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Global Exponential Stability for Discrete-Time
Networks With Applications to Traffic Networks

Iasson Karafyllis and Markos Papageorgiou, Fellow, IEEE

Abstract—This paper provides sufficient conditions for global
asymptotic stability and global exponential stability, which can
be applied to nonlinear, large-scale, uncertain discrete-time net-
works. The conditions are derived by means of vector Lyapunov
functions. The obtained results are applied to traffic networks
for the derivation of sufficient conditions for global exponential
stability of the uncongested equilibrium point of the network.
Specific results and algorithms are provided for freeway traffic
models. Various examples illustrate the applicability of the ob-
tained results.

Index Terms—Discrete-time systems, nonlinear systems, traffic
networks.

I. INTRODUCTION

EXPONENTIAL stability is a very useful property for the
equilibrium point of a given network. The purpose of this

paper is three-fold:
• to provide sufficient conditions for global asymptotic sta-

bility (GAS) and global exponential stability (GES), which
can be easily applied to nonlinear, large-scale, uncertain
discrete-time networks;

• to apply the aforementioned sufficient conditions to traffic
networks and obtain conditions, which guarantee the GES
of the uncongested equilibrium point;

• to study the stability properties of freeway traffic models
and obtain easily checkable conditions which guarantee
the GES of the uncongested equilibrium point.

Vector Lyapunov functions are useful to large-scale discrete-
time systems. Sufficient stability conditions by means of vector
Lyapunov functions have been proposed in [11, pp. 792–798].
More recently, small-gain conditions have been proposed in
[22], which can be expressed by means of a vector Lyapunov
function formulation (as shown in [13, Ch. 5]). In this pa-
per, we propose a set of conditions expressed by means of
vector Lyapunov functions, which guarantee GAS and GES
(Theorem 2.3) and can be applied easily to nonlinear, large-
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scale, uncertain discrete-time systems. The basis for the appli-
cability is the expression of the stability condition by means
of a condition on the spectral radius of a non-negative ma-
trix. Therefore, we can apply recent results on non-negative
matrices that provide upper bounds for the spectral radius
(see [3, Ch. 2]). The stability notions used in this paper are
the standard stability notions for discrete-time systems used in
[11, Ch. 13], [12], [13, Ch. 2], and [16, Ch. 4], but we also allow
the discrete-time, uncertain system to be defined on a subset of
a finite-dimensional space. Discrete-time systems defined on a
subset of a finite-dimensional space were studied in [28, Ch. 1].

The conservatism of the obtained stability conditions can be
reduced significantly if we have an accurate description of a
trapping region of the system: this feature is exploited through-
out this paper. A nonlinear system with a trapping region is a
system for which all solutions enter a specific set after an initial
transient period (for continuous-time systems without inputs
the name “global uniform ultimate boundedness” is used in
[14, p. 211] when the corresponding set is compact; the term
“dissipative system” is used in the literature of the continuous-
time systems with compact corresponding sets; see [28, p. 180].

The obtained stability results are applied to traffic networks
(Section III). More specifically, we develop a general model
for traffic networks, which consists of an arbitrary number
of elementary components. The components can be intercon-
nected to form any 2-D structure for the overall traffic network.
This general formulation allows for a plethora of diverse traf-
fic network infrastructures to be addressed on the basis of a
unifying modeling approach; specific instances of the proposed
general model may result in systems which are similar to other
models in the literature (see, for example, [6], [8], and [25]). In
particular, the traffic network structures and problems that can
be considered as special cases of the proposed network model
include: urban road networks consisting of interconnected links
which are modelled as store-and-forward components [1] or
cell-transmission links [4]; large urban networks consisting of
smaller homogeneous subnetworks [2]; freeway stretches or
networks consisting of a series of links which are modelled
via the discretized Lighthill–Whitham–Richards (LWR) model
[17] or its simplified cell transmission model (CTM) version
[7]; large mixed (corridor) networks consisting of urban and
freeway links [24]. As a matter of fact, the same generic ap-
proach may also be used for modeling water networks consist-
ing of interconnected links which are modelled by discretized
versions of the Lighthill–Whitham model [21], see [5] and
[23]. Our main related result (Theorem 3.1) provides explicit
formulas for the elements of a specific non-negative matrix
whose spectral radius is critical for the GES of the uncongested
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equilibrium point of the traffic network. Therefore, our results
can be used for the determination of the stability properties in a
given traffic network within this framework (see Example 3.3).

The obtained results are specialized to the case of a freeway
stretch (Section IV). The overall model in this specific con-
stellation consists of a series of subsequent cells and is similar
to the known first-order discrete Godunov approximations (see
[9]) to the kinematic-wave partial differential equation of the
LWR model (see [21] and [26]) with nonlinear [17] or piece-
wise linear (CTM, [7]) outflow functions. However, the pre-
sented framework can also accommodate recent modifications
of the LWR model as in [18] to reflect the so-called capacity
drop phenomenon. Our main related result (Corollary 4.3) pro-
vides an easily implementable algorithm for the determination
of the stability properties of the uncongested equilibrium point
of the freeway stretch. The results are different from other
results in the literature on the CTM (see [6] and [10]), since our
methodology is different from the methodology used in [6] and
[10]. More specifically, in [10], the dynamical analysis is based
on monotone systems theory and in [6], the results concerning
the uncongested equilibrium point are local. On the other hand,
in this paper, we provide global stability results based on a
vector Lyapunov function analysis.

Notation:

• �+ := [0,+∞). For every set S, Sn = S × . . .× S︸ ︷︷ ︸
n times

for

every positive integer n. �n
+ := (�+)

n. For every x ∈ �,
[x] denotes the integer part of x ∈ �.

• We say that an increasing function ρ ∈ C0(�+;�+) is of
class K∞ if ρ(0) = 0 and lims→+∞ ρ(s) = +∞. By KL,
we denote the set of functions σ ∈ C0(�+ ×�+;�+)
with the properties: 1) for each t ≥ 0, the mapping σ(·, t)
is increasing with σ(0, t) = 0; 2) for each s ≥ 0, the map-
ping σ(s, ·) is nonincreasing with limt→+∞ σ(s, t) = 0.

• Let x, y ∈ �n. We say that x ≤ y iff (y − x) ∈ �n
+. By

|x|, we denote the Euclidean norm of x ∈ �n. Let A ∈
�n×n be a real matrix. By |A|, we denote the induced
matrix norm. The spectral radius of A ∈ �n×n is denoted
by ρ(A). When all elements of A are non-negative, then
we say that A is non-negative and we write A ∈ �n×n

+ .

