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Non-uniform in time stabilization for linear systems and tracking control for non-holonomic systems

in chained form

I. KARAFYLLISt and J. TSINIASt*

The paper contains certain results concerning non-uniform in time stabilization for linear time-varying systems by means
of a linear time-varying feedback controller. These results enable us to present an explicit solution for the state feedback
tracking control problem of non-holonomic systems in chained form under weaker hypotheses than those imposed in

earlier existing works.

1. Introduction

The paper is a continuation of the authors’ works
(Tsinias and Karafyllis 1999, Tsinias 2000, 2001,
Karafyllis 2002, Karafyllis and Tsinias 2003a,b) on
the non-uniform in time global stability and feedback
stabilization of time-varying systems. In the present
work we restrict ourselves to the linear case

x = A(t)x + B(t)u
xeR', ueR", >0

(1)

where A(-) and B(-) are C° matrices of dimensions n x n
and n x m, respectively and provide sufficient conditions
for non-uniform in time feedback stabilization of (1)
that enable us to derive a solution for the tracking con-
trol problem for non-holonomic systems under weaker
hypotheses than these made in earlier existing works.

Particularly, the main purpose of §2 is to provide
sufficient conditions for non-uniform in time global
stabilization for (1) by means of a linear time-varying
feedback controller (Propositions 3 and 4). Among
other things, we establish that:

e If the origin is globally asymptotically stable
(GAS), generally, non-uniformly in time, for the
linear time-varying system

x = A(t)x
. } (2)
xeR', t>0

where A(-) is a C° matrix of dimension 7 x n, then
the system above admits a quadratic time-varying
Lyapunov function (Proposition 2).

e If system (1) is controllable, then it is asymp-
totically stabilized with an ‘arbitrary fast’ rate of
convergence at the origin by means of a linear
time-varying feedback (Propositions 3 and 4);
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particularly, the origin of the resulting closed-
loop system is, in general, non-uniformly in time,
asymptotically stable. The corresponding feed-
back stabilizer can be explicitly identified.

In §3 we use the results of §2 in order to derive
sufficient conditions for the solvability of the state feed-
back tracking control problem by means of a linear
feedback law for nomn-holonomic systems in chained
form:

zZ=U
)'c,«:ulxiH l—l, ,1’1—1
3)
X, = Uy
zeR, x=(x1,....x) €R", (up,up) € R

Tracking control and feedback stabilization for non-
holonomic systems (3) have been considered in many
recent papers (Pomet 1992, Sordalen and Egeland
1995, Jiang and Nijmeijer 1997a,b, Morin and
Samson 1997, 1999 a,b, 2000, Jiang et al. 1998, Jiang
and Nijmeijer 1999, Lefeber et al. 1999, Morin et al.
1999, Jiang 2000, Loria et al. 2001, Panteley et al.
2001, Sarychev 2001, Sun et al. 2001, Karafyllis and
Tsinias 2003 a). We present here a generalization of
the results that have appeared in the literature concern-
ing the state feedback tracking control problem
(Proposition 5), which is based on weaker hypotheses
than those imposed in the previously mentioned works.

Notation: We denote by |x| the usual Euclidean norm
of a vector x e R", by x' its transpose and by
|4| := sup{|4x|;x € ", x| = 1} the induced norm of a
matrix 4 € R™". By L™(J) (L;.(/)) we denote the
space of measurable and essentially bounded (locally
essentially bounded) functions u(-) defined on
J C R :=[0,400) and taking values in R™. Finally,
&(1,t9) is adopted throughout the paper to denote
the fundamental solution matrix corresponding to (2)
with &(#,19) = I (I denotes the identity matrix). For
the reader’s convenience we recall below some elemen-
tary well-known properties of ®(z, ) that will be used
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in the following sections and hold for any triple ¢, ¢,
7>0:

2 (1.10) = A1) @
g—im t0) = — (1, 10) A1) (5)
&1, 7)P(1, 1)) = P(1,15) (6)

2. Results on non-uniform in time asymptotic stability

In this section we establish a Lyapunov characteriza-
tion of (non-uniform in time) GAS for the particular
linear case (2) and we prove that system (1) is control-
lable, if and only if it is stabilizable by means of a linear
time-varying feedback in such a way that the trajectories
of the closed-loop system approach zero with an arbi-
trary fast rate of convergence. However, this type of
GAS is in general non-uniform with respect to initial
values of time. The results constitute generalizations of
well-known facts of linear systems theory, see for
instance (Kalman 1960, Kailath 1980, Anderson and
Moore 1990, Rugh 1996, Sontag 1998).

