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Global Stabilization of Nonlinear Systems Based
on Vector Control Lyapunov Functions

Iasson Karafyllis and Zhong-Ping Jiang, Fellow, IEEE

Abstract—This paper studies the use of vector Lyapunov func-
tions for the design of globally stabilizing feedback laws for
nonlinear systems. Recent results on vector Lyapunov functions
are utilized. The main result of the paper shows that the existence
of a vector control Lyapunov function is a necessary and sufficient
condition for the existenceof a smoothglobally stabilizing feedback.
Applications to nonlinear systems are provided: practically check-
able sufficient conditions are proposed to guarantee the existence of
a smooth globally stabilizing feedback law.The obtained results are
applied to the problemof the stabilization of an equilibriumpoint of
a reactionnetwork takingplace inacontinuous stirred tankreactor.

Index Terms—Feedback stabilization, Lyapunov functions, non-
linear systems.

I. INTRODUCTION

V ECTOR Lyapunov functions have been used for a long
time in stability theory for nonlinear systems (see [3],

[7], [8], [13]–[16], [18], [19], [23]–[26], [32] and the references
therein). Vector Lyapunov functions were first introduced by
Bellman in [3] and have been acknowledged to be amoreflexible
tool for proving stability than the usual single Lyapunov func-
tion. In view of emerging control applications related to complex
large-scale dynamic systems, recently we have initiated an al-
ternative approach to stability theory based on vector Lyapunov
functions. More specifically, we have established vector Lya-
punov theorems in [13]–[16] bymeans of small-gain analysis, as
compared with the differential inequality approach proposed in
classical vector Lyapunov results as in [3], [8], [18], [19], [23]. A
fundamentally novel feature of the small-gain approach is that
the differential inequalities in question are no longer required
to hold simultaneously at every point of the state space.
The use of vector Lyapunov functions in control theory is not

frequent. Exceptions are the works [24], [25], [26]. However, it
seems reasonable to think that the flexibility shown by vector
Lyapunov functions in stability theory can be utilized to our ad-
vantage for feedback control design in complex systems. The
purpose of the presentwork is to show that this is indeed the case.
The main result of the present work (Theorem 3.4) is a direct

extension of the well-known Artstein-Sontag theorem (see [2],
[6], [29], [30]) to the case of vector Lyapunov functions. There-
fore, the term Vector Control Lyapunov Function (VCLF) is ap-
propriate. The term “Vector Control Lyapunov Function” was
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first used in [24],where the idea of using a vector Lyapunov func-
tion for feedback design purposes was first used. Theorem 3.4
extends the Artstein-Sontag theorem so that vector Lyapunov
functions are used and without requiring that all differential in-
equalities hold at every point of the state space. Therefore, The-
orem 3.4 can allow large flexibility for its application. This fea-
ture can be crucial for feedback design in large scale systems.Re-
cently, large-scale systems have been studied intensely (see [7],
[9], [12], [27]). Section IVof the presentwork shows thatVCLFs
can be exploited for the stabilization of large scale systems. Par-
ticularly,Corollaries 4.1 and4.2 provide simple algebraic criteria
that allow us to guarantee that a nonlinear system can be globally
asymptotically stabilized by means of smooth feedback laws.
The results of the paper are applied to the global stabiliza-

tion of equilibrium points of (bio)chemical reaction networks
taking place in continuous stirred tank reactors (chemostats).
Reaction networks have been studied in the past (see the ref-
erences in [31]) and recent results have provided new insights
for their properties (see [1], [4], [31]). Theorem 5.2 provides
sufficient conditions for the existence of a smooth stabilizing
feedback law for the case that the dilution rate is considered
as the control input (the most frequent case in the literature).
Our main assumptions on the reaction network hold for biolog-
ical networks as well. For example, all chemostat models (see
[28]) satisfy assumptions (R1), (R2), and (R3) in Section V of
this paper. The assumptions are mathematical expressions of the
mass balance equations and hold generically for every system
which describes the evolution of mass components.
The structure of the present work is as follows. Section II pro-