II. VECTOR LYAPUNOV STABILITY CRITERIA

FOR DISCRETE-TIME NETWORKS

Consider the discrete-time system

x+ = F (d, x), x ∈ S ⊆ �n, d ∈ D (2.1)

where S ⊆ �n is a nonempty closed set with x∗ ∈ S, D ⊆
�l is a nonempty, compact set, F : D × S → S is a locally
bounded mapping, being continuous on the set D × {x∗} with
F (d, x∗) = x∗ for all d ∈ D. We suppose that {x ∈ S : 0 <
|x− x∗| ≤ δ} 
= ∅ for every δ > 0.

In order to develop the Vector Lyapunov Stability criteria, we
need the notion of a trapping region (TR). A nonlinear system
with a TR is a system for which all solutions enter a specific set
after an initial transient period.

Definition 2.1: A TR for system (2.1) is a set A ⊆ S for
which there exists an integer m ≥ 0 such that for every x0 ∈ S,
{di ∈ D}∞i=0, the solution x(t) of (2.1) with initial condition
x(0) = x0 corresponding to input {di ∈ D}∞i=0 satisfies x(t) ∈
A for all t ≥ m.

A direct consequence of Definition 2.1 is that every TR for
(2.1) must contain all equilibrium points. We next define the
robust stability notions used for (2.1).

Definition 2.2: We say that x∗ ∈ S is robustly globally
asymptotically stable (RGAS) for system (2.1), if there exists
a function σ ∈ KL such that for every x0 ∈ S, {di ∈ D}∞i=0,
the solution x(t) of (2.1) with x(0) = x0 corresponding to
{di ∈ D}∞i=0 satisfies |x(t)− x∗| ≤ σ(|x0−x∗|, t) for all t≥0.
We say that x∗ ∈ S is robustly globally exponentially stable
(RGES) for system (2.1) if there exist constants M,σ > 0
such that for every x0 ∈ S, {di ∈ D}∞i=0, the solution x(t) of
(2.1) with x(0) = x0 corresponding to {di ∈ D}∞i=0 satisfies
|x(t)− x∗| ≤ M exp(−σt)|x0 − x∗| for all t ≥ 0.

We are now ready to state the main result of the section.
Theorem 2.3: Consider (2.1) and suppose that A ⊆ S is

a TR for (2.1). Moreover, suppose that there exist functions
a1, a2 ∈ K∞ with a1(s) ≤ a2(s) for all s ≥ 0, Vi : A → �+

(i = 1, . . . , l) and a matrix Γ = {γi,j ≥ 0, i, j = 1, . . . , l} ∈
�l×l

+ such that the following inequalities hold for all x ∈ A, d ∈
D and i = 1, . . . , l:

a1 (|x− x∗|) ≤ max
i=1,...,l

(Vi(x)) ≤ a2 (|x− x∗|) (2.2)

Vi (F (d, x)) ≤
l∑

j=1

γi,jVj(x). (2.3)

Moreover, suppose that the spectral radius ρ(Γ) of the matrix
Γ is less than 1. Then, x∗ ∈ S is RGAS for (2.1). Moreover,
if there exist constants L ≥ 0, 0 < K1 ≤ K2, p > 0 such that
sup{|F (d, x)− x∗| : d ∈ D} ≤ L|x− x∗| for all x ∈ S \A
and if ai(s) = Kis

p (i = 1, 2) for all s ≥ 0, then x∗ ∈ S is
RGES for (2.1).

Since the matrix Γ is non-negative, there are effective tools
for the computation of its spectral radius [3, Ch. 2]. For exam-
ple, if there exists ε > 0 such that

max
i=1,...,n

⎛⎝ n∑
j=1

γi,j

⎞⎠ < 1 or

max
i=1,...,n

⎛⎜⎜⎝
n∑

j=1

(ε+ γi,j)
n∑

k=1

(ε+ γj,k)

nε+
n∑

j=1

γi,j

⎞⎟⎟⎠ < 1

then the spectral radius of Γ is less than 1. The aforementioned
conditions can be used for large-scale systems easily.

It should be emphasized that the novelty of Theorem 2.3,
with respect to existing results, lies in the presence of deter-
ministic uncertainty and the exploitation of the TR.

Proof: Let x0 ∈ S, {di ∈ D}∞i=0 be given and consider
the solution x(t) of (2.1) with x(0) = x0 corresponding to
{di ∈ D}∞i=0. Let m ≥ 0 be the integer in Definition 2.1. Let
j ∈ {0, . . . ,m} be the smallest integer for which it holds that
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x(t) ∈ A for all t ≥ j [the fact that j exists and satisfies j ∈
{0, . . . ,m} is a consequence of the fact that A is a TR for (2.1)].
We next show that there exists b ∈ K∞ such that

max
k=0,...,j

|x(k)− x∗| ≤ b (|x0 − x∗|) . (2.4)

Indeed, if there exists a constant L ≥ 0 such that max{|F (d,
x)− x∗| : d ∈ D} ≤ L|x− x∗| for all x ∈ S \A, then we may
define b(s) := max(1, Lm)s for all s ≥ 0. The fact that (2.4)
holds is a consequence of the fact that j ≤ m, (2.1) and
the resulting inequality |x(t+ 1)− x∗| ≤ max(1, L)|x(t)−
x∗| which holds for all t = 0, . . . , j − 1, for the case that j ≥ 1.

For the general case, we define F (d, x) = x∗ for all d ∈
D,x ∈ �n \ S and

a(s) := sup {|F (d, x)−x∗| : (d, x)∈D ×�n, |x− x∗| ≤ s} .
(2.5)

Clearly, a(s) is well defined by (2.5) for all s ≥ 0, since F is a
locally bounded mapping. The continuity of F on the set D ×
{x∗}, in conjunction with the fact that D ⊆ �l is a compact set
with F (d, x∗) = x∗ for all d ∈ D, implies that

lim
s→0+

a(s) = a(0) = 0. (2.6)

By virtue of [13, Lemma 2.4] there exists ā ∈ K∞ such that
s+ a(s) ≤ ā(s) for all s ≥ 0. We define

b := ā ◦ . . . ◦ ā︸ ︷︷ ︸
m times

. (2.7)

Definition (2.7) shows that b ∈ K∞. Using the fact that j ≤
m, inequality |x(t+ 1)− x∗| ≤ ā(|x(t)− x∗|), which holds
for all t = 0, . . . , j − 1 [a consequence of (2.5) and (2.1)] for
the case that j ≥ 1 and definition (2.7), we obtain (2.4). When
j = 0, then (2.4) holds automatically.

Since ρ(Γ) < 1 there exist M ≥ 1, σ > 0 such that

|Γt| ≤ M exp(−σt), for all integers t ≥ 0 (2.8)

(see [27, p. 212, 231]). Next define

ξ(t) = (V1 (x(t+ j)) , . . . , Vl (x(t+ j)))′ ∈ �l
+ for all t ≥ 0.

