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SUMMARY

We present a new tracking controller for neuromuscular electrical stimulation (NMES), which is an emerging
technology that artificially stimulates skeletal muscles to help restore functionality to human limbs. The
novelty of our work is that we prove that the tracking error globally asymptotically and locally exponentially
converges to zero for any positive input delay, coupled with our ability to satisfy a state constraint imposed
by the physical system. Also, our controller only requires sampled measurements of the states instead of
continuous measurements and allows perturbed sampling schedules, which can be important for practical
purposes. Our work is based on a new method for constructing predictor maps for a large class of time-
varying systems, which is of independent interest. Copyright © 2014 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Neuromuscular electrical stimulation (NMES) is a technology where skeletal muscles are artifi-
cially stimulated to help restore functionality to human limbs with motor neuron disorders [1, 2].
This is carried out using voltage excitation of skin or implanted electrodes, which produces muscle
contraction, joint torque, and limb motion. NMES is an active area of research in biomedical and
rehabilitation engineering, because it is key to developing neuroprosthetic devices. NMES control
is challenging because of the nonlinear, time-varying, uncertain dynamics. The problem is com-
pounded by the presence of time delays in the muscle response, due to finite propagation of chemical
ions in the muscle, synaptic transmission delays, and other causes [1]. The simplest method for gen-
erating the desired limb motion is to apply the voltage signal via open-loop control using predefined
stimulation schemes specific to the functionality being restored (e.g., walking) [3]. Not surprisingly,
open-loop control was found to produce unsatisfactory results [3–6]. Despite this, most NMES
controllers in clinical use are open loop [2, 6]. Classical feedback controllers (e.g., proportional inte-
gral derivative, or PID, control) have also produced unsatisfactory results [7], failing to guarantee
closed-loop stability [6].

In parallel, considerable efforts have been devoted to understanding and modeling the nonlinear
physiological and mechanical dynamics of muscle stimulation, activation, and contraction [3, 8–10].
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These models have enabled researchers to explore advanced, model-based feedback control methods
to improve the effectiveness of NMES. Some work includes sliding mode control [6], adaptive
control [11], neural network-based controllers [2, 12, 13], backstepping control [7, 14], and dynamic
robust control [15].

Although previous efforts have advanced the field of nonlinear NMES control, the issue of com-
pensation of time delays caused by the underlying (chemical) kinetics has received less attention.
This is an important problem because of its potential destabilizing effect of delays on closed-loop
stability [16]. Typically, the delay is modeled as an input delay to the musculoskeletal dynamics [1,
17] or to the muscle activation dynamics [6]. As noted in the significant work [1], most NMES con-
trollers have not been designed to explicitly compensate for the time delay. Instead, some results
have simply investigated the robustness of standard controllers to the input delay; see, for example,
[6]. The first work to include time delay compensation in the design of the NMES control law was
[1, 17]. In these papers, proportional derivative, or PD, and PID algorithms modified with a delay
compensation term were designed using the predictor control approach [18]. In both, the tracking
error for the knee joint angle was shown to be uniformly ultimately bounded using a Lyapunov–
Krasovskii functional. Prediction uses dynamic controls to compensate arbitrarily long-time delays,
and therefore may work better than delay compensating controllers that have upper bounds on the
allowable delays (but see [19] for nonpredictive controls that compensate arbitrarily long input
delays for nonlinear time-varying systems with no drift). See also [20] for inverse optimal NMES
tracking without state constraints and without input delays.

There is a sizable literature on prediction. Although originally developed for linear systems, sev-
eral recent papers provide predictive methods for nonlinear systems. See, for example, [21] for
prediction of forward complete and feedforward systems, [22] for cases where the input delay is
time-varying, and [23] for systems where the delay can depend on the state. However, it may be diffi-
cult to obtain continuous measurements of the state. Instead, only sampled state measurements may
be available. To help overcome this challenge, [24] developed a predictor control design for time-
invariant systems, based on sampled observations of the state and an Euler discretization scheme.
Instead of continuous state observations, the controller in [24] uses an iterative process at each
sampling time to find the control values for the next sampling interval.

In this paper, we introduce a related type of predictor control for time delay compensation in the
NMES system. We consider the musculoskeletal dynamics for a human knee with an input delay as
in [1, 2], but with the constraint that the knee joint angle cannot physically exceed certain limits. Our
control is based on the hybrid, predictor feedback approach from [24]. Specifically, the approach
in [24] is extended to account for the nonlinear time-varying nature of the NMES tracking control
problem. Applying time-varying analogs of [24] to NMES is nontrivial, because one must first find
a suitable nominal feedback and several other functions for the corresponding undelayed system. To
overcome this challenge, we use a special change of coordinates that makes feedback linearization
possible while ensuring that the physical state constraint on the knee position is satisfied. The control
scheme uses sampled measurements and a numerical prediction of the state variables. Our control is
model-based and ensures exponential tracking of the desired knee joint trajectory while satisfying
the aforementioned state constraint under the input delay. This is an improvement over the existing
significant NMES results [1, 17], which established the weaker ultimate boundedness condition on
the tracking error under the input delay and which did not take the sampling and state constraint
into account. Our result also guarantees robustness with respect to perturbations of the sampling
schedule.

The rest of this paper is organized as follows. In Section 2, we present our notation. In Section 3,
we review the NMES model and state our control objective. The control scheme and the main result
are in Theorem 1. In Section 4, we state our general results on numerical approximation of solutions
of time-varying systems, which generalize the corresponding results in [24] and use the step-size
control ideas developed in [25]. The general results are used for the proof of our NMES tracking
result, which is in Section 5. Section 6 demonstrates our controls in simulations, and Section 7
summarizes the value added by our work and suggests future research directions. The appendices
prove certain claims and provide some formulas that are needed in the proofs of our theorems and
for applying our hybrid controller.
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2. NOTATION AND DEFINITIONS

For each vector x 2 Rn, we let jxj denote its usual Euclidean norm, and x0 is its transpose. The norm
jMj of a matrix M 2 Rm�n is defined by jMj D max ¹jMxj W x 2 Rn; jxj D 1º. We let ZC denote
the set of all non-negative integers. A partition � D ¹Tiº1iD0 of Œ0;C1/ is any increasing sequence
of times such that T0 D 0 and Ti !C1. For every real x > 0, we let Œx� denote its integer part, that
is, Œx� D max ¹k 2 ZC W k 6 xº. An increasing continuous function � W Œ0;C1/! Œ0;C1/ is of
class K provided �.0/ D 0. A class K function � is of class of K1 provided lims!C1 �.s/ D C1.
By KL, we denote the set of all continuous functions � W Œ0;C1/� Œ0;C1/! Œ0;C1/ such that
(i) for each t > 0, the mapping �.�; t / is of class K and (ii) for each s > 0, the mapping �.s; �/ is
non-increasing and satisfies limt!C1 �.s; t/ D 0. Let m and n be any positive integers. Given any
open subset A � Rn and any integer j > 0, we let C j .A/ denote the class of all functions having
domain A that have continuous derivatives of order j . When we wish to restrict to functions taking
values in a subset � � Rm, we denote the preceding set by C j .AI�/. Given x W Œa � r; b/! Rn

with b > a > 0 and r > 0, we let MTr.t/x denote the ‘open history’ of x from t � r to t , that
is,
�
MTr.t/x

�
.�/ D x.t C �/ for all � 2 Œ�r; 0/ and t 2 Œa; b/. Given any interval I � Œ0;C1/,

we use L1.I IU/ to denote the space of all measurable essentially bounded functions defined on I
and taking values in U � Rm. We also set kxkr D sup�2Œ�r;0/ jx.�/j for each function x. Notice
that sup�2Œ�r;0� jx.�/j is not the essential supremum but the actual supremum and that is why the
quantities sup�2Œ�r;0� jx.�/j and sup�2Œ�r;0/ jx.�/j do not coincide in general. We use jujŒa;b/ to
denote the essential supremum of any function u over any interval Œa; b/ in its domain. A function
h W A ! R where 0 2 A � Rn is called positive definite provided h.0/ D 0 and h.x/ > 0 for all
x 2 A n ¹0º. A function h W Rn ! R is called radially unbounded provided that for each constant
M > 0, the set ¹x 2 Rn W h.x/ 6M º is bounded or empty. For any bounded function F defined on
any subset of R, we let jF j1 denote its supremum over its entire domain.

3. THE NMES MODEL AND MAIN RESULTS

Consider the following musculoskeletal model for a human using the leg extension machine from
[1, 8]:

J Rq C b1 Pq C b2 tanh .b3 Pq/C k1q exp.�k2q/C k3 tan.q/Cmgl sin.q/ D U; (1)

where q.t/ 2 .��=2; �=2/ is the angular position of the lower leg limb about the knee joint, the
positive constants J andm are the constant inertia and mass of the lower limb/machine combination,
respectively, bi and ki for i D 1; 2; 3 are positive damping-related and elastic-related constants,
respectively, g is the gravitational constant, and l is the distance between the knee joint and the
center of the mass of the lower limb/machine. The leg extension machine in [1, 8] was designed
with the user in sitting position such that the rest position for the free-swinging lower limb is q D 0.
The quadricep muscles are stimulated using skin electrodes. We assume all system parameters are
known (but see Section 6 for simulation results where they are uncertain). In [2], the k3 tan.q/ term
is not present, because [2] does not consider the constraint on q.t/ that we will impose here. We use
the term k3 tan.q/ to ensure forward completeness of the tracking system under a bounded torque.
The control input U is the torque applied to the knee joint, and has the form U D 	.q/
 .q; Pq/ v,
where 	.q/ is the known positive valued bounded moment arm, the positive valued bounded function

 .q; Pq/ captures active and passive muscle characteristics and the dynamics of muscle recruitment,
and v is the voltage potential across the quadriceps muscle applied through the electrodes.

We find it convenient to write the model in the form

Rq.t/ D �
dF

dq
.q.t// �H . Pq.t//CG .q.t/; Pq.t// v.t � �/; (2)

where q is valued in .��=2; �=2/; v is valued in R; F W .��=2; �=2/ ! Œ0;C1/ is a C 2 non-
negative valued function satisfying limq!˙�=2 F.q/ D C1;H W R ! R is a C 1 function
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satisfying infx2R xH.x/ > 0;G W .��=2; �=2/ � R ! .0;C1/ is a C 1 positive valued and
bounded function, and � > 0 is the constant time delay in the muscle response. The function
F W .��=2; �=2/ ! Œ0;C1/ is the ratio of the potential and the inertia of the combined human
shank-foot and machine, and H W R! R denotes the ratio of the viscous torque due to damping in
the musculo-tendon complex and the inertia of the combined human shank-foot and machine. The
preceding conditions hold using

F.q/ D
mgl

J
.1 � cos.q//C

k1 exp.�k2q/

Jk22
.exp.k2q/ � 1 � k2q/C

k3

J
ln

�
1

cos.q/

�
;

H . Pq/ D
b2

J
tanh .b3 Pq/C

b1

J
Pq; and G .q; Pq/ D

1

J
	.q/
 .q; Pq/

(3)

The control objective is the asymptotic tracking of any desired C 2 reference signal qd .t/
satisfying

Rqd .t/ D �
dF

dq
.qd .t// �H . Pqd .t//CG .qd .t/; Pqd .t// vd .t � �/ (4)

for all t > 0, where vd 2 C 1.Œ��;C1/IR/, and such that the following holds:

sup
t>0
j Pqd .t/j C sup

t>0
jvd .t � �/j C sup

t>0
j Pvd .t � �/j < C1 and sup

t>0
jqd .t/j <

�

2
(5)

The last inequality in (5) is the physical constraint that the knee cannot bend more than˙�=2 from
the straight down rest position q D 0.