vides the background on vector Lyapunov functions and reviews
the recent results in [14], [15]. Section III of the present work
contains the definition of the VCLF and the main result of the
present work (Theorem 3.4). Section IV is devoted to the deriva-
tion of simple sufficient conditions that guarantee the existence
of smooth global stabilizers for nonlinear systems (Corollaries
4.1 and 4.2). Finally, the obtained results are applied to reaction
networks in Section V. The Appendix contains the proofs of cer-
tain auxiliary lemmas needed for the proof of Theorem 3.4.
Notation: Throughout the paper we adopt the following

notation:
• Let be an interval. By
(resp. ) we denote the space of measurable and
(resp. locally) essentially bounded functions defined
on and taking values in . For a set ,

denotes the interior of .
• We say that a non-decreasing continuous function

is of class if . We say
that function is positive definite if
and for all . We say that an increasing
continuous function is of class if

. We say that an increasing continuous func-
tion is of class if and
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. By we denote the set of all

functions with the proper-
ties: (i) for each the mapping is of class ;
(ii) for each , the mapping is non-increasing
with .

• For every positive integer and an open, non-empty set
, denotes the class of func-

tions (taking values in ) that have continuous
derivatives of order on and denotes the
class of continuous functions on , which take values in .

• For a vector , we denote by its transpose and
by its Euclidean norm. denotes the trans-
pose of the matrix . denotes the vector

. For a vector , we define
.

• For every scalar continuously differentiable function
, denotes the gradient of at , i.e.,

. We say that a
function is positive definite if
for all and . For a vector field

, denotes the Lie deriva-
tive of along . For a function , where

, denotes the support of , i.e.,
.

II. BACKGROUND ON VECTOR LYAPUNOV FUNCTIONS

We consider systems described by Ordinary Differential
Equations (ODEs) of the form:

(1)

where is a non-empty set and is a
continuousmapping with for all that satisfies
the following assumptions:
(A1) There exists a symmetric positive definite matrix

such that for every bounded , there exists
a constant satisfying the following inequality:

(A2) There exists , such that for
all .

(A3) There exist functions with
, ,

being radially unbounded, a func-
tion , a non-decreasing
function , ,

, , with for
and a family of positive definite func-

tions such that the
following inequalities hold:

for all satisfying (2)

for all satisfying (3)

for all satisfying (4)

Moreover, for every and with ,
the following implication holds:

If

then (5)

Theorem 2.7 in [15]: Consider system (1) under assumptions
(A1–3). If the following set of small-gain conditions holds for
each :

(6)

for all , if , then system (1)
is Robustly Globally Asymptotically Stable (RGAS). That is,
there exists such that for every ,
the solution of (1) with corresponding

to satisfies , for all .
1) Discussion and Explanations: (a) If implications (5)

hold for all and , then one simply
takes and arbitrary functions ,

, . In this way we
obtain Corollary 4.2 in [14]. Therefore the difference between
Theorem 2.7 in [15] and Corollary 4.2 in [14] is that Theorem
2.7 assumes that the Lyapunov differential inequalities (5) hold
only for a certain region of the state space (at the cost of the
additional inequalities (3), (4)). However, Corollary 4.2 in [14]
allows the study of time-varying systems as well. (b) Notice
that is not necessarily positive definite. (c)
Theorem 2.7 in [15] is remarkably different from other vector
Lyapunov results (see [3], [8], [18], [19], [23]). The vector
Lyapunov results in [3], [8], [18], [19], [23] assume that the
Lyapunov differential inequalities are valid on the whole state
space while assumption (A3) requires that each one of the
differential inequalities (5) is valid only for a limited region
of the state space (described by the inequalities
and ). Moreover, the form of

inequalities (5) is extremely simple and very similar to the
differential inequality used for the single Lyapunov function.
All these features of Theorem 2.7 in [15] are exploited in the
following section.

III. VECTOR ROBUST CONTROL LYAPUNOV FUNCTIONS

Consider the feedback stabilization problem for the system:

(7)

where is compact and ,
are continuous mappings with for all that
satisfy the following assumption:
(H) There exists a symmetric positive definite matrix

such that for every bounded , there exists a
constant satisfying the following inequality:
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For the control set we consider the following three
cases:

(P1) .
(P2) There exists a constant such that

.
(P3) There exist two constants such that

.
We next proceed to the definition of the Vector Robust Con-

trol Lyapunov Function (VRCLF) for system (7).
Definition 3.1: Consider system (7) under assumptions (H),

(P1). Suppose that there exist functions
with , ,

being radially unbounded, a func-
tion , a non-decreasing function

, , , with
for , a positive definite function

and a constant such that the following
properties hold:
(i) There exist functions such that the fol-
lowing inequality holds for all :

(8)

(ii) The following implications hold for all with
:

(9)

(10)

where ,

.
(iii) The following implications hold for all satisfying

:

(11)

(12)

(13)

where ,

.