(2.9)

Equation (2.1), in conjunction with inequalities (2.3), implies
that the following recursive relation holds for all t ≥ 0:

ξ(t+ 1) ≤ Γξ(t). (2.10)

Using the fact that Γ is a non-negative matrix (and consequently
satisfies Γx ≤ Γy for all vectors x, y ∈ �l with x ≤ y), we
obtain from (2.10)

ξ(t) ≤ Γtξ(0), for all t ≥ 0 (2.11)

Using (2.8), (2.11) as well as definition (2.9) and (2.2), we
obtain

a1 (|x(j + t)− x∗|) ≤ M exp(−σt)
√
la2 (|x(j)− x∗|) ,

for all t ≥ 0. (2.12)

Using (2.4) and (2.12), we obtain

a1 (|x(j + t)− x∗|) ≤ M exp(−σt)
√
la2 (b (|x0 − x∗|)) ,

for all t ≥ 0. (2.13)

Since a1(s) ≤ a2(s) for all s ≥ 0, and since M ≥ 1, j ≤ m, it
follows from (2.4) and (2.13) that the following estimate holds
for all t ≥ 0:

a1 (|x(t)− x∗|) ≤ M exp (−σ(t−m))
√
la2 (b (|x0 − x∗|)) .

(2.14)

Inequality (2.14) shows that the estimate |x(t)− x∗| ≤
σ(|x0 − x∗|, t) holds for all t ≥ 0 with σ(s, t) :=
a−1
1 (M exp(−σ(t−m)

√
la2(b(s))) (notice that σ ∈ KL)

and, consequently, x∗ ∈ S is RGAS for system (2.1). If
there exist constants L ≥ 0, 0 < K1 ≤ K2, p > 0 such that
max{|F (d, x)− x∗| : d ∈ D} ≤ L|x− x∗| for all x ∈ S \A
and if ai(s) = Kis

p (i = 1,2) for all s ≥ 0, then inequality
(2.13) implies that

K1 |x(j + t)− x∗|p ≤ M
√
lK2 exp(−σt)

×max(1, Lpm)|x0 − x∗|p, for all t ≥ 0. (2.15)

Here, we have used the fact that (2.4) holds with b(s) :=
max(1, Lm)s for all s ≥ 0. It follows from (2.15) and (2.4) with
b(s) := max(1, Lm)s and the facts that j ≤ m, 0 < K1 ≤ K2

that the following estimate holds for all t ≥ 0:

K1 |x(t)− x∗|p

≤ M
√
lK2 exp (−σ(t−m))max(1, Lpm)|x0 − x∗|p

which directly implies that x∗ ∈ S is RGES for system (2.1).
The proof is complete. �

III. GLOBAL STABILITY RESULTS

FOR TRAFFIC NETWORKS

This section is devoted to the derivation of sufficient con-
ditions that guarantee RGES for the equilibrium point of a
traffic network. We consider a generic traffic network which
consists of n components (see Section I for several specific
instances of the generic model). The number of vehicles at time
t ≥ 0 in component i ∈ {1, . . . , n} is denoted by xi(t). The
outflow and inflow of vehicles of the component i ∈ {1, . . . , n}
at time t ≥ 0 are denoted by qi(t) ≥ 0 and Fi(t) ≥ 0, respec-
tively. All flows during a time interval are measured in [veh].
Consequently, the balance of vehicles for each component i ∈
{1, . . . , n} gives

xi(t+1)=xi(t)−qi(t)+Fi(t), i=1, . . . , n, t≥0. (3.1)

Each component of the network has storage capacity ai >
0 (i = 1, . . . , n). Our first assumption states that the inflow
of vehicles at the cell i ∈ {1, . . . , n} at time t ≥ 0, denoted
by Fi(t) ≥ 0, cannot exceed the number of free positions for
vehicles of cell i ∈ {1, . . . , n} at time t ≥ 0, i.e.,

Fi(t)= min
(
ci (ai − xi(t)) , F̃i(t)

)
, i = 1, . . . , n, t ≥ 0

(3.2)
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where F̃i(t) ≥ 0 is the attempted inflow of vehicles at the
component i ∈ {1, . . . , n} at time t ≥ 0 and ci ∈ (0, 1] (i = 1,
. . . , n) are constants.

Our second assumption deals with the attempted outflows
and inflows. We assume that there exist functions fi ∈ C0(D ×
[0, ai];�+) with fi(d, xi) ≤ xi for all (d, xi) ∈ D × [0, ai],
where D ⊆ �l is a nonempty, compact set, constants pi,j ≥ 0,
i, j = 1, . . . , n, with pi,i = 0 for i = 1, . . . , n, and constants
Qi ≥ 0, i = 1, . . . , n so that

(attempted flow of vehicles from component i to componentj)

= pi,jfi(d, xi), for i, j = 1, . . . , n (3.3)

(attempted flow of vehicles from component i to regions

out of the network)

= Qifi(d, xi), for i = 1, . . . , n. (3.4)

We also assume that

n∑
j=1

pi,j +Qi = 1. (3.5)

Some explanations are needed at this point. The function
fi : D × [0, ai] → �+ is what in the specialized literature of
traffic engineering is called the demand part of the fundamental
diagram of the ith cell, that is, the flow that will exit the cell
if there is sufficient space in the downstream cells; while pi,j
are turning rates and Qi are exit rates. The uncertainty d ∈ D
has been introduced in order to accommodate the uncertain
nature of the fundamental diagram. Finally, (3.5) implies that
the total attempted outflow from the ith cell is exactly equal to
the demand part of the fundamental diagram fi(d, xi).

Let vi >0 (i = 1, . . . , n) denote the attempted inflow to
component i ∈ {1, . . . , n} from the region out of the network.
Our assumptions lead us to the following equations:

F̃i(t)=vi+

n∑
j=1

pj,ifj (d(t), xj(t)), i=1, . . . , n, t≥0. (3.6)

Equations (3.2) and (3.6) imply that the percentage of the
attempted inflow of vehicles at cell i at time t ≥ 0, which
becomes the actual inflow of vehicles at cell i at time t ≥ 0,
denoted by si(t) ∈ [0, 1] for i = 1, . . . , n, t ≥ 0 is given by

si(t) =

min

(
ci (ai − xi(t)) , vi +

n∑
j=1

pj,ifj (d(t), xj(t))

)
vi +

n∑
j=1

pj,ifj (d(t), xj(t))
.

