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Abstract This paper focuses on a specific aspect of the implementation problem for
predictor-based feedback laws: the problem of the approximation of the predictor map-
ping. It is shown that the numerical approximation of the predictor mapping by means
of a numerical scheme in conjunction with a hybrid feedback law that uses sampled
measurements can be used for the global stabilization of all forward complete non-
linear systems that are globally asymptotically stabilizable and locally exponentially
stabilizable in the delay-free case. Explicit formulae are provided for the estimation
of the parameters of the resulting hybrid control scheme.

Keywords Nonlinear systems · Delay systems · Feedback stabilization · Numerical
methods

1 Introduction

Feedback laws with distributed delays arise when predictor-based methodologies are
applied to systems with input or measurement delays. The pioneering works [2,14,15]
on predictor feedback were applied to linear systems. The recent works [6,9,10,12,
13] have extended the predictor-based methodologies to nonlinear systems and time-
varying delays.
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This paper focuses on a specific aspect of the implementation problem for predictor-
based feedback laws: the problem of the approximation of the predictor mapping.
This problem is common for nonlinear systems: for nonlinear systems it is very rare
that the solution map is known analytically. The recent work [6] was devoted to the
approximation of the predictor mapping with a successive approximation approach: the
method is suitable for globally Lipschitz systems. The problem of approximation of the
predictor mapping is an important aspect of the implementation problem for predictor-
based feedback laws but it is different from the usual problem of the approximation
of distributed delays by discrete delays. The latter problem will not be studied in the
present work.

The idea of the numerical approximation of the predictor mapping by means of
a numerical scheme for solving ordinary differential equations arises naturally as a
possible method for solving the problem of approximation of the predictor mapping.
However, certain obstructions exist, which are not encountered in standard numerical
analysis results. The first obstruction is the existence of inputs: control theory tackles
systems with inputs (control systems), whereas standard results in numerical analysis
are dealing with dynamical systems (systems without inputs). Exception is the work
[3] (see also references therein). A second problem is the scarcity of explicit formulae
for the approximation error (which coincides with the so-called global discretization
error in numerical analysis): in most cases the estimates of the approximation error
are qualitative (see [4,5]).

In this work, we show that the numerical approximation of the predictor mapping
by means of a numerical scheme for solving ordinary differential equations is indeed
one methodology that can be used with success for systems which are not globally
Lipschitz. More specifically, we focus on the explicit Euler scheme. We also study the
sampling problem, i.e., the problem where the measurement is not available online
but it is available at discrete time instants. The problem is solved by means of a hybrid
feedback law and the main result is given next.

Theorem 1.1 Consider the delay-free system:

ẋ(t) = f (x(t), u(t))

x(t) ∈ �n, u(t) ∈ �m (1.1)

where f : �n ×�m → �n is a continuously differentiable mapping with f (0, 0) = 0.
Assume that:

(A1) System (1.1) is forward complete.
(A2) There exists a continuously differentiable function k ∈ C1(�n; �m) with

k(0) = 0 such that 0 ∈ �n is a Globally Asymptotically Stable and Locally
Exponentially Stable equilibrium point of the closed-loop system (1.1) with
u(t) = k(x(t)).

Then for every τ > 0, r > 0 there exists a locally bounded mapping N : �+ →
{1, 2, 3, . . .}, a constant ω > 0 and a locally Lipschitz, non-decreasing function
C : �+ → �+ with C(0) = 0, such that for every partition {Ti }∞i=0 of �+ with
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supi≥0(Ti+1 − Ti ) ≤ r , for every x0 ∈ �n and u0 ∈ L∞([−τ, 0); �m), the solution
(x(t), u(t)) ∈ �n × �m of the closed-loop system

ẋ(t) = f (x(t), u(t − τ))

x(t) ∈ �n, u(t) ∈ �m (1.2)

with

ż(t) = f (z(t), k(z(t))), z(t) ∈ �n, for t ∈ [Ti , Ti+1)

u(t) = k(z(t))
(1.3)

and

z(Ti ) = zN (1.4)

where N := N (|x(Ti )| + supTi −τ≤s<Ti
|u(s)|), h = τ

N and

z j+1 = z j +
( j+1)h∫

jh

f (z j , u(Ti − τ +s)) ds, for j = 0, . . . , N − 1 and z0 = x(Ti )

(1.5)

and initial condition x(0) = x0 and u(s) = u0(s) for s ∈ [−τ, 0) satisfies the
following inequality for all t ≥ 0 :

|x(t)| + sup
t−τ≤s<t

|u(s)| ≤ exp(−ω t)C

(
|x0| + sup

−τ≤s<0
|u0(s)|

)
(1.6)

The notions of Global Asymptotic Stability and Local Exponential stability employed
in the statement of Theorem 1.1 are the standard notions used in the literature (see [11]).
The notion of forward completeness for (1.1) is the standard notion that guarantees
existence of the solution of (1.1) for all times, all initial conditions and all possible
inputs (see [1]). Notice that (1.5) is the application of the explicit Euler numerical
scheme to the control system (1.2) with step size h = τ

N . Since the number of the
grid points N := N (|x(Ti )| + supTi −τ≤s<Ti

|u(s)|) is a function of the state and the
input, it is clear that different time steps are used each time that a new measurement
arrives. Theorem 1.1 is proved by means of a combined Lyapunov and small-gain
methodology and its proof is constructive. In Sect. 3, the control practitioner will
find explicit formulae for the computation of N := N (|x(Ti )| + supTi −τ≤s<Ti

|u(s)|),
which requires the knowledge of an appropriate Lyapunov function for the closed-loop
system (1.1) with u(t) = k(x(t)). Notice that the fact that the function C : �+ → �+
involved in (1.6) is locally Lipschitz with C(0) = 0 guarantees the analogue of local
exponential stability for complicated systems such as the closed-loop system (1.2) with
(1.3), (1.4) and (1.5) (systems with delays and hybrid features), since the estimate
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|x(t)| + sup
t−τ≤s<t

|u(s)| ≤ � exp(−ω t)

(
|x0| + sup

−τ≤s<0
|u0(s)|

)
, for all t ≥ 0

holds for certain appropriate constant � > 0 and for initial conditions with |x0| +
sup−τ≤s<0 |u0(s)| sufficiently small. Therefore, both global asymptotic stability and
local exponential stability are preserved, despite the delay, the sampled measurements,
and the numerical approximation.

Clearly, the proposed control scheme has a digital component (Eqs. (1.4), (1.5))
and an analog component (Eq. (1.3)). Therefore, the implementation of the analog
component is an important issue. The analog component can be implemented with
precision for feedback linearizable systems in strict feedback form, i.e., for systems
of the form:

ẋi = fi (x1, . . . , xi ) + gi (x1, . . . , xi )xi+1 i = 1, . . . , n

xn+1 = u ∈ � (1.7)

where fi : �i → �, gi : �i → � (i = 1, . . . , n) are smooth functions with
fi (0) = 0 and gi (x1, . . . , xi ) > 0 for all x ∈ �n and i = 1, . . . , n. Indeed, for
the class of systems (1.7) and for every set of real numbers {ai ∈ � , i = 1, . . . , n},
we are in a position to construct explicitly a smooth function k ∈ C∞(�n; �) with
k(0) = 0 and a global diffeomorphism � ∈ C∞(�n; �n) with �(0) = 0 such
that the dynamics of the closed-loop system (1.7) with u = k(x) expressed in the
transformed coordinates ξ = �(x) satisfy the linear differential equations ξ̇i = ξi+1
for i = 1, . . . , n − 1 and ξ̇n = ∑n

i=1 aiξi . The appropriate selection of the set of real
numbers {ai ∈ � , i = 1, . . . , n} allows the convenient (and in many cases explicit)
computation of the solution in the transformed coordinates. Therefore, Eq. (1.3) can
be replaced by the equation u(t) = k(�−1(ξ(t))), where ξ(t) ∈ �n is the solution of
linear differential equations ξ̇ j = ξ j+1 for i = 1, . . . , n−1 and ξ̇n = ∑n

j=1 a jξ j on the
interval t ∈ [Ti , Ti+1) with initial condition ξ(Ti ) = �(zN ). A precise implementation
of (1.3) for a planar nonlinear system is shown in Example 4.1 below.

However, it should be noted that even if the solution map of (1.3) is not available in
explicit form then numerical methods may be used for the computation of the solution
of (1.3). The numerical computation of the solution of (1.3) is much easier than the
computation of the solution of (1.1) because we already know that (1.3) are systems
with a globally asymptotically and locally exponentially equilibrium point (see [8]
for methodologies of exploiting the existence of a globally asymptotically and locally
exponentially equilibrium point to produce a qualitatively correct simulation even for
stiff differential equations).

The structure of the paper is as follows: Sect. 2 provides some results for the
numerical explicit Euler scheme for control systems, which are necessary for the
proofs of the main results. The results in Sect. 2 are not available in numerical analysis
textbooks but their proofs are made in the same way with the corresponding results for
systems without inputs. Section 3 is devoted to the proof of Theorem 1.1. Section 4
contains the example of a nonlinear planar system in strict feedback form. Section 5
provides the concluding remarks of the present work. The Appendix contains the
proofs of certain auxiliary results.
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Notation. Throughout the paper, we adopt the following notation:

* For a vector x ∈ �n , we denote by |x | its usual Euclidean norm, by x ′ its transpose.
For x ∈ �n and ε > 0, we denote by Bε(x) the closed ball or radius ε > 0 centered
at x ∈ �n , i.e., Bε(x) := {y ∈ �n : |y − x | ≤ ε}.

