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Abstract In this work, we show that, given a nonlinear programming problem, it is
possible to construct a family of dynamical systems, defined on the feasible set of
the given problem, so that: (a) the equilibrium points are the unknown critical points
of the problem, which are asymptotically stable, (b) each dynamical system admits
the objective function of the problem as a Lyapunov function, and (c) explicit for-
mulas are available without involving the unknown critical points of the problem.
The construction of the family of dynamical systems is based on the Control Lya-
punov Function methodology, which is used in mathematical control theory for the
construction of stabilizing feedback. The knowledge of a dynamical system with the
previously mentioned properties allows the construction of algorithms, which guar-
antee the global convergence to the set of the critical points.

Keywords Nonlinear programming · Feedback stabilization · Lyapunov functions ·
Nonlinear systems

1 Introduction

Differential equations have been used in the past for the solution of Nonlinear Pro-
gramming (NLP) problems. The reader may consult [1–8] for various results on the
topic. Some methods are interior-point methods (in the sense that they are defined
only on the feasible set), while other methods are exterior-point methods (in the sense
that they are defined at least in a neighborhood of the feasible set). As remarked in
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[9], each system of differential equations that solves an NLP problem, when com-
bined with a numerical scheme for solving Ordinary Differential Equations (ODEs),
provides a numerical scheme for solving the NLP problem. Differential equations
have been utilized for the solution of Linear Programming and NLP problems in the
literature of neural networks (see, for example, [10–12], the review paper [13], and
the references therein).

In this work, we are interested in the application of feedback stabilization methods
for solving NLP problems. The feedback stabilization methods can be applied in two
ways:

1. for the construction of the dynamical system that solves the NLP problem and
2. for the selection of the step size of the Runge–Kutta scheme that is used for the

solution of the resulting system of ODEs (see [14, 15]).

More specifically, consider a standard NLP problem with sufficient regularity
properties and such that the necessary Karush–Kuhn–Tucker conditions of the NLP
hold. Inspired by the methods employed in the book [16], we would like to construct
a well-defined dynamical system on the feasible set of the NLP with the following
properties:

Property 1: The conditions of Nagumo’s theorem (given on p. 27 of the book [17])
must be satisfied. This property is required because the local existence of solutions
of the dynamical system is guaranteed and the feasible set is viable, i.e., the solution
exists and belongs to the feasible set.

Property 2: The vector field appearing in the right-hand side of the dynamical system
is a locally Lipschitz vector field. This property is required for the uniqueness of a
solution of the dynamical system. Moreover, this property is required because we
would like to be able to apply first-order Runge-Kutta schemes for the simulation
of the solutions of the dynamical system. Higher regularity is also desirable because
high-order Runge–Kutta schemes can be used for the simulation of the solutions of
the dynamical system.

Property 3: The equilibrium points of the dynamical system are exactly the points
for which the necessary Karush–Kuhn–Tucker conditions of the NLP hold.

Property 4: The objective function of the NLP problem is a (strict) Lyapunov function
for the dynamical system. In other words, we would like the value of the objective
function to decrease along the solution of the dynamical system. This property is
important because it guarantees useful stability properties. Furthermore, the fact that
the Lyapunov function of the dynamical system does not involve the solutions of the
NLP problem is important for numerical purposes (see [14, 15]): the time derivative
of the Lyapunov function along the solutions of the system and the difference of
the values of the Lyapunov function between two points can be computed without
knowledge of the solutions of the NLP problem.

Property 5: The vector field appearing in the right-hand side of the dynamical sys-
tem must be explicitly known. Formulas for the vector field must be provided: the
formulas must not involve the solution of the NLP problem.
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Property 6: The vector field appearing in the right-hand side of the dynamical sys-
tem must have free parameters, which can be selected in an appropriate way so that
the convergence properties of the corresponding numerical schemes to the global at-
tractor of the dynamical system are optimal. In other words, we want to construct a
parameterized family of vector fields with all the above properties.

It must be noted that properties 1–6 are rarely satisfied by other differential equa-
tion methods for solving NLPs. For example, in [1] and [2], the constructed Lya-
punov function involves the solution of the NLP problem, and this does not meet our
requirements. Moreover, in [2], the solution of the NLP problem is not an equilib-
rium point for the constructed time-varying dynamical system. Antipin [1] constructs
an autonomous dynamical system for which the solution of the NLP problem is an
equilibrium point and for which the locally Lipschitz vector field appearing in the
right-hand side of the dynamical system does not depend on the location of the un-
known point. However, the definition of the vector field appearing in the right-hand
side of the dynamical system is involved (it requires the solution of an NLP since
it involves a projection on the feasible set). The NLP problem without equality con-
straints under additional convexity hypotheses has been studied in [10]. However,
even in this work, the constructed Lyapunov function involves the solution of the
NLP problem; the same feature appears in almost all neural networks proposed for
the solution of mathematical programming problems (see [11, 12] and the references
in the review paper [13]). On the other hand, the papers [6, 7] propose systems of
differential equations that satisfy properties 1–6 for systems without inequality con-
straints. Local results are provided in the paper [8], and differential equations based
on barrier methods were considered in [4].

Clearly, the knowledge of the Lyapunov function can allow us to construct the
vector field appearing in the right-hand side of the dynamical system by means of
the Control Lyapunov Function methodology of feedback design (see [18–21]) for a
completely controllable control system. However, there are certain obstructions for
the direct application of the classical Control Lyapunov Function methodology: (i) the
system is not defined on the whole space but on the closed feasible set, (ii) for every
given point of the feasible set, the vector field appearing in the right-hand side of
the dynamical system must belong to the contingent cone to the feasible set at the
given point, and (iii) the position of the equilibrium points, i.e., the set of points of
the feasible set that satisfy the Karush–Kuhn–Tucker conditions is unknown (this is
what we are looking for).

The contribution of the paper is twofold:

1. The main result of the present work (Theorem 2.1) shows that all the previously
mentioned obstructions can be overcome under appropriate assumptions.

2. Based on the ideas described in [14, 15], in Sect. 3 of the present work, we present
an algorithm for the solution of the NLP, which is based on the application of the
explicit Euler scheme for the numerical solution of the resulting system of ODEs,
with appropriate step selection (Theorem 3.1). The algorithm will converge for
every initial condition (global convergence). A modified and simpler version of the
algorithm can work under slightly more demanding assumptions (Remark 3.3).
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It should be noticed that the convergence rates of the proposed algorithms depend
on the selection of certain matrices, which are the free parameters described in prop-
erty 5 above. However, since the proposed algorithms are global, they can be used in
combination with any other local algorithm that guarantees a fast convergence based
on the following intuitive idea: “apply the newly proposed algorithms when you are
away from a solution and apply a fast local algorithm when you are close to a solu-
tion.”

It should be emphasized that no claim is made about the effectiveness of the pro-
posed algorithms. The topic of the numerical solution of NLPs is a mature topic, and
it is clear that other algorithms have much better characteristics than the algorithms
proposed in this paper. However, the theory used for the construction of the algorithm
is different from other existing algorithms. The algorithms contained in this work are
derived by using concepts of dynamical system theory and mathematical control the-
ory. Moreover, no claim is made about the generality of our results: the linear inde-
pendence constraint qualification assumed in this work is a restrictive assumption: it
is more restrictive than the Mangasarian–Fromovitz constraint qualification in [22]
or the constant rank constraint qualification (see [23] and references therein), which
are more restrictive than the Guignard constraint qualification. However, the linear
independence constraint qualification has the advantage of being easily checkable
and of being true in many interesting cases (the work [24] showed that this assump-
tion holds generically), and it is a vital ingredient for many numerical methods (suc-
cessive quadratic programming; see [25, 26]). Furthermore, the linear independence
constraint qualification allows us to obtain easy formulas for the required vector field
(see Remark 2.4 below).