(3.7)

Our final assumption relates the actual inflows with the
outflows. Many rules for the outflows of road links have been
proposed in the literature; see, for example, [6], [15], [19], and
[20]. Here, we employ a similar rule to the so-called propor-
tional priority, first-in-first-out (PP/FIFO) rule for junctions (see
[6] and [15]). We assume that if cell i cannot accommodate

all inflows, then the actual inflows from the other cells of the
network (or from regions out of the network) to cell i are equal
percentages of the attempted inflows, i.e.,

(actual flow of vehicles from component j to component i)

= si(t)(attempted flow of vehicles from component j

to component i)

i, j = 1, . . . , n. (3.8)

Other assumptions could be accommodated in this modeling
framework if required. Combining (3.3) with (3.8), we obtain

(actual flow of vehicles from component j to component i)

= si(t)pj,ifj(d, xj), i, j = 1, . . . , n. (3.9)

Moreover, we assume that the actual flow of vehicles from
cell i ∈ {1, . . . , n} to regions out of the network is equal to
the corresponding attempted flow of vehicles. Thus, the outflow
qi(t) ≥ 0 from cell i ∈ {1, . . . , n} is

qi(t) =

⎛⎝Qi +

n∑
j=1

sj(t)pi,j

⎞⎠ fi (d(t), xi(t)) . (3.10)

Combining (3.1), (3.2), (3.6), (3.7), and (3.10), we obtain the
following discrete-time dynamical system:

x+
i = xi + si

⎛⎝vi +

n∑
j=1

pj,ifj(d, xj)

⎞⎠

−

⎛⎝Qi +
n∑

j=1

sjpi,j

⎞⎠ fi(d, xi), for i = 1, . . . , n. (3.11)

Define S = [0, a1]× . . .× [0, an]. Since the functions fi sat-
isfy fi(d, xi) ≤ xi for all (d, xi) ∈ D × [0, ai], it follows that
(3.11) is an (uncertain) dynamical system on S.

A component i ∈ {1, . . . , n} of the traffic network (3.11)
is said to be “congested” at time t if ci(ai − xi(t)) < vi +∑n

j=1 pj,ifj(d(t), xj(t)) (or, equivalently, if si(t) < 1). In this
case, the actual inflow to component i ∈ {1, . . . , n} is less than
the attempted inflow. We will assume next that there exists
an equilibrium point for which no congestion phenomena are
present: the uncongested equilibrium point of the network.

(H) The matrix P = {pi,j : i, j = 1, . . . , n} satisfies
det(I − P ′) 
= 0. There exists a point x∗ = (x∗

1, . . . , x
∗
n)

′ ∈ S
that satisfies the following for all d ∈ D and i = 1, . . . , n:

vi + cix
∗
i +

n∑
j=1

pj,ifj
(
d, x∗

j

)
≤ ciai (3.12)

fi (d, x
∗
i ) = f ∗

i = vi +
n∑

j=1

pj,ifj(d, x
∗
j). (3.13)

We are now in a position to prove the following theorem.
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Theorem 3.1: Consider system (3.7), (3.11) under assump-
tion (H). Assume that there exist constants L ≥ 0, 0 ≤ bi <
bi ≤ ai λi, μi ≥ 0, ωi ∈ [x∗

i , ai) (i = 1, . . . , n) such that the
set A = [b1, b1]× . . .× [bn, bn] is a TR for system (3.7) and
(3.11), and such that the following inequalities hold for all
i = 1, . . . , n:

|fi(d, xi)− f ∗
i | ≤ L |xi − x∗

i | ,
for all (d, xi) ∈ D × [0, ai] (3.14)

|xi − x∗
i −Gi (θ, fi(d, xi)) fi(d, xi)

+min

⎛⎝ci(ai − xi), vi +

n∑
j=1

pj,if
∗
j

⎞⎠∣∣∣∣∣∣
≤ λi |xi − x∗

i | ,
for all (d, xi) ∈ D × [bi, bi],

θ = (θ1, . . . , θn) ∈ [0, 1]n, i = 1, . . . , n (3.15)

|f ∗
i − fi(d, xi)| ≤ μi |xi − x∗

i | ,
for all (d, xi)∈D×[bi, bi] and i=1, . . . , n (3.16)

where

Gi(θ, y) := Qi

+

n∑
j=1

min

(
cj(aj − θjωj), vj + pi,jy +

∑
k 
=i

pk,jf
∗
k

)
vj + pi,jy +

∑
k 
=i

pk,jf ∗
k

pi,j .

Define Fi = max{fi(d, s) : s ∈ [bi, bi], d ∈ D} (i = 1, . . . , n)
and assume that

f ∗
j + pi,j (Fi − f ∗

i ) ≤ cjaj for all i, j = 1, . . . , n. (3.17)

Define the matrix Γ = {γi,j : i, j = 1, . . . , n} by

γi,i :=λi, for i = 1, . . . , n (3.18)

γi,j :=
Fipi,jcj max(0, bj − ωj)(

f ∗
j + pi,j (Fi − f ∗

i )
) (

bj − x∗
j

)
+

(
pj,i +

n∑
k=1

Fipi,kpj,k
f ∗
k + pi,k (Fi − f ∗

i )

)
μj

for i, j = 1, . . . , n with i 
= j. (3.19)

If ρ(Γ) is less than 1, then x∗ is RGES for (3.11).
Remark 3.2: (a) Assumption (3.17) is not restrictive: since

we are studying the properties of the uncongested equilibrium
point, the equilibrium flow values f ∗

i for i = 1, . . . , n are far
smaller than the quantities ciai, and condition (3.17) holds.

(b) It should be pointed out that Theorem 3.1 is based on
the estimation of the constants λi, μi ≥ 0 (i = 1, . . . , n) which
satisfy inequalities (3.15), (3.16). The numerical evaluation of
the magnitude of the constants λi, μi ≥ 0 (i = 1, . . . , n) can
be performed independently for each cell, no matter how many
interconnections are present. This implies that the computa-
tional complexity for the evaluation of the constants λi, μi ≥ 0
(i = 1, . . . , n) is of order n and is independent of the number
of interconnections. This feature is important for the analysis of
large-scale networks.

Proof of Theorem 3.1: We use Theorem 2.3 for

Vi(x) := |xi − x∗
i | (i = 1, . . . , n) (3.20)

and the dynamical system (3.7) and (3.11). Since the inequality

1√
n
|x− x∗| ≤ max

i=1,...,n
(Vi(x)) ≤ |x− x∗|

holds for all x ∈ A and since (3.14) implies the condition
max{|F (d, x)− x∗| : d ∈ D} ≤ L̃|x− x∗| for all x ∈ S, for a
certain constant L̃ ≥ 0, where F (d, x) = (F1(d, x), . . . , Fn(d,
x))′ ∈ �n and

Fi(d, x) := xi + si

⎛⎝vi +

n∑
j=1

pj,ifj(d, xj)

⎞⎠
−

⎛⎝Qi +

n∑
j=1

sjpi,j

⎞⎠ fi(d, xi)

it suffices to show that (2.3) holds for all x ∈ A, i = 1, . . . , n.
The remaining part of proof is devoted to the proof of (2.3).