* �+ denotes the set of non-negative real numbers. Z+ denotes the set of non-
negative integers. For every t ≥ 0, [t] denotes the integer part of t ≥ 0, i.e., the
largest integer being less or equal to t ≥ 0. A partition π = {Ti }∞i=0 of �+ is an
increasing sequence of times with T0 = 0 and Ti → +∞.

* We say that an increasing continuous function γ : �+ → �+ is of class K if
γ (0) = 0. We say that an increasing continuous function γ : �+ → �+ is of
class K∞ if γ (0) = 0 and lims→+∞ γ (s) = +∞. By K L , we denote the set of
all continuous functions σ = σ(s, t) : �+ × �+ → �+ with the properties: (i)
for each t ≥ 0 the mapping σ( · , t) is of class K ; (ii) for each s ≥ 0, the mapping
σ(s, · ) is non-increasing with limt→+∞ σ(s, t) = 0.

* By C j (A) (C j (A ; �)), where A ⊆ �n (� ⊆ �m), j ≥ 0 is a non-negative
integer, we denote the class of functions (taking values in � ⊆ �m) that have
continuous derivatives of order j on A ⊆ �n .

* Let x : [a − r, b) → �n with b > a ≥ 0 and r ≥ 0. By T̆r (t)x , we denote the
“open history” of x from t − r to t , i.e., (T̆r (t)x)(θ) := x(t + θ) ; θ ∈ [−r, 0),
for t ∈ [a, b).

* Let I ⊆ �+ := [0,+∞) be an interval. By L∞(I ; U ), we denote the space of
measurable and bounded functions u( · ) defined on I and taking values in U ⊆ �m .
Notice that we do not identify functions in L∞(I ; U ) which differ on a measure
zero set. For x ∈ L∞([−r, 0); �n) , we define ‖x‖r := supθ∈[−r,0) |x(θ)|. Notice
that supθ∈[−r,0] |x(θ)| is not the essential supremum but the actual supremum and
that is why the quantities supθ∈[−r,0] |x(θ)| and supθ∈[−r,0) |x(θ)| do not coincide
in general.

* The shift operator δτ u maps each function u : [−τ, 0) → U to the function
δτ u : [0, τ ) → U with (δτ u)(s) = u(−τ + s) for all s ∈ [−τ, 0).

* A function f : A → �, where 0 ∈ A ⊆ �n is positive definite if f (0) = 0 and
f (x) > 0 for all x �= 0. A function f : �n → � is radially unbounded if the set
{x ∈ �n : f (x) ≤ M} is bounded or empty for every M > 0.

2 Numerical approximation of the solutions of forward complete systems

We consider system (1.1) under the following assumptions:
(H1) f : �n × �m → �n is a locally Lipschitz vector field with f (0, 0) = 0 that

satisfies:

| f (x, u) − f (y, u)| ≤ L(|x | + |y| + |u|) |x − y|, for all x, y ∈ �n, u ∈ �m

(2.1)

| f (x, u)| ≤ (|x | + |u|)L(|x | + |u|), for all x ∈ �n, u ∈ �m (2.2)

where L : �+ → [1,+∞) is a continuous, non-decreasing function.
(H2) System (1.1) is forward complete.

123



524 I. Karafyllis, M. Krstic

Assumptions (H1) and (H2) have important consequences for system (1.1). Next
we point out two consequences which will be used in this section:

(C1) There exist a C2 function W : �n → [1,+∞) which is radially unbounded,
a constant c > 0 and a function p ∈ K∞ such that

∇W (x) f (x, u) ≤ cW (x) + p(|u|), for all x ∈ �n, u ∈ �m (2.3)

(C2) For every τ > 0, there exists a function aτ ∈ K∞ such that the solution
x(t) of (1.1) with arbitrary initial condition x(0) = x0 0 corresponding to arbitrary
measurable and essentially bounded input u : [0, τ ) → �m satisfies

|x(t)| ≤ aτ (|x0| + ‖u‖), for all t ∈ [0, τ ] (2.4)

where

‖u‖ := ess sup
t∈[0,τ )

|u(t)|

Moreover, for every τ > 0, there exists a constant Mτ > 0 such that aτ (s) = Mτ s
for all s ∈ [0, 1].

The existence of a C2 function W : �n → [1,+∞) and the existence of a function
aτ ∈ K∞ satisfying the requirements of assumption (C2) are direct consequences of
Theorem 1, Corollary 2.3 in [1] and assumption (H1).

Let P : �+ → �+ be a non-decreasing continuous function that satisfies:

P(s) ≥ s2L2(s) max
{
|∇2W (ξ)| : |ξ | ≤ s(1 + τ L(s))

}
, for all s ≥ 0 (2.5)

Let Q : �+ → �+ be a non-decreasing continuous function that satisfies:

Q(s) ≥ 1 + max

{
|x | : W (x) ≤ exp(2cτ) max|y|≤s

(W (y)) + exp(2cτ) − 1

2c
p(s)

}
,

for all s ≥ 0 (2.6)

Define for all s ≥ 0:

A(s) := L(Q(s) + aτ (s) + s) (2.7)

B(s) := L(Q(s) + aτ (s) + s) (aτ (s) + s)L(aτ (s) + s) (2.8)

Consider the following numerical scheme, which is an extension of the explicit Euler
method to systems with inputs: we select a positive integer N and define

xi+1 = xi +
(i+1)h∫

ih

f (xi , u(s)) ds, for i = 0, . . . , N − 1 (2.9)

for h = τ/N .
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Theorem 2.1 Consider system (1.1) under assumptions (H1), (H2). Let τ > 0 be
a positive constant and let a C2 function W : �n → [1,+∞) which is radially
unbounded, a constant c > 0, functions p ∈ K∞, aτ ∈ K∞ be such that assumptions
(C1) and (C2) hold. Let P : �+ → �+, Q : �+ → �+, A : �+ → �+, B :
�+ → �+ be continuous functions that satisfy (2.5), (2.6), (2.7), (2.8). Let arbitrary
x0 ∈ �n and arbitrary measurable and essentially bounded input u : [0, τ ) → �m.
If N ≥ τ

P(Q(|x0|+‖u‖)+‖u‖)
2c then the following inequalities hold:

|x(τ ) − xN | ≤ τ B(|x0| + ‖u‖)
2N A(|x0| + ‖u‖) (exp(τ A(|x0| + ‖u‖)) − 1) (2.10)

|xi | ≤ Q(|x0| + ‖u‖), for all i = 0, 1, . . . , N (2.11)

where x(τ ) is the solution of (1.1) with initial condition x(0) = x0 corresponding to
input u : [0, τ ) → �m at time t = τ .

Remark 2.2 Inequality (2.10) shows that if we know the initial condition x(0) = x0
and the applied input u : [0, τ ) → �m then we can estimate all quantities involved in
(2.10). Moreover, if we want the approximation error to be less than ε > 0 it suffices
to select the positive integer N so that:

N ≥ τ max

(
B(|x0| + ‖u‖)

2εA(|x0| + ‖u‖) (exp(τ A(|x0| + ‖u‖)) − 1),
P(Q(|x0| + ‖u‖) + ‖u‖)

2c

)

Notice that the right hand-side of the above inequality can be evaluated before we start
applying the scheme (2.9). The restriction is imposed to obtain the uniform bound
provided by (2.11) and it is necessary for the control of the increase of the function
W (exactly in the same spirit as step size control was applied in [8] for the control of
the decrease of the Lyapunov function). The bound provided by (2.11) is useful for
the proof of Theorem 1.1.

The proof of Theorem 2.1 depends on three technical lemmas which are stated
below and are proved at the Appendix.

Lemma 2.3 Consider system (1.1) under the assumptions of Theorem 2.1. If |xi | +
‖u‖ > 0 and h ≤ 2cW (xi )

P(|xi |+‖u‖) , where P : �+ → �+ is the function involved in (2.5),
then

W (xi+1) ≤ exp(2ch)W (xi ) +
(i+1)h∫

ih

exp(2c(ih + h − s))p(|u(s)|) ds (2.12)

Lemma 2.4 Consider system (1.1) under the assumptions of Theorem 2.1. If h ≤
2c

P(Q(|x0|+‖u‖)+‖u‖) then

W (xi )≤exp(2cih)W (x0)+
ih∫

0

exp(2c(ih − s))p(|u(s)|) ds for all i = 0, . . . , N

(2.13)

where Q : �+ → �+ is the function involved in (2.6).
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Lemma 2.5 Consider system (1.1) under the assumptions of Theorem 2.1. Define
ei := xi − x(ih), i ∈ {0, . . . , N }, where x(t) is the solution of (1.1) with initial
condition x(0) = x0 corresponding to input u : [0, τ ) → �m and suppose that
h ≤ 2c

P(Q(|x0|+‖u‖)+‖u‖) . Then

|ei |≤ h2

2
B(|x0| + ‖u‖)exp(ih A(|x0|+‖u‖)) − 1

exp(h A(|x0| + ‖u‖)) − 1
, for all i ∈{1, . . . , N } (2.14)

where the functions A, B : �+ → �+ are defined by (2.7), (2.8).