We provide below the precise notions of GAS and
‘controllability’ that have been adopted throughout the
paper.

Definition 1: Consider the system

x=f(t,x)
QO} )

xeR",

where f 1s measurable with respect to ¢, locally Lipschitz
with respect to x, with f(z,0) =0 for all >0, and
denote by x(¢) := x(t,1ty,x0) its solution at time ¢,
initiated from x, € " and time 7, > 0. We say that
0 € R" is globally asymptotically stable (GAS) for (7), if:

I. For every ¢, > 0 and x, € " the corresponding
solution x(-) exists for all # > f,.

II. For every ¢ >0 and T >0, it holds that
sup{|x(#)|: 1 > ty,|x0] < e,20 € [0,T]} < +0
and there exists 6 := 6(e, T') > 0 such that

th€[0,T)= |x(r)] <e, Vi>1t, (Stability)

III. For every ¢ >0, R > 0 and T > 0, there exists
7:=17(e,T,R) > 0 such that

|x0| < 67

x| <R, 1o €[0,T]=|x(1)| <e, Vi>ty+7
(Attractivity)
Definition 2: Consider the system
X :f(ta X, Lt)
, . (8)
xeR', ueR"t>0

where f is measurable with respect to ¢, locally Lipschitz
with respect to (x,u), and denote by x(¢, g, xq;u) its
solution at time ¢ that corresponds to the input
u(-) € Lis,(R"), initiated from x, € ®" at time #, > 0.
System (8) is controllable, if for every t, > 0, there exists
a time T > t, such that for every pair (x;,y) € &' x R",
it holds x(T, 1y, xo;u) =y for some u(-) € L*([ty, T]).
Equivalently, (8) is controllable, if for every z, > 0,
there exists 7 > t, such that (8) is completely control-
lable on the interval [fy, T] (see Sontag (1998) for the
precise definition of complete controllability).

We next recall the following well-known result from
linear control theory (see for instance Theorem 5 in
Sontag 1998, p. 109).

Proposition 1:  System (1) is controllable, if and only if

for every ty >0, there exists a time T :=T(ty)) > ty

such that the controllability Gramian of (1)
!
W(tst0) = | 00,7 BB () (10,7)dr )

)
is positive definite for every t > T, i.e.
Wit ty) >0, Vt>T (10)

The following elementary result will be used in
Proposition 3 to establish equivalence between control-
lability and feedback stabilization capability for (1). Its
proof is a direct consequence of the result of the pre-
vious proposition.

Lemma 1: System (1) is controllable if and only if
there exists a pair of non-decreasing C' functions
a,6: Rt — (0,+00) such that

0< W(t+6(1),1) <a()l, Ve >0 (11)

Proof: Proposition 1 asserts that for every 7y >0
there 1is a positive constant &y >0 such that
Wty + b0, 1) > 0, thus continuity of W(.) implies
W(t+ép,t) >0 for all re1,, where I,, CR" is a
neighbourhood of #. It turns out that for any com-
pact interval 7 C R there exists a constant 6; > 0 such
that W (t+6;,t) >0 for all r€l. By employing
this property, we can find a piecewise constant
function &:R* — (0, +00) such that W(t+6(1), 1) >0
for all 7 > 0. For instance, we may take 6(¢) := &j 1),
for te€n,n+1), n=0,1,2,.... The left-hand side in-
equality of (11) follows by constructing a non-decreas-
ing C! function &R+ — (0,+00) with &(7) > 6(¢) for
all ¢t>0 and taking into account that
W(t+6(t),t) > W(t+6(t),t) >0 for all t>0. The
existence of a C!' non-decreasing function
a:R" — (0,400), such that the right-hand side in-
equality of (11) holds, is immediate. O

We next give a Lyapunov characterization of GAS
for case (2).
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Proposition 2:  The following statements are equivalent:
(i) Zero 0 € R" is GAS for (2).
(ii) There exist a C° function I: R™ — (0, +00) with
+00
J I(s)ds = +o0 (12)
0
and a non-decreasing C° function 0:R" —
(0,+00) , such that, if x(t) denotes the solution
of (2) with x(ty) = xq , the following holds
t
x(0)] < exp{j Is) ds}e(zo>|xo|, Visn, xR
0

(13)

(iii) There exists a positive definite C' matrix
P(:) € R"™" such that

P(t)>1 (14)
P(t) + P(t)A(t) + A'(1)P(t) + 21()P(t) <0, V>0
(15)

where I: R — (0, +00) is any C° function satis-

Sying (12) and (13) and I is the unit matrix of

dimension n X n.

