5), (21) and definition (22), it follows that
Pð�Þ is a C1 positive definite matrix which satisfies both
(14) and (15).

ðiiiÞ ) ðiÞ Consider the function

Vðt; xÞ :¼ x0PðtÞx ð23Þ

where Pð�Þ is defined by (14) and (15). It turns out that
the derivative _VV

��
ð2Þ of V along the trajectories of (2)

satisfies

_VV
��
ð2Þ� �2lðtÞVðt; xÞ ð24Þ

Consequently, the solution xð�Þ of (2) initiated from
x0 2 <n at time t0 � 0 satisfies

Vðt; xðtÞÞ � exp �2

ðt
t0

lðsÞ ds
� �

Vðt0;x0Þ; 8t � t0

ð25Þ

and thus by virtue of (14) and definition (23) it follows
that

xðtÞj j � exp �
ðt
t0

lðsÞ ds
� �

Pðt0Þj j1=2 x0j j; 8t � t0 ð26Þ

Inequality (26), in conjunction with (12), shows that
0 2 <n is GAS for (2). The proof is complete. &

The next proposition establishes equivalence
between controllability and non-uniform in time stabil-
izability for the linear case (1).

Proposition 3: The following statements are equivalent:

(i) System ð1Þ is controllable.
(ii) For every C0 function l:<þ ! ð0;þ1Þ withÐþ1

0 lðsÞ ds ¼ þ1, there exists a C0 function
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�:<þ ! ð0;þ1Þ, such that 0 2 <n is GAS for ð1Þ
with

u ¼ kðtÞx :¼ � 1
2
B0ðtÞQ�1ðtÞx ð27Þ

where

QðtÞ :¼
ðtþ�ðtÞ

t

�ðt; �ÞFðt; �ÞBð�ÞB0ð�ÞF0ðt; �Þ d� ð28Þ

�ðt; �Þ :¼ exp

ðt
�

2lðsÞ þ _aaðsÞ
aðsÞ

� �
ds

� �
ð29Þ

for certain a; �:<þ ! ð0;þ1Þ non-decreasing C1 func-
tions (being independent of the choice of lð�Þ) for which
ð11Þ is satisfied. Particularly, the solution xð�Þ of the
closed-loop system ð1Þ with ð27Þ satisfies

xðtÞj j � exp �
ðt
0

lðsÞ ds
� �

� t0ð Þ x0j j;

8t � t0; x0 2 <n; t0 � 0 ð30Þ

Proof: ðiÞ ) ðiiÞ Let a; �:<þ ! ð0;þ1Þ, be a pair
of non-decreasing and C1 functions for which (11) is
satisfied, whose existence is guaranteed by Lemma 1.
Since _aaðtÞ � 0 for all t � 0, for each fixed t � 0 the
function �ðt; �Þ as defined by (29) is decreasing and
satisfies 0 < �ðt; �Þ � 1 for all � � t. Thus, by virtue of
(11) and definitions (28) and (29), it follows that

0 < �ðt; tþ �ðtÞÞWðtþ �ðtÞ; tÞ

� QðtÞ � Wðtþ �ðtÞ; tÞ � aðtÞI ð31Þ

Moreover, using property (4), we evaluate

d

dt
Q�1ðtÞ ¼ Q�1ðtÞBðtÞB0ðtÞQ�1ðtÞ

� 2lðtÞ þ _aaðtÞ
aðtÞ

� �
Q�1ðtÞ �Q�1ðtÞAðtÞ

� A0ðtÞQ�1ðtÞ � 1þ _��ðtÞ
� �

�ðt; tþ �ðtÞÞ
�Q�1ðtÞFðt; tþ �ðtÞÞBðtþ �ðtÞÞ
� B0ðtþ �ðtÞÞF0ðt; tþ �ðtÞÞQ�1ðtÞ ð32Þ

Define

PðtÞ :¼ aðtÞQ�1ðtÞ ð33Þ

Clearly, from (31) and (33) we get

PðtÞ � I ð34Þ

Also, by virtue of (32) and (33) and using the fact that
�ð�Þ is non-decreasing, we obtain