We are now ready to provide the proof of Theorem 2.1.

Proof of Theorem 2.1 All assumptions of Lemmas 2.4 and 2.5 hold. Consequently,
inequalities (2.13), (2.14) hold. Inequality (2.10) follows from using the fact
exp(h A(|x0| + ‖u‖))−1 ≥ h A(|x0|+‖u‖) and definition h = τ

N in conjunction with
(2.14) for i = N . Moreover, inequality (2.10) implies W (xi ) ≤ exp(2c τ)W (x0) +
exp(2c τ)−1

2c p(‖u‖). The previous inequality in conjunction with (2.6) implies (2.11).
The proof is complete. 
�

Theorem 2.1 allows us to construct mappings which approximate the solution of
(1.1) τ time units ahead with guaranteed accuracy level. Indeed, let R ∈ C0(�+;�+)

be a positive definite function with lim infs→0+ R(s)
s > 0. Define the mapping � :

�n × L∞([0, τ ); �m) → �n by means of the equation:

�(x0, u) := xN (2.15)

where xi , i = 1, . . . , N are defined by the numerical scheme (2.9) with h = τ
N , N =

N (|x0| + ‖u‖) and

N (s) :=
[
τ max

(
aτ (s)+s

2R(s)
L(aτ (s)+s)(exp(τ A(s)) − 1),

P(Q(s)+s)

2c

)]
+ 1

(2.16)

for s > 0 and

N (0) := 1 (2.17)

By virtue of (2.10), the mapping � : �n × L∞([0, τ ); �m) → �n satisfies

|�(x0, u) − x(τ )| ≤ R(|x0| + ‖u‖) (2.18)

Inequalities (2.10), (2.11) in conjunction with (2.18) and (2.4) imply the following
inequality:

|�(x0, u)| ≤ min(R(|x0| + ‖u‖) + aτ (|x0| + ‖u‖), Q(|x0| + ‖u‖)) (2.19)

Notice that the mapping N (s) defined by (2.16) and (2.17) is locally bounded. Indeed,
there exists a constant Mτ > 0 such that aτ (s) = Mτ s for all s ≥ 0 sufficiently small.
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Therefore, continuity of all functions involved in (2.16) in conjunction with the fact
that lim infs→0+(R(s)/S) > 0 implies that

sup
0≤l≤s

N (l) < +∞, for all s ≥ 0 (2.20)

Therefore, we conclude:

Corollary 2.6 Consider system (1.1) under the assumptions of Theorem 2.1. For
every positive definite function R ∈ C0(�+;�+) with lim infs→0+(R(s)/S) > 0
and for every τ > 0 , consider the mapping � : �n × L∞([0, τ ); �m) → �n

defined by (2.15) for all (x0, u) ∈ �n × L∞([0, τ ); �m) , where xi , i = 1, . . . , N
are defined by the numerical scheme (2.9) with h = τ

N and N := N (|x0| + ‖u‖),
where N : �+ → {1, 2, 3, . . .} is defined by (2.16), (2.17). Then inequalities (2.18),
(2.19) hold for all (x0, u) ∈ �n × L∞([0, τ ); �m) , where x(t) denotes the solution
of (1.1) with initial condition x(0) = x0 corresponding to input u : [0, τ ) → �m and
‖u‖ := ess supt∈[0,τ ) |u(t)| Moreover, inequality (2.20) holds for all s ≥ 0.

3 Proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1. The proof of Theorem 1.1 is
constructive and formulae will be given next for the locally bounded mapping N :
�+ → {1, 2, 3, . . .} involved in the hybrid dynamic feedback law defined by (1.3),
(1.4) and (1.5). To simplify the procedure of the proof, we break the proof up into two
steps.

First step: Construction of feedback
Second step: Rest of proof
The control practitioner, who is not interested in reading the details of the proof,

may read only the first step of the proof.

3.1 First step: Construction of feedback

The feedback law is entirely given by (1.3)–(1.5), except for the function N : �+ →
{1, 2, 3, . . .}, whose construction is given here. We assume the knowledge of a function
L : �+ → [1,+∞), a C2 function W : �n → [1,+∞) and a function aτ ∈ K∞
satisfying the requirements of assumptions (C1), (C2) of Sect. 2. As remarked in the
previous section, the existence of a function L : �+ → [1,+∞), a C2 function W :
�n → [1,+∞) and a function aτ ∈ K∞ satisfying the requirements of assumptions
(H1), (C1), (C2) are direct consequences of Theorem 1, Corollary 2.3 in [1] and the fact
that f : �n × �m → �n is a continuously differentiable mapping with f (0, 0) = 0.

Moreover, we need to assume the knowledge of a Lyapunov function for the closed-
loop system (1.1) with u(t) = k(x(t)). More specifically, we assume the existence of
a positive definite, radially unbounded function V ∈ C1(�n; �+) for (2.1), constants
ε, K , μ > 0 and a function ρ ∈ K∞ such that the following hold:
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∇V (x) f (x, k(x)) ≤ −ρ(V (x)), ∀x ∈ �n (3.1)

|x |2 ≤ V (x) ≤ K |x |2, ∀x ∈ Bε(0) (3.2)

|∇V (x)| ≤ 2K |x |, ∀x ∈ Bε(0) (3.3)

∇V (x) f (x, k(x)) ≤ −μ |x |2, ∀x ∈ Bε(0) (3.4)

The existence of a Lyapunov function for the closed-loop system (1.1) with u(t) =
k(x(t)) satisfying (3.1), (3.2), (3.3), (3.4) is a direct consequence of Proposition 4.4
in [8].

Based on the knowledge of all the functions and constants described above, we
next proceed to the construction of new functions. The first functions to define are the
continuous, non-decreasing functions P : �+ → �+, Q : �+ → �+, A : �+ →
�+, B : �+ → �+ that satisfy (2.5), (2.6), (2.7), (2.8). Next, we define:

• functions ai ∈ K∞ (i = 1, . . . , 4) and constants k1, k2, k3, k4 > 0 that satisfy:

a1(|x |) ≤ V (x) ≤ a2(|x |), for all x ∈ �n (3.5)

|∇V (x)| ≤ a3(|x |) and |k(x)| ≤ a4(|x |), for all x ∈ �n (3.6)

a1(s) := k1s2, a2(s) := k2s2, a3(s) := k3s, a4(s) := k4s, for all s ∈ [0, ε]
(3.7)

• a continuous, non-decreasing function M : �+ → [1,+∞) that satisfies:

| f (x, k(z)) − f (x, k(x))| ≤ M (|x | + |z|)|z − x |, for all z, x ∈ �n (3.8)

The reader should notice that the existence of functions M : �+ → [1,+∞), ai ∈
K∞ (i = 1, . . . , 4) and constants k1, k2, k3, k4 > 0 satisfying (3.5), (3.6), (3.7) and
(3.8) is a direct consequence of (a) the fact that V ∈ C1(�n; �+) is positive definite
and radially unbounded (see Lemma 3.5 in [11]), (b) of Lemma 2.4 in [7], (c) of
inequalities (3.2), (3.3) and (d) of the fact that f : �n ×�m → �n and k : �n → �m

are continuously differentiable mappings with k(0) = 0.
Moreover, define for all s ≥ 0:

Dr (s) := a3(ar (s) + s) M(ar (s) + s) exp(r L(ar (s) + s)),

q(s) := a4(a
−1
1 (a2(s))) + a−1

1 (a2(s)) (3.9)

where ar ∈ K∞ is the function involved in (2.4) with τ replaced by r > 0 and
L : �+ → [1,+∞) is the function involved in assumption (H1).

Next select a constant δ > 0, such that:

a−1
1

(
a2

(
2a−1

1 (δ)
))

≤ ε (3.10)
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Having selected δ > 0, we are in a position to select a constant γ > 0, so that:

γ ≤ min

(
a−1

1 (δ),
1

2
ρ

(
δ

2

))
(3.11)

Define:

φ := k3 M
(

a−1
1

(
a2

(
2a−1

1 (δ)
))

+ a−1
1 (δ)

)
exp(r L̃) (3.12)

L̃ := L
(
(1 + k4)a

−1
1

(
a2

(
2a−1

1 (δ)
))

+ a−1
1 (δ)

)
(3.13)

and moreover, select a constant R̃ > 0, so that:

k4

√
k2

k1
R̃ < 1,

√
2k2φ(

√
k1 + k4

√
k2) + μk1k4

√
k2

μk1
√

k1
R̃ < 1 (3.14)

Finally, define:

R(s) := min

(
γ

max(1, Dr (aτ (s) + q(Q(s))))
, R̃ s,

1

2
a−1

2

(
a1

(
a−1

4

( s

2

))))

(3.15)

Notice that by virtue of (3.7) and the fact that Q(s) ≥ 1 for all s ≥ 0, it follows

from definition (3.15) that lim infs→0+(
R(s)

s ) = min(R̃, 1
4k4

√
k1
k2

) > 0. Therefore,
Corollary 2.6 guarantees that the mapping N : �+ → {1, 2, 3, . . .} defined by (2.16),
(2.17) is locally bounded and the mapping � : �n × L∞([0, τ ); �m) → �n defined
by (2.15) satisfies inequalities (2.18), (2.19) for all (x0, u) ∈ �n × L∞([0, τ ); �m),
where x(t) denotes the solution of (1.1) with initial condition x(0) = x0 corresponding
to input u : [0, τ ) → �m and ‖u‖ := ess supt∈[0,τ ) |u(t)|.