Proof: (i) = (ii) Suppose that 0 € R" is GAS for
(2). Then the fundamental solution matrix @(-) of (2)
satisfies lim,,; |®(£,0)] = 0 and thus, we may define

w(t) = sup|(r, 0)| (16)

Obviously, w: R" — R isa c°, non-increasing function
and satisfies lim,_ . w(f) =0. Consequently, there
exists a C!, strictly decreasing, positive function
#:RT — (0, +00), with w(r) < ¢(t), ¢(¢) <0, for all
t >0 and in such a way that lim,__ ¢(7) = 0. Let
(1)

() :=——— 17

(=-S5 (17)
Obviously, /is C° and satisfies (12). Moreover, from (16)
and (17) it follows that

1B(2,0)] < (1) = 6(0) exp{— J; i(s) ds}, Vi >0
(18)

It turns out from (18) and by making use of (5) and (6)
that

(1, 10)] < 6(0) p{j I(s) ds}@(o, )|

go(to)exp{—fz(s)ds}, vt (19)

0

where

t

(1) := (0) p{J

0

|A<s>|ds} (20)

The desired (13) is a direct consequence of (19).
(ii) = (iii) Estimation (13) is equivalent to

1

|®(1,0)] < 6(0) exP{_ J

I(s) ds}, V>0
0

which implies that

1 t
|®(0,1)x| > —exp{J 1(s) ds}|x|, V>0, Vxe®"
6(0) 0

(21)

t

P(1) :== 6*(0) exp{—ZJ

0

I(s) ds}cb'(o, 0®(0,1)  (22)

Clearly, by (5), (21) and definition (22), it follows that
P(-) is a C' positive definite matrix which satisfies both
(14) and (15).

(i) = (i) Consider the function

V(t,x) = x'P(t)x (23)

where P(-) is defined by (14) and (15). It turns out that
the derivative V‘(z) of V along the trajectories of (2)
satisfies

V]p< =200V (1,x) (24)
Consequently, the solution x(-) of (2) initiated from
Xo € R" at time 1, > 0 satisfies

t

V(t,x(1)) < exp{—2J I(s) ds} V(ty,Xo), Yt>tg

ty

(25)

and thus by virtue of (14) and definition (23) it follows
that

x(0)] < exp{— j I(s) ds}P<zo>|“2|xo|, Viz iy (26)

lo
Inequality (26), in conjunction with (12), shows that
0 € R" is GAS for (2). The proof is complete. O

The next proposition establishes equivalence
between controllability and non-uniform in time stabil-
izability for the linear case (1).

Proposition 3:  The following statements are equivalent:

(1) System (1) is controllable.
(ii) For every C° function I:R" — (0,400) with

0+°O I(s)ds = +oo, there exists a C° function
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0: RT — (0, +00), such that 0 € R" is GAS for (1)
with

w(t, ) :=exp (J: (21(5) + %) ds) (29)

for certain a,6:R" — (0, 4+00) non-decreasing C! Sfunc-
tions (being independent of the choice of I(-)) for which
(11) is satisfied. Particularly, the solution x(-) of the
closed-loop system (1) with (27) satisfies

x()] < exp{— [/ ds}a<ro>|xo|,

Vit > o, Xp € éRn, 1 > 0 (30)

Proof: (i) = (ii) Let a,8:R" — (0,4+00), be a pair
of non-decreasing and C' functions for which (11) is
satisfied, whose existence is guaranteed by Lemma 1.
Since a(f) >0 for all > 0, for each fixed >0 the
function p(z,-) as defined by (29) is decreasing and

satisfies 0 < u(t,7) <1 for all 7 > ¢. Thus, by virtue of
(11) and definitions (28) and (29), it follows that

0 < pu(t,t+6()W(t+68(t),1)
<O < W(t+s(n,0) <a)l (31

Moreover, using property (4), we evaluate

Sow=0mBnEme W

Define

Clearly, from (31) and (33) we get
P(t) > 1 (34)

Also, by virtue of (32) and (33) and using the fact that
6(+) is non-decreasing, we obtain

<0 (35)

The rest part of proof is a consequence of (34), (35) and
the result of Proposition 2 (implication (iii) = (ii)), for
the closed-loop system (2) with (27).