The structure of the paper is as follows. Section 2 contains the statement and proof
of Theorem 2.1, which provides the solution to the problem of the construction of
a vector field with properties 1–6. Section 3 provides numerical algorithms for the
exploitation of the constructed vector field. Section 4 provides some examples, which
show the performance of the algorithms. Finally, Sect. 5 contains the concluding
remarks. The Appendix provides proofs of certain auxiliary results.

2 Transforming an Nonlinear Programming Problem into a Feedback
Stabilization Problem

Notation Throughout this paper we adopt the following notation:

* Let A ⊆ �n be a set. By C0(A ; Ω) we denote the class of continuous functions
on A taking values in Ω . By Ck(A ; Ω), where k ≥ 1 is an integer, we denote the
class of functions on A taking values in Ω and having continuous derivatives up to
order k. By C∞(A;Ω) we denote the class of functions on A taking values in Ω

and having continuous derivatives of all orders (smooth functions).
* For a vector x ∈ R

n, we denote by |x| its usual Euclidean norm and by x′ its
transpose. For a real matrix A ∈ R

n×m, we denote by |A| its induced norm, i.e.,
|A| := max{|Ax| : x ∈ R

m, |x| = 1} and by A′ ∈ R
m×n its transpose. In ∈ R

n×n

denotes the identity matrix. For every x = (x1, . . . , xn)
′ ∈ R

n, we define x+ =
(max(0, x1), . . . ,max(0, xn))

′ ∈ R
n. Notice that if R ∈ R

n×n is a positive definite
and diagonal matrix and x′Rx+ = 0, then x+ = 0.
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* R
n+ := (R+)n = {(x1, . . . , xn)

′ ∈ R
n : x1 ≥ 0, . . . , xn ≥ 0}. Let x, y ∈ R

n. We say
that x ≤ y iff (y − x) ∈R

n+.
* For every continuously differentiable function V : Rn → R, ∇V (x) denotes the

gradient of V at x ∈R
n, i.e., ∇V (x) = ( ∂V

∂x1
(x), . . . , ∂V

∂xn
(x)), and ∇2V (x) denotes

the Hessian matrix of V at x ∈R
n.

Consider the NLP problem

min
{
θ(x) : x ∈ S

}
, (1)

where x ∈ R
n, and the closed set S ⊆ R

n is defined by

S :=
{
x ∈ R

n : h1(x) = · · · = hm(x) = 0, max
j=1,...,k

(
gj (x)

) ≤ 0
}
, (2)

where m < n, and all functions θ : Rn → R, hi : Rn → R (i = 1, . . . ,m), gj : Rn →
R (j = 1, . . . , k) are twice continuously differentiable, under the following assump-
tions:

(H1) The feasible set S ⊆ R
n defined by (2) is nonempty, and the sublevel sets of

θ : Rn → R are compact sets, i.e., for every x0 ∈ S, the following sublevel set
is compact:

Ξθ(x0) := {
x ∈ S : θ(x) ≤ θ(x0)

}
. (3)

(H2) For every x ∈ S, the row vectors ∇hi(x) (i = 1, . . . ,m) and ∇gj (x) for all
j = 1, . . . , k for which gj (x) = 0 (active constraints) are linearly independent.

Assumption (H1) is a standard assumption, which guarantees that the NLP prob-
lem described by (1) and (2) is well posed and admits at least one global solution
(see [27]). Assumption (H2) is a global version of the linear independence constraint
qualification. As remarked in the Introduction, assumption (H2) is a restrictive as-
sumption, which guarantees that for every solution of the NLP problem described by
(1) and (2), the Karush–Kuhn–Tucker conditions hold.

We define:

h(x) :=
⎡

⎢
⎣

h1(x)
...

hm(x)

⎤

⎥
⎦ ∈ R

m, A(x) :=
⎡

⎢
⎣

∇h1(x)
...

∇hm(x)

⎤

⎥
⎦ ∈ R

m×n,

g(x) :=
⎡

⎢
⎣

g1(x)
...

gk(x)

⎤

⎥
⎦ ∈ R

k, B(x) :=
⎡

⎢
⎣

∇g1(x)
...

∇gk(x)

⎤

⎥
⎦ ∈ R

k×n for all x ∈ R
n.

(4)

Assumption (H2) allows us to define the symmetric matrix

H(x) = In − A′(x)
(
A(x)A′(x)

)−1
A(x) for all x ∈R

n in a neighborhood of S.

(5)

The following facts are direct consequences of definitions (4) and (5):
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Fact 1: H 2(x) = H(x), A(x)H(x) = 0, and H(x)A′(x) = 0.
Fact 2: ξ ′H(x)ξ = |H(x)ξ |2 for all ξ ∈R

n.
Fact 3: For every ξ ∈ R

n, there exists λ ∈R
m such that ξ = H(x)ξ + A′(x)λ.

Next, we define the set of critical points for the NLP problem defined by (1), (2).

Definition 2.1 Let Φ ⊆ S be the set of all points x ∈ S for which there exist vectors
λ = (λ1, . . . , λm)′ ∈R

m and μ = (μ1, . . . ,μk)
′ ∈R

k+ such that

∇θ(x) +
m∑

i=1

λi∇hi(x) +
k∑

j=1

μj∇gj (x) = 0,

k∑

j=1

μjgj (x) = 0.

(6)

In other words, Φ ⊆ S is the set of critical points or Karush–Kuhn–Tucker points for
the problem defined by (1) and (2).

Clearly, assumptions (H1) and (H2) guarantee that the set Φ ⊆ S is nonempty.
The following lemma provides a useful consequence of assumption (H2). Its proof

is provided in the Appendix.

Lemma 2.1 If assumption (H2) holds, then the matrix

Q(x) := B(x)H(x)B ′(x) − diag
(
g(x)

)
(7)

is positive definite for all x ∈ S.

We are now ready to state the main result of this section.

Theorem 2.1 Suppose that assumptions (H1) and (H2) hold for the NLP problem
described by (1), (2). Let Q(x) ∈ R

k×k be the symmetric positive definite matrix
defined by (7). Let R1(x) ∈ R

n×n be an arbitrary C1, symmetric, and positive def-
inite matrix, R2(x) ∈ R

k×k be an arbitrary C1, symmetric, and positive semidef-
inite matrix, ai(x), bi(x), and ci(x) (i = 1, . . . , k) be arbitrary C1 nonnegative
functions with bi(x) + ci(x) > 0 for all i = 1, . . . , k and x ∈ S. Let at least one
of the matrices R2(x) ∈ R

k×k and diag(a(x)) ∈ R
k×k be positive definite, where

a(x) := (a1(x), . . . , ak(x))′ ∈R
k . Define the following locally Lipschitz vector field:

F(x) = −[
H(x) − P ′(x)Q(x)P (x)

]
R1(x)

[
H(x) − P ′(x)Q(x)P (x)

](∇θ(x)
)′

− P ′(x)diag
(
g(x)

)(
R2(x)diag

(
g(x)

) − diag
(
a(x)

))
v(x)

− P ′(x)R3(x)
(
v(x)

)+
, (8)
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where

P(x) := Q−1(x)B(x)H(x) ∈R
k×n,

v(x) := P(x)
(∇θ(x)

)′ ∈R
k,

R3(x) := diag
(
b1(x) + c1(x)

(
max

(
0, v1(x)

))2p1 , . . . ,

bk(x) + ck(x)
(
max

(
0, vk(x)

))2pk
)
,

(9)

and pi ≥ 1 (i = 1, . . . , k) are integers. Then the following properties hold:

(a) A(x)F (x) = 0 for all x ∈ S,
(b) ∇θ(x)F (x) < 0 for all x ∈ S\Φ ,
(c) F(x) = 0 ⇔ x ∈ Φ ,
(d) B(x)F (x) = diag(g(x))Q−1(x)w(x) − R3(x)(v(x))+ for all x ∈ S, where

w(x) := B(x)H(x)R1(x)
[
H(x) − P ′(x)Q(x)P (x)

](∇θ(x)
)′

− [
Q(x) + diag

(
g(x)

)](
R2(x)diag

(
g(x)

) − diag
(
a(x)

))
v(x)

− R3(x)
(
v(x)

)+
. (10)

Consider the dynamical system

ẋ = F(x) (11)

on the closed set S ⊆ R
n. Then the following properties hold:

1. For every x0 ∈ S, there exists a unique solution x(t) of the initial-value problem
(11) with x(0) = x0, which is defined for all t ≥ 0 and satisfies x(t) ∈ S for all
t ≥ 0.