3.2 Second step: rest of proof

Having completed the design of the feedback law by constructing the function N :
�+ → {1, 2, 3, . . .} in (2.16), we are now ready to prove some basic results concerning
the closed-loop system (1.2) with (1.3), (1.4), (1.5) and (2.16).

The following claim shows that practical stabilization is achieved. Its proof is
provided in the Appendix.

Claim 1 There exists σ ∈ K L such that for every partition {Ti }∞i=0 of �+ with
supi≥0(Ti+1 − Ti ) ≤ r , for every x0 ∈ �n and u0 ∈ L∞([−τ, 0); �m), the solu-

tion of (1.2), (1.3), (1.4) and (1.5) with initial condition x(0) = x0, T̆τ (0)u = u0
satisfies the following inequality for all t ≥ 0:

V (x(t)) ≤ max
(
σ

(
|x0| + ‖u0‖τ , t), ρ−1(2γ

))
(3.16)
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where ρ ∈ K∞ is the function involved in (3.1) and γ > 0 is the constant involved in
(3.11) and (3.15).

The following claim shows that local exponential stabilization is achieved. Its proof
is provided in the Appendix.

Claim 2 There exist constants Q1, Q2, ω > 0 such that for each partition {Ti }∞i=0 of
�+ with supi≥0(Ti+1 − Ti ) ≤ r , for each x0 ∈ �n and u0 ∈ L∞([−τ, 0); �m), the

solution of (1.2), (1.3), (1.4) and (1.5) with initial condition x(0) = x0, T̆τ (0)u = u0
satisfies the following inequalities:

|u(t)| exp(ω (t − Tj )) ≤ Q1

(
sup

Tj ≤w≤Tj +τ

(|x(w)|) + ‖T̆τ (Tj )u‖τ

)
, for all t ≥ Tj (3.17)

|x(t)| exp(ω (t − Tj − τ)) ≤ Q2

(
sup

Tj ≤w≤Tj +τ

(|x(w)|) +
∥∥∥T̆τ (Tj )u

∥∥∥
τ

)
, for all t ≥ Tj + τ

(3.18)

where Tj is the smallest sampling time for which it holds V (x(Tj + τ)) ≤ δ, where
δ > 0 is the constant involved in (3.10) and (3.11).

The following claim guarantees that u is bounded. Its proof is provided in the
Appendix.

Claim 3 There exists a non-decreasing function G : �+ → �+ such that for each
partition {Ti }∞i=0 of �+ with supi≥0(Ti+1 − Ti ) ≤ r , for each x0 ∈ �n and u0 ∈
L∞([−τ, 0); �m), the solution of (1.2), (1.3), (1.4) and (1.5) with initial condition
x(0) = x0, T̆τ (0)u = u0 satisfies the following inequality for all t ≥ 0 :

|x(t)| +
∥∥∥T̆τ (t)u

∥∥∥
τ

≤ G(|x0| + ‖u0‖τ ) (3.19)

We are now ready to prove Theorem 1.1. Let arbitrary partition {Ti }∞i=0 of �+ with
supi≥0(Ti+1 − Ti ) ≤ r, x0 ∈ �n, u0 ∈ L∞([−τ, 0); �m) and consider the solution of
(1.2), (1.3), (1.4) and (1.5) with (arbitrary) initial condition x(0) = x0, T̆τ (0)u = u0.

Inequalities (3.5) and (2.4) imply that the smallest sampling time Tj for which
V (x(Tj + τ)) ≤ δ holds is T0 = 0 for the case a2(aτ (|x0| + ‖u0‖τ )) ≤ δ. Moreover,
the fact that there exists a constant Mτ > 0 such that aτ (s) = Mτ s for all s ∈ [0, 1],
in conjunction with inequalities (3.17), (3.18), allow us to conclude that there exists a
constant � > 0

|x(t)| +
∥∥∥T̆τ (t)u

∥∥∥
τ

≤ � exp(−ω t) (|x0| + ‖u0‖τ ), for all t ≥ 0 (3.20)

provided that |x0| + ‖u0‖τ ≤ min(1, 1
Mτ

a−1
2 (δ)).

Proposition 7 in [16] in conjunction with (3.16), (3.11) and the fact that
supi≥0(Ti+1 − Ti ) ≤ r allow us to guarantee the existence of a non-decreasing func-
tion T̃ : �+ → �+ such that the smallest sampling time Tj for which V (x(Tj +τ)) ≤
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δ holds satisfies Tj ≤ T̃ (|x0| + ‖u0‖τ ) for all (x0, u) ∈ �n × L∞([0, τ ); �m). Com-
bining (3.17), (3.18), (3.19) with the previous inequality, allows us to conclude the
existence of a non-decreasing function G̃ : �+ → �+ such that the following inequal-
ity holds for all t ≥ 0:

|x(t)| +
∥∥∥T̆τ (t)u

∥∥∥
τ

≤ exp(−ω t)G̃(|x0| + ‖u0‖τ ) (3.21)

Consequently, using (3.20) and (3.21), we conclude that (1.6) holds with C(s) :=
1
s

∫ 2s
s C̃(w) dw for all s > 0 and C(0) := 0, where

C̃(s) := max

(
1,

G̃(l)

� l

)
� s, for all s ∈ [0, l]

C̃(s) := max(� s, G̃(s)), for all s > l

l := min

(
1,

1

Mτ

a−1
2 (δ)

)

The proof of Theorem 1.1 is complete. 
�

4 An illustrative example

This section is devoted to the presentation of an example of a planar nonlinear system
in strict feedback form. As noted in the introduction the analog component of the
proposed control scheme can be implemented with precision by utilizing transformed
coordinates.

Example 4.1 Consider the two-dimensional control system

ẋ1(t) = a(1 + cos(x1(t)))x1(t) + x2(t)

ẋ2(t) = u(t − τ)
(4.1)

where a > 0 is a constant. System (4.1) is a nonlinear system which is not glob-
ally Lipschitz and consequently, the predictor feedback proposed in [10] cannot be
used. Moreover, the solution map for system (4.1) is not available and consequently,
the predictor feedback proposed in [9] cannot be used. However, we show next that
Theorem 1.1 can be applied for system (4.1). Moreover, following the first step of
Theorem 1.1, we give next explicit formulas for the feedback law.

We first notice that inequalities (2.1), (2.2) hold for the vector field f (x, u) :=[
a(1+cos(x1))x1+x2

u

]
with L(s) := 1+2a +as. Property (C1) holds with W (x) :=

1+ 1
2 x2

1 + 1
2 x2

2 . More specifically, using the inequalities x1x2 ≤ 1
2 x2

1 + 1
2 x2

2 , x2u ≤
1
2 x2

2 + 1
2 u2, we obtain inequality (2.3) with c := 2(2a + 1) and p(s) := 1

2 s2.
Using the inequalities x1x2 ≤ 1

2 x2
1 + 1

2 x2
2 , x2u ≤ 1

2 x2
2 + 1

2 u2 for the func-
tion W̃ (x) := 1

2 x2
1 + 1

2 x2
2 , we obtain the differential inequality ∇W̃ (x) f (x, u) ≤
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2(2a + 1)W̃ (x) + 1
2 u2 for all (x, u) ∈ �2 × �. Utilizing the previous differential

inequality along the solutions of (4.1) with τ = 0, we obtain the following estimate:

W̃ (x(t)) ≤ exp(2(1 + 2a)t)W̃ (x(0)) + 1

2

t∫

0

exp(2(2a + 1)(t − s))u2(s) ds

(4.2)

for all t ≥ 0 for which the solution of (4.1) with τ = 0 exists. Estimate (4.2) allows
us (by means of a standard contradiction argument) to conclude that the solution of
(4.1) with τ = 0 exists for all t ≥ 0 and for all initial conditions and applied inputs.
Moreover, inequality (4.2) implies the following estimate:

|x(t)|≤exp((2a + 1)t)|x(0)|+ exp((2a + 1)t)√
2(2a + 1)

sup
0≤s≤t

|u(s)|, for all t ≥0 (4.3)

It follows that property (C2) holds with aτ (s) := s exp((2a + 1)τ ) and Mτ :=
exp((2a + 1)τ ) for all τ ≥ 0.