(ii) = (i) We again denote by &(z,7,) the funda-
mental solution matrix of (2), namely, of system (1)
with u = 0, and recall the elementary property

exp(—J’O 4915 )b < [#/(r. 0

1
t
< exp (J 14(5)| ds) ],
)

Vi>1,>0, xe®R" (36)
Let
1(£) :=3|4(1)] + 1 (37)

and let k:RT — R™" be a C° mapping in such a way
that the solution x(-) of the closed-loop system (1) with
u = k(f)x satisfies (30) for certain 6(-): R" — (0, +o0).
Suppose on the contrary that (1) is not controllable.
Then by invoking Theorem 5, p. 109 in Sontag (1998)
there would exist ¢, > 0 such that for every ¢ > ¢,

P(0)@(t,7)b(1) =0, V7 € [19,1] (38)
for certain non-zero vector p(z) € R". Obviously, by (38)
we have p'(¢)x(t) = p'(t)®(t, ty)x, for all x, € R" and
t > ty and thus by invoking (30) it follows that

P (O(1 1)x%| < |p<z>|exp{—J; I(s) ds}e<zo>|xo|,

VXO € §R”, IZ to

By letting x, = @'(t, t,)p(t) in the previous inequality we
obtain

/(1 10)p()] < |p<r>|2exp{— j;us) ds}e<to>|a>’<z, o),

Yt >t
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and the latter, in conjunction with (36) and (37), implies
that

fo
exp (t + 3J |A(s)] ds) < 0(ty), forallt>¢
0

a contradiction. O

Remark 1: The result of Proposition 3, as well as the
corresponding stabilization methodology, generalizes a
well-known fact from linear control theory (see, i.e.
Rugh 1996), which asserts that system (1) is globally
exponentially stabilizable with ‘arbitrary fast’ rate of
convergence, under the hypothesis of uniform control-
lability, namely, under the assumption

all <W(t+6,1) <ad, Yt>0 (39)

for certain positive constants a;,a,,6 > 0. To be more
precise, equations (27)—(29) coincide with the formula
given in Rugh (1996), with 6(z) =6 > 0, a(t) = a, > 0,
where a,,6 are the constants defined in (39) and
[(t) =1 > 0 (constant). Moreover, the solution x(-) of
the corresponding closed-loop system satisfies
|x(1)| < Kexp{—I(t — ty)}|xo| for all > ¢,, with />0
(constant) as above and for certain constant K > 0.

The next proposition provides a linear feedback con-
troller, which globally asymptotically stabilizes (1) at
zero and simultaneously is a solution of an infinite hor-
izon optimal control problem. The corresponding feed-
back design is based on the solvability of a time-varying
Riccati differential equation and constitutes a general-
ization of standard optimal control procedures (see, i.e.
Kalman 1960, Kailath 1980, Anderson and Moore 1990,
Amato et al. 1996).

Proposition 4:  Suppose that (1) is controllable. Let
LRT — (0,4+00)  be any C°  function  with
0+ *I(s)ds = +oc . Consider the infinite horizon optimal
control problem

min J(t, xg,u(+));
u()eC([tg,+00) (fo, xo, ()

+00

g s, 5= [ (0t 35D QON 10, 30

+ (1) R(1)u(1)) dt (40)

Iy

where x(t, 1y, xo;u(-)) above denotes the solution of (1)
corresponding to input u(-) € C°([ty, +00)) initiated
from xo € R" at time ty > 0, R(-) € R™™ is a C° positive
definite matrix and Q(-) € R™" is a C° positive semi-
definite matrix that satisfies for all t > 0

0(1) > exp <2J 1(s)> (21(¢)1 +A() + A1)

0

t

+ exp (2 J’ l(s))B(z)R‘l (z)B’(t)) (41)

0

Then there exist a C° function 0 : R — (0,400) and a
C° mapping k : R" — R™" such that:

e Zero is GAS for the closed-loop system (1) with
u = k(t)x and particularly its solution x(-) satisfies
(30).

o For any (ty,xy) € R" xR", the control u(t) =
k(t)x(t), where x(t) denotes the solution of the
closed-loop system (1) with u=k(t)x initiated
from xy € R" at time ty > 0, minimizes the perfor-
mance index given by (40).