We will design our NMES controller with the help of a time-varying analog of [24]. We use a
hybrid predictor feedback control that guarantees global asymptotic and local exponential conver-
gence of the tracking error to 0. Our controller does not require continuous measurement of the state
variables but rather sampled measurements. The latter feature is important for practical purposes.
To describe our results, we set

	1;d .t/ D tan.qd .t// and 	2;d .t/ D
Pqd .t/

cos2.qd .t//
(6)

for all t > 0. We also define the function � W Œ0;C1/ � Œ0;C1/ �R2 ! R2 by

�.t0; h; xI v/ D

�
�1.t0; h; xI v/
�2.t0; h; xI v/

�
(7)

for all .t0; h; x/ 2 Œ0;C1/ � Œ0;C1/ �R2 using the formulas

�1.t0; h; xI v/ D x1 C hx2

�2.t0; h; xI v/ D x2 C

Z t0Ch

t0

g1.	d .s/C x/ds C
Z t0Ch

t0

g2.	d .s/C x/v.s � �/ds

C 	2;d .t0/ � 	2;d .t0 C h/

(8)

where the input v 2 L1.Œ��;C1/IR/ will be specified below after we introduce the necessary
notation,

g1.x/ D �
�
1C x21

	 dF
dq
.tan�1.x1//C

2x1

1C x21
x22 �

�
1C x21

	
H

�
x2

1C x21

�
and

g2.x/ D
�
1C x21

	
G

�
tan�1.x1/;

x2

1C x21

�
:

(9)

Let ¹Tiº1iD0 be any partition of Œ0;C1/ such that supi>0.TiC1 � Ti / < C1. Given any initial
time t0 > 0, the sampling times will be t0 C Ti for i D 0; 1; 2; : : :. At each sampling time t0 C Ti ,
we measure .q.t0 C Ti /; Pq.t0 C Ti // 2 .��=2; �=2/ �R. Next, we perform the calculation
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´kC1 D �.t0 C Ti C khi ; hi ; ´kI v/ for k D 0; : : : ; Ni � 1; where

´0 D

�
tan.q.t0 C Ti // � tan.qd .t0 C Ti //;

Pq.t0 C Ti /

cos2.q.t0 C Ti //
�

Pqd .t0 C Ti /

cos2.qd .t0 C Ti //

�0
;

(10)

and where Ni > 1 is a sufficiently large integer (whose lower bound we specify in the succeeding
text) and hi D �

Ni
. The preceding computations can be performed because they only require the

values of v on the interval Œt0CTi � �; t0CTi /. The control action v.t/ for t 2 Œt0CTi ; t0CTiC1/
is described by

v.t/ D
g2.	d .t C �//vd .t/ � g1.	d .t C �/C �.t//C g1.	d .t C �// � .1C 

2/�1.t/ � 2�2.t/

g2.	d .t C �/C �.t//
;

(11)

where  > 0 is a constant and �.t/ 2 R2 is given by

�1.t/ D e
��.t�Ti�t0/ ..�2.Ti C t0/C �1.Ti C t0// sin.t � Ti � t0/

C �1.Ti C t0/ cos.t � Ti � t0//

�2.t/ D e
��.t�Ti�t0/

�
�
�
�2.Ti C t0/C .1C 

2/�1.Ti C t0/
	

sin.t � Ti � t0/

C �2.Ti C t0/ cos.t � Ti � t0//

(12)

and

�.t0 C Ti / D ´Ni : (13)

The control scheme described by (10)–(13) is a combination of the following:

1. a numerical prediction of the error variables x1 D tan.q/ � tan.qd / and x2 D Pq= cos2.q/�
Pqd= cos2.qd / at time t0 C Ti C � based on the knowledge of the state variables .q.t0 C Ti /,
Pq.t0 C Ti // 2 .��=2; �=2/ �R, where the prediction is given by (13);

2. an intersample prediction of the error variables x1 D tan.q/� tan.qd / and x2 D Pq= cos2.q/�
Pqd= cos2.qd / for the time interval between two consecutive measurements, where the
prediction is given by (12); and

3. the application of a nominal controller with the state variables replaced by their corresponding
predicted values (predictor feedback), where the control action is given by (11).

See Section 5 for more details. The fact that q.t0 C Ti / in (10) stays in .��=2; �=2/ will follow
from our diffeomorphic mapping of the state space .��=2; �=2/�R for .q; Pq/ onto R2 and the fact
that the system on R2 under this diffeomophism is forward complete. Our results are summarized in

Theorem 1
For all positive constants �; r , and  and for every signal qd W Œ0;C1/ ! .��=2; �=2/

satisfying (4)–(5) for some reference input vd , there exist a locally bounded mapping N W

Œ0;C1/ ! ¹1; 2; 3; : : :º, a constant ! 2
�
0; �

2

	
and a locally Lipschitz, non-decreasing function

C W Œ0;C1/! Œ0;C1/ satisfyingC.0/ D 0 for which the following is true: for each partition ¹Tiº
of Œ0;C1/ such that supi>0.TiC1 � Ti / 6 r , each t0 > 0, each .q0; Pq0/ 2 .��=2; �=2/ � R, and
each v0 2 L1.Œ��; 0/IR/, the solution .q.t/; Pq.t/; v.t// 2 .��=2; �=2/ � R2 of the closed-loop
system given by (2) and (10)–(13) with the choice

Ni D N

 ˇ̌̌
ˇ
�

tan.q.t0 C Ti // � tan.qd .t0 C Ti //;
Pq.t0 C Ti /

cos2.q.t0 C Ti //
�

Pqd .t0 C Ti /

cos2.qd .t0 C Ti //

�ˇ̌̌
ˇ

C supt0CTi��6s<t0CTi jv.s/ � vd .s/j
	

(14)
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and initial condition .q.t0/; Pq.t0// D .q0; Pq0/ 2 .��=2; �=2/ � R and v.t0 C s/ D v0.s/ for
s 2 Œ��; 0/ exists for all t > t0 and satisfies the inequality

jq.t/ � qd .t/j C j Pq.t/ � Pqd .t/j C supt��6s<t jv.s/ � vd .s/j

6 exp.�!.t � t0//C

�
jq0 � qd .t0/j C j Pq0 � Pqd .t0/j

cos2.q0/
C sup��6s<0 jv0.s/ � vd .t0 C s/j

� (15)

for all t > t0.

Theorem 1 ensures robustness to perturbations of the sampling schedule, because (15) holds for
all sampling schedules ¹t0 C Ti W i D 1; 2; : : :º with supi>0.TiC1 � Ti / 6 r . Our proof is based
on a general result for time-varying nonlinear systems, which is of independent interest. We turn to
this general result next.

4. NUMERICAL APPROXIMATION OF SOLUTIONS OF TIME-VARYING FORWARD
COMPLETE SYSTEMS

Our NMES control design is based on numerical predictions of solutions of the corresponding time-
varying tracking dynamics, after a change of coordinates that transforms the state space to all of
Euclidean space. The prediction is for a value of the NMES tracking error � units into the future,
where � is the constant input delay. The work [24] gives a prediction method for solutions of time-
invariant forward complete nonlinear systems, by introducing a special type of energy-like function
W that only depends on the state. However, there is no obvious analog of the numerical approxima-
tion argument in [24] for time-varying systems, because [24] uses the time invariance of W in an
essential way. In this section, we overcome this obstacle for time-varying systems. We study a large
class of time-varying systems of the form

Px.t/ D f .t; x.t/; u.t// (16)

where x is valued in Rn and u is valued in Rm for any dimensions m and n, under the following
assumptions, which agree with the assumptions from [24] for time-invariant systems:

Assumption 1
The function f W Œ0;C1/ � Rn � Rm ! Rn is continuous, f .t; 0; 0/ D 0 for all t > 0, and there
is a continuous non-decreasing function L W Œ0;C1/! Œ1;C1/ such that

jf .t; x; u/ � f .t; y; u/j 6 L.jxj C jyj C juj/ jx � yj (17)

and jf .t; x; u/j 6 .jxj C juj/L.jxj C juj/ (18)

hold for all t > 0; x 2 Rn; y 2 Rn, and u 2 Rm. �

Assumption 2
There are W 2 C 2.Œ0;C1/ �RnI Œ1;C1// and p 2 K1 and a constant c > 0 such that

@W

@t
.t; x/C

@W

@x
.t; x/f .t; x; u/ 6 cW.t; x/C p.juj/ (19)

for all t > 0; x 2 Rn, and u 2 Rm. Also, there is a non-decreasing function P 2 C 0.Œ0;C1/I
Œ0;C1// such that

P.s/ > 1C sup

²ˇ̌̌
ˇ@2W@t2 .t; �/j C 2sL.s/j@

2W

@t@x
.t; �/

ˇ̌̌
ˇ

C s2L2.s/

ˇ̌̌
ˇ@2W@x2 .t; �/

ˇ̌̌
ˇ W j�j 6 s.1C �L.s//; t > 0

³ (20)

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2015; 25:2391–2419
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holds for all s > 0, ˇ̌̌
ˇ@W@x .t; x/

ˇ̌̌
ˇ 6pP.jxj/ (21)

holds for all t > 0 and x 2 Rn, and

jf .s; x; u/ � f .t; x; u/j 6 .s � t /
p
P.jxj C juj/ (22)

holds for all t > 0; x 2 Rn; u 2 Rm, and s > t . Also, for each constant w > 0, there is a
non-decreasing, continuous function Qw such that

Qw.s/ > 1C sup

²
jxj W W.t C h; x/ 6 exp.2cw/max

jyj6s
W.t; y/

C
1

2c
exp.2cw/p.s/ holds for some h 2 Œ0; w� and some t > 0

³ (23)

for all s > 0. �

Inequality (23) guarantees that for each t > 0, the mapping x 7! W.t; x/ is radially unbounded,
because for each constant NM > 0, the set

®
x 2 Rn W W.t; x/ 6 NM

¯
is empty or contained in a ball

in Rn centered at zero with radius Qt .s/, where s D p�1
�
2c exp.�2ct/ NM

	
. To state our general

result for (16), we use the following:

Lemma 1
For each constant � > 0, there is a function a� 2 K1 such that for each t0 > 0, initial condition
x.t0/ D x0, and measurable bounded input u W Œt0; t0 C �/ ! Rm, the unique solution of (16)
satisfies

jx.t/j 6 a� .jx0j C jujŒt0;t0C�// for all t 2 Œt0; t0 C ��: (24)

Also, for each constant � > 0, there is a constantM� > 0 such that a� .s/ 6M�s for all s 2 Œ0; 1�.�

Proof
Choose any trajectory and input satisfying the assumptions, and set jjujj D jujŒt0;t0C�/. By applying
variation of parameters to (19), it follows that for each t 2 Œt0; t0 C �� where the solution exists,
we get W.t; x.t// 6 exp.2c�/W.t0; x0/ C .2c/�1 exp.2c�/p.kuk/, so (23) implies that jx.t/j 6
Q� .jx0jCkuk/ and therefore alsoL.jx.t/jCjjujj/ 6 L.Q� .jx0jCkuk/Cjjujj/ for all t 2 Œt0; t0C��
for which the solution exists. A standard contradiction argument (based on the existence of limits
from the left for maximal solutions) shows that the solution exists for all t 2 Œt0; t0C ��. Therefore,
(18) gives the following for all t 2 Œt0; t0 C ��:

jx.t/j 6 jx0j C L .Q� .jx0j C kuk/C kuk/

Z t

t0

jx.s/jds

C kukL .Q� .jx0j C kuk/C kuk/ .t � t0/

(25)

Then, the Gronwall–Bellman inequality implies that a� .s/ D s.1CL.Q� .s/Cs/�/ exp.�L.Q� .s/C
s// satisfies our requirements. This readily gives the constant M� . �

For all s > 0, we can therefore define

A.s/ D L .Q� .s/C a� .s/C s/ and B.s/ D A.s/.a� .s/C s/L.a� .s/C s/: (26)

Consider the following numerical scheme, which is an extension of the explicit Euler method to
time-varying systems with inputs. We select a positive integer N and define

xiC1 D xi C

Z t0C.iC1/h

t0Cih

f .s; xi ; u.s//ds for i D 0; 1; : : : ; N � 1; (27)
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where h D �
N

, and x0 2 Rn and u W Œt0; t0 C �/ ! Rm are given. We still set jjujj D jujŒt0;t0C�/
for brevity.