We next define:

V (x) := 4(a + 1)2(x2
1 +(x2 + (a + 1)x1+ax1 cos(x1))

2), for all x ∈�2 (4.4)

k(x) := −(a + 2 + a cos(x1) − ax1 sin(x1))(x2 + ax1 + ax1 cos(x1)) − x1,

for all x ∈ �2 (4.5)

Using the inequality (a + 1 + a cos(x1))x1x2 ≥ − ε
2 (a + 1 + a cos(x1))

2− 1
2ε

x2
2 with

ε = (a+1+a cos(x1))+
√

(a+1+a cos(x1))2+4
2(a+1+a cos(x1))

in conjunction with definition (4.4), we obtain

for all x ∈ �2:

V (x) = 4(a+1)2
((

1+(a + 1+a cos(x1))
2
)

x2
1 + x2

2 +2(a + 1 + a cos(x1))x1x2

)

≥ 4(a + 1)2
(

(1 + (1 − ε)(a + 1 + a cos(x1))
2)x2

1 +
(

1 − 1

ε

)
x2

2

)

≥ 4(a + 1)2

(√
(a + 1 + a cos(x1))2 + 4 − (a + 1 + a cos(x1))

(a + 1 + a cos(x1)) + √
(a + 1 + a cos(x1))2 + 4

)
(x2

1 + x2
2 )

≥ 4(a + 1)2

(
2

(2a + 1)2 + 2 + (2a + 1)
√

(2a + 1)2 + 4

)
(x2

1 + x2
2 )

≥ 4(a + 1)2
(

1

(2a + 1)2 + 2a + 2

)
(x2

1 + x2
2 ) ≥ |x |2 (4.6)

Moreover, using the inequality |cos(x1)| ≤ 1, the triangle inequality and completing
the squares, we obtain directly from Definition (4.4) for all x ∈ �2:

V (x) ≤ 8(a + 1)2
(

1 + (2a + 1)2
)

(x2
1 + x2

2 ) ≤ 64(a + 1)4 |x |2 (4.7)
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and

|∇V (x)| ≤ 8(a + 1)2|x1| + 8(a + 1)2|x2 + (a + 1)x1 + ax1 cos(x1)|
|(a + 1) + a cos(x1) − ax1 sin(x1)|

+8(a + 1)2|x2 + (a + 1)x1 + ax1 cos(x1)|
≤ 8(a + 1)3(4a + 5 + 2a|x |)|x | (4.8)

Finally, using the inequality x1(x2 + (a + 1)x1 + ax1 cos(x1))≤ 1
2 x2

1 + 1
2 (x2+(a+1)

x1 + ax1 cos(x1))
2, we obtain directly from definitions (4.4), (4.5) for all x ∈ �2:

∇V (x) f (x, k(x)) ≤ −V (x) (4.9)

It follows from inequalities (4.6), (4.7), (4.8), (4.9) that inequalities (3.1), (3.2),
(3.3), (3.4) hold with ρ(s) := s, μ := 1, K := 64(a + 1)4 and ε := 1. Moreover,
inequalities (4.6), (4.7), (4.8), (4.9) and definition (4.5) imply that inequalities (3.5),
(3.6), (3.7), (3.8) hold with a1(s) := s2, k1 := 1, a2(s) := 64(a + 1)4s2, k2 :=
64(a + 1)4, a3(s) := 48(a + 1)3s max(1, s), k3 := 48(a + 1)4, a4(s) := 6(a +
1)2s max(1, s) and k4 := 6(a + 1)2. Definition (4.5) implies that inequality (3.8)
holds with M(s) := (8a2 + 6a + 3)(s2 + s + 1) since the following inequality holds
for all x ∈ �2:

|∇k(x)| ≤
(

8a2 + 6a + 3
) (

|x |2 + |x | + 1
)

(4.10)

All previous definitions allow us to conclude that (3.10), (3.11), (3.12), (3.13)
and (3.14) hold with δ := 1

256(a+1)4 , γ := 1
1024(a+1)4 , L̃ := 1 + 3a +

a
(

6(a + 1)2+ 1
16(a+1)2

)
, φ := 48(a+1)4(8a2 + 6a+3)((

16(a+1)2+1
16(a+1)2 )2+ 32(a+1)2+1

16(a+1)2 )

exp(r L̃) and R̃ = 1
32(a+1)4(4

√
2(1+48(a+1)4) φ+3)

. Finally, define for all s ≥ 0:

�(s) := 48(a + 1)3s max(1, s) M(s) exp(r L(s)),

q(s) := 8(a + 1)2s
(

6(a + 1)2 max(1, 8(a + 1)2s) + 1
)

(4.11)

R(s) := 1

32(a + 1)4 min

(
1

32 max( 1, Dr (aτ (s) + q(Q(s))) )
,

s

4
√

2(1 + 48(a + 1)4)φ + 3
,

1

6
min(s, 2(a + 1)

√
3s)

)
(4.12)

P(s) := s2(1 + 2a + as)2, Q(s) :=2 exp(2(1+2a)τ )(s+1), Dr (s) :=�(ar (s)+s)

(4.13)
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A(s) := 1 + 2a + 2a exp(2(2a + 1)τ ) + as(1 + exp((2a + 1)τ )

+2 exp(2(2a + 1)τ )) (4.14)

B(s) := L(Q(s) + aτ (s) + s) (aτ (s) + s)L(aτ (s) + s) (4.15)

N (s) :=
[
τ max

(
aτ (s) + s

2R(s)
L(aτ (s) + s)(exp(τ A(s)) − 1) ,

P(Q(s) + s)

4(2a + 1)

)]

+1 f or, s > 0 N (0) := 1 (4.16)

where L(s) := 1 + 2a + as, M(s) := (8a2 + 6a + 3)(s2 + s + 1), ar (s) :=
s exp((2a + 1)r) and aτ (s) := s exp((2a + 1)τ ). It follows from the proof of The-
orem 1.1 that for every τ > 0, r > 0 there exists a constant ω > 0 and a locally
Lipschitz, non-decreasing function C : �+ → �+ with C(0) = 0, such that for
every partition {Ti }∞i=0 of �+ with supi≥0(Ti+1 − Ti ) ≤ r , for every x0 ∈ �2 and
u0 ∈ L∞([−τ, 0); �), the solution (x(t), u(t)) ∈ �2 × � of the closed-loop system
(4.1) with

ż1(t) = a(1 + cos(z1(t)))z1(t) + z2(t) f or t ∈ [Ti , Ti+1)

ż2(t) = u(t)
(4.17)

u(t) = −(a + 2 + a cos(z1(t)) − az1(t) sin(z1(t)))(z2(t) + az1(t)

+az1(t) cos(z1(t))) − z1(t) (4.18)

and

z(Ti ) = zN (4.19)

where N := N (|x(Ti )| + supTi −τ≤s<Ti
|u(s)|), h = τ

N and

z j+1 = z j +

⎡
⎢⎢⎢⎣

ah(1 + cos(z j,1))z j,1 + hz j,2

( j+1)h∫

jh

u(Ti − τ + s) ds

⎤
⎥⎥⎥⎦ , for j = 0, . . . , N − 1 z0 = x(Ti )

(4.20)

and initial condition x(0) = x0 and u(s) = u0(s) for s ∈ [−τ, 0) satisfies inequality
(1.6) for all t ≥ 0. The analog component (4.17) of the hybrid predictor feedback
law (4.17), (4.18), (4.19), (4.20) can be implemented by utilizing the fact that system
(4.17), (4.18) expressed in the coordinates

ξ1 = z1

ξ2 = (a + 1)z1 + a cos(z1)z1 + z2
(4.21)

satisfies the following differential equations
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ξ̇1(t) = −ξ1(t) + ξ2(t)

ξ̇2(t) = −ξ2(t)
(4.22)

It follows from (4.21), (4.22) that the analog component (4.17) of the hybrid predic-
tor feedback law (4.17), (4.18), (4.19), (4.20) can be implemented by means of the
equations:

ξ1(t) = exp(−(t − Ti ))(z1(Ti ) + (t − Ti )((a + 1)z1(Ti )

+ a cos(z1(Ti ))z1(Ti ) + z2(Ti ))), for t ∈ [Ti , Ti+1) (4.23)
ξ2(t) = exp(−(t − Ti ))((a + 1)z1(Ti ) + a cos(z1(Ti ))z1(Ti ) + z2(Ti ))

z1(t) = ξ1(t)

z2(t) = ξ2(t) − (a + 1)ξ1(t) − a cos(ξ1(t))ξ1(t)
(4.24)

The methodology for handling feedback linearizable systems in the strict feedback
form (1.7) is similar to the methodology described above for system (4.1). 
�

5 Concluding remarks

This work has focused on a key aspect of the implementation problem for predictor-
based feedback laws: the problem of the approximation of the predictor mapping. It
was shown that the numerical approximation of the predictor mapping by means of
the explicit Euler numerical scheme in conjunction with a hybrid feedback law that
uses sampled measurements can be used for the global stabilization of all forward
complete nonlinear systems that are globally asymptotically stabilizable and locally
exponentially stabilizable in the delay-free case.

The present paper goes beyond the approximation results in [6] by removing the
global Lipschitz restriction.

More remains to be done for the approximations of the integrals involved in the
explicit Euler scheme by easily implementable formulae. Furthermore, one cannot
ignore the possibility of using different numerical schemes (except the explicit Euler
scheme; see [3]): the use of implicit numerical schemes may require fewer grid points
than the grid points needed for the explicit Euler scheme. Finally, there is the challeng-
ing problem of using numerical approximations for cases where the measured output
is not necessarily the state vector and there is a measurement delay (see [9,10]).