Proof: The proof is based on a well-known optimal
control result (see, e.g. Kalman 1960, Anderson and
Moore 1990), which asserts that, under the control-
lability assumption for (1), for any pair of continuous
positive semi-definite matrices Q(-) € " and
R(-) e R in such a way that for each 7> 0 the
matrix R(¢z) is positive definite, the infinite horizon
optimal control problem given by (40) is solvable;
namely, for every (7p,x9) € R" x R" there exists a
u*(-) € C°([ty, +00)) such that

J(IOaXOau*(')) = min

J(to, X0, u(:
u(-)€CO([ty,+00)) (f0, %o, u(:))

Particularly, there exists a C' positive semi-definite

matrix P(-) € R"" that satisfies the Riccati equation

P(t) + P(1)A(t) + A' (1)) P(1) — P(t)B(1)R™" (1) B (1) P(1)
+0(1)=0, Vi>0 (42)

with the properties:

P1. x(P(ty)xy = min

J 11 ,X, “))s
ectin gy Yo, ()

V(to,xO) S §R+ x R

P2. u(t) = =R ()B (t)P(1)x(t, ty, xo; " (+)),
for ¢ Z ZO

It turns out that the feedback controller

u' =k(t)x
(43)
k(1) := —R'(1)B (1) P(1) }

minimizes the cost function J(zy, xq, u(-)).

We next show that the origin of the closed-loop
system (1) with (43) is GAS and particularly estimation
(30) holds, provided that (41) is satisfied. Let

t

M(1) :=exp (ZJ

I(s) ds) I, t>0 (44)
0

It follows, by invoking (41) and (44), that for every
u(-) € Lig.(R") it holds
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(¢ 0t ) M) 1, 5 ()

= ' (1, tg, xo3 u(-)) (M (1) + M (1) A(1)
+ A ()M (1)) x(t, 19, xo5 u(-))
+ 20/ (1) B' (1) M (1)x(t, 1o, xo; u(-))
< X (1, tg, xo;u(-))Q(8)x(t, to, xo;u(-)) + /' (1) R(t)u(t)
(45)
Let us denote by x(+) the optimal solution of the closed-
loop system (1) with (43). It turns out from (40), (44),
(45) and recalling property P1 that

+00

xoP(1g)xo =

(¥(om)x(r) +u (DR (7)) dr

fo
t

> | (YW +u (IR (7)) dr
d

o A7

::exp(ZJZI@)dS>|xU)F

lo
— exp (2 J I(s) ds) |xo|*
0

and thus the trajectory x(-) of the closed-loop system (1)
with (43) initiated from x, at time ¢, satisfies

Ix(1)]*< exp (—2 J; I(s) ds) x) (P(to) + exp (2 J: I(s) ds) 1) X0
(46)

> (x/(T)M(T)x(T)) dr

Inequality (46) implies (30) with

000 = 1P(0] 4 exp{ [ 165 as} g

Remark 2: The drawback in the methodology em-
ployed in the proof of Proposition 4 is that the con-
struction of the feedback stabilizer is reduced to the
difficult problem of finding an appropriate solution of
the time-varying Riccati differential equation (42). On
the other hand, the advantage of the existence result of
Proposition 4 compared to the approach of Proposi-
tion 3 is that the control action is square integrable;
particularly, for R(-) >0 being arbitrary, the corre-
sponding stabilizer u*(-) satisfies

roc W I(R(u™ (1) dt < +o0

Iy

3. Application to tracking problems

The result of this section constitutes generalization
of earlier contributions on the subject and is based on
extremely simple hypotheses regarding reference inputs
of system (3). We next recall the precise definition of the

state feedback tracking problem at a reference trajectory
for the non-holonomic case (3).

Problem formulation: Consider a reference trajectory
(z:(2), x,(2) = (z,(2); x1,(2), - - -, X (2)) € RHY, £ >0 of
system (3), namely

1Sl§f’l—1, xnr:u2r

(47)

Zp = Uy Xip = UrX(i41)r

for certain reference control inputs u;, and u,,. Denote
the tracking error as

(Ze([)7e<l)) = (Z(t) - Zr(t)ax(t) - xr(l))

where (z(2),x(t)) is any arbitrary solution of (3). Then
(z,(1), e(1)) satisfies

Ze=vi; €= (ug (1) + vi)ei +vixgpn (1),
1<i<n—1; é,=v (48)
V= —up(t); vy =y — un(t) (49)

The state feedback tracking control problem is said to
be globally solvable, if there exists a pair of time-varying
feedback controllers of the form

VI = Ul(ta 2676)7 V) = U2(lvze7e) (50)

such that 0 € R is GAS for the closed-loop system
(48) with (50).

The following proposition is the main result of our
work and its proof is based on the results of §2
(Propositions 2 and 3).

Proposition 5: Consider the system (48) and suppose
that:
AL The functions u,,(-) and un,(-) are of class C°(R")
and LS, (R"), respectively.
A2 There is no time ty > 0 such that uy,.(t) = 0 for all
1> 1.
Then there is a pair of C° mappings k;(i = 1,2), such that
the linear time-varying feedback law:
Vi = Ul(taze) = kl(t)zea V) = UZ(t7e) = k2(t)e
(51)

solves the state feedback tracking problem globally.