2. Every point x ∈ Φ is an equilibrium point for (11). Every strict local solution
x∗ ∈ S of the NLP problem described by (1) and (2) is locally asymptotically
stable for system (11).

If we denote by ω(x0) the set of accumulation points of the set {x(t) : t ≥ 0}, where
x0 ∈ S, then ω(x0) is a compact, positively invariant set for which there exists l ≤
θ(x0) such that ω(x0) ⊆ Φ ∩ {x ∈ S : θ(x) = l}.

Remark 2.1 Clearly, the matrices R1(x) ∈ R
n×n, R2(x) ∈ R

k×k and the functions
ai(x), bi(x), ci(x) (i = 1, . . . , k) can be selected in an appropriate way so that the
convergence properties of the corresponding numerical schemes to the global attrac-
tor of the dynamical system are optimal. The stability properties of system (11) are
analogous to the stability properties of gradient systems (see [28]).

Remark 2.2 It should be noted that all properties 1–6 mentioned in the Introduc-
tion are satisfied for the dynamical system (11). Indeed, property 1 is a direct conse-
quence of (a) and (d). More specifically, a direct consequence of definition (9) and the
fact that d

dt
g(x) = B(x)ẋ = B(x)F (x) = diag(g(x))Q−1(x)w(x)−R3(x)(v(x))+ is

that the following implication holds: “if gj (x) = 0 for some j ∈ {1, . . . , k}, then
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d
dt

gj (x) = −(bj (x) + cj (x)(max(0, vj (x)))2pj )max(0, vj (x)) ≤ 0.” The previous
implication and property (a) guarantee that for every x ∈ S, F(x) belongs to the
contingent cone to S at x.

– Property 2 is a direct consequence of definitions (5), (7), (8), (9) and the fact that
all functions θ :Rn → R, hi : Rn →R (i = 1, . . . ,m), gj : Rn →R (j = 1, . . . , k)
are twice continuously differentiable. It should be noticed that if at least one
of the functions bi(x) (i = 1, . . . , k) takes positive values, then the vector field
F(x) defined by (8) is simply locally Lipschitz and not C1. When bi(x) ≡ 0 for
i = 1, . . . , k, then the vector field F(x) defined by (8) is C1. Higher regularity is
possible by assuming higher regularity for all functions and matrices involved in
(5), (7), (8), (9), sufficiently large values for the integers pi ≥ 1 (i = 1, . . . , k), and
bi(x) ≡ 0 for i = 1, . . . , k.

– Properties 3 and 4 are direct consequences of (c) and (b), respectively. Indeed,
notice that the function V (x) = θ(x) − θ(x∗), where x∗ ∈ S is one of the global
solutions of the NLP described by (1), (2), satisfies the equation ∇V (x)F (x) =
∇θ(x)F (x).

– Finally, properties 5 and 6 are evident.

Remark 2.3 The inspiration for Theorem 2.1 is the transformation of the NLP prob-
lem into a feedback stabilization problem. First, we notice that the Control Lyapunov
Function (see [18–21]) is selected to be the function defined by V (x) = θ(x)−θ(x∗),
where x∗ ∈ S is one of the global solutions of the NLP problem described by (1), (2).
The only problem is that we must define in an appropriate way the control system
so that S is a positively invariant set for all possible inputs. In other words, we must
have

d

dt
h(x) = A(x)ẋ = 0 and

d

dt
g(x) = B(x)ẋ = diag

(
g(x)

)
v − u (12)

for all possible inputs v ∈ R
n and u ∈ R

n+. Notice that the second equation in (12)
guarantees the implication “if gj (x) = 0 for some j ∈ {1, . . . , k}, then d

dt
gj (x) =

−uj ≤ 0.” The first equation in (12) implies that ẋ = H(x)w for arbitrary w ∈ R
n.

Combining, we get B(x)H(x)w = diag(g(x))v−u. By redefining the input variables
w = B ′(x)p +q and v = p + z we get p = Q−1(x)(diag(g(x))z−u−B(x)H(x)q).
Consequently, the required control system is

ẋ = H(x)
(
In − B ′(x)Q−1(x)B(x)H(x)

)
q

+ H(x)B ′(x)Q−1(x)diag
(
g(x)

)
z − H(x)B ′(x)Q−1(x)u (13)

with inputs q, z ∈ R
n and u ∈ R

n+. The computation of the feedback law for the
control system (13) with Control Lyapunov Function V (x) = θ(x)− θ(x∗), gives the
dynamical system (11), where F is defined by (8), (9). More specifically, we get:

∇V (x)ẋ = ∇θ(x)
(
H(x) − H(x)B ′(x)Q−1(x)B(x)H(x)

)
q

+ ∇θ(x)H(x)B ′(x)Q−1(x)diag
(
g(x)

)
z − ∇θ(x)H(x)B ′(x)Q−1(x)u.

(14)
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The Control Lyapunov Function approach requires that each input must be selected
so that each term appearing in the right-hand side of (14) takes negative values. The
feedback laws

q = −R1(x)
(
H(x) − H(x)B ′(x)Q−1(x)B(x)H(x)

)(∇θ(x)
)′
,

z = (
diag

(
a(x)

) − R2(x)diag
(
g(x)

))
Q−1(x)B(x)H(x)

(∇θ(x)
)′
,

u = R3(x)
(
Q−1(x)B(x)H(x)

(∇θ(x)
)′)+

,

(15)

where R1(x) ∈ R
n×n is an arbitrary C1, symmetric, and positive definite matrix,

R2(x) ∈ R
k×k is an arbitrary C1, symmetric, and positive semidefinite matrix,

ai(x), bi(x), and ci(x) (i = 1, . . . , k) are arbitrary C1 nonnegative functions with
bi(x)+ci(x) > 0 for all i = 1, . . . , k and x ∈ S, and at least one of the matrices R2(x),
diag(a(x)) ∈ R

k×k is positive definite, where a(x) := (a1(x), . . . , ak(x))′ ∈ R
k , and

R3(x) ∈ R
k×k is defined by (9), give us the vector field F(x) defined by (8), (9).

Proof of Theorem 2.1 We first notice that statements (a) and (d) are direct conse-
quences of definitions (7), (8), (9) and Fact 1. We next prove statements (b) and (c).