_PPðtÞ þ PðtÞ AðtÞ � 1
2BðtÞB

0ðtÞQ�1ðtÞ
� �

þ AðtÞ � 1
2
BðtÞB0ðtÞQ�1ðtÞ

� �0
PðtÞ þ 2lðtÞPðtÞ

¼ aðtÞ d
dt

Q�1ðtÞ þ _aaðtÞQ�1ðtÞ þ aðtÞQ�1ðtÞAðtÞ

� aðtÞQ�1ðtÞBðtÞB0ðtÞQ�1ðtÞ

þ aðtÞA0ðtÞQ�1ðtÞ þ 2lðtÞaðtÞQ�1ðtÞ

¼ �aðtÞ 1þ _��ðtÞ
� �

�ðt; tþ �ðtÞÞQ�1ðtÞFðt; tþ �ðtÞÞ

� Bðtþ �ðtÞÞB0ðtþ �ðtÞÞF0ðt; tþ �ðtÞÞQ�1ðtÞ

� 0 ð35Þ

The rest part of proof is a consequence of (34), (35) and
the result of Proposition 2 (implication ðiiiÞ ) ðiiÞ), for
the closed-loop system (2) with (27).

ðiiÞ ) ðiÞ We again denote by Fðt; t0Þ the funda-
mental solution matrix of (2), namely, of system (1)
with u 	 0, and recall the elementary property

exp �
ðt
t0

AðsÞj j ds
� �

xj j � F0ðt; t0Þx
�� ��

� exp

ðt
t0

AðsÞj j ds
� �

xj j;

8t � t0 � 0; x 2 <n ð36Þ

Let

lðtÞ :¼ 3 AðtÞj j þ 1 ð37Þ

and let k:<þ ! <m�n be a C0 mapping in such a way
that the solution xð�Þ of the closed-loop system (1) with
u ¼ kðtÞx satisfies (30) for certain �ð�Þ:<þ ! ð0;þ1Þ.
Suppose on the contrary that (1) is not controllable.
Then by invoking Theorem 5, p. 109 in Sontag (1998)
there would exist t0 � 0 such that for every t � t0

p0ðtÞFðt; �Þbð�Þ ¼ 0; 8� 2 ½t0; t� ð38Þ

for certain non-zero vector pðtÞ 2 <n. Obviously, by (38)
we have p0ðtÞxðtÞ ¼ p0ðtÞFðt; t0Þx0 for all x0 2 <n and
t � t0 and thus by invoking (30) it follows that

p0ðtÞFðt; t0Þx0
�� �� � pðtÞj j exp �

ðt
0

lðsÞ ds
� �

�ðt0Þ x0j j;

8x0 2 <n; t � t0

By letting x0 ¼ F0ðt; t0ÞpðtÞ in the previous inequality we
obtain

F0ðt; t0ÞpðtÞ
�� ��2� pðtÞj j2 exp �

ðt
0

lðsÞ ds
� �

�ðt0Þ F0ðt; t0Þ
�� ��;

8t � t0
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and the latter, in conjunction with (36) and (37), implies
that

exp tþ 3

ðt0
0

AðsÞj j ds
� �

� �ðt0Þ; for all t � t0

a contradiction. &

Remark 1: The result of Proposition 3, as well as the
corresponding stabilization methodology, generalizes a
well-known fact from linear control theory (see, i.e.
Rugh 1996), which asserts that system (1) is globally
exponentially stabilizable with ‘arbitrary fast’ rate of
convergence, under the hypothesis of uniform control-
lability, namely, under the assumption

a1I � Wðtþ �; tÞ � a2I ; 8t � 0 ð39Þ

for certain positive constants a1; a2; � > 0. To be more
precise, equations (27)–(29) coincide with the formula
given in Rugh (1996), with �ðtÞ 	 � > 0, aðtÞ 	 a2 > 0,
where a2; � are the constants defined in (39) and
lðtÞ 	 l > 0 (constant). Moreover, the solution xð�Þ of
the corresponding closed-loop system satisfies
xðtÞj j � K exp �lðt� t0Þf g x0j j for all t � t0, with l > 0
(constant) as above and for certain constant K > 0.

The next proposition provides a linear feedback con-
troller, which globally asymptotically stabilizes (1) at
zero and simultaneously is a solution of an infinite hor-
izon optimal control problem. The corresponding feed-
back design is based on the solvability of a time-varying
Riccati differential equation and constitutes a general-
ization of standard optimal control procedures (see, i.e.
Kalman 1960, Kailath 1980, Anderson and Moore 1990,
Amato et al. 1996).