For the proof of Proposition 5 we need the following
technical lemma, which provides a criterion for the con-
trollability of the time-varying case

120} (52)

where A, B are constant matrices of dimensions n X n
and n x m, respectively, with n > m and a:R" — R is
a C° function.

X =a(t)Ax + Bu

xeR', ueR”,
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Lemma 2: For the system (52) we assume that the pair
(A, B) satisfies the controllability rank condition. Then
the following statements are equivalent:

(i) The function a(-) satisfies hypothesis A2 of

Proposition 5, namely, there is no time ty >0
Sfor which a(t) =0 for all t > t,.

(it) System (52) is controllable (in the sense of

Definition 2).

(i) System (52) is stabilizable (by means of a linear
time-varying feedback ), in the sense of Statement
(ii) of Proposition 3; particularly, stabilization is
exhibited with an ‘arbitrary fast’ rate of conver-
gence at zero for the trajectories of the corre-
sponding closed-loop system.

Proof: (i) = (ii) We first show that, if (52) is not
controllable then there exists some time ¢y, > 0 such

that
a(t) =0, Vt> 1 (53)

Indeed, if (52) is not controllable, there exists some time
to > 0 such that for every T > t,, there is a non-zero

vector p € R" with
P'o(T,H)B =0, Vi € [, T) (54)

where @(1,1,) is the fundamental solution matrix for
(52) with u = 0. It is a matter of calculations to verify
that

(1, 1)) = exp (A J; a(s) ds) =7+ kf;% (A J; (5 ds) k

and therefore (54) is equivalent to

T
P exp <A J a(s) ds> B=0,

t

vt € [ty, T (55)

We claim that (55) implies that a(r) =0 for all
t € [tg, T], hence, since T is arbitrary, equation (53)
holds. Suppose on the contrary that there exists time ¢
with a(7) # 0, or equivalently, by continuity of a(-),
there exists an open interval (#,#) C [tp, T] with
a(t) #0 for all 1 € (11, 1,).

On the other hand, by (55) we get that

d, T
—p exp AJ a(s)ds |B=0
ds ;

for all 7 € [ty, T], which implies

T
a(s) ds>B =0, Ve, T] (56)

t

a(t)p' Aexp (A J

Since a(-) is non-zero on (1, 1), it follows by (56) that

T
P Aexp (AJ a(s) ds)B =0, Vie(t,t)

t

If we keep differentiating on the interval (¢, 7,) we get

A T
P A exp <A J

a(s) ds)g =0, Vi€ (11, 1),

1

forj=0,....,n—1

or equivalently

T
P exp (AJ a(s) ds) AB=0, Vi€ (1, 1,),

1

forj=0,...,n—1 (57)

Hence, for each ¢ € (¢, 1,) it follows from (57)

T
P exp (A J a(s) ds) (B,AB,..., A" 'B) =0

1

and, since the pair of matrices (4, B) is controllable, the
latter implies p = 0, a contradiction. We conclude that
(52) is controllable.

The rest part of proof is immediate. Particularly,
implication (ii) = (iii) is a consequence of Proposition
3 and finally (iii) = (i) is obvious. O

We are now in a position to establish Proposition 5.

Proof of Proposition 5: By Lemma 2 it follows that,
for any C° mapping u;,(-): R* — R satisfying hypoth-
esis A2, the system

éi=u,(Ne 1<i<n-—1

6= (58)

with v as input
is controllable (in the sense of Definition 2) and thus,
according to Proposition 3, there exists a C° mapping
k:RT — R such that 0 € R" is GAS for the closed-
loop system (58) with

v=k(t)e (59)

Thus, by Proposition 2, there exists a C' positive definite

matrix P(-) € R and a positive C° function
LERT — R with

—+00
J /(s)ds = +o0
0

such that, if we define V(¢,e) := ¢ P(t)e, the following
inequalities hold

lel’< V(1,e) (60)
for all (,e) € R" x R"
(61)

(58) k(e S —2HOV (1, 0),

4
Let ¢: R — (0,400) a C° function with

[ o=

0
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yet to be selected and define
ki(t) == —=¢(1),  ky(1) == k(1) (62)

Consider the resulting system (48) with (51) and (62),
namely, the system

Z, =V
é; = (u1,(1) +vi)ei + vixXpn (), l<i<n-1
é, ="V
with vi = —¢(1)z,, v, = k(t)e
(63)

and let (z,(+), e(-)) be its corresponding solution initiated
from (z,(#),e(ty)) at time #, > 0. Obviously, we have