We first notice that definitions (9) and the fact that g(x) ≤ 0 imply that the follow-
ing equality holds for all x ∈ S:

∇θ(x)F (x) = −ξ(x)R1(x)
(
ξ(x)

)′ − (
diag

(
g(x)

)
v(x)

)′
R2(x)diag

(
g(x)

)
v(x)

−
k∑

j=1

aj (x)
∣∣gj (x)

∣∣v2
j (x) −

k∑

j=1

bj (x)
(
max

(
0, vj (x)

))2

−
k∑

j=1

cj (x)
(
max

(
0, vj (x)

))2pj +2
, (16)

where ξ(x) = ∇θ(x)[H(x)−H(x)B ′(x)Q−1(x)B(x)H(x)]. Clearly, Eq. (16) shows
that ∇θ(x)F (x) ≤ 0 for all x ∈ S. We next investigate the nature of points x ∈ S for
which ∇θ(x)F (x) = 0. Equation (16) and the facts that R1(x) ∈ R

n×n is a positive
definite matrix, R2(x) ∈ R

k×k is a positive semidefinite matrix, ai(x), bi(x), and
ci(x) (i = 1, . . . , k) are nonnegative functions with bi(x) + ci(x) > 0 for all i =
1, . . . , k and x ∈ S, and at least one of the matrices R2(x) ∈ R

k×k , diag(a(x)) ∈ R
k×k

is positive definite, where a(x) := (a1(x), . . . , ak(x))′ ∈ R
k , and R3(x) ∈ R

k×k is
defined by (9), show that ∇θ(x)F (x) = 0 is equivalent to the following equations:

(
v(x)

)+ = 0, (17)

gj (x)vj (x) = 0, j = 1, . . . , k, (18)

∇θ(x)H(x)
[
In − B ′(x)Q−1(x)B(x)

]
H(x) = 0. (19)

We define

μ = −v(x). (20)
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Definition (20) in conjunction with (17) and (18) implies that

μ ≥ 0 and μ′g(x) = 0. (21)

Using (19) and the identity H 2(x) = H(x), we obtain:

H(x)
[
In − B ′(x)Q−1(x)B(x)H(x)

](∇θ(x)
)′ = 0. (22)

Definitions (9) and (20), in conjunction with (22), imply that

H(x)
(∇θ(x) + μ′B(x)

)′ = 0. (23)

Equation (23), in conjunction with Fact 3 and (21), implies that conditions (6) hold.
Therefore, x ∈ Φ .

Thus, we have proved the implication ∇θ(x)F (x) = 0 ⇒ x ∈ Φ .
Consequently, we have proved statement (b) and one of the implications of state-

ment (c) (namely, the implication F(x) = 0 ⇒ x ∈ Φ).
We will prove now the implication x ∈ Φ ⇒ F(x) = 0. Suppose that x ∈ Φ . Then

there exist λi ∈ R (i = 1, . . . ,m) and μj ≥ 0 (j = 1, . . . , k) such that conditions (6)
hold, or in vector form,

(∇θ(x)
)′ + A′(x)λ + B ′(x)μ = 0,

μ′g(x) = 0.
(24)

It follows from (24), Fact 1, and definitions (9) that

v(x) = Q−1(x)B(x)H(x)
(∇θ(x)

)′ = −Q−1(x)B(x)H(x)
(
A′(x)λ + B ′(x)μ

)

= −Q−1(x)B(x)H(x)B ′(x)μ.

Using definition (7) and the above equality, we obtain

v(x) = −μ − Q−1(x)diag
(
g(x)

)
μ.

However, the facts that g(x) ≤ 0, μ ≥ 0, and μ′g(x) = 0 imply that diag(g(x))μ = 0.
Consequently, it follows that v(x) = −μ and that (17) holds. Using (24), defini-
tion (8), and the facts that v(x) = −μ, diag(g(x))μ = 0, and (v(x))+ = 0, we obtain:

F(x) = −[
H(x) − P ′(x)Q(x)P (x)

]
R1(x)

[
H(x) − P ′(x)Q(x)P (x)

](∇θ(x)
)′
.

Using definitions (7), (9), Fact 1, (24), the above equality, and the fact that
diag(g(x))μ = 0, we get:

F(x) = H(x)
[
In − B ′(x)Q−1(x)B(x)

]
H(x)R1(x)H(x)

× [
In − B ′(x)Q−1(x)B(x)

]
H(x)

(
A′(x)λ + B ′(x)μ

)

= H(x)
[
In − B ′(x)Q−1(x)B(x)

]
H(x)R1(x)H(x)

× [
In − B ′(x)Q−1(x)B(x)

]
H(x)B ′(x)μ
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= H(x)
[
In − B ′(x)Q−1(x)B(x)

]
H(x)R1(x)H(x)B ′(x)

× [
Ik − Q−1(x)B(x)H(x)B ′(x)

]
μ

= H(x)
[
In − B ′(x)Q−1(x)B(x)

]
H(x)R1(x)H(x)B ′(x)

× [
Ik − Q−1(x)

(
Q(x) + diag

(
g(x)

))]
μ

= −H(x)
[
In − B ′(x)Q−1(x)B(x)

]

× H(x)R1(x)H(x)B ′(x)Q−1(x)diag
(
g(x)

)
μ = 0. (25)

We next turn to the proof of properties 1 and 2.
The local existence of the solution of the initial-value problem (11) with x(0) = x0

is a direct consequence of properties (a), (d) and the Nagumo theorem (p. 27 in [17]).
The global existence of the solution of the initial-value problem (11) with x(0) = x0
follows from Theorem 1.2.3 (p. 27) in [17], assumption (H1), and the fact that θ(x(t))

is nonincreasing (a direct consequence of property (b)). In fact, assumption (H1), in
conjunction with the fact that θ(x(t)) is nonincreasing, shows that {x(t) : t ≥ 0} is
bounded.

As in the case of dynamical systems on R
n, it follows that ω(x0) is a compact,

positively invariant set for system (11) (see [28]). The fact that θ(x(t)) is nonin-
creasing implies that limt→+∞ θ(x(t)) = l = inf{θ(x(t)) : t ≥ 0}, which shows that
ω(x0) ⊆ {x ∈ S : θ(x) = l}. We next show that ω(x0) ⊆ Φ . The inequality

∫ t

0
γ
(
x(s)

)
ds ≤ θ(x0) − l for all t ≥ 0, (26)

where γ (x) := ∇θ(x)F (x), is a direct consequence of (16) and the definition
l := inf{θ(x(t)) : t ≥ 0}. Notice that the mapping R+ � s → γ (x(s)) is uniformly
continuous since {ẋ(t) = F(x(t)) : t ≥ 0} is bounded (a consequence of the fact
that {x(t) : t ≥ 0} is bounded) and since the mapping R

n � x → γ (x) is locally
Lipschitz. Using (26) and applying Barbalat’s lemma (see [29]), we conclude that
lims→+∞ γ (x(s)) = 0. The validity of the implication ∇θ(x)F (x) = γ (x) = 0 ⇒
x ∈ Φ implies that ω(x0) ⊆ Φ .

Finally, the fact that every strict local solution x∗ ∈ S of the NLP problem de-
scribed by (1) and (2) follows from property (b) and the consideration of the Lya-
punov function V (x) = θ(x) − θ(x∗). The proof is complete. �

Remark 2.4 If there are no equality constraints (i.e., h(x) ≡ 0), then the proof of
Theorem 2.1 shows that exactly the same results hold with H(x) ≡ In. Easy formulas
can be obtained for nonlinear programming problems with no equality constraints. By
selecting R1(x) = σ(x)In, R2(x) ≡ 0 ∈R

k×k , ai(x) ≡ σ(x), bi(x) ≡ γ (x), ci(x) ≡ 0
(i = 1, . . . , k), where σ,γ : Rn →]0,+∞[ are arbitrary C1 functions, formulas (7),
(8), and (9) give:

F(x) = σ(x)
(
Ψ (x)B(x) − In

)(∇θ(x)
)′ − γ (x)Ψ (x)

((∇θ(x)Ψ (x)
)′)+

, (27)

where Ψ (x) := B ′(x)(B(x)B ′(x) − diag(g(x)))−1.
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3 Numerical Solutions of Nonlinear Programming Problems

As remarked in the Introduction and in [9], each system of differential equations
that solves an NLP problem, when combined with a numerical scheme for solving
Ordinary Differential Equations (ODEs), provides a numerical scheme for solving the
NLP problem. However, when we try to apply a numerical scheme for the solution of
(11), then we face the problem that the dynamical system (11) is not defined on R

n

but on the closed set S ⊆ R
n.