Proposition 4: Suppose that ð1Þ is controllable. Let
l:<þ ! ð0;þ1Þ be any C0 function withÐþ1
0

lðsÞ ds ¼ þ1 . Consider the infinite horizon optimal
control problem

min
uð�Þ2C0 ½t0;þ1Þð Þ

Jðt0; x0; uð�ÞÞ;

Jðt0; x0; uð�ÞÞ :¼
ðþ1

t0

x0ðt; t0; x0; uð�ÞÞQðtÞxðt; t0; x0; uð�ÞÞ
�

þ u0ðtÞRðtÞuðtÞ
�
dt ð40Þ

where xðt; t0; x0; uð�ÞÞ above denotes the solution of ð1Þ
corresponding to input uð�Þ 2 C0 ½t0;þ1Þð Þ initiated
from x0 2 <n at time t0 � 0 , Rð�Þ 2 <m�m is a C0 positive
definite matrix and Qð�Þ 2 <n�n is a C0 positive semi-
definite matrix that satisfies for all t � 0

QðtÞ � exp 2

ðt
0

lðsÞ
� ��

2lðtÞI þ AðtÞ þ A0ðtÞ

þ exp 2

ðt
0

lðsÞ
� �

BðtÞR�1ðtÞB0ðtÞ
�

ð41Þ

Then there exist a C0 function � : <þ ! ð0;þ1Þ and a
C0 mapping k : <þ ! <m�n such that:

. Zero is GAS for the closed-loop system ð1Þ with
u ¼ kðtÞx and particularly its solution xð�Þ satisfies
ð30Þ.

. For any ðt0; x0Þ 2 <þ � <n, the control uðtÞ ¼
kðtÞxðtÞ, where xðtÞ denotes the solution of the
closed-loop system ð1Þ with u ¼ kðtÞx initiated
from x0 2 <n at time t0 � 0, minimizes the perfor-
mance index given by ð40Þ.

Proof: The proof is based on a well-known optimal
control result (see, e.g. Kalman 1960, Anderson and
Moore 1990), which asserts that, under the control-
lability assumption for (1), for any pair of continuous
positive semi-definite matrices Qð�Þ 2 <n�n and
Rð�Þ 2 <m�m in such a way that for each t � 0 the
matrix RðtÞ is positive definite, the infinite horizon
optimal control problem given by (40) is solvable;
namely, for every ðt0; x0Þ 2 <þ � <n there exists a
u
ð�Þ 2 C0 ½t0;þ1Þð Þ such that

Jðt0; x0; u
ð�ÞÞ ¼ min
uð�Þ2C0 ½t0;þ1Þð Þ

Jðt0; x0; uð�ÞÞ

Particularly, there exists a C1 positive semi-definite
matrix Pð�Þ 2 <n�n that satisfies the Riccati equation

_PPðtÞ þ PðtÞAðtÞ þ A0ðtÞPðtÞ � PðtÞBðtÞR�1ðtÞB0ðtÞPðtÞ

þQðtÞ ¼ 0; 8t � 0 ð42Þ

with the properties:

P1. x00Pðt0Þx0 ¼ min
uð�Þ2C0 ½t0;þ1Þð Þ

Jðt0; x0; uð�ÞÞ,

8ðt0; x0Þ 2 <þ � <n

P2. u
ðtÞ ¼ �R�1ðtÞB0ðtÞPðtÞxðt; t0; x0; u
ð�ÞÞ,
for t � t0

It turns out that the feedback controller

u
 ¼ kðtÞx

kðtÞ :¼ �R�1ðtÞB0ðtÞPðtÞ

)
ð43Þ

minimizes the cost function Jðt0; x0; uð�ÞÞ.
We next show that the origin of the closed-loop

system (1) with (43) is GAS and particularly estimation
(30) holds, provided that (41) is satisfied. Let

MðtÞ :¼ exp 2

ðt
0

lðsÞ ds
� �

I ; t � 0 ð44Þ

It follows, by invoking (41) and (44), that for every
uð�Þ 2 L1locð<þÞ it holds
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d

dt
x0ðt; t0; x0; uð�ÞÞMðtÞxðt; t0; x0; uð�ÞÞ
� �
¼ x0ðt; t0; x0; uð�ÞÞ _MMðtÞ þMðtÞAðtÞ