Theorem 2
Consider the system (16) under Assumptions 1–2. Let � be any positive constant, and choose any
x0 2 Rn and t0 > 0 and any measurable bounded input u W Œt0; t0 C �/! Rm. If

N > � P .Q� .jx0j C kuk/C kuk/

c
; (28)

then

jx.t0 C �/ � xN j 6
�B.jx0j C kuk/

2NA.jx0j C kuk/
.exp.�A.jx0j C kuk// � 1/ (29)

and jxi j 6 Q� .jx0j C kuk/ (30)

hold for all i D 0; 1; : : : ; N , where x.t/ is the solution of (16) with initial condition x.t0/ D x0
corresponding to input u W Œt0; t0 C �/! Rm at time t , and the constant c > 0 is from (19). �

We next give three technical lemmas, which we then use to prove Theorem 2.

Lemma 2
Consider (16) under the assumptions of Theorem 2. Then, the following holds for each i 2
¹0; 1; : : : ; N � 1º: If h 6 cW.t0 C ih; xi /=P.jxi j C kuk/, where P is the function satisfying
(20)–(22), then

W.t0C.iC1/h; xiC1/ 6 exp.2ch/W.t0Cih; xi /C
Z t0C.iC1/h

t0Cih

exp.2c.t0C.iC1/h�s//p.ju.s/j/ds

(31)
holds. �

Proof
Given i 2 ¹0; 1; : : : ; N � 1º, we define the function g.�/ D W .t0 C ihC �h; xi C �.xiC1 � xi //
for all � 2 Œ0; 1�. The following equalities hold for all � 2 Œ0; 1�:

dg

d�
.�/ D h

@W

@t
.t0 C ihC �h; xi C �.xiC1 � xi //

C
@W

@x
.t0 C ihC �h; xi C �.xiC1 � xi // .xiC1 � xi /

d2g

d�2
.�/ D 2h

@2W

@t@x
.t0 C ihC �h; xi C �.xiC1 � xi // .xiC1 � xi /

C h2
@2W

@t2
.t0 C ihC �h; xi C �.xiC1 � xi //

C .xiC1 � xi /
0 @
2W

@x2
.t0 C ihC �h; xi C �.xiC1 � xi // .xiC1 � xi /

(32)

Moreover, notice that (18), (27), and the fact h 6 � imply that jxiC1�xi j 6 h.jxi jCkuk/L.jxi jC
kuk/ and jxi C�.xiC1 � xi /j 6 .jxi j C kuk/.1C �L.jxi j C kuk//. The previous inequalities, (20),
and (32) give

ˇ̌̌
ˇd2gd�2

.�/

ˇ̌̌
ˇ 6 h2P.jxi j C kuk/ for all� 2 Œ0; 1�: (33)
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Also, inequality (19) in conjunction with (27), (21), (22), and (32) gives

dg

d�
.0/ D h

@W

@t
.t0 C ih; xi /C

Z t0C.iC1/h

t0Cih

@W

@x
.t0 C ih; xi /f .s; xi ; u.s//ds

6 chW.t0 C ih; xi /C
Z t0C.iC1/h

t0Cih

p.ju.s/j/ds

C

Z t0C.iC1/h

t0Cih

@W

@x
.t0 C ih; xi / .f .s; xi ; u.s// � f .t0 C ih; xi ; u.s/// ds

6 chW.t0 C ih; xi /C
Z t0C.iC1/h

t0Cih

p.ju.s/j/ds C
h2

2
P.jxi j C kuk/

(34)

Combining (33)–(34) gives

W.t0 C .i C 1/h; xiC1/ D g.1/ D g.0/C

Z 1

0

�
dg

d�
.s/ �

dg

d�
.0/

�
ds C

dg

d�
.0/

6 .1C ch/W.t0 C ih; xi /C
Z t0C.iC1/h

t0Cih

p.ju.s/j/ds

C h2P.jxi j C kuk/;

(35)

by applying the mean value theorem to dg
d�

on Œ0; s� for all s 2 Œ0; 1�. Inequality (35) and the fact that

.1C ch/W.t0 C ih; xi /C

Z t0C.iC1/h

t0Cih

p.ju.s/j/ds C h2P.jxi j C kuk/

6 exp.2ch/W.t0 C ih; xi /C
Z t0C.iC1/h

t0Cih

exp.2c.t0 C .i C 1/h � s//p.ju.s/j/ds

(36)

holds for all h 6 cW.t0Cih;xi /
P.jxi jCkuk/

imply that (31) holds. The proof is complete. �

The proof of the preceding lemma differs significantly from the time-invariant result from [24]
because it uses our more complicated function P . See Section A for the P needed for our NMES
control. The next two lemmas are closer to the time-invariant analogs from [24], but we include
them for completeness.

Lemma 3
Let the assumptions of Theorem 2 hold. If h 6 c=P.Q� .jx0j C kuk/C kuk/, then

W.t0 C ih; xi / 6 exp.2cih/W.t0; x0/C
Z t0Cih

t0

exp.2c.t0 C ih � s//p.ju.s/j/ds (37)

holds for all i D 0; : : : ; N , where Q� W Œ0;C1/ ! Œ0;C1/ is the function involved in (23) for
w D � . �

Proof
We prove (37) by induction. First notice that (37) holds for i D 0. Suppose (37) holds for some
i 2 ¹0; : : : ; N � 1º. Then, W.t0 C ih; xi / 6 exp.2c�/W.t0; x0/C exp.2c�/p.kuk/=.2c/, because
h D �=N . The previous inequality in conjunction with (23) gives

jxi j 6 Q� .jx0j C kuk/: (38)

Hence, because P is non-decreasing andW.t0C ih; xi / > 1, we get h 6 cW.t0C ih; xi /=P.jxi jC
kuk/. Therefore, (31) holds. Substituting W.t0C ih; xi / in the right side of (31) by the right side of
(37), and then collecting terms, we conclude that (37) holds with i replaced by i C 1. This proves
the lemma. �
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Lemma 4
Consider system (16) under the assumptions of Theorem 2. Given any initial condition x.t0/ D x0
and any input u W Œt0; t0C �/! Rm, define ei D xi � x.t0C ih/ for i 2 ¹0; : : : ; N º, where x.t/ is
the corresponding solution of (2). Assume that h 6 c=P.Q� .jx0j C kuk/C kuk/. Then,

jei j 6
h2

2
B.jx0j C kuk/

exp.ihA.jx0j C kuk// � 1

exp.hA.jx0j C kuk// � 1
(39)

for all i 2 ¹1; : : : ; N º, where A and B are from (26). �

Proof
The following equation holds for all i 2 ¹0; : : : ; N � 1º, as a direct consequence of (27):

eiC1 D ei C

Z t0C.iC1/h

t0Cih

.f .s; xi ; u.s// � f .s; x.s/; u.s/// ds (40)

Using the definition ei D xi � x.t0 C ih/ and inequalities (18) and (24), and then noting that
jxi �x.s/j 6 jei jCjx.s/�x.t0C ih/j for all i 2 ¹0; : : : ; N �1º and all s 2 Œt0C ih; t0C .iC1/h�,
we get

jxi � x.s/j 6 jei j C .s � t0 � ih/.a� .jx0j C kuk/C kuk/L.a� .jx0j C kuk/C kuk/ (41)

Notice that all hypotheses of Lemma 3 hold. Therefore, inequality (37) holds for all i D 0; : : : ; N .
Recall that (37) implies that (38) holds for all i D 0; : : : ; N . Because Lemma 1 gives jx.t/j 6
a� .jx0j C jjujj/ for all t 2 Œt0; t0 C ��, we can therefore conclude from (40)–(41) that the following
holds for all i 2 ¹0; : : : ; N � 1º:

jeiC1j 6 jei j C hL .Q� .jx0j C kuk/C a� .jx0j C kuk/C kuk/ jei j

C
h2

2
L .Q� .jx0j C kuk/C a� .jx0j C kuk/C kuk/

� .a� .jx0j C kuk/C kuk/L .a� .jx0j C kuk/C kuk/

6 jei j C hA.jx0j C kuk/jei j C
h2

2
B.jx0j C kuk/;

by the definitions (26) of A and B , where we also used (17). This gives the recursive relation

jeiC1j 6 exp.hA.jx0j C kuk//jei j C
h2

2
B.jx0j C kuk/ (42)

for all i 2 ¹0; : : : ; N � 1º. Using (42) and the fact e0 D 0 gives (39). The proof is complete. �

We can now prove Theorem 2. All assumptions of Lemmas 3–4 hold. Consequently, (37) and
(39) hold. Inequality (29) follows from using the fact exp.hA.jx0j C kuk// � 1 > hA.jx0j C kuk/
and definition h D �

N
in conjunction with (39) for i D N . Moreover, inequality (37) implies (38),

which is (30). This completes the proof of Theorem 2.
Theorem 2 allows us to construct mappings that approximate values of the solutions of (16)

� time units ahead with guaranteed accuracy as follows. Let R W Œ0;C1/ ! Œ0;C1/ be a
continuous positive definite function with lim infs!0C R.s/=s > 0. Define the mapping ˆt0 W
Rn � L1 .Œt0; t0 C �/IRm/! Rn by

ˆt0.x0; u/ D xN ; (43)

where xi for i D 1; : : : ; N is defined by (27) with h D �
N

and N is as follows. We set

N.s/ D

�
� max

²
a� .s/C s

2R.s/
L.a� .s/C s/.exp.�A.s// � 1/ ;

P.Q� .s/C s/

c

³�
C 1: (44)
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for all s > 0 and N.0/ D 1. Inequality (29) implies that the mapping ˆt0 from (43) satisfiesˇ̌
ˆt0.x0; u/ � x.t0 C �/

ˇ̌
6 R.jx0j C kuk/ (45)

for all choices of x0 D x.t0/; u, and t0. Also, inequalities (29)–(30) in conjunction with (45) and
(24) give ˇ̌

ˆt0.x0; u/
ˇ̌
6 min ¹Q� .jx0j C kuk/; R.jx0j C kuk/C a� .jx0j C kuk/º : (46)

Notice that the mapping N in (44) is locally bounded. Indeed, there exists a constant M� > 0

such that a� .s/ 6 M�s for all s 2 Œ0; 1�. Therefore, continuity of all functions involved in (44) in
conjunction with the fact that lim infs!0C R.s/=s > 0 gives the local boundedness. We conclude
as follows:

Corollary 1
Consider system (16) under the assumptions of Theorem 2. For every positive definite function
R 2 C 0.Œ0;C1/I Œ0;C1// satisfying lim infs!0C R.s/=s > 0 and for every constant � > 0,
consider the mapping ˆt0 W R

n � L1.Œt0; t0 C �/IRm/ ! Rn defined by (43), where xi for
i D 1; : : : ; N is defined by the numerical scheme (27) with h D �=N.jx0jC jjujj/ and N is defined
in (44). Then, (45)–(46) hold for all t0 > 0 and .x0; u/ 2 Rn �L1.Œt0; t0C �/IRm/, where x.t/ is
the solution of (16) with initial condition x.t0/ D x0 corresponding to input u W Œt0; t0 C �/! Rm

and kuk D jujŒt0;t0C�/. Also, N is locally bounded. �

5. PROOF OF THEOREM 1

We now use Theorem 2 and Corollary 1 to prove Theorem 1. The proof of Theorem 1 is constructive
and formulas will be given for the locally bounded mapping N W Œ0;C1/! ¹1; 2; 3; : : :º involved
in the hybrid dynamic feedback law defined by (10)–(13). We first perform the following change of
coordinates, which is beneficial because it maps the restricted state space .��=2; �=2/�R onto all
of R2:

	1 D tan.q/ and 	2 D
Pq

cos2.q/
(47)

Then, cos2.q/ D 1

1C�2
1

and Pq D �2
1C�2

1

. Hence, (47) and (6) give

P	1.t/ D 	2.t/

P	2.t/ D g1.	.t//C g2.	.t//v.t � �/
(48)

where 	.t/ D .	1.t/; 	2.t// 2 R2 and v.t/ 2 R, and

P	1;d .t/ D 	2;d .t/

P	2;d .t/ D g1.	d .t//C g2.	d .t//vd .t � �/;
(49)

where

g1.	/ D �
�
1C 	21

	 dF
dq

�
tan�1.	1/

	
C

2	1

1C 	21
	22 �

�
1C 	21

	
H

�
	2

1C 	21

�
and

g2.	/ D
�
1C 	21

	
G

�
tan�1.	1/;

	2

1C 	21

�
:

(50)

Next, we set

x.t/ D 	.t/ � 	d .t/ and u.t/ D v.t/ � vd .t/: (51)

Then, (48)–(49) give

Px.t/ D f .t; x.t/; u.t � �//; (52)
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where x.t/ D .x1.t/; x2.t// is valued in R2 and u.t/ is valued in R,

f .t; x; u/ D

�
x2

Qf .t; x/C Qg.t; x/u

�
;

Qf .t; x/ D g1.	d .t/C x/ � g1.	d .t//C .g2.	d .t/C x/ � g2.	d .t///vd .t � �/; and

Qg.t; x/ D g2.	d .t/C x/:

(53)

Notice that f .t; 0; 0/ D 0 for all t > 0. To simplify the procedure of the proof, we break the proof up
into three steps. In the first step, we show that the time-varying system (52) satisfies Assumptions 1–
2 of Section 4. The second step is the construction of N W Œ0;C1/ ! ¹1; 2; 3; : : :º. The third step
is the rest of the proof.

5.1. First step of proof of Theorem 1

The fact that (52) satisfies Assumption 1 is a direct consequence of the definitions (53) and our
bounds (5) for the reference trajectory and reference input. To check Assumption 2, define the
function

W.t; x/ D 1C
1

2

�
	2;d .t/C x2

1C .	1;d .t/C x1/2

�2
C F

�
tan�1.	1;d .t/C x1/

	
(54)

Because F W .��=2; �=2/ ! Œ0;C1/ is C 2, it follows that W W Œ0;C1/ � R2 ! Œ1;C1/ is a
C 2 function. The formulas (53) for Qf and Qg give the following for all t > 0; x 2 R2, and u 2 R:

@W

@t
.t; x/C

@W

@x1
.t; x/x2 C

@W

@x2
.t; x/

�
Qf .t; x/C Qg.t; x/u

�
D �

	2;d .t/C x2

1C .	1;d .t/C x1/2
H

�
	2;d .t/C x2

1C .	1;d .t/C x1/2

�

C
	2;d .t/C x2

1C .	1;d .t/C x1/2
G

�
tan�1.	1;d .t/C x1/;

	2;d .t/C x2

1C .	1;d .t/C x1/2

�
.vd .t � �/C u/

(55)

Equation (55) follows because W.t; x/ D 1C 1
2
Pq2 C F.q/. Using the fact that infx2R xH.x/ > 0,

the fact that G W .��=2; �=2/ � R ! Œ0;C1/ is bounded and the fact W.t; x/ > 1 for all
.t; x/ 2 Œ0;C1/ �R2, we get the following from Equation (55) for all t > 0; x 2 R2 and u 2 R:

@W

@t
.t; x/C

@W

@x1
.t; x/x2 C

@W

@x2
.t; x/

�
Qf .t; x/C Qg.t; x/u

�

6 1
2

�
	2;d .t/C x2

1C .	1;d .t/C x1/2

�2
C
1

2
QG2.vd .t � �/C u/

2

6 1
2

�
	2;d .t/C x2

1C .	1;d .t/C x1/2

�2
C QG2v2d .t � �/C

QG2u2

6 1
2

�
	2;d .t/C x2

1C .	1;d .t/C x1/2

�2
C QG2v2d .t � �/W.t; x/C

QG2u2

(56)

where QG D sup ¹G .q; Pq/ W .q; Pq/ 2 .��=2; �=2/ �Rº. The aforementioned inequality in conjunc-
tion with the definition (54) of W implies that inequality (19) holds with

c D 1C QG2jvd j
2
1 and p.s/ D QG2s2: (57)

The fact that there exists a continuous, non-decreasing function P W Œ0;C1/! Œ0;C1/ such that
inequalities (20), (21), and (22) hold is shown in Appendix A.

We next turn to satisfying (23). Because F W .��=2; �=2/ ! Œ0;C1/ is a C 2, non-negative
function that satisfies limq!˙�=2 F.q/ D C1, it follows that the function QW W R2 ! R defined by
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QW .x/ D 1C
1

2

�
x2

1C x21

�2
C F

�
tan�1.x1/

	
(58)

is a C 1, positive valued, radially unbounded function. Consequently, there are K1 functions �i for
i D 1; 2 and a constant R2 > 0 such that

�1.jxj/ 6 QW .x/ 6 R2 C �2.jxj/ for all x 2 R2: (59)

Notice that W.t; x/ D QW .	d .t/C x/ holds for all .t; x/ 2 Œ0;C1/ �R2. Hence, (59) gives

jxj 6 ��11 .W.t; x//C j	d j1 and W.t; x/ 6 R2 C �2.j	d j1 C jxj/ (60)

for all .t; x/ 2 Œ0;C1/ �R2. Inequalities (60) imply that (23) holds with

Qw.s/ D 1C �
�1
1

�
exp.2cw/.R2 C �2.s C j	d j1//C .2c/

�1 exp.2cw/p.s/
	
C j	d j1 (61)

To see why, notice that for each t > 0 and s > 0, (60) gives maxjyj6sW.t; y/ 6 R2C�2.j	d j1Cs/
and consequently, the condition

W.t C h; x/ 6 exp.2cw/ max
jyt j6s

W.t; y/C .2c/�1 exp.2cw/p.s/ (62)

implies thatW.tCh; x/ 6 exp.2cw/.R2C�2.sCj	d j1//C.2c/�1 exp.2cw/p.s/ for all h 2 Œ0; w�.
The choice of Qw therefore follows from the first inequality in (60).

5.2. Second step of proof of Theorem 1

For all .t; x/ 2 Œ0;C1/ �R2, we set

V.x/ D
2

2 C 2 � 
p
2 C 4

�
x21 C .x2 C x1/

2
	

(63)

and

k.t; x/ D �
.1C 2/x1 C 2x2 C Qf .t; x/

Qg.t; x/
; (64)

which we later use to define our control in our new coordinate system (in (79) in the succeeding
text), where the constant  > 0 is from the control action (11). Then, the following relations hold:

@V

@x1
.x/x2C

@V

@x2
.x/

�
Qf .t; x/C Qg.t; x/k.t; x/

�
D �2V.x/ for all .t; x/ 2 Œ0;C1/�R2; (65)

jxj2 6 V.x/ 6 Kjxj2 for all x 2 R2; (66)

and

jrV.x/j 6 2Kjxj for all x 2 R2; whereK D
2 C 2C 

p
2 C 4

2 C 2 � 
p
2 C 4

: (67)

This is because the eigenvalues of the matrix for the quadratic form x21 C .x2 C x1/
2 are

1
2

�
2 C 2˙ 

p
2 C 4

�
.

Definitions (53) and (64) provide a function Qa 2 K1, a continuous, non-decreasing function
M W Œ0;C1/! Œ1;C1/ and positive constants Qk and " that satisfy the following:

jk.t; x/j 6 Qa.jxj/ for all .t; x/ 2 Œ0;C1/ �R2; (68)

Qa.s/ D Qks for all s 2 Œ0; "�; and (69)

Qg.t; x/jk.t; x/ � k.t; �/j 6M.jxj C j�j/j� � xj for all t > 0; 	 2 Rn and x 2 Rn: (70)
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The existence of Qa 2 K1 follows from the bounds for the reference trajectory; see (5). See
Appendix A for a construction of a function M W Œ0;C1/ ! Œ1;C1/ satisfying the preceding
requirements. We also set

Dr.s/ D 2K.ar .s/C s/M.ar.s/C s/ exp.rL.ar.s/C s// and ˇ.s/ D Qa
�
s
p
K
�
C s
p
K (71)

for all s > 0, where ar 2 K1 is the function in (24) from Lemma 1 for system (52) with � replaced
by r > 0, and L W Œ0;C1/! Œ1;C1/ is the function from Assumption 1 for the choice of (53) of
f .t; x; u/.

Next, we select a constant ı > 0, such that

2
p
Kı 6 ": (72)

Having selected ı > 0, we can select a constant � > 0 such that

� 6 min

²
p
ı;
ı

2

³
: (73)

We next set

� D 2KM
�
2
p
Kı C

p
ı
�

exp
�
r QL
	
; where QL D L

��
1C Qk

�
2
p
Kı C

p
ı
�
; (74)

and we select a constant QR > 0 such that

QR Qk
p
K < 1 and

� QR


p
2

 
1C

Qk
p
K
�
QRC 1

	
1 � QR Qk

p
K

!
< 1: (75)

Finally, we define

R.s/ D min

²
�

max ¹1;Dr.a� .s/C ˇ.Q� .s///º
; QRs;

1

2
p
K
Qa�1

� s
2

�³
: (76)

Equation (69), definition (76) of R, and the fact that Q� .s/ > 1 for all s > 0 imply that

lim inf
s!0C

R.s/

s
D min

²
QR;

1

4 Qk
p
K

³
> 0: (77)

Therefore, Corollary 1 guarantees that the mapping N W Œ0;C1/ ! ¹1; 2; 3; : : :º defined by (44)
and N.0/ D 1 for system Px D f .t; x; u/ (i.e., the delay-free version of (52)) is locally bounded and
the mapping ˆt0 W R

2 � L1 .Œt0; t0 C �/IR/! R2 defined by (43) satisfies inequalities (45)–(46)
for all .t0; x0/ 2 Œ0;C1/ � R2 and u 2 L1 .Œt0; t0 C �/IR/, where x.t/ denotes the solution of
Px D f .t; x; u/ for the initial condition x.t0/ D x0 corresponding to input u W Œt0; t0 C �/! R and
kuk D ess supt2Œt0;t0C�/ ju.t/j.

In the new coordinate system defined by (47) and (51), the closed-loop system given by (10)–(13)
with the choices (14) of the Ni ’s is described by the equations

Px.t/ D f .t; x.t/; u.t � �// (78)

with x valued in R2 and u valued in R, and with v.t/ D vd .t/C u.t/ and

P�.t/ D f .t C �; �.t/; k.t C �; �.t///;

u.t/ D k.t C �; �.t// for all t 2 Œt0 C Ti ; t0 C TiC1/ and all i; where �.t0 C Ti / D ´Ni
(79)

and where Ni D N
�
jx.t0 C Ti /j C supt0CTi��6s<t0CTi ju.s/j

	
; hi D

�
Ni

and

´jC1 D ´j C

Z t0CTiC.jC1/hi

t0CTiCjhi

f .s; ´j ; u.s � �//ds for j D 0; : : : ; Ni � 1 and ´0 D x.t0 C Ti /:

(80)

To verify that (12) and (79) agree, notice that our choice (64) of k and our formula for f from (53)
imply that the � dynamics from (79) can be written as
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P�1.t/ D �2.t/

P�2.t/ D �.1C 
2/�1.t/ � 2�2.t/ for all t 2 Œt0 C Ti ; t0 C TiC1/:

(81)

The solution of (81) satisfying �.t0 C Ti / D ´Ni is given by (12)–(13).