In the literature, projection schemes have been proposed (see [30, 31]). The pro-
jection schemes preserve the order of the applied numerical scheme (see [30, 31])
even if the projection on the closed set S ⊆ R

n is not exact. However, the application
of a Runge–Kutta numerical scheme for (11) and its (approximate) projection on the
closed set S ⊆ R

n means that the solution of an NLP problem is required at each time
step. The corresponding NLP problem may be as difficult as the initial one, which
means that this approach is not easily applicable (with the exception of the cases
where the projection is easy, see [14]).

The key idea presented in this work is that the selection of the applied time step can
be used for solving the above problems. First, we focus on the case without equality
constraints.

The following theorem is the main result of this section, which guarantees the
global convergence of the above algorithm.

Theorem 3.1 Suppose that assumptions (H1) and (H2) hold for the NLP problem
described by (1) and (2) with h(x) ≡ 0. Let R1(x) ∈ R

n×n be an arbitrary C1, sym-
metric, and positive definite matrix, R2(x) ∈ R

k×k be an arbitrary C1, symmetric,
and positive semidefinite matrix, ai(x), bi(x), and ci(x) (i = 1, . . . , k) be arbitrary
C1nonnegative functions with bi(x) + ci(x) > 0 for all i = 1, . . . , k and x ∈ S, and
let at least one of the matrices R2(x) ∈R

k×k , diag(a(x)) ∈ R
k×k be positive definite,

where a(x) := (a1(x), . . . , ak(x))′ ∈R
k . Let F(x) ∈R

n be the vector field defined by
(8), (9) with H(x) ≡ In. Consider the following algorithm.

Algorithm Given constants r > 0, ε ∈]0, r[, and λ ∈]0,1[ and an initial point x0 ∈ S,
we follow the following steps for i = 0,1, . . . :
→ Step i: Calculate F(xi) using (8), (9). If |F(xi)| = 0, then xi+1 = xi . If

|F(xi)| > 0, then set s(0) = r and p = 0. Moreover, let I (xi) ⊆ {1, . . . , k}
be the set of all indices j ∈ {1, . . . , k} with max0≤s≤ε(gj (xi + sF (xi))) > −ε.

→ Step p: Calculate x
(p)
i = xi + s(p)F (xi).

→ Solve min{|y − x
(p)
i |2 : maxj∈I (xi )(gj (y)) ≤ 0} for the case I (xi) �= ∅

or set y = x
(p)
i for the case I (xi) = ∅.

→ If y ∈ S and θ(y) ≤ θ(xi) + λs(p)∇θ(xi)F (xi), then set xi+1 = y,
i = i + 1, and go to Step i.

→ If y /∈ S or θ(y) > θ(xi) + λs(p)∇θ(xi)F (xi), then set s(p+1) = 1
2 s(p),

p = p + 1, and go to Step p.

Then every accumulation point x∗ of the sequence xi produced by the above algo-
rithm satisfies x∗ ∈ Φ .
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Remark 3.1 Clearly, the algorithm presented in Theorem 3.1 exploits the time step
used for the estimate provided by the explicit Euler scheme x

(p)
i = xi + s(p)F (xi).

The constant r > 0 is the maximum allowable time step. In most iterations, the algo-
rithm will not require the solution of an NLP problem, provided that ε > 0 is suffi-
ciently small. The fact that in most cases the Euler scheme is sufficient is explained
by statement (d) of Theorem 2.1: for all j = 1, . . . , k, it holds that

∇gj (x)F (x) = gj (x)ωj (x)

− (
bj (x) + cj (x)

(
max

(
0, vj (x)

))2pj
)

max
(
0, vj (x)

)
, (28)

where ω(x) := (ω1(x), . . . ,ωk(x))′ is given by

ω(x) := Q−1(x)B(x)H(x)R1(x)
[
H(x) − P ′(x)Q(x)P (x)

](∇θ(x)
)′

− [
Ik + Q−1(x)diag

(
g(x)

)](
R2(x)diag

(
g(x)

) − diag
(
a(x)

))
v(x)

− Q−1(x)R3(x)
(
v(x)

)+
. (29)

Using the estimate

gj

(
x + sF (x)

) ≤ gj (x) + s∇gj (x)F (x) + 1

2
s2Kj(x) (30)

for s ∈ [0, r], where Kj(x) := max{F ′(x)∇2gj (x + μF(x))F (x) : μ ∈ [0, r]}, it fol-
lows that gj (x + sF (x)) ≤ −ε, provided that

ε + gj (x) + sgj (x)ωj (x) − s
(
bj (x) + cj (x)

(
max

(
0, vj (x)

))2pj
)

max
(
0, vj (x)

)

+ 1

2
s2Kj(x) ≤ 0.

The above inequality is satisfied for s ∈ [0, ε] in many cases, provided that ε > 0 is
sufficiently small. This explains the additional fact that the NLP problem

min
{∣∣y − x

(p)
i

∣
∣2 : max

j∈I (xi )

(
gj (y)

) ≤ 0
}

(31)

is much simpler than the initial NLP problem: the index set I (xi) ⊆ {1, . . . , k} is
expected to be a set with small cardinal number.

Finally, as remarked in [14], the solution of the NLP problem (31) need not be
exact: it suffices to find any y ∈ R

n with maxj∈I (xi )(gj (y)) ≤ 0 and |y − x
(p)
i | ≤

C|y∗ − x
(p)
i |, where C ≥ 1 is a constant, and y∗ ∈ R

n is a global solution of problem
(31).

Proof of Theorem 3.1 Define the sets

Φ̃ := {
z ∈ Φ,θ(z) ≤ θ(x0)

}
, S̃ := {

z ∈ S, θ(z) ≤ θ(x0)
}
. (32)

Notice that the set Φ̃ is nonempty and compact (by virtue of property (b) of The-
orem 2.1, it follows that the set Φ̃ coincides with the closed nonempty set {x ∈
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S : |∇θ(x)F (x)| = 0, θ(x) ≤ θ(x0)} for which assumption (H1) implies that it is
bounded; notice that the set Φ̃ contains the global solution of the NLP problem de-
scribed by (1) and (2)). Moreover, assumption (H1) guarantees that S̃ is nonempty
and compact.

Let d(x) be the distance of any point x ∈ R
n from the set Φ̃ , i.e.,

d(x) := inf
{|x − y| : y ∈ Φ̃

}
. (33)

Since the set Φ̃ is nonempty and compact, it follows that the function d(x) is well
defined, is globally Lipschitz (with unit Lipschitz constant), and satisfies d(x) > 0
for all x /∈ Φ̃ .

Claim For every η > 0, there exists a constant δη > 0 such that the following impli-
cation holds:

“If x ∈ S̃, d(x) ≥ η, and s ≤ δη, then y ∈ S and θ(y) ≤ θ(x) + λs∇θ(x)F (x),

where y = x + sF (x) for the case I (x) = ∅. and y ∈R
nis

any global solution of min{|y − x − sF (x)|2 : maxj∈I (x)(gj (y)) ≤ 0}
for the case I (x) �= ∅.”