�
þ A0ðtÞMðtÞ

�
xðt; t0; x0; uð�ÞÞ

þ 2u0ðtÞB0ðtÞMðtÞxðt; t0; x0; uð�ÞÞ

� x0ðt; t0; x0; uð�ÞÞQðtÞxðt; t0; x0; uð�ÞÞ þ u0ðtÞRðtÞuðtÞ

ð45Þ

Let us denote by xð�Þ the optimal solution of the closed-
loop system (1) with (43). It turns out from (40), (44),
(45) and recalling property P1 that

x00Pðt0Þx0 ¼
ðþ1

t0

x0ð�ÞQð�Þxð�Þ þ u

0
ð�ÞRð�Þu
ð�Þ

� 	
d�

�
ðt
t0

x0ð�ÞQð�Þxð�Þ þ u

0
ð�ÞRð�Þu
ð�Þ

� 	
d�

�
ðt
t0

d

d�
x0ð�ÞMð�Þxð�Þ
� �

d�

¼ exp 2

ðt
0

lðsÞ ds
� �

xðtÞj j2

� exp 2

ðt0
0

lðsÞ ds
� �

x0j j2

and thus the trajectory xð�Þ of the closed-loop system (1)
with (43) initiated from x0 at time t0 satisfies

xðtÞj j2� exp �2

ðt
0

lðsÞ ds
� �

x00 Pðt0Þ þ exp 2

ðt0
0

lðsÞds
� �

I

� �
x0

ð46Þ
Inequality (46) implies (30) with

�ðtÞ :¼ PðtÞj j1=2þ exp

ðt
0

lðsÞ ds
� �

&

Remark 2: The drawback in the methodology em-
ployed in the proof of Proposition 4 is that the con-
struction of the feedback stabilizer is reduced to the
difficult problem of finding an appropriate solution of
the time-varying Riccati differential equation (42). On
the other hand, the advantage of the existence result of
Proposition 4 compared to the approach of Proposi-
tion 3 is that the control action is square integrable;
particularly, for Rð�Þ > 0 being arbitrary, the corre-
sponding stabilizer u
ð�Þ satisfiesðþ1

t0

u
0ðtÞRðtÞu
ðtÞ dt < þ1

3. Application to tracking problems

The result of this section constitutes generalization
of earlier contributions on the subject and is based on
extremely simple hypotheses regarding reference inputs
of system (3). We next recall the precise definition of the

state feedback tracking problem at a reference trajectory
for the non-holonomic case (3).

Problem formulation: Consider a reference trajectory
ðzrðtÞ; xrðtÞÞ ¼ ðzrðtÞ; x1rðtÞ; . . . ; xnrðtÞÞ0 2 <nþ1, t � 0 of
system (3), namely

_zzr ¼ u1r; _xxir ¼ u1rxðiþ1Þr; 1 � i � n� 1; _xxnr ¼ u2r

ð47Þ

for certain reference control inputs u1r and u2r. Denote
the tracking error as

ðzeðtÞ; eðtÞÞ :¼ ðzðtÞ � zrðtÞ; xðtÞ � xrðtÞÞ

where ðzðtÞ; xðtÞÞ is any arbitrary solution of (3). Then
ðzeðtÞ; eðtÞÞ satisfies

_zze ¼ v1; _eei ¼ ðu1rðtÞ þ v1Þeiþ1 þ v1xðiþ1ÞrðtÞ;

1 � i � n� 1; _een ¼ v2 ð48Þ

v1 :¼ u1 � u1rðtÞ; v2 :¼ u2 � u2rðtÞ ð49Þ

The state feedback tracking control problem is said to
be globally solvable, if there exists a pair of time-varying
feedback controllers of the form

v1 ¼ U1ðt; ze; eÞ; v2 ¼ U2ðt; ze; eÞ ð50Þ

such that 0 2 <nþ1 is GAS for the closed-loop system
(48) with (50).

The following proposition is the main result of our
work and its proof is based on the results of } 2
(Propositions 2 and 3).

Proposition 5: Consider the system ð48Þ and suppose
that:

A1 The functions u1rð�Þ and u2rð�Þ are of class C0 <þ� �
and L1locð<þÞ, respectively.

A2 There is no time t0 � 0 such that u1rðtÞ ¼ 0 for all
t � t0.

Then there is a pair of C0 mappings kiði ¼ 1; 2Þ, such that
the linear time-varying feedback law:

v1 ¼ U1ðt; zeÞ :¼ k1ðtÞze; v2 ¼ U2ðt; eÞ :¼ k2ðtÞe
ð51Þ

solves the state feedback tracking problem globally.