(1) = exp{—j' 5(5) ds}zeuo) (64)

)
t

vl<z>=—¢<r>exp{—j (z»(s)ds}ze(ro) (65)

Iy
Furthermore, by (60), (61) and (65) it follows that the
time derivative V" of V'(-) along the trajectories of (63)
satisfies

V< —Q21) — 2+ L) PO ()Y (1,¢)

+ L))y (1)] (66)

L() = (D] + 3 e 0) (67)
i=2

x;(+) being the ith component of the solution of (47).
Let a: RT — R be any C° function with

t t

sup|Pun(2+-Lu»exp{z+-2J
>0 0

l(s)ds—J

. a(s) ds} < 400

(68)
and define

S +Ooexp{—‘[ofs +a(s)) ds} )

JI exp{— L (s + a(s)) ds} dr

Note that lim,_ ., ¢(f) = +00 and consequently

—+00
J ¢(s)ds = 400
0

By (68) and definition (69), there exists a constant R > 0
such that

1

o(0)|P(1)](2 +L<r>>exp{z+ |

(21(s) - 6(5)) ds}

<R, Vi>0 (70)

Then by (65) and (70) we estimate
2+ L) P (1)

< Rexp{ =+ [ o) as il (1)
L(0)1P0) I (1)
< Rexp{—l - 2Jl I(s)ds + J

0 0

lo

o(s) ds}ze<zo>| (72)

By (60), (66), (71), (72) and use of the comparison prin-
ciple we get

t

(0 < exp{ Stz pexp{ = [ 1)}

x |1PGo)]"le(to)| + (i, 7)) (73)

t

h(t,w) :== Rw exp{J

0

o(s) ds} (74)

Relations (64) and (73), (74) imply that 0 € R"*! is GAS
for the closed-loop system (63). We conclude that the
mapping (51), where k;(-) (i = 1,2) are defined by (62) is
a solution of the tracking problem. O

Remark 3: Lemma 2 guarantees that Assumption A2
made in Proposition 5 is equivalent to the property
that system (58) is controllable (in the sense of
Definition 2). This again, according to Proposition 1,
is equivalent with the property that for every ¢ >0,
there exists 6(f) >0 such that the controllability
Gramian of system (58)

t+6(1)

W(t+6(1),1) = J &(t,7)B(T)B (1)®'(t,7)dT

t

is positive definite, where

dj(ta ZO) = {¢iJ(t7t0);l S laf S n}
0 forj<i

pulto) = (j i i)!' (J’ uy,(7) dT)jl forj>i

&(1,1) being the fundamental solution matrix of (58)
with v=0. Direct evaluation of the controllability
Gramian gives the equivalence between hypothesis A2
and the following one:

A2 For every t > 0, there exists §(t) > 0 such that

1+6(1)
J w(r, OW (1, 1) dT > 0 (75)

t
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with w(t, ty) := (wi(t,8y), ..., w,(t, to)) , where each com-
ponent w;(t, ty) is defined as

Wil 1) = ﬁ (J’ 1y, (7) dT> e

t

Remark 4: Comparisons with some earlier existing
works. We make some comparison with some earlier
existing works for the tracking problem for the case
(3). In Jiang (2000, Theorem 1) it is assumed that the
reference trajectory x;(-) (i=2,...,n) and the map-
pings u,.(+), (), us(-) are bounded over R and
uy,(+) does not converge to zero as t — +o0o. Note that
the results in Jiang (2000) generalize those in Jiang
and Nijmeijer (1997 a,b, 1999) and Jiang et al. (1998).
In our recent work (Karafyllis and Tsinias 2003 a)
it is assumed that the mapping u;.(-) is C' and the
mapping u,,(-) is measurable and locally essentially
bounded and there exist constants p > 1, K >0 and
¢,r, M, X > 0 such that the following hold for all + > 0

S e (1)] < Mexp{Ar}
=2

|y, (0)] + |, (1) < Kexp{ct} (77)

!
lim lj |y, (7) P exp{r7} dT = +00
t—+oo f 0

where x;,.(-) denotes the reference trajectory of (3). We
note here that the above set of hypotheses imposed in
Karafyllis and Tsinias (2003 a) leads to solvability of the
tracking problem for a larger class of nonholonomic
systems that includes the case (3). Finally, in Lefeber
et al. (1999) it is assumed that the mapping u,.(-) is
continuous, the reference trajectory x;.(-) (i =2,...,n)
is bounded over R" and there exist positive constants &,
1 and &, such that the following matrix inequality holds
forall >0

436
el < J wr oW/ (n0dr <e  (78)

t

where w(r, 1) is defined by (76). This is equivalent to the
assumption that (58) is uniformly controllable, namely,
its controllability Gramian satisfies (39). Proposition 5
of the present paper clearly generalizes the results
obtained in the papers mentioned above for the case
(3), since it is based on weaker hypotheses. Particu-
larly, by taking into account the equivalence between
hypotheses A2 and A2, it follows that assumption
(78), imposed in Lefeber ez al. (1999) is indeed stricter
than (795).