(34)

The proof of the claim can be found in the Appendix.
By virtue of implication (34) and the fact that θ(xi) is nonincreasing, the al-

gorithm is well defined (i.e., for each iteration i, the variable p takes finite val-
ues). Let si ∈]0, r] (i = 0,1, . . .) be the applied s(p) for which y ∈ S and θ(y) ≤
θ(xi) + λs(p)∇θ(xi)F (xi) for the case xi /∈ Φ and si = 0 for the case xi ∈ Φ . For
every i = 0,1, . . . , it holds that

θ(xi+1) ≤ θ(xi) + λsi∇θ(xi)F (xi). (35)

Assumption (H1) in conjunction with (35) guarantees that the sequence xi is bounded
with θ(xi) ≤ θ(x0) for all i = 0,1, . . . . Moreover, implication (34) implies the fol-
lowing inequality for every i = 0,1, . . . with xi /∈ Φ:

si ≥ δη/2 for all η ∈]0, d(xi)], (36)

where δη > 0 is the constant involved in implication (34). If x∗ is a global solution
of the NLP problem described by (1) and (2), then by applying (35) inductively we
conclude that the following inequality holds for i = 1,2, . . . :

λ

i−1∑

l=0

sl
∣∣∇θ(xl)F (xl)

∣∣ ≤ θ(x0) − θ
(
x∗). (37)

The above inequality implies that limi→+∞(si |∇θ(xi)F (xi)|) = 0.
In order to prove that every accumulation point x∗ of the sequence xi produced by

the above algorithm satisfies x∗ ∈ Φ , we will use a contradiction argument. Consider
a converging subsequence of the sequence xi , which we again denote by xi . Let x∗
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be the unique accumulation point of the subsequence xi . We assume that x∗ /∈ Φ . By
continuity and using property (b) of Theorem 2.1, we have

lim
i→+∞

(∣∣∇θ(xi)F (xi)
∣∣) = ∣∣∇θ

(
x∗)F

(
x∗)∣∣ > 0.

Since

lim
i→+∞

(
si

∣∣∇θ(xi)F (xi)
∣∣) = 0,

we conclude that

lim
i→+∞(si) = 0. (38)

Since x∗ /∈ Φ̃ , it follows that limi→+∞(d(xi)) = d(x∗) > 0. Therefore, there exists
η > 0 such that d(xi) ≥ η for sufficiently large i. Inequality (36) gives si ≥ δη/2,
where δη > 0 is the constant involved in implication (34). This contradicts (38). The
proof is complete. �

Remark 3.2 Notice that when equality constraints are present, then Theorem 3.1 is
still useful under the following assumption:

(H3) There exist positive integers n1, n2 with n1 + n2 = n and a smooth function
φ : Rn1 → R

n2 such that for every ξ ∈ R
n1 , it holds that h(x) = 0, where x =

(ξ,φ(ξ)).

Indeed, under assumption (H3), for all ξ ∈ R
n1 , we may define:

θ̃ (ξ ) = θ(x) with x = (
ξ,φ(ξ)

)
, (39)

g̃j (ξ) := gj (x) with x = (
ξ,φ(ξ)

)
for j = 1, . . . , k. (40)

We can also define F̃ (ξ) to be the vector field that is made up from the first n1 com-
ponents of the vector field F(x) defined by (8), (9) and evaluated at x = (ξ,φ(ξ)).
Then, we can apply Theorem 3.1 with θ̃ , g̃j (j = 1, . . . , k), and F̃ in place of
θ, gj (j = 1, . . . , k), and F .

Remark 3.3 The algorithm may be modified in a straightforward way for other
higher-order explicit Runge–Kutta numerical schemes. This is meaningful only when
the vector field F(x) has sufficient regularity. More specifically, the term x

(p)
i =

xi + s(p)F (xi) may be replaced by x
(p)
i = N(s(p), xi) with an appropriate mapping

N(s(p), xi), which is a characteristic of the Runge–Kutta scheme, and the definition
of the set I (xi) ⊆ {1, . . . , k} is modified to be the set of all indices j ∈ {1, . . . , k} with
max0≤s≤ε(gj (N(s, xi))) > −ε. However, it should be noticed that for higher-order
explicit Runge–Kutta schemes, the vector field F(x) must be computed for various
points. Since F(x) is defined only in a neighborhood of the set S, it may be needed
to restrict the time step s(p).
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Remark 3.4 Using (28), (29), and (30) and assuming that for all j = 1, . . . , k, there
exist positive continuous functions qj : S →]0,+∞[ and Qj : S →]0,+∞[ (j =
1, . . . , k) such that the following inequalities hold for all j = 1, . . . , k and x ∈ S:

Kj(x) ≤ −gj (x)qj (x)

+ Qj(x)
(
bj (x) + cj (x)

(
max

(
0, vj (x)

))2pj
)

max
(
0, vj (x)

)
, (41)

where Kj(x) := max{F ′(x)∇2gj (x + μF(x))F (x) : μ ∈ [0, r]} (j = 1, . . . , k), we
can conclude that

gj

(
x + sF (x)

) ≤ 0 for all j = 1, . . . , k and x ∈ S, (42)

provided that

s ≤ min
j=1,...,k

(
r,

ωj (x) +
√

ω2
j (x) + 2qj (x)

qj (x)
,

2

Qj(x)

)
. (43)

Define

sg(x) := sup
{
s ∈ [0, r] : max

0 ≤ l ≤ s

j = 1, . . . , k

(
gj

(
x + lF (x)

)) ≤ 0
}

for all x ∈ S (44)

and notice that (43) implies

sg(x) ≥ min
j=1,...,k

(
r,

ωj (x) +
√

ω2
j (x) + 2qj (x)

qj (x)
,

2

Qj(x)

)

for all x ∈ S. Using the analogue of inequality (30) for θ(x), i.e., the inequality

θ
(
x + sF (x)

) ≤ θ(x) + s∇θ(x)F (x) + s2Kθ(x)/2 (45)

for s ∈ [0, r], where Kθ(x) := max{F ′(x)∇2θ(x +μF(x))F (x) : μ ∈ [0, r]}, we can
conclude that the best possible choice for the time step s ∈ [0, r] is given by

s = min

(
sg(x),

|∇θ(x)F (x)|
Kθ(x)

)
for the case Kθ(x) > 0 and

s = sg(x) for the case Kθ(x) ≤ 0.

(46)

Inequalities (41) hold automatically for arbitrary positive continuous functions qj ,
Qj : S →]0,+∞[ (j = 1, . . . , k) when all functions gj (x) (j = 1, . . . , k) are linear.

Therefore, if (41) holds, then we can compute the sequence xi+1 = M(xi), where
M(x) = x + sF (x), and s ∈ [0, r] is given by (46). We notice that the implementa-
tion of an approximation of the numerical scheme xi+1 = M(xi) does not necessar-
ily require knowledge of the functions Kj(x), qj : S →]0,+∞[, Qj : S →]0,+∞[
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(j = 1, . . . , k), and Kθ(x): evaluating g(x + sF (x)) and θ(x + sF (x)) for certain
s ∈ [0, r] can give us estimates of Kj(x) and Kθ(x) satisfying (30) and (45). Using
these estimates, we can estimate sg(x). Consequently, the algorithm is implemented
as follows.

Algorithm Given constants r > 0, ε > 0, and λ ∈]0,1/2] and an initial point x0 ∈ S,
we follow the following steps for i = 0,1, . . . :
→ Step i: Calculate F(xi) using (8) and (9). If |F(xi)| = 0, then xi+1 = xi .

If |F(xi)| > 0, then calculate
K

(0)
j = max(ε,2r−2(gj (xi + rF (xi)) − gj (xi) − r∇gj (xi)F (xi)))

for j = 1, . . . , k,
K

(0)
θ = max(ε,2r−2(θ(x + rF (x)) − θ(x) − r∇θ(x)F (x))),

and set p = 0.

→ Step p: Compute s
(p)
j = min(r,

−∇gj (xi )F (xi )+
√

|∇gj (xi )F (xi )|2−2K
(p)
j gj (xi )

K
(p)
j

)

forj = 1, . . . , k and s(p) = minj=1,...,k min(s
(p)
j ,

|∇θ(xi )F (xi )|
K

(p)
θ

). Calculate the vector

x
(p)
i = xi + s(p)F (xi).

→ If x
(p)
i ∈ S and θ(x

(p)
i ) ≤ θ(xi) + λs(p)∇θ(xi)F (xi), then set xi+1 = x

(p)
i ,

i = i + 1, and go to Step i.
→ If x

(p)
i /∈ S or θ(x

(p)
i ) > θ(xi) + λs(p)∇θ(xi)F (xi), then set

K
(p+1)
j = K

(p)
j + ε (j = 1, . . . , k), K

(p+1)
θ = K

(p)
θ + ε, p = p + 1, and

go to Step p.