5.3. Third step of proof of Theorem 1

For every t0 > 0; .q0; Pq0/ 2 .��=2; �=2/ � R and v0 2 L1 .Œ��; 0/IR/, the solution
.q.t/; Pq.t/; v.t// 2 .��=2; �=2/ �R2 of the closed-loop system (2) and (10)–(13) with

Ni D N

�ˇ̌̌
ˇ
�

tan.q.t0 C Ti // � tan.qd .t0 C Ti //;
Pq.t0 C Ti /

cos2.q.t0 C Ti //
�

Pqd .t0 C Ti /

cos2.qd .t0 C Ti //

�ˇ̌̌
ˇ

C supt0CTi��6s<t0CTi jv.s/ � vd .s/j
	 (82)

and initial condition .q.t0/; Pq.t0// D .q0; Pq0/ 2 .��=2; �=2/ � R and v.t0 C s/ D v0.s/ for
s 2 Œ��; 0/ is related to the solution .x.t/; u.t// 2 R3 of the closed-loop system (78)–(80) with
initial condition

x.t0/D

�
tan.q.t0// � tan.qd .t0//;

Pq.t0/

cos2.q.t0//
�

Pqd .t0/

cos2.qd .t0//

�
and u.t0Cs/ D v0.s/�vd .t0Cs/

(83)
by

x.t/ D

�
tan.q.t// � tan.qd .t//;

Pq.t/

cos2.q.t//
�

Pqd .t/

cos2.qd .t//

�
; u.t � �/ D v.t � �/ � vd .t � �/

(84)
and

q.t/ D tan�1 .x1.t/C tan.qd .t/// and

Pq.t/ D
1

1C .x1.t/C tan.qd .t///
2

�
x2.t/C

Pqd .t/

cos2.qd .t//

�
;

(85)

which hold for all t > t0 for which the solutions exist. The global relations jq.t/ � qd .t/j 6
jx1.t/j; j Pq.t/ � Pqd .t/j 6 jx2.t/j CM1jx1.t/j,

jx1.t0/j 6M2

jq.t0/ � qd .t0/j

j cos.q.t0//j
; and jx2.t0/j 6

j Pq.t0/ � Pqd .t0/j CM
2
2M3jq.t0/ � qd .t0/j

cos2.q.t0//
;

where M1 D 2 supt>0 j	2;d .t/j;M2 D supt>0.2=j cos.qd .t//j/ and M3 D j Pqd j1 (which are
direct consequences of (84)–(85) and the mean value theorem), allow us to conclude that in order
to prove Theorem 1, it suffices to show that there exists a locally Lipschitz, non-decreasing func-
tion OC W Œ0;C1/ ! Œ0;C1/ with OC.0/ D 0 and a constant ! 2 .0; =2/ such that for every
partition ¹Tiº1iD0 of Œ0;C1/ with supi>0.TiC1 � Ti / 6 r , and every t0 > 0; x0 2 R2 and
u0 2 L

1.Œ��; 0/IR/, the solution .x.t/; u.t// of the closed-loop system given by (78)–(80) with
initial condition x.t0/ D x0 and u.t0 C s/ D u0.s/ for s 2 Œ��; 0/ exists for all t > t0 and satisfies
the following inequality for all t > t0:

jx.t/j C sup
t��6s<t

ju.s/j 6 exp.�!.t � t0// OC.jx0j C ju0j1/ (86)

Therefore, the rest of proof is devoted to the proof of (86) for the closed-loop system (78)–(80).
To prove (86), we first prove some basic results for (78)–(80). The claims we are about to give are
analogous to the claims in [24], but [24] is limited to time-invariant systems and cannot be applied
to our NMES tracking dynamics. The following claim shows that practical stabilization is achieved.
Its proof is in Appendix A.
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Claim 1
There exists a function � 2 KL such that for every partition ¹Tiº of Œ0;C1/ with TiC1�Ti 6 r for
all i > 0 and all initial conditions x.t0/ D x0 and MT� .t0/u D u0 for every .t0; x0/ 2 Œ0;C1/ �R2

and u0 2 L1.Œ��; 0/IR/, the solution of (78)–(80) satisfies

V.x.t// 6 max
®
� .jx0j C ku0k� ; t � t0/ ; 

�1�
¯

(87)

for all t > t0, where � > 0 is the constant involved in (73) and V is from (63).

The following claim shows local exponential stabilization. It is also proved in Appendix A.

Claim 2
There are positive constants S1; S2, and ! 2 .0; =2/ such that for each partition ¹Tiº of Œ0;C1/
with supi>0¹TiC1 � Tiº 6 r , each pair .t0; x0/ 2 Œ0;C1/ � R2, and each initial function u0 2
L1.Œ��; 0/IR/ for the control, the solution of (78)–(80) with initial condition x.t0/ D x0 satisfies

ju.t/j exp.!.t�t0�Tj // 6 S1

�
supt0CTj6w6t0CTjC� jx.w/j C




 MT� .t0 C Tj /u



�

�
8t > t0CTj

(88)
and

jx.t/j exp.!.t � t0 � Tj � �//

6S2

 
sup

t0CTj6w6t0CTjC�
jx.w/j C




 MT� .t0 C Tj /u



�

!
8t > t0 C Tj C �;

(89)

where j is the smallest index such that V.x.t0 C Tj C �// 6 ı and ı > 0 is from (72). �

Our final claim guarantees that u is bounded. It too is proven in Appendix A.

Claim 3
There exists a non-decreasing function S W Œ0;C1/! Œ0;C1/ such that for each partition ¹Tiº1iD0
of Œ0;C1/ satisfying TiC1 � Ti 6 r for all i > 0, each .t0; x0/ 2 Œ0;C1/ � R2, and each
u0 2 L

1.Œ��; 0/IR/, the solution of (78)–(80) with initial condition x.t0/ D x0 and MT� .t0/u D u0
satisfies

jx.t/j C



 MT� .t/u




�
6 S.jx0j C jju0jj� / (90)

for all t > t0. �

Finally, we prove (86). Let ¹Tiº1iD0 be any partition of Œ0;C1/ such that sup¹TiC1 � Tiº 6 r ,
and .t0; x0/ 2 Œ0;C1/�R2 and u0 2 L1.Œ��; 0/IR/ be given. Consider the solution of (78)–(80)
with the initial condition x.t0/ D x0 and the initial input MT� .t0/u D u0.

Inequalities (66) and (24) imply that the smallest sampling time t0CTj for which V.x.t0CTjC�//
6 ı holds gives T0 D 0 if K.a� .jx0j C jju0jj� //2 6 ı. Moreover, because there is a constant
M� > 0 such that a� .s/ 6 M�s for all s 2 Œ0; 1�, we can use inequalities (24) and (88)–(89) to find
a constant Q� > 0 such that

jx.t/j C



 MT� .t/u




�
6 Q� exp.�!.t � t0//.jx0j C jju0jj� / (91)

for all t > t0, provided that

jx0j C jju0jj� 6 min

´
1;

1

M�

r
ı

K

μ
; (92)

because (92) gives Ka2� .jx0j C jju0jj� / 6 ı.
The KL lemma from [26] provides class K1 functions ˇ1 and ˇ2 such that �.s; t/ 6

ˇ1 .exp.�t /ˇ2.s// holds for all s > 0 and t > 0. In conjunction with (87), (73), and the fact
that TiC1 � Ti 6 r for all i > 0, this guarantees the existence of a non-decreasing function QT W
Œ0;C1/! Œ0;C1/ such that the smallest sampling time t0CTj for which V.x.t0CTj C�// 6 ı
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holds satisfies Tj 6 QT .jx0j C jju0jj� / for all .t0; x0/ 2 Œ0;C1/ � R2 and u0 2 L1.Œ��; 0/IR/.
Combining (88), (89), and (90) with the previous inequality provides a continuous non-decreasing
function QG W Œ0;C1/! Œ0;C1/ such that

jx.t/j C



 MT� .t/u




�
6 exp.�!.t � t0// QG.jx0j C jju0jj� / for all t > t0: (93)

Consequently, (86) holds with the choice

OC.s/ D

´
1
s

R 2s
s
QC.w/dw; s > 0

0; s D 0
; where QC.s/ D

8<
:max

°
1;
QG.l/
Q	l

±
Q�s; s 2 Œ0; l�

max
®
Q�s; QG.s/

¯
; s > l

(94)

and l D min¹1; .1=M� /
p
ı=Kº. This completes the proof of Theorem 1.

6. SIMULATIONS

We simulated the NMES model (1) in closed-loop with the hybrid control (10)–(13) with a time
delay of � D 0:07s. We set the parameters in (1) to the following values:

J D 0:39kg�m2=rad; b1 D 0:6kg�m2=.rad�s/; b2 D 0:1kg�m2=.rad�s/;

b3 D 50s=rad; k1 D 7:9kg�m2=.rad�s2/; k2 D 1:681=rad;

k3 D 1:17kg�m2=.rad�s2/; m D 4:38kg; l D 0:248m:

(95)

We chose the positive valued moment arm [27, Appendix 1]

	.q/ D Ae�2q
2

sin.q/C B (96)

with A D 0:058m and B D 0:0284m. Because an analytical model for the muscle recruitment
function 
 .q; Pq/ is not available in the literature ‡, we assumed the control input to be the muscle
force rather than the electrode voltage, that is, U D 	.q/F where F is the force applied by the
quadriceps muscles. This is equivalent to setting 
 .q; Pq/ D 1 and v D F in Section 3, but our
results apply for a broad class of possible functions 	 and 
.

We ran simulations for two different types of reference trajectories. First, we chose the reference
trajectory

qd .t/ D
�

3
.1 � exp.�3t//rad (97)

to simulate a smoothed step command for the lower leg limb. We used the initial conditions q.0/ D
�=18 rad, Pq.0/ D 0 rad/s, and v.t/ D 0 on Œ�0:07; 0/. Instead of using a variable number of grid
points, we used a constant number of grid points Ni D N D 10 for i D 0; 1; 2; : : :, that is, we
performed the numerical prediction in (10) with the constant discretization time step h D �=N D
0:007. We also set t0 D 0 s and TiC1 � Ti D 0:014s for i D 0; 1; 2; : : :. The control gain  was
tuned by trial and error. Figure 1 shows the plots of qd .t/ versus q.t/; Pqd .t/ vs. Pq.t/, and v.t/ when
 D 2. We found that increasing  resulted in faster convergence of the position tracking error to
zero, at the expense of larger overshoots. The order of magnitude of the control (102N) is reasonable
and within the expected range for the leg quadriceps muscle [27].

We then investigated the robustness of the proposed control scheme to parametric uncertainties by
running the preceding simulation with the same initial conditions, but with a mismatch between the
plant parameters in (95) and the corresponding parameter values used in the control. Specifically,
we set

J 0 D 1:25J; b01 D 1:2b1; b
0
2 D 0:9b2; b

0
3 D 0:85b3; k

0
1 D 1:1k1;

k02 D 0:912k2; k
0
3 D 0:9k3; m

0 D 0:97m; l 0 D 1:013l; A0 D 1:185A; andB 0 D 0:98B
(98)

‡Some voltage-level controllers have been designed to compensate for the unknown term 
 .q; Pq/ [1, 2, 15]. Because
these controllers were tested experimentally, an analytical model for this term was not needed.
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Figure 1. Simulation for smoothed step function with exact parameter knowledge and  D 2.

Figure 2. Simulation for smoothed step function with parametric uncertainty.

where the parameter values with primes were the ones used in the control, and where the ones
without the primes were used in the model and were set to (95). The results with the control gain
kept at  D 2 are shown in Figure 2, where expectedly there is a small steady state error in the
position (of approximately 0.034 rad). We observed that the closed-loop system was most sensitive
to uncertainties in the parameters k2; m; l; A, and B . The sensitivity in m and l is not surprising,
because it affects the gravitational torque, which in turn affects the steady-state (equilibrium)
position of the closed-loop system. We then retuned the control gain to help reduce the steady-state
error. The results for  D 7:5 are also given in Figure 2, showing that the steady-state error was
virtually eliminated at the expense of higher transients in the control input.