Indeed, using (3.7) and (3.20) we obtain for all (d, x) ∈ D ×A,
θ ∈ [0, 1]n and i = 1, . . . , n

Vi (F (d, x)) =
∣∣x+

i − x∗
i

∣∣ ≤ fi(d, xi)

n∑
j=1

pi,j |wi,j |

+ |xi − x∗
i −Gi (θ, fi(d, xi)) fi(d, xi)

+min (ci(ai − xi), f
∗
i )|

+

∣∣∣∣∣∣si
⎛⎝vi +

n∑
j=1

pj,ifj(d, xj)

⎞⎠
−min (ci(ai − xi), f

∗
i )| (3.21)

where

wi,j :=

min

(
cj(aj − xj), vj +

n∑
k=1

pk,jfk(d, xk)

)
vj +

n∑
k=1

pk,jfk(d, xk)

−
min

(
cj(aj−θjωj), vj+pi,jfi(d, xi)+

∑
k 
=i

pk,jf
∗
k

)
vj + pi,jfi(d, xi) +

∑
k 
=i

pk,jf ∗
k

. (3.22)

Using (3.15) and (3.16) and the fact that |min(a, x)−
min(a, y)| ≤ |x− y| for all a, x, y ∈ �, we obtain from (3.21)
for all (d, x) ∈ D ×A, θ ∈ [0, 1]n and i = 1, . . . , n

Vi (F (d, x)) ≤ λi |xi − x∗
i |+ fi(d, xi)

n∑
j=1

pi,j |wi,j |

+

n∑
j=1

pj,iμj

∣∣xj − x∗
j

∣∣ . (3.23)

We next show that for every (d, x)∈D×A and i=1, . . . , n, we
can select θj ∈ [0, 1] in a way so that we can minimize the values
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of |wi,j | (j=1, . . . , n). Continuity of the mapping [0, 1]�θj →
min(cj(aj − θjωj)/(vj+pi,jfi(d, xi)+

∑
k 
=i pk,jf

∗
k)), 1) im-

plies the existence of θj ∈ [0, 1] with wi,j = 0, provided that

min

⎛⎜⎝ cj(aj − ωj)

vj + pi,jfi(d, xi) +
∑
k 
=i

pk,jf ∗
k

, 1

⎞⎟⎠ ≤ sj

≤ min

⎛⎜⎝ cjaj
vj + pi,jfi(d, xi) +

∑
k 
=i

pk,jf ∗
k

, 1

⎞⎟⎠ (3.24)

where sj is defined in (3.7). If (3.24) does not hold, then
min(cj(aj−ωj)/(vj+pi,jfi(d, xi)+

∑
k 
=i

pk,jf
∗
k), 1)>sj . This

follows from min(cjaj/(vj+pi,jfi(d, xi)+
∑
k 
=i

pk,jf
∗
k), 1)=1

(a consequence of (3.13), (3.17)) and sj ≤ 1. Consequently,
(3.22) implies

|wi,j | =
min

(
cj(aj − ωj), vj + pi,jfi(d, xi) +

∑
k 
=i

pk,jf
∗
k

)
vj + pi,jfi(d, xi) +

∑
k 
=i

pk,jf ∗
k

−
min

(
cj(aj − xj), vj +

n∑
k=1

pk,jfk(d, xk)

)
vj +

n∑
k=1

pk,jfk(d, xk)

when (3.24) does not hold. Moreover, since sj = (min(cj(aj −
xj), vj+

∑n
k=1 pk,jfk(d, xk))/vj +

∑n
k=1 pk,jfk(d, xk))<1,

we obtain cj(aj − xj) < vj +
∑n

k=1 pk,jfk(d, xk) and
consequently

|wi,j | =
min

(
cj(aj − ωj), vj + pi,jfi(d, xi) +

∑
k 
=i

pk,jf
∗
k

)
vj + pi,jfi(d, xi) +

∑
k 
=i

pk,jf ∗
k

− cj(aj − xj)

vj +
n∑

k=1

pk,jfk(d, xk)
(3.25)

provided that (3.24) does not hold.
Hence, when (3.24) does not hold, we have from (3.25),

(3.16), and (3.24)

|wi,j |

⎛⎝vj+pi,jfi(d, xi)+
∑
k 
=i

pk,jf
∗
k+
∑
k 
=i

pk,jμk |xk−x∗
k|

⎞⎠
≤ min

⎛⎝cj(aj − ωj), vj + pi,jfi(d, xi) +
∑
k 
=i

pk,jf
∗
k

⎞⎠
×−cj(aj − xj)

+

min

(
cj(aj − ωj), vj + pi,jfi(d, xi) +

∑
k 
=i

pk,jf
∗
k

)
vj + pi,jfi(d, xi) +

∑
k 
=i

pk,jf ∗
k

×
∑
k 
=i

pk,jμk |xk − x∗
k| .

Using (3.13), the inequalities xj − ωj ≤ max(0, xj − ωj)
and min(cj(aj − ωj), vj + pi,jfi(d, xi) +

∑
k 
=i pk,jf

∗
k) ≤

cj(aj − ωj), we obtain

|wi,j | ≤
cj max(0, xj − ωj) +

∑
k 
=i

pk,jμk |xk − x∗
k|

f ∗
j + pi,j (fi(d, xi)− f ∗

i ) +
∑
k 
=i

pk,jμk |xk − x∗
k|
.

The above inequality holds when (3.24) holds as well. Using
the above inequality in conjunction with (3.23), we obtain for
all (d, x) ∈ D ×A and i = 1, . . . , n

Vi (F (d, x)) ≤ λi |xi − x∗
i |+

n∑
j=1

pj,iμj

∣∣xj − x∗
j

∣∣+ fi(d, xi)

×
n∑

j=1

pi,j

cj max(0, xj − ωj) +
∑
k 
=i

pk,jμk |xk − x∗
k|

f ∗
j +

∑
k 
=i

pk,jμk |xk − x∗
k|+ pi,j (fi(d, xi)− f ∗

i )
.