(iv) The following implications hold for all with
:

(14)

(15)

(v) The small-gain conditions (6) hold.
(vi) There exist an open set with and a

locally Lipschitz function , where

, with , such that the fol-
lowing implication holds for all :

(16)

Then, the family of functions
is called a Vector Robust Control Lyapunov

Function (VRCLF) for system (7) under assumptions (H),
(P1) or we say that system (7) under assumptions (H), (P1)
admits the VRCLF
with gains and auxiliary
functions .

Definition 3.2: Consider system (7) under assumptions (H),
(P2). Suppose that there exist functions
with , ,

being radially unbounded, a func-
tion , a non-decreasing function

, , , with
for , a positive definite function

and a constant such that properties
(i)-(vi) hold. Moreover, assume that the following property
holds:
(vii)The following implications hold:

(17)

(18)

(19)

Then, the family of functions
is called a VRCLF for system (7) or we say

that system (7) under assumptions (H), (P2) admits the
VRCLF with gains

and auxiliary functions .
Definition 3.3: Consider system (7) under assumptions (H),

(P3). Suppose that there exist functions
with , ,

being radially unbounded, a func-
tion , a non-decreasing function

, , , with
for , a positive definite function

and a constant such that properties
(i)-(vii) hold. Moreover, assume that the following property
holds:
(viii) The following implications hold:

(20)

(21)

(22)

Then, the family of functions
is called a VRCLF for system (7) or we say that system
(7) under assumptions (H), (P3) admits the VRCLF

with gains
and auxiliary functions .
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We are now ready to state the main result of the section. Its
proof is given in the Appendix.
Theorem 3.4: Consider system (7) under assumption (H)

and under one of the assumptions (P1), (P2), (P3). Suppose
that system (7) admits the VRCLF

with gains and
auxiliary functions . Then, there exists a locally Lips-
chitz function , where

is the number involved in property
(vi) of the definition of the VRCLF, with , such that
the closed-loop system (7) with is RGAS.
Here, it should be noted that the existence of a VRCLF is a

necessary condition as well for the existence of a smooth glob-
ally stabilizing feedback if the vector fields ,

are locally Lipschitz. More specifically, if there
exists a locally Lipschitz function , where

, with , such that the closed-loop
system (7) with is RGAS and if the vector fields

, are locally Lipschitz, then
the converse Lyapunov theorem in [20] guarantees the existence
of a positive definite and radially unbounded function

and a positive definite function
with

for all . All properties of Definitions 3.1, 3.2 or 3.3 with
are direct consequences of the above fact.

The proofs of Theorem 3.4 and Theorem 2.7 in [15] show
that the solution of the closed-loop system (7) with
reaches the set in finite time. Therefore,
the set is important: the solution of the
closed-loop system evolves in this set after an initial transient
period and consequently the controller performance is affected
by the choice of both and . A trade-off can arise: a
good performance of the controller can be achieved by making
the set sufficienly “small”. However,
a “small” set means a large transient
period during which we have no guarantee of performance.
For the proof of Theorem 3.4 we need two technical lemmas.

Their proofs are given in the Appendix. The first lemma deals
with a set of inequalities.
Lemma 3.5: Let with ,

be given constants. There exists such that
, for all if and only if the following

implications hold:
(I) If for certain , then ,
(II) If for certain pair

, then .
Moreover, there exists such that ,

for all if and only if implications (I), (II) hold and
the following implication holds as well:
(III) If for certain , then .
Finally, there exists such that , for

all if and only if implications (I), (II), (III) hold
and the following implication holds as well:
(IV) If for certain , then .
The second technical lemma guarantees that we may assume

that all requirements (i)–(vi) for a VRCLF hold for functions
, which are positive definite for .

Lemma 3.6: Suppose that system (7) admits the VRCLF
with gains

and auxiliary functions . Then all properties of
the definition of the VRCLF hold with functions ,

, which are positive definite for and satisfy
for all with .