Next, we set the reference trajectory to

qd .t/ D
�

8
sin.t/.1 � exp.�8t//rad (99)

to simulate a sinusoidal command with a smooth start. We used the initial conditions q.0/ D 0:5rad,
Pq.0/ D 0 rad/s, and v.t/ D 0 on Œ�0:07; 0/, and we keptN and TiC1�Ti and the parameters (95) at
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Figure 3. Simulation for sinusoidal trajectory with exact parameter knowledge and  D 2.

the same values we used previously. We assumed exact parameter knowledge and we chose  D 2.
We plotted the result in Figure 3. We noticed that after a transient period of 3 s, the state .q.t/; Pq.t//
closely tracked .qd .t/; Pqd .t//. This illustrates the effectiveness of our control for tracking sinusoidal
reference trajectories. The preceding examples also illustrate how the use of a constant number of
grid points (i.e., explicit Euler steps) for the numerical prediction of the state variables is sufficient
for global asymptotic tracking. Moreover, usually, a small number of grid points suffices, such as
N D 10 for the preceding examples.

7. CONCLUDING REMARKS

Neuromuscular electrical stimulation is an important technique that can help restore movement in
human limbs in patients with motor neuron disorders. However, it is not amenable to open loop
control, and it is prone to input delays that can seriously degrade the performance of closed loop
controls. This paper provided a new predictor controller that helps overcome these challenges and
ensures exponentially stable tracking of a broad class of reference trajectories while respecting
the state constraint imposed by the physical system. The advantages of our approach are that (a)
it only requires sampled measurements of the state (instead of continuous measurements); (b) it
allows perturbed sampling schedules; (c) it proves tracking of both the position and the velocity
under the state constraint on the position; and (d) it does not impose any upper bound on the input
delay. The control scheme only requires knowledge of the signal to be tracked, the functions in the
NMES dynamics, the delay appearing in the NMES control, and the upper diameter of the sampling
schedule; it is a model-based nonlinear hybrid predictor feedback. In Appendix A, we give tables
of all of the formulas and constants needed to implement our control scheme. The formulas and
constants in the tables are selected in such a way that all of the required inequalities and equalities
in the previous sections are satisfied automatically. Our NMES control was based on a new general
prediction theorem that is of independent interest. Moreover, our simulations demonstrate that our
predictive NMES control performs well under uncertainty in the model parameters. In our future
work, we aim to generalize our theorems to capture uncertainties in the model.

APPENDIX

A.1. Proof of Claims 1–3

A.1.1. Proof of Claim 1. First, we show that for each partition Ti of Œ0;C1/ such that TiC1�Ti 6 r
for all i > 0 and each .t0; x0/ 2 Œ0;C1/ �R2 and u0 2 L1.Œ��; 0/IR/, the solution of (78)–(80)
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with initial condition x.t0/ D x0 and MT� .t0/u D u0 is unique and exists for all t > t0. The solution
of (78)–(80) is determined as follows:

Initial step: given x.t0/ D x0 and MT� .t0/u D u0, we determine the solution x.t/ of (78) for
t 2 Œt0; t0 C ��. The solution is unique, and it satisfies the estimate (24) from Lemma 1.
i-th Step: given x.t/ for t 2 Œt0; t0 C Ti C �� and u.t/ for t 2 Œ��; t0 C Ti /, we determine x.t/

for t 2 Œt0; t0 C TiC1 C �� and u.t/ for t 2 Œ��; t0 C TiC1/ as follows. The solution �.t/ from (79)
for t 2 Œt0 C Ti ; t0 C TiC1/ with initial condition �.t0 C Ti / D ´Ni is unique and is given by (12).
Inequality (65) implies that

V.�.t// 6 V.�.t0 C Ti / for all t 2 Œt0 C Ti ; t0 C TiC1/: (A.1)

We determine u.t/ for t 2 Œt0 C Ti ; t0 C TiC1/ using the equation u.t/ D k.t C �; �.t//. Notice
that inequalities (66) and (68) in conjunction with (A.1) imply the following inequality for all t 2
Œt0 C Ti ; t0 C TiC1/:

ju.t/j D jk.t C �; �.t//j 6 Qa
�
j�.t0 C Ti /j

p
K
�

(A.2)

This allows us to determine the unique solution x.t/ of (78) for t 2 Œt0; t0CTiC1C ��. The fact that
TiC1 � Ti 6 r in conjunction with (24) with � replaced by r > 0 and (A.2) implies this estimate:

jx.t/j 6 ar
�
jx.t0 C Ti C �/j C Qa

�
j�.t0 C Ti /j

p
K
��

for all t 2 Œt0 C Ti C �; t0 C TiC1 C ��
(A.3)

Next, we evaluate the difference �.t/ � x.t C �/ for t 2 Œt0 C Ti ; t0 C TiC1/. Exploiting (17),
we get:

j�.t/ � x.t C �/j D

ˇ̌̌
ˇ�.t0 C Ti / � x.t0 C Ti C �/C

Z t

t0CTi

.f .s C �; �.s/; k.s C �; �.s///

� f .s C �; x.s C �/; k.s C �; �.s//// ds

ˇ̌̌
ˇ

6 j�.t0 C Ti / � x.t0 C Ti C �/j C
Z t

t0CTi

L.j�.s/j C jx.s C �/j

C jk.s C �; �.s//j/j�.s/ � x.s C �/jds
(A.4)

Using the quadratic upper and lower bounds on V from (66) and (A.1)–(A.4), we obtain:

j�.t/ � x.t C �/j 6 j�.t0 C Ti / � x.t0 C Ti C �/j C L
�
j�.t0 C Ti /j

p
K C Qa.j�.t0 C Ti /j

p
K/

C ar

�
jx.t0 C Ti C �/j C Qa.j�.t0 C Ti /j

p
K/
�� Z t

t0CTi

j�.s/ � x.s C �/jds

Define '.s/ D ar.s/ C s. Using the Gronwall–Bellman lemma, the aforementioned inequality,
formula ˇ.s/ D Qa

�
s
p
K
�
C s
p
K from (71) and the fact that TiC1 � Ti 6 r , we get the following

for all t 2 Œt0 C Ti ; t0 C TiC1/:

j�.t/�x.tC�/j 6 j�.t0 C Ti / � x.t0 C Ti C �/j exp .rL .' .jx.t0 C Ti C �/j C ˇ.j�.t0 C Ti /j////
(A.5)

Next, we evaluate the quantity rV.x.t C �//f .t C �; x.t C �/; k.t C �; �.t/// for t 2 Œt0 C
Ti ; t0 C TiC1/. Using the decay estimate (65) on V and our choice (53) of the dynamics f , we get

rV .x.t C �//f .t C �; x.t C �/; k.t C �; �.t/// 6 �2V.x.t C �//
CrV.x.t C �// .f .t C �; x.t C �/; k.t C �; �.t///�f .tC�; x.tC�/; k.tC�; x.tC�////
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Using (67), (70), (A.1), (A.3), and definitions ˇ.s/ D Qa
�
s
p
K
�
Cs
p
K and '.s/ D ar.s/Cs gives

rV .x.t C �//f .t C �; x.t C �/; k.t C �; �.t///

6 �2V.x.t C �//C 2K .' .jx.t0 C Ti C �/j C ˇ.j�.t0 C Ti /j///
�M .' .jx.t0 C Ti C �/j C ˇ.j�.t0 C Ti /j/// jx.t C �/ � �.t/j

Combining the preceding inequality with (A.5) and the definition (71) of Dr , we obtain the
following for all t 2 Œt0 C Ti ; t0 C TiC1/:

rV.x.t C �//f .t C �; x.t C �/; k.t C �; �.t///

6 �2V.x.t C �//CDr .jx.t0 C Ti C �/j C ˇ.j�.t0 C Ti /j// jx.t0 C Ti C �/ � �.t0 C Ti /j
(A.6)

Because �.t0 C Ti / D ´Ni , we can apply (45)–(46) (with initial time t0 C Ti ) to get the following
for all i D 0; 1; 2; : : ::

j�.t0 C Ti / � x.t0 C Ti C �/j 6 R
�
jx.t0 C Ti /j C




 MT� .t0 C Ti /u



�

�
(A.7)

j�.t0 C Ti /j 6 Q�

�
jx.t0 C Ti /j C




 MT� .t0 C Ti /u



�

�
(A.8)

Because (24) gives

jx.t0 C Ti C �/j 6 a�
�
jx.t0 C Ti /j C




 MT� .t0 C Ti /u



�

�
; (A.9)

we can use (A.6), (A.7), (A.8), and the definition (76) of R to get d
dt
V.x.tC�// 6�2V.x.tC�//

C� for all t 2 Œt0 C Ti ; t0 C TiC1/. Then, we can integrate to get the following for all t > t0:

V.x.t C �// 6 exp.�2.t � t0//V .x.t0 C �//C
�

2

6 2max

²
exp.�2.t � t0//V .x.t0 C �//;

�

2

³ (A.10)

Combining the quadratic lower and upper bounds for V from (66) with (24) and (A.10), we get (87)
with �.s; t/ D 2Ka2� .s/ exp.�2.t � �// for all t > � and �.s; t/ D 2Ka2� .s/ for all t 2 Œ0; � �.
This proves Claim 1.

A.1.2. Proof of Claim 2. Pick any partition ¹Tiº1iD0 of Œ0;C1/ with supi>0.TiC1 � Ti / 6 r and
any t0 > 0; x0 2 R2, and u0 2 L1.Œ��; 0/IRm/, and consider the solution of (78)–(80) with
(arbitrary) initial conditions x.t0/ D x0 and MT� .t0/u D u0. Inequality (87) guarantees that there
exists a unique smallest sampling time t0CTj such that V.x.t0CTj C �// 6 ı, because (73) gives
�
�
< ı

2
. Moreover, inequalities (73) and (66) give

jx.t/j 6
p
ı and V.x.t// 6 ı for all t > t0 C Tj C �; (A.11)

because d
dt
V.x.t C �// 6 �2V.x.t C �//C � < 0 when V.x.t C �// > ı. Recall from (76) that

R.s/ � � for all s > 0. Hence, (A.7), (73), and (A.11) give

j�.t0CTi /j 6 j�.t0CTi /�x.t0CTiC�/jCjx.t0CTiC�/j 6 �C
p
ı 6 2

p
ı for all i > j: (A.12)

Using (A.1), (66), and (A.12), we get j�.t/j2 6 V.�.t// 6 V.�.t0CTi // 6 4ıK for all t > t0CTj ,
hence

j�.t/j 6 2
p
Kı 6 " (A.13)

for all t > t0 C Tj , where the last inequality in (A.13) used (72).
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Next, we evaluate the difference �.t/ � x.t C �/ for t > t0 C Tj . Exploiting (17), our choice
(53) of f , and inequalities (68), (69), (A.11), and (A.13), we get the following for all i > j and
t 2 Œt0 C Ti ; t0 C TiC1/:

j�.t/ � x.t C �/j D

ˇ̌̌
ˇ�.t0 C Ti / � x.t0 C Ti C �/C

Z t

t0CTi

.f .s C �; �.s/; k.s C �; �.s///

� f .s C �; x.s C �/; k.s C �; �.s//// ds

ˇ̌̌
ˇ

6 j�.t0 C Ti / � x.t0 C Ti C �/j C QL
Z t

t0CTi

j�.s/ � x.s C �/jds

where QL D L
�
.1C Qk/2

p
Kı C

p
ı
�

is from (74). Using the Gronwall–Bellman lemma, the afore-
mentioned inequality, and the fact that TiC1 � Ti 6 r , we conclude that for all i > j and
t 2 Œt0 C Ti ; t0 C TiC1/, we have

j�.t/ � x.t C �/j 6 j�.t0 C Ti / � x.t0 C Ti C �/j exp
�
r QL
	

(A.14)