(3.26)

Using the facts that xj ∈ [bj , bj ] and ωj ≥ x∗
j , we ob-

tain max(0, xj−ωj)≤
(
max(0, bj−ωj)/(bj − x∗

j)
)
|xj − x∗

j |.
Therefore, we obtain from (3.26) for all (d, x) ∈ D ×A and
i = 1, . . . , n

Vi (F (d, x)) ≤λi |xi − x∗
i |+

n∑
j=1

pj,iμj

∣∣xj − x∗
j

∣∣
+

n∑
j=1

pi,jfi(d, xi)cj max(0, bj − ωj)(
f ∗
j + pi,j (fi(d, xi)− f ∗

i )
) (

bj − x∗
j

)
×
∣∣xj − x∗

j

∣∣
+

n∑
j=1

pi,jfi(d, xi)

f ∗
j + pi,j (fi(d, xi)− f ∗

i )

∑
k 
=i

pk,jμk

× |xk − x∗
k| . (3.27)

Finally, using definitions (3.20), the fact that pi,jfi(d, xi)/
(f ∗

j + pi,j(fi(d, xi)− f ∗
i )) ≤ pi,jFi/(f

∗
j + pi,j(Fi − f ∗

i )) for
all (d, x) ∈ D ×A, where Fi = max{fi(d, s) : s ∈ [bi, bi],
d ∈ D} and the fact that pi,i = 0, we obtain (2.3). �

Example 3.3: Consider the traffic network shown in Fig. 1,
for which the matrix P = {pi,j : i, j = 1, . . . , 5} is

P =

⎡⎢⎢⎢⎣
0 p 0 0 0
0 0 p 0 p̃
p 0 0 p̃ 0
0 0 0 0 0
0 0 0 0 0

⎤⎥⎥⎥⎦ (3.28)

where p, p̃ > 0 are constants with p+ p̃ ≤ 1. The external
inflows and the capacities of the network are

v1 = v2 = v3 = v > 0, v4 = v5 = ṽ > 0,

ci =1, ai = a > 0 (i = 1, . . . , 5) (3.29)
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Fig. 1. Traffic network of Example 3.3.

where v, ṽ, a > 0 are constants. Finally, we assume that all
functions fi(i = 1, . . . , 5) are given by

fi(x)=f(x) :=

{
rx for x ∈ [0, δ]

rδ− q(x− δ) for x ∈ (δ, a]
(i = 1, . . . , 5)

(3.30)

where δ ∈ (0, a), r ∈ (0, 1], q ∈ [0, δr/(a− δ)] are constants.
Note that the lower part of the right-hand side of (3.30) allows
for the modeling of capacity drop at the outflow of congestion
according to [18]. The network has the (uncongested) equilib-
rium point

x∗ = (c, c, c, κ, κ) (3.31)

where c := v/(r(1− p)), κ := (ṽ(1− p) + p̃v)/(r(1− p)),
which satisfies (H) provided that c ≤ δ, c(r + 1) ≤ a, κ ≤ δ,
and (r + 1)κ ≤ a. We next apply Theorem 3.1 under the
assumption

v + prδ ≤ a and ṽ + p̃rδ ≤ a (3.32)

with A = S = [0, a]5. Assumption (3.32) is assumption (3.17)
for the given network. The matrix Γ is equal to

Γ=

⎡⎢⎢⎢⎣
λ1 (a−ω2)ϕ pμ 0 0
pμ λ2 (a−ω3)ϕ 0 (a−ω5)ζ

(a−ω1)ϕ pμ λ3 (a−ω4)ζ 0
0 0 p̃μ λ4 0
0 p̃μ 0 0 λ5

⎤⎥⎥⎥⎦
(3.33)

where

ϕ =
pr2δ(1− p)

(prδ + v) (ar(1− p)− v)

ζ =
r2δp̃(1− p)

(ṽ + p̃rδ) (ar(1− p)− ṽ(1− p)− p̃v)

μ := sup

{
r
|v − (1− p)f(s)|
|rs(1− p)− v| : s ∈ [0, a], s 
= v

r(1− p)

}
(3.34)

λ4 =λ5 = sup

{
|s− κ− f(s) + min(a− s, rκ)|

|s− κ| :

s ∈ [0, a], s 
= κ

}
(3.35)

λi = max(ui, wi), i = 1, 2, 3 (3.36)

where

h(ω, s) :=

(
1− p+

min (a− ω, v + pf(s))

v + pf(s)
p

)
f(s)

h̃(ω, s) :=

(
1− p̃+

min (a− ω, ṽ + p̃f(s))

ṽ + p̃f(s)
p̃

)
f(s)

g(s) := s− c+min(a− s, cr), B = [0, a] \ {c}

u1 := sup

{
g(s)− h(ω2, s)

|s− c| : s ∈ B

}

w1 = sup

{
h(0, s)− g(s)

|s− c| : s ∈ B

}

u2 = sup

{
g(s) + f(s)− h(ω3, s)−h̃(ω5, s)

|s− c| : s∈B

}

w2 =w3=sup

{
h(0, s)−f(s)+h̃(0, s)−g(s)

|s− c| : s∈B

}

u3 = sup

{
g(s)+f(s)−h(ω1, s)− h̃(ω4, s)

|s− c| : s ∈ B

}

and ωi ∈ [c, a) (i = 1, 2, 3), ωi ∈ [κ, a) (i = 4, 5) are constants.
For a = 10, v = 0.4, ṽ = 0.4, δ = 5, p = 0.2, p̃ = 0.1, r = 0.55,
q = 0.1, the selection ω1 = 9.14, ω2 = 8.53, ω3 = 9.559, ω4 =
9.37, ω5 = 9.329 gives

Γ =

⎡⎢⎢⎢⎣
0.7905 0.0281 0.11 0 0
0.11 0.8166 0.0281 0 0.0298
0.0548 0.11 0.7905 0.028 0

0 0 0.055 0.7869 0
0 0.055 0 0 0.7869

⎤⎥⎥⎥⎦ .

Since max
i=1,...,5

(
∑5

j=1 γi,j) = 0.9845 < 1, we can conclude that

ρ(Γ) < 1 and, consequently, Theorem 3.1 implies that the
(uncongested) equilibrium point is GES. �

IV. GLOBAL EXPONENTIAL STABILITY FOR FREEWAYS

A freeway divided in n ≥ 3 sections or cells is a traffic
network of the form (3.7), (3.11) with pi,j = 0 for all i, j = 1,
. . . , n with j 
= i+ 1. Defining pi,i+1=pi for i=1, . . . , n−1
and if we further suppose that vi=0 for i=2, . . . , n, pi=1,
fi(d, xi) = fi(xi) for i = 1, . . . , n, v1 = v > 0, we obtain
from (3.5), (3.7), and (3.11)

x+
1 =x1−min (c2(a2 − x2), f1(x1)) + min (c1(a1 − x1), v)

(4.1)

x+
i =xi −min (ci+1(ai+1 − xi+1), fi(xi))

+ min (ci(ai − xi), fi−1(xi−1)) , for i = 2, . . . , n− 1

(4.2)

x+
n =xn−fn(xn) + min (cn(an − xn), fn−1(xn−1)) . (4.3)
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Again, ci ∈ (0, 1], fi ∈ C0([0, ai];�+) (i = 1, . . . , n) are
functions with fi(s) ≤ s for all s ∈ [0, ai]. We suppose that
there exists a vector x∗ = (x∗

1, . . . , x
∗
n) ∈ [0, a1]× . . . [0, an]

with fi(x
∗
i ) = v and cix

∗
i + v < ciai (i = 1, . . . , n). It follows

that assumption (H) holds for the equilibrium point x∗ ∈ �n.
The following corollary is a direct consequence of Theorem 3.1
(although Theorem 3.1 was applied to the model (3.7), (3.11)
which required vi > 0 for i = 1, . . . , n, all arguments in the
proof of Theorem 3.1 can be repeated).