Using exactly the same procedure as in the proof of Theorem 3.1, we can con-
clude that every accumulation point x∗ of the sequence xi produced by the above
algorithm satisfies x∗ ∈ Φ , provided that assumptions (H1), (H2), and (41) hold.
However, numerical experiments show that the algorithm can converge even when
(41) does not hold.

4 Examples

In order to demonstrate the performance of the proposed algorithms, we have used
two examples from [8] and one linear programming problem.

The first example is dealing with the solution of the problem

min θ(x) = x2
1 + 2x2

2 + x1x2 − 6x1 − 2x2 − 12x3

s.t. h(x) = x1 + x2 + x3 − 2 = 0,

g(x) = [−x1 + 2x2 − 3,−x1,−x2,−x3]′ ≤ 0.

(47)

It can be shown that assumptions (H1), (H2) hold for this problem. Moreover, as-
sumption (H3) holds with ξ = (x1, x2)

′ ∈ R
2 and φ(ξ) = 2 − x1 − x2. Since the in-

equality constraints are linear, we are in a position to use the algorithm of Remark 3.3.
We have used the algorithm of Remark 3.3 with

R1(x) = σI3, R2(x) = 0 ∈R
4×4, ai(x) ≡ 1, bi(x) ≡ 1, ci(x) ≡ 0

(i = 1, . . . ,4), r = 1, λ = 0.1, ε = 10−6,
(48)
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Fig. 1 The projection of the
phase diagram on the x1–x2
plane for the dynamical system
(11), where F is defined by (8),
(9), for problem (47) with
R1(x) = 2I3,
R2(x) = 0 ∈ R

4×4, ai (x) ≡ 1,
bi (x) ≡ 1, ci (x) ≡ 0
(i = 1, . . . ,4)

where σ > 0. It was found that for all initial points in the feasible set and for every σ ∈
[0.01,200], the algorithm converges at the point (x1, x2, x3) = (0,0,2) in no more
than three iterations. In this case, the convergence of the algorithm of Remark 3.3 is
very fast.

The convergence in no more than three iterations was observed to the solution of
the linear programming problem

min θ(x) = −2x1 + x2 − x3,

s.t. g(x) =

⎡

⎢⎢⎢⎢⎢⎢
⎣

3x1 + x2 + x3 − 180
x1 − x2 + 2x3 − 30
x1 + x2 − x3 − 60

−x1
−x2
−x3

⎤

⎥⎥⎥⎥⎥⎥
⎦

≤ 0.
(49)

Figure 1 shows the projection of the phase diagram on the x1–x2 plane for the dy-
namical system (11), where F is defined by (8), (9), for problem (47) with R1(x) =
σI3, σ = 2, R2(x) = 0 ∈ R

4×4, ai(x) ≡ 1, bi(x) ≡ 1, ci(x) ≡ 0 (i = 1, . . . ,4). Fig-
ure 1 was created by solving numerically system (11) with the explicit Euler method
and time step 0.01.

Again, since the inequality constraints are linear, we are in a position to use the
algorithm of Remark 3.3. We have used the algorithm of Remark 3.3 with

R1(x) = σI3, R2(x) = 0 ∈R
6×6, ai(x) ≡ 1, bi(x) ≡ 1, ci(x) ≡ 0

(i = 1, . . . ,6), r = 103, λ = 0.1, ε = 10−6,
(50)

where σ > 0. It was found that for all initial points in the feasible set and for every
σ ∈ [0.1,20], the algorithm converges at the point (x1, x2, x3) = (45,15,0) in no
more than three iterations.
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The third example is dealing with the Rosen–Suzuki problem

min θ(x) = x2
1 + x2

2 + 2x2
3 + x2

4 − 5x1 − 5x2 − 21x3 + 7x4

s.t. h(x) = 2x2
1 + x2

2 + x2
3 + 2x1 − x2 − x4 − 5 = 0,

g(x) =
[
x2

1 + x2
2 + x2

3 + x2
4 + x1 − x2 + x3 − x4 − 8

x2
1 + 2x2

2 + x2
3 + 2x2

4 − x1 − x4 − 10

]
≤ 0.

(51)

It can be shown that assumptions (H1) and (H2) hold for this problem. Moreover,
assumption (H3) holds with ξ = (x1, x2, x3)

′ ∈ R
3 and φ : R3 → R defined by

φ(ξ) = 2x2
1 + x2

2 + x2
3 + 2x1 − x2 − 5. The vector field F(x) defined by (8), (9)

is constructed with

R1(x) = σI4, R2(x) = 0 ∈ R
2×2, ai(x) ≡ 1, bi(x) ≡ 1, ci(x) ≡ 0

(i = 1,2), (52)

where σ > 0. This is a problem with nonlinear inequality constraints. Therefore,
we cannot assume the validity of (41). Indeed, there are points in the feasible set
with g1(x) = 0, max(0, v1(x)) = 0, and for which g̃1(ξ + sF̃ (ξ)) > 0 for s > 0,
where g̃1 is defined by (40), and F̃ (ξ) is the vector field that is made up from the
first three components of the vector field F(x) evaluated at x = (ξ,φ(ξ)). Such a
point is x = (−1,−1,2,1)′ ∈ R

4, and it is clear that we cannot apply the algorithm
of Remark 3.3 at any one of these points. However, the algorithm of Remark 3.3
may be applied with other initial points: for example, if the numerical algorithm
of Remark 3.3 is applied with σ = 0.2, r = 1, λ = 0.1, and ε = 10−6 to the ini-
tial point x0 = (−0.9,−1,2,0.82)′ ∈ R

4 (which is close to the “problematic point”
x = (−1,−1,2,1)′ ∈ R

4), then the produced sequence reaches the neighborhood
N = {|x − x∗| ≤ 10−5} with x∗ = (0,1,2,−1)′ ∈ R

4 in 33 iterations. It was also
found that different values of σ > 0 and r > 0 affect the convergence properties of
the algorithm. For example, the values lower than 1 for r > 0 and higher than 0.5
for σ > 0 require more iterations for convergence. The algorithm of Remark 3.3 per-
forms well from almost all points of the feasible set: for example, if the algorithm of
Remark 3.3 is applied with σ = 0.2, r = 1, λ = 0.1, and ε = 10−6 to the initial point
x0 = (−1,−1,−2,1)′ ∈ R

4, then the produced sequence reaches the neighborhood
N = {|x − x∗| ≤ 10−5} with x∗ = (0,1,2,−1)′ ∈ R

4 in 47 iterations. For the initial
point x0 = (−1,−1,2,1)′ ∈ R

4, we can apply the algorithm of Theorem 3.1. If the
algorithm of Theorem 3.1 is applied with σ = 0.2, r = 0.5, λ = 0.1, and ε = 10−6

to the initial point x0 = (−1,−1,2,1)′ ∈ R
4, then the produced sequence reaches the

neighborhood N = {|x − x∗| ≤ 10−5} with x∗ = (0,1,2,−1)′ ∈R
4 in 39 iterations.

In general, the convergence of the proposed algorithms is linear. For superlinear
convergence, we can either use different selections for R1(x) ∈ R

4×4, R2(x) ∈ R
2×2,

ai(x), bi(x), ci(x) (i = 1,2) or use a different algorithm once we are close to the
set Φ . The quantity |F(x)| can be used in order to signal the approach of a neighbor-
hood of Φ .
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5 Conclusions

In this work, we have showed that given a nonlinear programming problem, it is pos-
sible, under mild assumptions, to construct a family of dynamical systems defined
on the feasible set of the given problem so that: (a) the equilibrium points are the
unknown critical points of the problem, (b) each dynamical system admits the ob-
jective function of the problem as a Lyapunov function, and (c) explicit formulae are
available without involving the unknown critical points of the problem. The construc-
tion of the family of dynamical systems is based on the Control Lyapunov Function
methodology, which is used in mathematical control theory for the construction of
stabilizing feedback.