Next, we evaluate the quantity rV.x.t C �//f .t C �; x.t C �/; k.t C �; �.t/// for t 2 Œt0C
Ti ; t0 C TiC1/. Using inequalities (65), (67), (A.11), (70), (A.13), and (A.14) and our definition

� D 2KM
�
2
p
Kı C

p
ı
�

exp
�
r QL
	

from (74), we get the following for all i > j and t 2 Œt0C

Ti ; t0 C TiC1/:

rV .x.t C �//f .t C �; x.t C �/; k.t C �; �.t///

6 �2V.x.t C �//C 2Kjx.t C �/j jf .t C �; x.t C �/; k.t C �; �.t///
� f .t C �; x.t C �/; k.t C �; x.t C �///j

6 �2V.x.t C �//C 2Kjx.t C �/j Qg.t; x.t C �//jk.t C �; �.t// � k.t C �; x.t C �//j
6 �2V.x.t C �//C 2Kjx.t C �/jM.jx.t C �/j C j�.t/j/j�.t/ � x.t C �/j
6 �2V.x.t C �//C �jx.t C �/j jx.t0 C Ti C �/ � �.t0 C Ti /j

Therefore, because our quadratic lower bound on V from (66) gives jx.t C �/j 6
p
V.x.t C �//

for all t , the triangle inequality gives the following for all i > j and t 2 Œt0 C Ti ; t0 C TiC1/:

PV .t C �/ 6 �V.t C �/C �2

4
jx.t0 C Ti C �/ � �.t0 C Ti /j

2

6 �V.t C �/C �2 QR2

2
jx.t0 C Ti /j

2 C
�2 QR2

2




 MT� .t0 C Ti /u


2
�

(A.15)

where V.t/ D V.x.t// and where the second inequality used (A.7) and the fact that R.s/ 6 QRs for
all s > 0.

Using (75), we can find a constant ! 2
�
0; �

2

	
that is sufficiently small such that

QR Qk
p
K exp.!.r C �// < 1 and

� QR
p
2

exp.!.r C �//
p
 � 2!

 
1C

Qk exp.!r/
p
K
�
QRC exp.�!�/

	
1 � QR Qk

p
K exp.!.r C �//

!
< 1:

(A.16)

Using (A.15) and the fact that supi>0.TiC1�Ti / 6 r , we get this for all i > j and t 2 Œt0CTi ; t0C
TiC1/:

PV .tC�/ 6�V.tC�/C�
2 QR2

2
exp.�2!t/ exp.2!r/ supt0CTi6s6t

�
exp.2!s/jx.s/j2

	
C
�2 QR2

2
exp.�2!t/ exp.2!.r C �// supt0CTi��6s6t

�
exp.2!s/ju.s/j2

	 (A.17)
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The differential inequality (A.17) allows us to conclude that the following holds for almost all
t > t0 C Tj :

PV .t C �/ 6 �V.t C �/C �2 QR2

2
exp.�2!t/ exp.2!r/ supt0CTj6s6t

�
exp.2!s/jx.s/j2

	
C
�2 QR2

2
exp.�2!t/ exp.2!.r C �// supt0CTj��6s6t

�
exp.2!s/ju.s/j2

	
(A.18)

Multiplying (A.18) through by exp..t C �// and then integrating the result over Œt0 C Tj ; t � for
any t > t0 C Tj and using the fact that 2! < , we obtain the following for all t > t0 C Tj :

V.t C �/ 6 exp.�2!.t � t0 � Tj //V .t0 C Tj C �/

C
�2 QR2

2

exp.�2!t/

 � 2!
exp.2!r/ supt0CTj6s6t

�
exp.2!s/jx.s/j2

	
C
�2 QR2

2

exp.�2!t/

 � 2!
exp.2!.r C �// supt0CTj��6s6t

�
exp.2!s/ju.s/j2

	 (A.19)

Using our quadratic bounds on V from (66) and (A.19) then gives the following for all t > t0CTj :

jx.t C �/j exp.!.t C �// 6
p
K exp.!.t0 C Tj C �//jx.t0 C Tj C �/j

C
� QR
p
2

exp.!.r C �//
p
 � 2!

sup
t0CTj6s6t

.exp.!s/jx.s/j/

C
� QR
p
2

exp.!.r C 2�//
p
 � 2!

sup
t0CTj��6s6t

.exp.!s/ju.s/j/

(A.20)

Recall from (A.13) that j�.t/j 6 " for all t > t0C Tj . Hence, using our upper bound (68) for jkj,
(A.1), our quadratic bounds (66) on V , (A.7), and our formula (76) for R, we obtain R.s/ 6 QRs for
all s > 0, and therefore also the following for all i > j and t 2 Œt0 C Ti ; t0 C TiC1/:

ju.t/j D jk.t C �; �.t//j 6 Qkj�.t/j 6 Qk
p
Kj�.t0 C Ti /j

6 Qk
p
Kj�.t0 C Ti / � x.t0 C Ti C �/j C Qk

p
Kjx.t0 C Ti C �/j

6 QR Qk
p
Kjx.t0 C Ti /j C QR Qk

p
K



 MT� .t0 C Ti /u




�
C Qk
p
Kjx.t0 C Ti C �/j

(A.21)

Inequality (A.21) and the fact that supi>0.TiC1 � Ti / 6 r implies the following for all i > j :

ju.t/j exp.!t/ 6 QR Qk
p
K exp.!r/jx.t0 C Ti /j exp.!.t0 C Ti //

C QR Qk
p
K exp.!.r C �// sup

t0CTi��6s<t0CTi
.exp.!s/ju.s/j/

C Qk
p
K exp.!.r � �//jx.t0 C Ti C �/j exp.!.t0 C Ti C �//

(A.22)

The preceding inequality gives the following for all t � t0 C Tj :

ju.t/j exp.!t/ 6 Qk exp.!r/
p
K
�
QRC exp.�!�/

	
sup

t0CTj��6s6t
.exp.!.s C �//jx.s C �/j/

C QR Qk
p
K exp.!.r C �// sup

t0CTj��6s6t
.exp.!s/ju.s/j/ (A.23)

Hence, by separately considering cases supt0CTj��6s6t .exp.!s/ju.s/j/ D supt0CTj6s6t
.exp.!s/ju.s/j/ and supt0CTj��6s6t .exp.!s/ju.s/j/ D supt0CTj��6s<t0CTj .exp.!s/ju.s/j/, and
then recalling (A.16), we get
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sup
t0CTj6s6t

exp.!s/ju.s/j 6
Qk exp.!r/

p
K
�
QRC exp.�!�/

	
1 � QR Qk

p
K exp.!.r C �//

sup
t0CTj��6s6t

exp.!.sC�//jx.sC�/j

C QR Qk
p
K exp.!.r C �// sup

t0CTj��6s<t0CTj
exp.!s/ju.s/j

(A.24)

for all t > t0CTj . By again separately considering the preceding two cases, and then recalling from
(A.16) that QR Qk

p
K exp.!.r C �// < 1 and combining (A.20) and (A.24), we get the following for

all t > t0 C Tj :

jx.t C �/j exp.!.t C �//

6
p
K exp.!.t0 C Tj C �//jx.t0 C Tj C �/j C

� QR
p
2

exp.!.r C 2�//
p
 � 2!

�

 
1C

Qk exp.!r/
p
K
�
QRC exp.�!�/

	
1 � QR Qk

p
K exp.!.r C �//

!
sup

t0CTj��6s6t
.exp.!.s C �//jx.s C �/j/

C
� QR
p
2

exp.!.r C 2�//
p
 � 2!

sup
t0CTj��6s<t0CTj

.exp.!s/ju.s/j/

(A.25)

By separately considering the cases

supt0CTj��6s6t exp.!.s C �//jx.s C �/j D supt0CTj��6s6t0CTj .exp.!.s C �//jx.s C �/j/ and

supt0CTj��6s6t exp.!.s C �//jx.s C �/j D supt0CTj6s6t .exp.!.s C �//jx.s C �/j/
(A.26)

and using (A.25), we obtain the following for all t > t0 C Tj :

jx.t C �/j exp.!.t C �//

6
p
K exp.!.t0 C Tj C �//

1 � �
jx.t0 C Tj C �/j C

� QR
p
2

exp.!.r C �//
p
 � 2!

�

 
1C

Qk exp.!r/
p
K
�
QRC exp.�!�/

	
1 � QR Qk

p
K exp.!.r C �//

!
sup

t0CTj��6s6t0CTj
.exp.!.s C �//jx.s C �/j/

C
� QR
p
2

exp.!.r C 2�//

.1 � �/
p
 � 2!

sup
t0CTj��6s<t0CTj

.exp.!s/ju.s/j/;

(A.27)
where

� D
� QR
p
2

exp.!.r C �//
p
 � 2!

 
1C

Qk exp.!r/
p
K
�
QRC exp.�!�/

	
1 � QR Qk

p
K exp.!.r C �//

!
: (A.28)

Inequalities (A.24) and (A.27) imply that there exist positive constants NS1 and NS2 such that (88)–(89)
hold.

A.1.3. Proof of Claim 3. Choose an arbitrary partition ¹Tiº1iD0 of Œ0;C1/ satisfying supi>0.TiC1�
Ti / 6 r , and any .t0; x0/ 2 Œ0;C1/ � R2 and u0 2 L1.Œ��; 0/IR/, and consider the solution of
(78)-(80) with (arbitrary) initial conditions x.t0/ D x0 and MT� .t0/u D u0. Set b.s/ D Qa

�
s
p
K
�

for
all s > 0, where Qa 2 K1 is from (68). Then b 2 K1. Notice that our formula (76) forR implies that

R.s/ 6 1
2
b�1

� s
2

�
for all s > 0: (A.29)

Furthermore, inequality (A.2) implies the following for all i 2 ZC and t 2 Œt0 C Ti ; t0 C TiC1/:

ju.t/j 6 b.j�.t0 C Ti /j/: (A.30)
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The quadratic lower bound on V from (66) and (87) give a non-decreasing function g such that

jx.t/j 6 g.jx0j C ku0k� / for all t > t0: (A.31)

Combined with (A.7) and (A.29), we get the following for all i 2 ZC:

j�.t0 C Ti / � x.t0 C Ti C �/j 6 R.jx.t0 C Ti /j C supt0CTi��6s<t0CTi ju.s/j/

6 1
2
b�1

�
1

2
jx.t0 C Ti /j C

1

2
supt0CTi��6s<t0CTi ju.s/j

�

6 max

²
1

2
b�1.g.jx0j C ku0k� //;

1

2
b�1

�
supt0CTi��6s<t0CTi ju.s/j

	³
;

because b�1.r C s/ 6 b�1.2r/C b�1.2s/ for all r > 0 and s > 0. The aforementioned inequality
in conjunction with (A.31) gives the following for all i 2 ZC:

j�.t0 C Ti /j

6 jx.t0 C Ti C �/j Cmax

²
1

2
b�1.g.jx0j C ku0k� //;

1

2
b�1

�
supt0CTi��6s<t0CTi ju.s/j

	³

6 g.jx0j C ku0k� /C
1

2
max

®
b�1.g.jx0j C ku0k� //; b

�1
�
supt0CTi��6s<t0CTi ju.s/j

	¯
6 max

®
2g.jx0j C ku0k� /; b

�1.g.jx0j C ku0k� //; b
�1
�
supt0��6s<t0CTi ju.s/j

	¯
where we used a1 C a2 6 max¹2a1; 2a2º and max¹�a1; �a2º D �max¹a1; a2º, which hold for
all ai 2 Œ0;C1/.i D 1; 2/ and � > 0. Also, using (A.30) and the above inequality, we obtain the
following for all i 2 ZC:

sup
t0CTi6s<t0CTiC1

ju.s/j 6 max

´
Og.jx0j C ku0k� /; sup

t0��6s<t0CTi
ju.s/j

μ
; (A.32)

where Og.s/ D max¹g.s/; b.2g.s//º. Define the sequence Fi D supt0��6s<t0CTi ju.s/j. The fact
that

FiC1 D sup
t0��6s<t0CTiC1

ju.s/j D max

´
sup

t0CTi6s<t0CTiC1
ju.s/j; sup

t0��6s<t0CTi
ju.s/j

μ
(A.33)

in conjunction with (A.32) imply that FiC1 6 max ¹ Og.jx0j C ku0k� /; Fiº holds for all i 2
ZC. This and the fact that F0 D ku0k� allows us to prove by induction that Fi 6
max ¹ Og.jx0j C ku0k� /; ku0k�º holds for all i 2 ZC. Therefore, (A.31) implies that (90) holds with
S.s/ D g.s/Cmax ¹ Og.s/; sº. This proves Claim 3.