Corollary 4.1: Consider (4.1), (4.2), and (4.3) with n ≥ 3.
Assume that there exist constants 0 ≤ bi < bi ≤ ai (i = 1,
. . . , n) such that the set A = [b1, b1]× . . .× [bn, bn] is a TR for
(4.1), (4.2), and (4.3). Moreover, assume that there exists L ≥ 0
such that the following inequalities hold for i = 1, . . . , n:

|fi(x)− v| ≤ L |x− x∗
i | , for all x ∈ [0, ai]. (4.4)

Furthermore, assume that there exist constants λi ≥ 0
(i = 1, . . . , n), μi ≥ 0 (i = 1, . . . , n− 1), ωi ∈ [x∗

i , ai) (i =
2, . . . , n) such that

|s−x∗
i−min (ci+1(ai+1−ωi+1), fi(s))+ min (ci(ai−s), v)|

≤ λi |s− x∗
i | , for s ∈ [bi, bi], i = 1, . . . , n− 1 (4.5)

|s− x∗
i −min (ci+1ai+1, fi(s)) + min (ci(ai − s), v)|

≤ λi |s− x∗
i | , for s ∈ [bi, bi], i = 1, . . . , n− 1 (4.6)

|s− x∗
n − fn(s) + min (cn(an − s), v)| ≤ λn |s− x∗

n| ,

for all s ∈ [bn, bn] (4.7)

|v − fi(s)|≤μi |s−x∗
i | , for all s∈ [bi, bi], i=1, . . . , n−1.

(4.8)

Assume that max{fi(s) : s ∈ [bi, bi]} ≤ ci+1ai+1 for all i =
1, . . . , n− 1. Define the tridiagonal matrix Γ = {γi,j : i, j =
1, . . . , n}

γi,i :=λi, for i = 1, . . . , n (4.9)

γi,i+1 :=
ci+1 max(0, bi+1 − ωi+1)

bi+1 − x∗
i

,

for i = 1, . . . , n− 1 (4.10)

γi,i−1 :=μi−1, for i = 2, . . . , n. (4.11)

If ρ(Γ) < 1, then x∗ is GES for (4.1), (4.2), and (4.3).
Corollary 4.1 shows that the TR is crucial for the stability

properties of the system (4.1), (4.2), (4.3). Indeed, if ωi ≥ bi for
i = 2, . . . , n, then ρ(Γ) = max

i=1,...,n
(λi) (because, in this case, Γ

is lower triangular). The crudest TR that can be used is A =
[0, a1]× . . . [0, an]. However, we can generate “smaller” TRs
by means of the following proposition.

Proposition 4.2: Suppose that there exist constants 0 ≤ bi <
bi ≤ ai (i = 1, . . . , n) such that the set A = [b1, b1]× . . .×
[bn, bn] is a TR for (4.1), (4.2), and (4.3) with n ≥ 3. Let
i ∈ {1, . . . , n}, δ ∈ [0, bi] be a constant such that one of the
following holds:

If i = 1 and δ ≥ x∗
1 then

min
δ≤s≤b1

(
min

(
c2(a2−b2), f1(s)

)
−min (c1(a1−s), v)

)
>0

and max
b1≤s≤δ

(
s−min

(
c2(a2 − b2), f1(s)

)
+ min (c1(a1 − s), v)) ≤ δ. (4.12)

If i ∈ {2, . . . , n− 1} and δ ≥ x∗
i then

min
δ≤s≤bi

(
min

(
ci+1(ai+1 − bi+1), fi(s)

)
− min (ci(ai − s), Fi−1)) > 0 and

max
b
i
≤s≤δ

(
s−min

(
ci+1(ai+1 − bi+1), fi(s)

)
+ min (ci(ai − s), Fi−1)) ≤ δ,

where Fi−1 = max
{
fi−1(s) : s ∈ [bi−1, bi−1]

}
. (4.13)

If i = n and δ ≥ x∗
n then

min
δ≤s≤bn

(fn(s)−min (cn(an − s), Fn−1)) > 0

and max
b
n
≤s≤δ

(s− fn(s) + min (cn(an − s), Fn−1)) ≤ δ,

where Fn−1 = max
{
fn−1(s) : s ∈ [bn−1, bn−1]

}
. (4.14)

Then, the set B ⊆ A, which results from the replacement of bi
by δ in the formula [b1, b1]× . . .× [bn, bn], is a TR for (4.1),
(4.2), and (4.3).

Proof: We consider the case i = 1 (all other cases are
similar). We consider the case δ < b1. Notice that since A =
[b1, b1]× . . .× [bn, bn] is a TR for (4.1), (4.2), and (4.3), there
exists m ≥ 0 such that for every x0 ∈ S, the solution x(t) of
(4.1), (4.2), and (4.3) with x(0) = x0 satisfies x(t) ∈ A for all
t ≥ m. Consequently, (4.1) implies for all t ≥ m

x1(t+ 1) ≤ x1(t)−min
(
c2(a2 − b2), f1 (x1(t))

)
+min (c1 (a1 − x1(t)) , v) . (4.15)

It follows from (4.12) and (4.15) that if x1(t) ≤ δ for certain
t ≥ m, then x1(t+ 1) ≤ δ. Thus, the following property holds:

(P): If there exists T ≥ m with x1(T ) ≤ δ, then it holds that
x1(t) ≤ δ for all t ≥ T .

Let ε :=minδ≤s≤b1(min(c2(a2−b2), f1(s))−min(c1(a1−s),
v)) > 0. We claim that the solution x(t) of (4.1), (4.2),
and (4.3) with arbitrary initial condition x(0) = x0 ∈ S satis-
fies x1(t) ≤ δ for all t ≥ m+ [(b1 − δ)/ε] + 1. The proof is
made by contradiction. Suppose that there exists x0 ∈ S and
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t ≥ m+ [(b1 − δ)/ε] + 1 such that x1(t)>δ. Notice that prop-
erty (P) guarantees that x1(j)>δ for all j=m, . . . , t. It
follows from (4.15) and definition ε :=minδ≤s≤b1

(min(c2(a2 −
b2), f1(s))−min(c1(a1 − s), v)) > 0 that the following in-
equality holds for all j = m, . . . , t:

x1(j + 1) ≤ x1(j)− ε. (4.16)

Inequality (4.16) implies that x1(t) ≤ x1(m)− (t−m)ε. The
previous inequality, in conjunction with x1(t) > δ and the fact
that x1(m) ≤ b1, implies (t−m)ε < b1 − δ which contradicts
the fact that t ≥ m+ [(b1 − δ)/ε] + 1. �

Using Proposition 4.2 and Corollary 4.1, we can construct an
algorithm that provides easily checkable sufficient conditions
for the GES of x∗.