For the proof of Proposition 5 we need the following
technical lemma, which provides a criterion for the con-
trollability of the time-varying case

_xx ¼ aðtÞAxþ Bu

x 2 <n; u 2 <m; t � 0

)
ð52Þ

where A;B are constant matrices of dimensions n� n
and n�m, respectively, with n > m and a:<þ ! < is
a C0 function.
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Lemma 2: For the system ð52Þ we assume that the pair
ðA;BÞ satisfies the controllability rank condition. Then
the following statements are equivalent:

(i) The function að�Þ satisfies hypothesis A2 of
Proposition 5, namely, there is no time t0 � 0
for which aðtÞ ¼ 0 for all t � t0.

(ii) System ð52Þ is controllable (in the sense of
Definition 2).

(iii) System ð52Þ is stabilizable (by means of a linear
time-varying feedback), in the sense of Statement
(ii) of Proposition 3; particularly, stabilization is
exhibited with an ‘arbitrary fast’ rate of conver-
gence at zero for the trajectories of the corre-
sponding closed-loop system.

Proof: ðiÞ ) ðiiÞ We first show that, if (52) is not
controllable then there exists some time t0 � 0 such
that

aðtÞ ¼ 0; 8t � t0 ð53Þ

Indeed, if (52) is not controllable, there exists some time
t0 � 0 such that for every T � t0, there is a non-zero
vector p 2 <n with

p0FðT ; tÞB ¼ 0; 8t 2 ½t0;T � ð54Þ

where Fðt; t0Þ is the fundamental solution matrix for
(52) with u 	 0. It is a matter of calculations to verify
that

Fðt; t0Þ ¼ exp A

ðt
t0

aðsÞ ds
� �

¼ I þ
X1
k¼1

1

k!
A

ðt
t0

aðsÞ ds
� �k

and therefore (54) is equivalent to

p0 exp A

ðT
t

aðsÞ ds
� �

B ¼ 0; 8t 2 ½t0;T � ð55Þ

We claim that (55) implies that aðtÞ ¼ 0 for all
t 2 ½t0;T �, hence, since T is arbitrary, equation (53)
holds. Suppose on the contrary that there exists time ~tt
with að~ttÞ 6¼ 0, or equivalently, by continuity of að�Þ,
there exists an open interval ðt1; t2Þ � ½t0;T � with
aðtÞ 6¼ 0 for all t 2 ðt1; t2Þ.

On the other hand, by (55) we get that

d

dt
p0 exp A

ðT
t

aðsÞ ds
� �

B ¼ 0

for all t 2 ½t0;T �, which implies

aðtÞp0A exp A

ðT
t

aðsÞ ds
� �

B ¼ 0; 8t 2 ½t0;T � ð56Þ

Since að�Þ is non-zero on ðt1; t2Þ, it follows by (56) that

p0A exp A

ðT
t

aðsÞ ds
� �

B ¼ 0; 8t 2 ðt1; t2Þ

If we keep differentiating on the interval ðt1; t2Þ we get

p0Aj exp A

ðT
t

aðsÞ ds
� �

B ¼ 0; 8t 2 ðt1; t2Þ;

for j ¼ 0; . . . ; n� 1

or equivalently

p0 exp A

ðT
t

aðsÞ ds
� �

AjB ¼ 0; 8t 2 ðt1; t2Þ;

for j ¼ 0; . . . ; n� 1 ð57Þ

Hence, for each t 2 ðt1; t2Þ it follows from (57)

p0 exp A

ðT
t

aðsÞ ds
� �

B;AB; . . . ;An�1B
� �

¼ 0

and, since the pair of matrices ðA;BÞ is controllable, the
latter implies p ¼ 0, a contradiction. We conclude that
(52) is controllable.

The rest part of proof is immediate. Particularly,
implication ðiiÞ ) ðiiiÞ is a consequence of Proposition
3 and finally ðiiiÞ ) ðiÞ is obvious. &

We are now in a position to establish Proposition 5.