The knowledge of a dynamical system with the previously mentioned properties
allows the construction of algorithms that guarantee the global convergence to the set
of the critical points. However, we make no claim about the effectiveness of the pro-
posed algorithms. The topic of the numerical solution of NLPs is a mature topic, and
it is clear that other algorithms have much better characteristics than the algorithms
proposed in this paper. However, the theory used for the construction of the algo-
rithm is different from other existing algorithms. The algorithms contained in this
work are derived by using concepts of dynamical system theory and mathematical
control theory. Many more remain to be studied for the improvement of the result-
ing algorithms and for the relaxation of the assumption of the linear independence
constraint qualification.

The obtained results have nothing to do with extremum seeking (see [32, 33])
but may open the way of using different extremum seeking control schemes in the
future for constrained problems. Finally, it may be beneficial to compare the proposed
algorithms with other global sequential quadratic programming algorithms (see [25,
26] and references therein); this is a future research topic.
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much with the typesetting of the paper.

Appendix

Proof of Lemma 2.1 First notice that by virtue of Fact 2, the following equality holds
for all ξ = (ξ1, . . . , ξk)

′ ∈ R
k :

ξ ′Q(x)ξ = ∣∣H(x)B ′(x)ξ
∣∣2 +

k∑

j=1

∣∣gj (x)
∣∣ξ2

j . (53)

Equation (53) implies that Q(x) ∈ R
k×k is positive semidefinite. Suppose that Q(x)

is not positive definite. Then there exists a nonzero vector ξ = (ξ1, . . . , ξk)
′ ∈ R

k with
ξ ′Q(x)ξ = 0. Consequently, Eq. (53) shows that we must have H(x)B ′(x)ξ = 0 and
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ξj = 0 for all j = 1, . . . , k with gj (x) < 0. Fact 3 implies that there exists λ ∈ R
m

such that B ′(x)ξ = A′(x)λ. The previous equality implies that

k∑

j=1

ξj∇gj (x) −
m∑

i=1

λi∇hi(x) = 0. (54)

Since ξj = 0 for all j = 1, . . . , k with gj (x) < 0 and since ξ = (ξ1, . . . , ξk)
′ ∈ R

k

is non-zero, we conclude from (54) that assumption (H2) is violated. The proof is
complete. �

Proof of the claim made in the proof of Theorem 3.1 Let η > 0 be arbitrary. We
distinguish two cases.

Case 1: The set {x ∈ S̃ : d(x) ≥ η} is empty, where S̃ ⊆ S is defined by (32), and d(x)

is defined by (33). In this case, implication (34) holds trivially with arbitrary δη > 0.

Case 2: The set {x ∈ S̃ : d(x) ≥ η} is nonempty.

The continuity of the distance function d(x) and the compactness of S̃ ⊆ S implies
that the set {x ∈ S̃ : d(x) ≥ η} is compact. Statements (b) and (c) of Theorem 2.1
guarantee that the quantity

ρ := min

{ |∇θ(x)F (x)|
|F(x)|(|∇θ(x)| + |F(x)|) : x ∈ S̃, d(x) ≥ η

}
(55)

is well defined and positive. Let x ∈ S̃ with d(x) ≥ η be an arbitrary point. We denote
by z(t) the unique solution of the initial-value problem ż = F(z) with z(0) = x. We
also notice that the vector field F as defined by (8), (9) is locally Lipschitz on a
neighborhood of S. By the compactness of S̃ ⊆ S, there exists a constant L ≥ 0 such
that

∣
∣F(y) − F(x)

∣
∣ ≤ L|y − x| for all x, y ∈ S̃. (56)

Inequality (56), the fact that z(s) belongs to the compact set of all z ∈ S with θ(z) ≤
θ(x), and standard arguments show that the following inequality holds for all s ≥ 0:

∣∣z(s) − x − sF (x)
∣∣ ≤ LeLs s2

2
|F(x)|. (57)

Next, we notice that the problem

min
{∣∣y − x − sF (x)

∣∣2 : max
j∈I (x)

(
gj (y)

) ≤ 0
}

(58)

with I (x) �= ∅ admits at least one solution (since the mapping y → |y − x − sF (x)|2
is radially unbounded). Any solution y ∈ R

n of problem (58) with I (x) �= ∅ satisfies
for all s ≥ 0:

∣∣y − x − sF (x)
∣∣ ≤ ∣∣z(s) − x − sF (x)

∣∣ and
∣∣y − x − sF (x)

∣∣ ≤ s|F(x)|. (59)
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The above inequalities hold trivially for the case I (x) = ∅ and y = x+sF (x). Define:

q := max

{
k∑

j=1

∣∣∇gj (z)
∣∣ : z ∈R

n, |z| ≤ β

}

,

where β := max
{|x| + 2r

∣∣F(x)
∣∣ : x ∈ S̃, d(x) ≥ η

}
, (60)

Q := LeLr

2
+ 2 max

{∣∣∇2θ(z)
∣∣ : z ∈ R

n, |z| ≤ β
}
. (61)

We will show next that implication (34) holds with δη > 0 defined by

δη := min

(
ε,

(
2ε

1 + qLγ eLr

)1/2

,
(1 − λ)ρ

1 + Q

)
,

where γ := max
{∣∣F(x)

∣∣ : x ∈ S̃, d(x) ≥ η
}
. (62)

First, we show the implication

“If x ∈ S̃, d(x) ≥ η and s ≤ δη, then y ∈ S.” (63)

It suffices to show that gj (y) ≤ 0 for all j /∈ I (x). Notice that by the definition of
the set I (x) ⊆ {1, . . . , k} it follows that gj (x + sF (x)) ≤ −ε for all s ∈ [0, ε] and
j /∈ I (x). Using (59), we obtain for all s ∈ [0, r]:
gj (y) ≤ gj

(
x + sF (x)

) + ∣∣y − x − sF (x)
∣∣max

{∣∣∇gj (z)
∣∣ : |z − x| ≤ 2r

∣∣F(x)
∣∣}.

(64)

Since gj (x + sF (x)) ≤ −ε for all s ∈ [0, ε] and j /∈ I (x), we obtain from (57), (59),
(64) and (60) for all s ∈ [0, ε] and j /∈ I (x):

gj (y) ≤ −ε + qL
∣∣F(x)

∣∣eLr s2

2
. (65)

Inequality (65) in conjunction with definition (62) shows that gj (y) ≤ 0 for all j /∈
I (x), provided that s ≤ δη.

By implication (63) we are left with the task of proving the inequality θ(y) ≤
θ(x) + λs∇θ(x)F (x) for all s ≤ δη and x ∈ S̃ with d(x) ≥ η. Using (59), we obtain
for all s ∈ [0, r]:

θ(y) ≤ θ(x) + s∇θ(x)F (x) + ∇θ(x)
(
y − x − sF (x)

) + K|y − x|2, (66)

where K = 1
2 max{|∇2θ(z)| : |z| ≤ β}. The derivation of (66) follows from majoriz-

ing the second derivative of the mapping w → p(w) = θ(x + w(y − x)) and using
the inequality |y − x| ≤ 2s|F(x)| (which is a direct consequence of (59)). It follows
from (59), (57), (66), and (61) that the following inequality holds for all s ∈ [0, r]:

θ(y) ≤ θ(x) + s∇θ(x)F (x) + Qs2(∣∣∇θ(x)
∣∣∣∣F(x)

∣∣ + ∣∣F(x)
∣∣2)

. (67)

Definitions (55), (62) and inequality (67) allow us to conclude that the inequality
θ(y) ≤ θ(x) + λs∇θ(x)F (x) holds for all s ≤ δη . The proof is complete. �
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