Corollary 4.3: Consider system (4.1), (4.2), and (4.3) with
n ≥ 3. Suppose that 0 < fn(s) for all s ∈ (0, an], 0 < fi(s) <
ci+1ai+1 for all s ∈ (0, ai] and i = 1, . . . , n− 1. Perform the
following algorithm:

Step 1: Find kn ∈ [x∗
n, an) such that minkn≤s≤an

(fn(s)−
min(cn(an − s), Fn−1)) > 0 and max0≤s≤kn

(s− fn(s) +
min(cn(an − s), Fn−1)) ≤ kn, where Fn−1 := maxs∈[0,an−1]

(fn−1(s)).
Step n+1−i, where i∈{2, . . . , n−1}: Find ki ∈ [x∗

i , ai) such
that minki≤s≤ai(min(ci+1(ai+1−ki+1), fi(s))−min(ci(ai−s),
Fi−1))>0 and max0≤s≤ki

(s−min(ci+1(ai+1−ki+1), fi(s))+
min(ci(ai − s), Fi−1)) ≤ ki, where Fi−1 := maxs∈[0,ai−1]

(fi−1(s)).
Step n: Find b1 ∈ [x∗

1, a1) such that minb1≤s≤a1
(min(c2(a2 −

k2), f1(s))−min(c1(a1 − s), v)) > 0 and max0≤s≤b1
(s−

min(c2(a2 − k2), f1(s)) + min(c1(a1 − s), v)) ≤ b1.
Step n+i−1, where i∈{2, . . . , n−1}: Find bi∈ [x∗

i , ki] such
that minbi≤s≤ki(min(ci+1(ai+1−ki+1), fi(s))−min(ci(ai−s),
Fi−1))>0 and max0≤s≤bi(s−min(ci+1(ai+1−ki+1), fi(s))+

min(ci(ai − s), Fi−1)) ≤ bi, where Fi−1 := maxs∈[0,bi−1]

(fi−1(s)).
Step 2n− 1: Find bn ∈ [x∗

n, kn] such that minbn≤s≤kn
(fn(s)−

min(cn(an − s), Fn−1)) > 0 and max0≤s≤bn
(s− fn(s) +

min(cn(an − s), Fn−1)) ≤ bn, where Fn−1 := max s∈[0,bn−1]

(fn−1(s)).

Assume that there exist λi ∈ [0, 1) (i = 1, . . . , n) such that

∣∣s−x∗
i−min

(
ci+1(ai+1−bi+1), fi(s)

)
+min (ci(ai− s), v)

∣∣
≤ λi |s− x∗

i | , for s ∈ [0, bi], i = 1, . . . , n− 1 (4.17)

|s− x∗
i −min (ci+1ai+1, fi(s)) + min (ci(ai − s), v)|

≤ λi |s− x∗
i | , for s ∈ [0, bi], i = 1, . . . , n− 1 (4.18)

|s− x∗
n − fn(s) + min (cn(an − s), v)| ≤ λn |s− x∗

n| ,

for all s ∈ [0, bn]. (4.19)

Finally, assume that inequalities (4.4) hold for certain constant
L ≥ 0. Then, x∗ is GES for (4.1), (4.2), and (4.3).

All steps of the algorithm can be performed since 0 < fn(s)
for all s ∈ (0, an], 0 < fi(s) < ci+1ai+1 for all s ∈ (0, ai] and
i = 1, . . . , n− 1.

Example 4.4: Consider the network (4.1), (4.2), and (4.3)
with n = 5, ci = 1, ai = 10 (i = 1, . . . , 5)

fi(s) = f(s) :=

{
0.5s for s ∈ [0, 5]

3− 0.1s for s ∈ (5, 10]
(i=1, . . . , 4),

f5(s) :=

{
0.4s for s ∈ [0, 5]

2− p(s− 5) for s ∈ (5, 10]
, v = 1 (4.20)

where p ∈ [0, 0.4). We have x∗
i = 2 (i = 1, . . . ,4), x∗

5 = 2.5
and (H) holds. We consider the following question: “For what
values of p ∈ [0, 0.4) x∗ is GES?”. The algorithm of Corollary
4.3 was performed for values of p ∈ [0, 0.4) in the following
way: for a given integer N > 0, a grid of points si = ia/N
(i = 0, 1, . . . , N) was generated. Then, bi (i = 1, . . . , 5) and ki
(i = 2, . . . , 5) were chosen to be the smallest grid points sj =
ja/N so that minj≤l≤N (q(la/N)) > 0 and max0≤l≤j(la−
Nq(la/N)) < ja, where:

• q(s) := f5(s)−min(10− s, 2.5) and F := 2.5 for k5;
• q(s) := min(10− ki+1, f(s))−min(10− s, 2.5), for ki

(i = 4, 3, 2);
• q(s) := min(10− k2, f(s))−min(10− s, 1) for b1;
• q(s) := min(10− ki+1, f(s))−min(10− s, Fi−1),

Fi−1 := maxs∈[0,bi−1]
(f(s)) for bi (i = 2, 3, 4);

• q(s) :=f5(s)−min(10−s, F4) and F4 :=maxs∈[0,c4](f(s)),
for b5.

For all N > 0, there exists pN > 0 such that the assumptions
of Corollary 4.3 hold with λi = 0.5 (i = 1, . . . , 4) and λ5 =
0.6 for all p ∈ [0, pN ]. We obtained p100 = 0.189, p1000 =
0.244, p2000 = 0.247, indicating a sequence that tends to 0.25
as N → +∞. For p = 0.25, there exist additional equilibria
and, therefore, x∗ cannot be GES. The results show that the
sufficient conditions of Corollary 4.3 are virtually exact in
this case. �

V. CONCLUDING REMARKS

Sufficient conditions for GAS and GES have been given, by
means of vector Lyapunov functions. The results were applied
to traffic networks for the derivation of sufficient conditions
for GES of the uncongested equilibrium point. Specific results
were provided for freeway models.

The results of this paper can be used for different purposes
for future research:

• for the derivation of feedback laws which stabilize the
uncongested equilibrium point;

• for the study of the dynamic behavior of traffic networks
under the effect of external disturbances (varying inflows);

• for the study of complicated freeway models divided in
n ≥ 3 cells, each with one on-ramp and one off-ramp.
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