Proof of Proposition 5: By Lemma 2 it follows that,
for any C0 mapping u1rð�Þ:<þ ! < satisfying hypoth-
esis A2, the system

_eei ¼ u1rðtÞeiþ1 1 � i � n� 1

_een ¼ v

with v as input

9>>=
>>; ð58Þ

is controllable (in the sense of Definition 2) and thus,
according to Proposition 3, there exists a C0 mapping
k:<þ ! <1�n such that 0 2 <n is GAS for the closed-
loop system (58) with

v ¼ kðtÞe ð59Þ

Thus, by Proposition 2, there exists a C1 positive definite
matrix Pð�Þ 2 <n�n and a positive C0 function
l:<þ ! <þ with ðþ1

0

lðsÞ ds ¼ þ1

such that, if we define Vðt; eÞ :¼ e0PðtÞe, the following
inequalities hold

ej j2� Vðt; eÞ ð60Þ
_VV
��
ð58Þ;v¼kðtÞe� �2lðtÞVðt; eÞ; for all ðt; eÞ 2 <þ � <n

ð61Þ

Let �:<þ ! ð0;þ1Þ a C0 function withðþ1

0

�ðsÞ ds ¼ þ1
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yet to be selected and define

k1ðtÞ :¼ ��ðtÞ; k2ðtÞ :¼ kðtÞ ð62Þ

Consider the resulting system (48) with (51) and (62),
namely, the system

_zze ¼ v1

_eei ¼ ðu1rðtÞ þ v1Þeiþ1 þ v1xðiþ1ÞrðtÞ; 1 � i � n� 1

_een ¼ v2

with v1 ¼ ��ðtÞze; v2 ¼ kðtÞe

9>>>>>=
>>>>>;

ð63Þ

and let ðzeð�Þ; eð�ÞÞ be its corresponding solution initiated
from ðzeðt0Þ; eðt0ÞÞ at time t0 � 0. Obviously, we have

zeðtÞ ¼ exp �
ðt
t0

�ðsÞ ds
� �

zeðt0Þ ð64Þ

v1ðtÞ ¼ ��ðtÞ exp �
ðt
t0

�ðsÞ ds
� �

zeðt0Þ ð65Þ

Furthermore, by (60), (61) and (65) it follows that the
time derivative _VV of Vð�Þ along the trajectories of (63)
satisfies

_VV � � 2lðtÞ � 2þ LðtÞð Þ PðtÞj j v1ðtÞj jð ÞVðt; eÞ

þ LðtÞ PðtÞj j v1ðtÞj j ð66Þ

LðtÞ :¼ u1rðtÞj j þ
Xn
i¼2

xirðtÞj j ð67Þ

xirð�Þ being the i th component of the solution of (47).
Let a:<þ ! <þ be any C0 function with

sup
t�0

PðtÞj j 2þ LðtÞð Þ exp tþ 2

ðt
0

lðsÞ ds�
ðt
0

aðsÞ ds
� �

< þ1

ð68Þ

and define

�ðtÞ :¼
exp �

ðt
0

sþ aðsÞð Þ ds
� �

ðþ1

t

exp �
ð�
0

sþ aðsÞð Þ ds
� �

d�

ð69Þ

Note that limt!þ1 �ðtÞ ¼ þ1 and consequentlyðþ1

0

�ðsÞ ds ¼ þ1

By (68) and definition (69), there exists a constant R > 0
such that

�ðtÞ PðtÞj j 2þ LðtÞð Þ exp tþ
ðt
0

ð2lðsÞ � �ðsÞÞ ds
� �

� R; 8t � 0 ð70Þ

Then by (65) and (70) we estimate

2þ LðtÞð Þ PðtÞj j v1ðtÞj j

� R exp �tþ
ðt0
0

�ðsÞ ds
� �

zeðt0Þj j ð71Þ

LðtÞ PðtÞj j v1ðtÞj j

� R exp �t� 2

ðt
0

lðsÞ dsþ
ðt0
0

�ðsÞ ds
� �

zeðt0Þj j ð72Þ

By (60), (66), (71), (72) and use of the comparison prin-
ciple we get

eðtÞj j � exp
1

2
hðt0; zeðt0Þj jÞ

� �
exp �

ðt
t0

lðsÞ ds
� �

� Pðt0Þj j1=2 eðt0Þj j þ hðt0; zeðt0Þj jÞð Þ1=2
h i

ð73Þ

hðt;wÞ :¼ Rw exp

ðt
0

�ðsÞ ds
� �

ð74Þ

Relations (64) and (73), (74) imply that 0 2 <nþ1 is GAS
for the closed-loop system (63). We conclude that the
mapping (51), where kið�Þ ði ¼ 1; 2Þ are defined by (62) is
a solution of the tracking problem. &