The following numerical example illustrates the
nature of Proposition 5 and shows that indeed our
methodology exhibits asymptotic tracking under weaker

hypotheses for the reference control input u;,.(¢) than
those imposed in the previously mentioned works.

Example 1: Consider the three-dimensional system
(3) and its reference trajectory

(Zr(t)§xlr(l)aXZr(l))/
= (JI exp(—72)dr, 1, c:‘:xp(t2)>7 t>0

0
corresponding to the reference control inputs
up, (1) == exp(—1*) and u,,(f) := 2rexp(r*). Note that
the state feedback tracking control problem for this
reference trajectory cannot be solved by the proposed
methodologies in earlier existing works. For example,
Theorem 1 in Jiang (2000) cannot be applied, since
uy,(-) converges to zero as t — +oo and the component
of the reference trajectory x,,.(¢) as well as the mapping
u>,(+) are not bounded over ®". Neither does the result
in Karafyllis and Tsinias (2003 a) work in this case, since
the first and the last condition in (77) do not hold.
Finally, note that for p’ := (1,0), |p| = 1, we obtain

t+6
P J w(r, O)w' (1, 1) d7p

‘
1+6 T 2
= J (J uy,(s) ds) dr < & exp(—27%),

t t

for every 6 > 0

(where w(r, 1) is defined by (76)), thus the above inequal-
ity asserts that a constant ¢, > 0 for which (78) holds
does not exist. Moreover, the component of the refer-
ence trajectory x,(tf) is not bounded over R'.
Consequently, the result in Lefeber ef al. (1999) is not
applicable. On the other hand, Proposition 5 of the
present paper guarantees that there exists a linear
time- varying feedback law (51), which solves the state
feedback tracking control problem globally. In order to
construct such a feedback law, we first construct a linear
time-varying stabilizer for system (58). We may use the
result of Proposition 3 to determine an explicit formula
for this feedback law. In the above case however, we can
directly proceed (by applying an elementary backstep-
ping design approach) considering the quadratic
Lyapunov function

V(t e, ey) = 16exp(t+26) et +2(ey +2(t + 1) exp(t2)61)2

= (91762)1)(1)(61) (79)

€

P() e {Sexp@zz)(z exp(0) + (1+ ) 4+ 1>exp<r2>}
4(t+ 1) exp(t7) 2
(80)
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which satisfies

(ef +¢3) < V(t,er,e5) < 32exp(2(¢+ 1)) (ef +¢3),

Y(t,e1,e,) € RT x B2 (81)

namely (60) holds and it is a matter of calculations to
verify that (61) is satisfied with /(¢) = 1 and

i= —2exp(£)[1 + (2 + 1)(¢ + 1) + 4exp(1)]e;
— (2t +3)e, (82)

It turns out that the linear time-varying feedback given
by (82) globally asymptotically stabilizes (58) at the
origin. Next, by taking into account definition (67)
and the right-hand side inequality (81), we can deter-
mine a C° function @:R" — R such that (68) holds.
For example, we may select a(z) :=5+7¢ and then
consider ¢ as defined by (69)
exp(—5t — 41%)

o) = [ exp(—57 — 47%)dr (83)

We conclude, according to the procedure employed in
the proof of Proposition 5, that the linear time-varying
feedback law

where

t
Goernes)i= (2= [Lexp(-r)dron - - exo(r) )
0
and k(r) and ¢(¢) are determined by (82) and (83),
respectively, globally solves the state feedback tracking
control problem for this case.

4. Conclusions

We have established a Lyapunov characterization of
(non-uniform in time) global asymptotic stability for
linear time-varying systems and we have proved that a
linear time-varying control system is controllable, if and
only if it is (non-uniformly in time) stabilizable by means
of a linear time-varying feedback in such a way that the
trajectories of the closed-loop system approach zero
with an arbitrary fast rate of convergence. The results
constitute generalizations of well-known facts of linear
systems theory. We have also derived sufficient con-
ditions for the solvability of the state feedback tracking
control problem for non-holonomic systems in chained

form, which constitute a generalization of the results
that have appeared in the literature concerning this
problem.
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