Appendix

Proof of Lemma 2.3: Define the function:

g(λ) = W (xi + λ(xi+1 − xi )) (6.1)
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for λ ∈ [0, 1]. The following equalities hold for all λ ∈ [0, 1]:
dg

dλ
(λ) = ∇W (xi + λ(xi+1 − xi ))(xi+1 − xi )

d2g

dλ2 (λ) = (xi+1 − xi )
′∇2W (xi + λ(xi+1 − xi ))(xi+1 − xi )

(6.2)

Moreover, notice that by virtue of (2.2) and (2.9), it holds that |xi+1 − xi | ≤
h(|xi | + ‖u‖)L(|xi | + ‖u‖). The previous inequality in conjunction with (2.5) and
(6.2) gives:

∣∣∣∣d2g

dλ2 (λ)

∣∣∣∣ ≤ h2 P(|xi | + ‖u‖) (6.3)

where P : �+ → �+ is the function involved in (2.5). Furthermore, inequality (2.3)
in conjunction with (2.9) and (6.2) gives:

dg

dλ
(0) = ∇W (xi )

(i+1)h∫

ih

f (xi , u(s)) ds ≤ chW (xi ) +
(i+1)h∫

ih

p(|u(s)|) ds (6.4)

Combining (6.1), (6.3) and (6.4), we get:

W (xi+1)=g(1) ≤ (1 + ch)W (xi ) +
(i+1)h∫

ih

p(|u(s)|) ds + h2

2
P(|xi | + ‖u‖) (6.5)

Inequality (6.5) in conjunction with the following inequality

(1 + ch)W (xi ) +
(i+1)h∫

ih

p(|u(s)|) ds + h2

2
P(|xi | + ‖u‖) ≤ exp(2ch)W (xi )

+
(i+1)h∫

ih

exp(2c(ih + h − s))p(|u(s)|) ds

which holds for all h ≤ 2cW (xi )
P(|xi |+‖u‖) imply that (2.12) holds. The proof is complete. 
�

Proof of Lemma 2.4 We will first prove that if there exists j ∈ {0, . . . , N − 1} such
that ‖u‖ + mini=0,..., j |xi | > 0 and h ≤ 2c

P(Q(|x0|+‖u‖)+‖u‖) then (2.13) holds for all
i = 0, . . . , j + 1. The proof is by induction.

First notice that (2.13) holds for i = 0. Suppose that it holds for some i ∈ {0, . . . , j}.
Clearly, inequality (2.13) implies W (xi ) ≤ exp(2c τ)W (x0) + exp(2c τ)−1

2c p(‖u‖).
The previous inequality in conjunction with (2.6) implies |xi | ≤ Q(|x0| + ‖u‖).
Consequently, the facts that P : �+ → �+ is non-decreasing and W (xi ) ≥ 1 imply
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h ≤ 2c
P(Q(|x0|+‖u‖)+‖u‖) ≤ 2cW (xi )

P(|xi |+‖u‖) . Since |xi | + ‖u‖ > 0 and h ≤ 2cW (xi )
P(|xi |+‖u‖) ,

Lemma 2.3 shows that:

W (xi+1) ≤ exp(2ch)W (xi ) +
(i+1)h∫

ih

exp(2c(ih + h − s))p(|u(s)|) ds

The above inequality in conjunction with (2.13) shows that (2.13) holds for i replaced
by i + 1.

The case that there exists j ∈ {0, . . . , N − 1} with ‖u‖ + mini=0,..., j |xi | = 0 can
be treated in the following way. Let j ∈ {0, . . . , N − 1} be the smallest integer with
‖u‖+mini=0,..., j |xi | = 0. This implies that ‖u‖ = 0 and |x j | = 0. Since f (0, 0) = 0,
(2.9) implies that |xi | = 0 for all i = j + 1, . . . , N . Consequently, (2.13) holds for
all i = j + 1, . . . , N .

The proof is complete. 
�
Proof of Lemma 2.5 Notice that, by virtue of (2.9), the following equation holds for
all i ∈ {0, . . . , N − 1}:

ei+1 = ei +
(i+1)h∫

ih

( f (xi , u(s)) − f (x(s), u(s))) ds (6.6)

Inequality (2.1) implies the following inequality for all i ∈ {0, . . . , N − 1} and
s ∈ [ih, (i + 1)h]:

| f (xi , u(s)) − f (x(s), u(s))| ≤ L(|xi | + |x(s)| + ‖u‖)|xi − x(s)| (6.7)

Using the definition ei := xi − x(ih) and inequalities (2.2), (2.4), we get for all
i ∈ {0, . . . , N − 1} and s ∈ [ih, (i + 1)h]:

|xi − x(s)| ≤ |ei | + |x(s) − x(ih)|
≤ |ei | + (s − ih)

(
max

ih≤l≤s
(|x(l)|) + ‖u‖

)
L

(
max

ih≤l≤s
(|x(l)|) + ‖u‖

)

≤ |ei | + (s − ih) (aτ (|x0| + ‖u‖) + ‖u‖) L (aτ (|x0| + ‖u‖) + ‖u‖) (6.8)

Notice that all hypotheses of Lemma 2.4 hold. Therefore, inequality (2.13) holds
for all i = 0, . . . , N . Clearly, inequality (2.13) implies W (xi ) ≤ exp(2c τ)W (x0) +
exp(2c τ)−1

2c p(‖u‖). The previous inequality in conjunction with (2.6) implies |xi | ≤
Q(|x0| + ‖u‖) for all i = 0, . . . , N . Exploiting the fact that |xi | ≤ Q(|x0| + ‖u‖) for
all i = 0, . . . , N and (6.6), (6.7), (6.8), we obtain for all i ∈ {0, . . . , N − 1}:

|ei+1| ≤ |ei | + hL(Q(|x0| + ‖u‖) + aτ (|x0| + ‖u‖) + ‖u‖)|ei |
+h2

2
L(Q(|x0| + ‖u‖) + aτ (|x0| + ‖u‖) + ‖u‖) (aτ (|x0| + ‖u‖)

+‖u‖)L(aτ (|x0| + ‖u‖) + ‖u‖) (6.9)
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Definitions (2.7), (2.8) in conjunction with inequality (6.9) shows that the following
recursive relation holds for all i ∈ {0, . . . , N − 1}

|ei+1| ≤ exp(h A(|x0| + ‖u‖))|ei | + h2

2
B(|x0| + ‖u‖) (6.10)

Using the fact e0 = 0, in conjunction with relation (6.10), gives the desired inequal-
ity (2.14). The proof is complete. 
�

Proof of claim 1 First, we show that for each partition {Ti }∞i=0 of �+ with
supi≥0(Ti+1 − Ti ) ≤ r , for each x0 ∈ �n and u0 ∈ L∞([−τ, 0); �m), the solu-
tion of (1.2), (1.3), (1.4) and (1.5) with initial condition x(0) = x0, T̆τ (0)u = u0 is
unique and exists for all t ≥ 0.

The solution of (1.2), (1.3), (1.4) and (1.5) is determined by the following process:
Initial step: Given x(0) = x0, T̆τ (0)u = u0 we determine the solution x(t) of (1.2)

for t ∈ [0, τ ]. Notice that the solution is unique. Inequality (2.4) implies the following
estimate:

|x(t)| ≤ aτ (|x0| + ‖u0‖τ ), for all t ∈ [0, τ ] (6.11)

i-th step: Given x(t) for t ∈ [0, Ti + τ ] and u(t) for t ∈ [−τ, Ti ), we determine
x(t) for t ∈ [0, Ti+1 + τ ] and u(t) for t ∈ [−τ, Ti+1). The solution z(t) of (1.3) for
t ∈ [Ti , Ti+1) with initial condition z(Ti ) = zN is unique (by virtue of the fact that f
and k are locally Lipschitz mappings). Inequality (3.1) implies:

V (z(t)) ≤ V (z(Ti )), for all t ∈ [Ti , Ti+1) (6.12)

We determine u(t) for t ∈ [Ti , Ti+1) by means of the equation u(t) = k(z(t)). Notice
that inequalities (3.5), (3.6) in conjunction with (6.12) imply the following inequality
for all t ∈ [Ti , Ti+1):

|u(t)| = |k(z(t))| ≤ a4(a
−1
1 (a2(|z(Ti )|))) (6.13)

Finally, we determine the solution x(t) of (1.2) for t ∈ [Ti + τ, Ti+1 + τ ]. Notice
that the solution is unique. The fact that Ti+1 − Ti ≤ r in conjunction with inequality
(2.4) with τ replaced by r > 0 and inequality (6.13) implies the estimate:

|x(t)| ≤ ar (|x(Ti + τ)| + a4(a
−1
1 (a2(|z(Ti )|)))), for all t ∈ [Ti + τ, Ti+1 + τ ]

(6.14)
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Next we evaluate the difference z(t) − x(t + τ) for t ∈ [Ti , Ti+1). Exploiting (2.1)
we get:

|z(t) − x(t + τ)| =

∣∣∣∣∣∣∣
z(Ti ) − x(Ti + τ) +

t∫

Ti

( f (z(s), k(z(s))) − f (x(s + τ), k(z(s)))) ds

∣∣∣∣∣∣∣

≤ |z(Ti ) − x(Ti + τ) | +
t∫

Ti

L(|z(s)| + |x(s + τ)| + |k(z(s))|)|z(s) − x(s + τ)| ds

Using the right inequality (3.5), inequalities (6.12), (6.13), (6.14), in conjunction with
the above inequality, we obtain:

|z(t) − x(t + τ)| ≤ |z(Ti ) − x(Ti + τ)| + L(a−1
1 (a2(|z(Ti )|))

+a4(a
−1
1 (a2(|z(Ti )|))) + ar (|x(Ti + τ)| + a4(a

−1
1 (a2(|z(Ti )|)))))