A.2. Construction of a Function P Satisfying (20)-(22)

We construct a non-decreasing continuous function P satisfying (20)–(22) for the first step of the
proof of Theorem 1. Our choice (53) of f implies that the following holds for all .s; t; x; u/ 2
Œ0;C1/ � Œ0;C1/ �R2 �R:

jf .s; x; u/ � f .t; x; u/j 6 js � t j sup
l>0

ˇ̌̌
ˇ @@l Qf .l; x/

ˇ̌̌
ˇC js � t jjuj sup

l>0

ˇ̌̌
ˇ @@l Qg.l; x/

ˇ̌̌
ˇ (A.34)

Let  i .s/ be a continuous non-decreasing function such that max ¹jrgi .	/j W j	j 6 j	d j1 C sº 6
 i .s/ for all s > 0 for i D 1; 2. Inequality (A.34), in conjunction with the previous inequalities and
the definitions of Qf and Qg from (53), gives the following inequality for all .s; t; x; u/ 2 Œ0;C1/ �
Œ0;C1/ �R2 �R:
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jf .s; x; u/ � f .t; x; u/j 6 js � t jjuj 2.jxj/
ˇ̌̌
P	d

ˇ̌̌
1
C js � t j

�
�
2 1.jxj/

ˇ̌̌
P	d

ˇ̌̌
1
C 2 2.jxj/jvd j1

ˇ̌̌
P	d

ˇ̌̌
1
C jxj 2.jxj/ j Pvd j1

�
(A.35)

Therefore, (A.35) implies that (22) holds provided that the following inequality holds for all s > 0:�
2j P	d j1 1.s/C 2jvd j1j P	d j1 2.s/C

�
j Pvd j1 C jP	d j1

�
s 2.s/

�2
6 P.s/: (A.36)

Define QW by QW .x/ D 1C 1
2

�
x2=

�
1C x21

		2
CF.tan�1.x1// for all x 2 R2. Let  i .s/ for i D 3; 4

be continuous, non-decreasing functions that satisfy

max
®ˇ̌
r QW .x/

ˇ̌
W jxj 6 j	d j1 C s

¯
6  3.s/ and max

®ˇ̌
r2 QW .x/

ˇ̌
W jxj 6 j	d j1 C s

¯
6  4.s/

(A.37)
for all s > 0. Because our definition (54) of W gives W.t; x/ D QW .	d .t/ C x/, the previous
inequalities give j.@W=@x/.t; x/j 6  3.jxj/ for all .t; x/ 2 Œ0;C1/ � R2. Therefore, (21) holds
provided that the following holds for all s > 0:

 23 .s/ 6 P.s/ (A.38)

Also, if L satisfies the requirements from Assumption 1, then because W.t; x/ D QW .	d .t/C x/,
we can then use the subadditivity of the sup operator and (A.37) to conclude that the following holds
for all s > 0:

1C sup

²ˇ̌̌
ˇ@2W@t2 .t; x/

ˇ̌̌
ˇC2sL.s/

ˇ̌̌
ˇ@2W@t@x .t; x/

ˇ̌̌
ˇCs2L2.s/

ˇ̌̌
ˇ@2W@x2 .t; x/

ˇ̌̌
ˇ W jxj 6 s.1C�L.s//; t > 0

³

6 1C  4.s.1C �L.s///
ˇ̌̌
P	d

ˇ̌̌2
1
C  3.s.1C �L.s///

ˇ̌̌
R	d

ˇ̌̌
1

C 2sL.s/ 4.s.1C �L.s///
ˇ̌̌
P	d

ˇ̌̌
1
C s2L2.s/ 4.s.1C �L.s/// (A.39)

Therefore, (A.39) implies that inequality (20) holds provided that

1C  4.s.1C �L.s///
�
j P	d j1 C sL.s/

�2
C
ˇ̌̌
R	d

ˇ̌̌
1
 3.s.1C �L.s/// 6 P.s/ (A.40)

holds for all s > 0. We then have our formula for P by adding the left sides of (A.36), (A.38), and
(A.40).

A.3. Construction of M W Œ0;C1/! Œ1;C1/ Satisfying (70)

Using (64), we obtain the following inequality for all .t; x; �/ 2 Œ0;C1/ �R2 �R2:

Qg.t; x/jk.t; x/ � k.t; �/j 6
ˇ̌̌
ˇ.1C 2/.x1 � �1/C 2.x2 � �2/C Qf .t; x/ � Qf .t; �/
C
Qg.t; �/ � Qg.t; x/

Qg.t; �/

�
.1C 2/�1 C 2�2 C Qf .t; �/

�ˇ̌̌ˇ
Hence, using the facts that jxi � �i j 6 jx � �j (for i D 1; 2) and the triangle inequality, we obtain
the following inequality for all .t; x; �/ 2 Œ0;C1/ �R2 �R2:

Qg.t; x/jk.t; x/ � k.t; �/j 6 .1C /2j� � xj C
ˇ̌̌
Qf .t; x/ � Qf .t; �/

ˇ̌̌
C
ˇ̌̌
.1C 2/�1 C 2�2 C Qf .t; �/

ˇ̌̌ j Qg.t; �/ � Qg.t; x/j
Qg.t; �/

(A.41)

Using Assumption 1 (with u D 0), the formula for Qf from (53), (A.41), the facts that j�i j 6 j�j.i D
1; 2/, and the triangle inequality, we get the following for all .t; x; �/ 2 Œ0;C1/ �R2 �R2:
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Qg.t; x/jk.t; x/ � k.t; �/j 6 .1C /2j� � xj C L.jxj C j�j/j� � xj

C ..1C /2 C L.j�j//j�j
j Qg.t; �/ � Qg.t; x/j

Qg.t; �/

(A.42)

Let 2.s/ be a continuous, non-decreasing function that satisfies max¹jrg2.	/j W j	j 6 j	d j1Csº 6
 2.s/ for all s > 0. Then, (A.42) gives the following for all .t; x; �/ 2 Œ0;C1/ �R2 �R2:

Qg.t; x/jk.t; x/ � k.t; �/j 6 .1C /2j� � xj C L.jxj C j�j/j� � xj

C ..1C /2 C L.jxj//j�j
 2.jxj C j�j/

min ¹g2.	/ W j	j 6 j	d j1 C j�jº
jx � �j

(A.43)

Finally, using the facts that L.j�j/ 6 L.j�j C jxj/; j�j 6 j�j C jxj, and min¹g2.	/ W j	j 6 j	d j1 C
j�jCjxjº 6 min¹g2.	/ W j	j 6 j	d j1Cj�jº, in conjunction with (A.43), we conclude that inequality
(70) holds with

M.s/ D ..1C /2 C L.s//

�
1C

s 2.s/

min¹g2.	/ W j	j 6 j	d j1 C sº

�
for all s > 0: (A.44)

This concludes the construction.

A.4. Tables of Formulas and Constants

The following table shows all constants involved in the feedback (10)-(13). Here,  i .s/ is any
continuous non-decreasing function that satisfies max¹jrgi .	/j W j	j 6 j	d j1 C sº 6  i .s/ for all
s > 0 for i D 1; 2. See pp. 10–12 for some details on their derivations.

c 1C QG2jvd j
2
1

QG sup ¹G .q; Pq/ W .q; Pq/ 2 .��=2; �=2/ �Rº

K
�2C2C�

p
�2C4

�2C2��
p
�2C4

� min
°

"

2
p
K
; �"

2

8K

±

� 2KM
�
"C "

2
p
K

�
exp.r QL/

QL L
��
1C Qk

�
"C "

2
p
K

�

QR min

´
�
p
2

2�
�
1C4 Qk

p
K
� ; 1

2 Qk
p
K
; 1
2

μ

Qk .1C�/2C 1."/Cjvd j1 2."/
min¹g2.�/Wj� j6j�d j1C"º

The next table gives the functions involved in the feedback (10)–(13). The functions  1 and
 2 are as in the first table, and  i .s/ for i D 3; 4 are any continuous, non-decreasing functions
that satisfy max

®ˇ̌
r QW .x/

ˇ̌
W jxj 6 j	d j1 C s

¯
6  3.s/ and max

®ˇ̌
r2 QW .x/

ˇ̌
W jxj 6 j	d j1 C s

¯
6

 4.s/ for all s > 0. The functions �i 2 K1 for i D 1; 2 and the constant R2 > 0 are chosen so that
�1.jxj/ 6 QW .x/ 6 R2 C �2.jxj/ holds for all x 2 R2.

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2015; 25:2391–2419
DOI: 10.1002/rnc



2418 I. KARAFYLLIS ET AL.

N.s/

´ h
� max

°
a� .s/Cs
2R.s/

L.a� .s/C s/.exp.�A.s// � 1/; c�1P.Q� .s/C s/
±i
C 1; if s > 0

1; if s D 0

L.s/ 1C  1.s/C .1C s C jvd j1/ 2.s/C QG.1C 2j	d j
2
1 C 2s

2/

g1.	/ �
�
1C 	21

	
dF
dq
.tan�1.	1//C

2�1
1C�2

1

	22 �
�
1C 	21

	
H

�
�2
1C�2

1

�

g2.	/
�
1C 	21

	
G

�
tan�1.	1/;

�2
1C�2

1

�

A.s/ L.Q� .s/C a� .s/C s/

QW .x/ 1C 1
2

�
x2
1Cx2

1

�2
C F.tan�1.x1//

a� .s/ s.1C L.Q� .s/C s/�/ exp.�L.Q� .s/C s//

Q� .s/ 1C ��11
�
exp.2c�/.R2 C �2.s C j	d j1//C .2c/�1 exp.2c�/ QG2s2

	
C j	d j1

R.s/ min
°

�
max¹1;Dr .a� .s/Cˇ.Q� .s///º

; QRs; 1

2
p
K
Qa�1

�
s
2

	±
Dr.s/ 2K.ar .s/C s/M.ar.s/C s/ exp.rL.ar.s/C s//

M.s/ ..1C /2 C L.s//
�
1C s 2.s/

min¹g2.�/Wj� j6j�d j1Csº

�
ˇ.s/ Qa

�
s
p
K
�
C s
p
K

Qa.s/

´
.1C�/2C 1.s/Cjvd j1 2.s/

min¹g2.�/Wj� j6j�d j1Csº s; if s > "
Qks; if s 2 Œ0; "/

P.s/

�
2
ˇ̌̌
P	d

ˇ̌̌
1
 1.s/C 2jvd j1

ˇ̌̌
P	d

ˇ̌̌
1
 2.s/C

�
j Pvd j1 C

ˇ̌̌
P	d

ˇ̌̌
1

�
s 2.s/

�2
C  23 .s/

C1C  4.s.1C �L.s///
�ˇ̌̌
P	d

ˇ̌̌
1
C sL.s/

�2
C
ˇ̌̌
R	d

ˇ̌̌
1
 3.s.1C �L.s///

	d .t/
�

tan.qd .t//;
Pqd .t/

cos2.qd .t//

�

vd .t � �/
Rqd .t/C

dF
dq
.qd .t//CH. Pqd .t//

G.qd .t/; Pqd .t//
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