Remark 3: Lemma 2 guarantees that Assumption A2
made in Proposition 5 is equivalent to the property
that system (58) is controllable (in the sense of
Definition 2). This again, according to Proposition 1,
is equivalent with the property that for every t � 0,
there exists �ðtÞ > 0 such that the controllability
Gramian of system (58)

Wðtþ �ðtÞ; tÞ :¼
ðtþ�ðtÞ

t

Fðt; �ÞBð�ÞB0ð�ÞF0ðt; �Þ d�

is positive definite, where

BðtÞ :¼ ð0; . . . ; 0; 1Þ0

Fðt; t0Þ :¼ �i;jðt; t0Þ; 1 � i; j � n

 �

�i;jðt; t0Þ :¼
0 for j < i

1

ð j � iÞ!

ðt
t0

u1rð�Þ d�
� �j�i

for j � i

8><
>:

Fðt; t0Þ being the fundamental solution matrix of (58)
with v 	 0. Direct evaluation of the controllability
Gramian gives the equivalence between hypothesis A2
and the following one:

A2’ For every t � 0 , there exists �ðtÞ > 0 such thatðtþ�ðtÞ

t

wð�; tÞw0ð�; tÞ d� > 0 ð75Þ
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with wðt; t0Þ :¼ w1ðt; t0Þ; . . . ;wnðt; t0Þð Þ , where each com-
ponent wiðt; t0Þ is defined as

wiðt; t0Þ :¼
1

ðn� iÞ!

ðt0
t

u1rð�Þ d�
� �n�i

ð76Þ

Remark 4: Comparisons with some earlier existing
works. We make some comparison with some earlier
existing works for the tracking problem for the case
(3). In Jiang (2000, Theorem 1) it is assumed that the
reference trajectory xirð�Þ ði ¼ 2; . . . ; nÞ and the map-
pings u1rð�Þ, _uu1rð�Þ, u2rð�Þ are bounded over <þ and
u1rð�Þ does not converge to zero as t ! þ1. Note that
the results in Jiang (2000) generalize those in Jiang
and Nijmeijer (1997 a, b, 1999) and Jiang et al. (1998).
In our recent work (Karafyllis and Tsinias 2003 a)
it is assumed that the mapping u1rð�Þ is C1 and the
mapping u2rð�Þ is measurable and locally essentially
bounded and there exist constants p � 1, K > 0 and
c, r,M,� � 0 such that the following hold for all t � 0

Xn
i¼2

xirðtÞj j � M exp �tf g

u1rðtÞj j þ _uu1rðtÞj j � K exp ctf g

lim
t!þ1

1

t

ðt
0

u1rð�Þj jp exp r�f g d� ¼ þ1

9>>>>>>>=
>>>>>>>;

ð77Þ

where xirð�Þ denotes the reference trajectory of (3). We
note here that the above set of hypotheses imposed in
Karafyllis and Tsinias (2003 a) leads to solvability of the
tracking problem for a larger class of nonholonomic
systems that includes the case (3). Finally, in Lefeber
et al. (1999) it is assumed that the mapping u1rð�Þ is
continuous, the reference trajectory xirð�Þ ði ¼ 2; . . . ; nÞ
is bounded over <þ and there exist positive constants �0,
"1 and "2 such that the following matrix inequality holds
for all t � 0

"1I �
ðtþ�0

t

wð�; tÞw0ð�; tÞ d� � "2I ð78Þ

where wð�; tÞ is defined by (76). This is equivalent to the
assumption that (58) is uniformly controllable, namely,
its controllability Gramian satisfies (39). Proposition 5
of the present paper clearly generalizes the results
obtained in the papers mentioned above for the case
(3), since it is based on weaker hypotheses. Particu-
larly, by taking into account the equivalence between
hypotheses A2 and A2’, it follows that assumption
(78), imposed in Lefeber et al. (1999) is indeed stricter
than (75).

The following numerical example illustrates the
nature of Proposition 5 and shows that indeed our
methodology exhibits asymptotic tracking under weaker

hypotheses for the reference control input u1rðtÞ than
those imposed in the previously mentioned works.