×
t∫

Ti

|z(s) − x(s + τ)| ds

Define ϕ(s) := ar (s) + s. Using the Growall–Bellman lemma, the above inequality
and the fact that Ti+1 − Ti ≤ r , we get for all t ∈ [Ti , Ti+1):

|z(t) − x(t + τ)| ≤ |z(Ti ) − x(Ti + τ)| exp(r L(ϕ(|x(Ti + τ)| + q(|z(Ti )|))))
(6.15)

Next we evaluate the quantity ∇V (x(t +τ)) f (x(t +τ), k(z(t))) for t ∈ [Ti , Ti+1).
Using inequality (3.1) we get:

∇V (x(t + τ)) f (x(t + τ), k(z(t))) ≤ −ρ(V (x(t + τ)))

+∇V (x(t + τ))( f (x(t + τ), k(z(t))) − f (x(t + τ), k(x(t + τ))))

The following estimate follows from (3.6), (3.8) and the above inequality:

∇V (x(t + τ)) f (x(t + τ), k(z(t))) ≤ −ρ(V (x(t + τ)))

+a3(|x(t + τ)|) M(|(t + τ)| + |z(t)|) |x(t + τ) − z(t)|

Using the above inequality in conjunction with inequality (3.5), inequalities (6.12),
(6.14) and definitions q(s) := a4(a

−1
1 (a2(s)))+a−1

1 (a2(s)), ϕ(s) := ar (s)+s, we get:

∇V (x(t + τ)) f (x(t + τ), k(z(t))) ≤ −ρ(V (x(t + τ)))

+ a3(ϕ(|x(Ti +τ)|+q(|z(Ti )|))) M(ϕ(|x(Ti +τ)|+q(|z(Ti )|))) |x(t + τ) − z(t)|
(6.16)
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Combining inequalities (6.15), (6.16) and definition (3.9), we obtain for all t ∈
[Ti , Ti+1):

∇V (x(t + τ)) f (x(t + τ), k(z(t))) ≤ −ρ(V (x(t + τ))) + Dr (|x(Ti + τ)|
+q(|z(Ti )|)) |x(Ti + τ) − z(Ti )| (6.17)

Since z(Ti ) = zN (recall (2.4)), it follows from (2.18), (2.19) and (1.2), (1.4) that the
following inequalities hold for all i = 0, 1, 2, . . .:

|z(Ti ) − x(Ti + τ)| ≤ R
(

|x(Ti )| +
∥∥∥T̆τ (Ti )u

∥∥∥
τ

)
(6.18)

|z(Ti )| ≤ Q
(

|x(Ti )| +
∥∥∥T̆τ (Ti )u

∥∥∥
τ

)
(6.19)

Since |x(Ti + τ)| ≤ aτ (|x(Ti )| + ‖T̆τ (Ti )u‖τ ) (recall (2.4)), we obtain from
(6.17), (6.18), (6.19) and definition (3.15) for all t ∈ [Ti , Ti+1):

d

dt
V (x(t + τ)) ≤ −ρ(V (x(t + τ))) + γ (6.20)

Using (6.20) and Lemma 2.14, page 82 in [7], we obtain for all t ≥ 0:

V (x(t + τ)) ≤ max(σ̃ (V (x(τ )), t) , ρ−1(2γ )) (6.21)

for certain function σ̃ ∈ K L . Combining (3.5), (6.11) and (6.21), we obtain inequal-
ity (3.16) with σ(s, t) := σ̃ (a2(aτ (s)), t − τ) for all t > τ and σ(s, t) :=
σ̃ (a2(aτ (s)), 0) for all t ∈ [0, τ ]. The proof is complete. 
�

Proof of Claim 2 Let arbitrary partition {Ti }∞i=0 of �+ with supi≥0(Ti+1 − Ti ) ≤ r ,
x0 ∈ �n , u0 ∈ L∞([−τ, 0); �m) and consider the solution of (1.2), (1.3), (1.4) and
(1.5) with (arbitrary) initial condition x(0) = x0, T̆τ (0)u = u0. Inequalities (3.11)
and (3.16) guarantee that there exists a unique smallest sampling time Tj such that
V (x(Tj + τ)) ≤ δ.

Moreover, inequalities (6.20), (3.11) and (3.5) allow us to conclude that

|x(t)| ≤ a−1
1 (δ) and V (x(t)) ≤ δ, for all t ≥ Tj + τ (6.22)

Using (6.18), definition (3.15), (3.11) and (6.22), we obtain for all i ≥ j :

|z(Ti )| ≤ |z(Ti ) − x(Ti + τ)| + |x(Ti + τ)| ≤ γ + a−1
1 (δ) ≤ 2a−1

1 (δ) (6.23)
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Using (6.12), (3.5) and (6.23), we get for all t ≥ Tj :

|z(t)| ≤ a−1
1 (a2(2a−1

1 (δ))) (6.24)

Next we evaluate the difference z(t) − x(t + τ) for t ≥ Tj . Exploiting (2.1) and
inequalities (3.6), (3.7), (3.10), (6.22), (6.24) and definition (3.13), we get for all i ≥ j
and t ∈ [Ti , Ti+1):

|z(t) − x(t + τ)| =

∣∣∣∣∣∣∣
z(Ti ) − x(Ti + τ) +

t∫

Ti

( f (z(s), k(z(s))) − f (x(s + τ), k(z(s)))) ds

∣∣∣∣∣∣∣

≤ |z(Ti ) − x(Ti + τ)| + L̃

t∫

Ti

|z(s) − x(s + τ)| ds

Using the Growall–Bellman lemma, the above inequality and the fact that Ti+1−Ti ≤ r
imply for all i ≥ j and t ∈ [Ti , Ti+1):

|z(t) − x(t + τ)| ≤ |z(Ti ) − x(Ti + τ)| exp( r L̃) (6.25)

Next we evaluate the quantity ∇V (x(t +τ)) f (x(t +τ), k(z(t))) for t ∈ [Ti , Ti+1).
Using inequalities (3.4), (3.5), (3.7), (6.22), (3.10), (3.8), (6.24) and (6.25) and defin-
ition (3.12), we get for all i ≥ j and t ∈ [Ti , Ti+1):

∇V (x(t + τ)) f (x(t + τ), k(z(t))) ≤ −μk−1
2 V (x(t + τ))

+φ|x(t + τ)||x(Ti + τ) − z(Ti )| (6.26)

Using (3.5), (3.7), (3.10), (6.22) and (6.26), we get for all i ≥ j and t ∈ [Ti , Ti+1):

V̇ (t + τ) ≤ − μ

2k2
V (t + τ) + k2

2μk1
φ2 |x(Ti + τ) − z(Ti )|2 (6.27)

where V (t) = V (x(t)). Using (6.18), (3.15) and (6.27), we get for all i ≥ j and
t ∈ [Ti , Ti+1):

V̇ (t + τ) ≤ − μ

2k2
V (t + τ)+ k2

μk1
φ2 R̃2 |x(Ti )|2+ k2

μk1
φ2 R̃2 ‖T̆τ (Ti )u‖2

τ (6.28)

Let ω <
μ

4k2
be a positive constant sufficiently small so that

k4

√
k2

k1
R̃ exp(ω (r + τ)) < 1 and

√
2

k2

k1
φ R̃

exp(ω(r + τ))√
μ2 − 4ωμk2

×
(

1 + k4
√

k2 exp(ω(r + τ))(R̃ + exp(−ωτ))√
k1 − R̃k4

√
k2 exp(ω(r + τ))

)
< 1 (6.29)
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The existence of 0 < ω <
μ

4k2
satisfying (6.29) is guaranteed by (3.14). Using (6.28)

and the fact that supi≥0(Ti+1 − Ti ) ≤ r , we obtain for all i ≥ j and t ∈ [Ti , Ti+1):

V̇ (t + τ) ≤ − μ

2k2
V (t + τ) + k2

μk1
φ2 R̃2 exp(−2ωt) exp(2ωr) sup

Ti ≤s≤t
(exp(2ωs) |x(s)|2)

+ k2

μk1
φ2 R̃2 exp(−2ωt) exp(2ω(r + τ)) sup

Ti −τ≤s≤t
(exp(2ωs) |u(s)|2) (6.30)

The differential inequality (6.30) allows us to conclude that the following differen-
tial inequality holds for t ≥ Tj a.e.:

V̇ (t + τ) ≤ − μ

2k2
V (t + τ) + k2

μk1
φ2 R̃2 exp(−2ωt) exp(2ωr) sup

Tj ≤s≤t
(exp(2ωs)|x(s)|2)

+ k2

μk1
φ2 R̃2 exp(−2ωt) exp(2ω(r + τ)) sup

Tj −τ≤s≤t
(exp(2ωs)|u(s)|2) (6.31)

Integrating (6.31) and since ω <
μ

4k2
, we obtain for all t ≥ Tj :

V (t+τ) ≤ exp(−2ω(t − Tj ))V (Tj + τ)+ 2k2
2

μk1
φ2 R̃2 exp(−2ωt)

μ−4ωk2
exp(2ωr) sup

Tj ≤s≤t

×(exp(2ωs) |x(s)|2) + 2k2
2

μk1
φ2 R̃2 exp(−2ωt)

μ − 4ωk2
exp(2ω(r + τ))

sup
Tj −τ≤s≤t

(exp(2ωs) |u(s)|2) (6.32)

Using (3.5), (3.7), (6.21) and the fact that ω <
μ

4k2
, we obtain from (6.32) for all

t ≥ Tj :

|x(t + τ)| exp(ω(t + τ)) ≤ exp(ω(Tj + τ))

√
k2

k1
|x(Tj + τ)|

+√
2

k2

k1
φ R̃

exp(ω(r + τ))√
μ2 − 4ωμk2

sup
Tj ≤s≤t

(exp(ωs)|x(s)|)

+√
2

k2

k1
φ R̃

exp(ω(r + 2τ))√
μ2 − 4ωμk2

sup
Tj −τ≤s≤t

(exp(ωs) |u(s)|) (6.33)

Using (3.5), (3.6), (3.7), (3.10), (3.15), (6.12), (6.18) and (6.24) we obtain for all
i ≥ j and t ∈ [Ti , Ti+1):
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|u(t)| = |k(z(t))| ≤ k4|z(t)| ≤ k4

√
k2

k1
|z(Ti )|

≤ k4

√
k2

k1
|z(Ti ) − x(Ti + τ)| + k4

√
k2

k1
|x(Ti + τ)|

≤ R̃k4

√
k2

k1
|x(Ti )| + R̃k4

√
k2

k1
‖T̆τ (Ti )u‖τ + k4

√
k2

k1
|x(Ti + τ)| (6.34)

Inequality (6.34) in conjunction with the fact that supi≥0(Ti+1 − Ti ) ≤ r implies:

|u(t)| exp(ωt) ≤ R̃k4

√
k2

k1
exp(ωr)|x(Ti )| exp(ωTi )

+R̃k4

√
k2

k1
exp(ω(r + τ)) sup

Ti −τ≤s<Ti

(exp(ωs)|u(s)|)

+k4

√
k2

k1
exp(ω(r − τ))|x(Ti + τ)| exp(ω(Ti + τ))

Therefore, we get from the above inequality for all t ≥ Tj :

|u(t)| exp(ωt) ≤ k4 exp(ωr)

√
k2

k1
(R̃ + exp(−ωτ)) sup

Tj −τ≤s≤t
(exp(ω(s + τ))|x(s + τ)|)

+R̃k4

√
k2

k1
exp(ω(r + τ)) sup

Tj −τ≤s≤t
(exp(ωs)|u(s)|) (6.35)

Distinguishing the cases supTj −τ≤s≤t (exp(ω s)|u(s)|)=supTj ≤s≤t (exp(ω s)|u(s)|)
and supTj −τ≤s≤t (exp(ω s)|u(s)|) = supTj −τ≤s<Tj

(exp(ω s)|u(s)|), we obtain from
(6.35) for all t ≥ Tj :

|u(t)| exp(ωt) ≤ k4 exp(ωr)
√

k2(R̃ + exp(−ωτ))√
k1 − R̃k4

√
k2 exp(ω(r + τ))

sup
Tj −τ≤s≤t

(exp(ω(s + τ))|x(s + τ)|)

+R̃k4

√
k2

k1
exp(ω(r + τ)) sup

Tj −τ≤s<Tj

(exp(ωs)|u(s)|) (6.36)

Combining (6.33) and (6.36), we get for all t ≥ Tj :

|x(t + τ)| exp(ω(t + τ)) ≤ exp(ω(Tj + τ))

√
k2

k1
|x(Tj + τ)|

+√
2

k2

k1
φ R̃

exp(ω(r + τ))√
μ2 − 4ωμk2

(
1 + k4

√
k2 exp(ω(r + τ))(R̃ + exp(−ωτ))√

k1 − R̃k4
√

k2 exp(ω(r + τ))

)
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sup
Tj −τ≤s≤t

(exp(ω(s + τ))|x(s + τ)|)

+√
2

k2

k1
φ R̃

exp(ω(r + 2τ))√
μ2 − 4ωμk2

sup
Tj −τ≤s<Tj

(exp(ωs)|u(s)|)

Distinguishing the cases supTj −τ≤s≤t (exp(ω(s + τ)) |x(s + τ)|) = supTj −τ≤s≤Tj
(exp(ω(s + τ)) |x(s + τ)|), supTj −τ≤s≤t (exp(ω(s + τ)) |x(s + τ)|) = supTj ≤s≤t
(exp(ω(s + τ)) |x(s + τ)|) and using the above inequality, we obtain for all t ≥ Tj :

|x(t + τ)| exp(ω(t + τ)) ≤ exp(ω(Tj + τ))

1 − A

√
k2

k1
|x(Tj + τ)|

+A supTj −τ≤s≤Tj
(exp(ω(s + τ))|x(s + τ)|)+√

2
k2

k1(1 − A)
φ R̃

exp(ω(r + 2τ))√
μ2 − 4ωμk2

× sup
Tj −τ≤s<Tj

(exp(ωs)|u(s)|) (6.37)

where A = √
2 k2

k1
φ R̃ exp(ω(r+τ))√

μ2−4ωμk2

(
1 + k4

√
k2 exp(ω(r+τ))(R̃+exp(−ωτ))√

k1−R̃k4
√

k2 exp(ω(r+τ))

)
. Inequalities

(6.36), (6.37) imply that there exist constants Q1, Q2 > 0 such that (3.17), (3.18)
hold.

The proof is complete. 
�

Proof of Claim 3 Let arbitrary partition {Ti }∞i=0 of �+ with supi≥0(Ti+1 − Ti ) ≤ r ,
x0 ∈ �n , u0 ∈ L∞([−τ, 0); �m) and consider the solution of (1.2), (1.3), (1.4) and
(1.5) with (arbitrary) initial condition x(0) = x0, T̆τ (0)u = u0.

Define:

b(s) := a4(a
−1
1 (a2(s))), for all s ≥ 0 (6.38)

and notice that b ∈ K∞. Moreover, notice that definitions (6.38) and (3.15) imply that

R(s) ≤ 1

2
b−1

( s

2

)
, for all s ≥ 0 (6.39)

Furthermore, definition (6.38) and inequality (6.13) imply the following inequality
for all i ∈ Z+ and t ∈ [Ti , Ti+1):

|u(t)| ≤ b(|z(Ti )|) (6.40)

Inequalities (3.5), (3.16) imply the existence of a non-decreasing function g :
�+ → �+ such that:

|x(t)| ≤ g(|x0| + ‖u0‖τ ), for all t ≥ 0 (6.41)
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By virtue of (6.18), (6.39) and (6.41) we get for all i ∈ Z+:

|z(Ti ) − x(Ti + τ)| ≤ R

(
|x(Ti )| + sup

Ti −τ≤s<Ti

(|u(s)|)
)

≤ 1

2
b−1

(
1

2
|x(Ti )| + 1

2
sup

Ti −τ≤s<Ti

(|u(s)|)
)

≤ max

(
1

2
b−1(|x(Ti )|), 1

2
b−1

(
sup

Ti −τ≤s<Ti

|u(s)|
))

≤ max

(
1

2
b−1(g(|x0| + ‖u0‖τ )) ,

1

2
b−1

(
sup

Ti −τ≤s<Ti

|u(s)|
))

The above inequality in conjunction with (6.41) gives for all i ∈ Z+:

|z(Ti )| ≤ |x(Ti + τ)|+max

(
1

2
b−1 (g(|x0|+‖u0‖τ )) ,

1

2
b−1

(
sup

Ti −τ≤s<Ti

|u(s)|
))

≤ g(|x0| + ‖u0‖τ ) + max

(
1

2
b−1(g(|x0| + ‖u0‖τ )),

1

2
b−1

(
sup

Ti −τ≤s<Ti

|u(s)|
))

≤ max(2g(|x0| + ‖u0‖τ ), b−1(g(|x0| + ‖u0‖τ )), b−1

(
sup

Ti −τ≤s<Ti

|u(s)|
))

≤ max(2g(|x0| + ‖u0‖τ ), b−1(g(|x0| + ‖u0‖τ )), b−1

(
sup

−τ≤s<Ti

|u(s)|
))

Furthermore, using (6.40) and the above inequality, we obtain for all i ∈ Z+:

sup
Ti ≤s<Ti+1

|u(s)| ≤ max(g̃(|x0| + ‖u0‖τ ), sup
−τ≤s<Ti

|u(s)|) (6.42)

where g̃(s) := max(g(s) , b(2g(s))) for all s ≥ 0, is a non-decreasing function.
Define the sequence:

Fi := sup
−τ≤s<Ti

|u(s)| (6.43)

Notice that definition (6.43) and the fact that sup−τ≤s<Ti+1
|u(s)| = max

(supTi ≤s<Ti+1
|u(s)| , sup−τ≤s<Ti

|u(s)|) in conjunction with (6.42) imply the fol-
lowing inequality for all i ∈ Z+:

Fi+1 ≤ max(g̃(|x0| + ‖u0‖τ ) , Fi ) (6.44)
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Inequality (6.44) in conjunction with the fact that F0 := ‖u0‖τ allows us to prove
by induction that the following inequality holds for all i ∈ Z+:

Fi ≤ max(g̃(|x0| + ‖u0‖τ ) , ‖u0‖τ ) (6.45)

Inequality (6.41) in conjunction with inequality (6.45) and definition (6.43) implies
that estimate (3.19) holds with G(s) := g(s)+ max(g̃(s) , s) for all s ≥ 0. The proof
is complete. 
�
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