Example 1: Consider the three-dimensional system
(3) and its reference trajectory

ðzrðtÞ; x1rðtÞ; x2rðtÞÞ0

:¼
ðt
0

expð��2Þ d�; t; expðt2Þ
� �

; t � 0

corresponding to the reference control inputs
u1rðtÞ :¼ expð�t2Þ and u2rðtÞ :¼ 2t expðt2Þ. Note that
the state feedback tracking control problem for this
reference trajectory cannot be solved by the proposed
methodologies in earlier existing works. For example,
Theorem 1 in Jiang (2000) cannot be applied, since
u1rð�Þ converges to zero as t ! þ1 and the component
of the reference trajectory x2rðtÞ as well as the mapping
u2rð�Þ are not bounded over <þ. Neither does the result
in Karafyllis and Tsinias (2003 a) work in this case, since
the first and the last condition in (77) do not hold.
Finally, note that for p0 :¼ ð1; 0Þ, pj j ¼ 1, we obtain

p0
ðtþ�

t

wð�; tÞw0ð�; tÞ d� p

¼
ðtþ�

t

ð�
t

u1rðsÞ ds
� �2

d� � �3 expð�2t2Þ;

for every � > 0

(where wð�; tÞ is defined by (76)), thus the above inequal-
ity asserts that a constant �0 > 0 for which (78) holds
does not exist. Moreover, the component of the refer-
ence trajectory x2rðtÞ is not bounded over <þ.
Consequently, the result in Lefeber et al. (1999) is not
applicable. On the other hand, Proposition 5 of the
present paper guarantees that there exists a linear
time- varying feedback law (51), which solves the state
feedback tracking control problem globally. In order to
construct such a feedback law, we first construct a linear
time-varying stabilizer for system (58). We may use the
result of Proposition 3 to determine an explicit formula
for this feedback law. In the above case however, we can
directly proceed (by applying an elementary backstep-
ping design approach) considering the quadratic
Lyapunov function

Vðt; e1; e2Þ :¼ 16 exp tþ 2t2
� �

e21 þ 2 e2 þ 2ðtþ 1Þ expðt2Þe1
� �2

¼ e1; e2ð ÞPðtÞ
e1

e2

 !
ð79Þ

PðtÞ :¼ 8 expð2t2Þ 2 expðtÞ þ ðtþ 1Þ2
� 	

4ðtþ 1Þ expðt2Þ
4ðtþ 1Þ expðt2Þ 2

" #

ð80Þ
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which satisfies

e21 þ e22
� �

� Vðt; e1; e2Þ � 32 exp 2ðtþ t2Þ
� �

e21 þ e22
� �

;

8ðt; e1; e2Þ 2 <þ � <2 ð81Þ

namely (60) holds and it is a matter of calculations to
verify that (61) is satisfied with lðtÞ 	 1 and

v ¼ kðtÞ
e1

e2

 !

:¼ �2 expðt2Þ 1þ ð2tþ 1Þðtþ 1Þ þ 4 expðtÞ½ �e1

� ð2tþ 3Þe2 ð82Þ

It turns out that the linear time-varying feedback given
by (82) globally asymptotically stabilizes (58) at the
origin. Next, by taking into account definition (67)
and the right-hand side inequality (81), we can deter-
mine a C0 function a:<þ ! <þ such that (68) holds.
For example, we may select aðtÞ :¼ 5þ 7t and then
consider � as defined by (69)

�ðtÞ :¼
exp �5t� 4t2
� �

Ðþ1
t exp �5� � 4�2ð Þ d�

ð83Þ

We conclude, according to the procedure employed in
the proof of Proposition 5, that the linear time-varying
feedback law

v1 :¼ ��ðtÞze

v2 :¼ kðtÞ
e1

e2

 !

where

ðze; e1; e2Þ :¼ z�
ðt
0

expð��2Þ d�; x1 � t; x2 � expðt2Þ
� �

and kðtÞ and �ðtÞ are determined by (82) and (83),
respectively, globally solves the state feedback tracking
control problem for this case.

4. Conclusions

We have established a Lyapunov characterization of
(non-uniform in time) global asymptotic stability for
linear time-varying systems and we have proved that a
linear time-varying control system is controllable, if and
only if it is (non-uniformly in time) stabilizable by means
of a linear time-varying feedback in such a way that the
trajectories of the closed-loop system approach zero
with an arbitrary fast rate of convergence. The results
constitute generalizations of well-known facts of linear
systems theory. We have also derived sufficient con-
ditions for the solvability of the state feedback tracking
control problem for non-holonomic systems in chained

form, which constitute a generalization of the results
that have appeared in the literature concerning this
problem.
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