It should be noted that the proof of Theorem 3.4 is based on
partition of unity arguments. A different way of proving The-
orem 3.4 is by using Michael’s theorem. However, the use of
Michael’s theorem results in a continuous feedback (instead of
a smooth feedback law).

IV. APPLICATION TO FEEDBACK STABILIZER DESIGN

A natural question of practical importance is how to con-
struct a VRCLF which satisfies the (involved) assumptions of
the VRCLF. The purpose of this section is to provide condi-
tions that allow us to use simple VRCLFs (namely, the functions

for ). More specifically, this section
is devoted to the feedback stabilization problem for nonlinear
systems of the form:

(23)

where , and the
mappings , are locally Lipschitz with

for .More specifically, we use the results of
the previous section in order to derive sufficient conditions for
the existence of a globally stabilizing feedback. Interestingly,
the developed sufficient conditions are easily checkable even for
large (large scale systems). Our main results are the following
corollaries.
Corollary 4.1: Consider system (23) under assumption (P1)

and suppose that there exist functions with
, being radially unbounded,

a function , a non-decreasing function
, , , with

for which satisfy the small-gain con-
ditions (6), a function with for all

and a constant such that the following implications
hold for all :

(24)

(25)

(26)

(27)
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Moreover, suppose that there exists a vector
such that for all

in a neighborhood of
with . Finally, sup-

pose that there exists a function such that

and for
all with . Then there exists ,
with , such that is GAS for the closed-loop
system ,
Corollary 4.2: Consider system (23) under assumption

(P3) with and suppose that there exist functions
with ,

being radially unbounded, a function ,
a non-decreasing function , ,

, with for which satisfy
the small-gain conditions (6), a function
with for all and a constant
such that implications (24), (25), (26) and (27) hold for
all . Moreover, suppose that there exists a
vector such that
for all in a neighborhood of

with and

suppose that there exists a function such that

and for
all with . Finally, suppose that the following
implications hold:

(28)

(29)

Then there exists , with , such that
is GAS for the closed-loop system

,
Proofs of Corollary 4.1 and Corollary 4.2: A direct ap-

plication of Theorem 3.4 with ,

for , for
and ,

, for all . No-
tice that implications (9), (10) are directly implied by
implications (25), (24), respectively and the above defini-
tions. Implications (11), (12), (13) are direct consequences
of the existence of a function such that

and for
all with
For Corollary 4.2, we notice that (17), (20) are equiva-

lent to implications (28), (29) and that implications (18),
(19), (21), (22) are directly implied by the inequalities

and for
all with (possibly by replacing and

by and , respectively) and the
fact that for all . Notice that since ,
property (vi) of Definition 3.2 holds with the linear feedback
law (possibly by replacing the initial neighborhood by

another neighborhood with ). The proof is
complete.
A direct application of Corollary 4.1 and Corollary 4.2

is obtained by selecting , : in this case
implications (26), (27) are automatically satisfied for ar-
bitrary functions . Moreover, the assumption of
the existence of a function such that

and for
all with is automatically satisfied for arbitrary

. The reader should notice that implications
(24), (25) are easily checkable: the gain functions ,

are selected so that implications (24), (25) hold.
The following example shows how to use Corollary 4.1 with

, for a nonlinear system.
Example 4.3: Consider the nonlinear system

(30)

where is a locally Lipschitz function. The problem
that we study in this example is:
(Q) “For what functions , system (30) can be

stabilized globally by a smooth feedback?”
Using the function as a CLF

candidate, where , we conclude that this function is a
CLF (in the sense explained in [29]) for system (30) provided
that the following condition holds:

(31)

Therefore, using the results in [29], we are in a position to
guarantee that there exists an “almost smooth” feedback law
that globally stabilizes (30), provided that (31) holds and the
“small-control” property holds. Here, we obtain different con-
ditions for the function , which allow smooth stabi-
lizability of system (30). We show that system (30) can be sta-
bilized globally by smooth feedback provided that there exist
constants , , functions
with , with

for all , such that the locally Lipschitz function
satisfies the following implication:

(32)

In order to show the qualitative difference of conditions (31)
and (32) notice that the locally Lipschitz function

satisfies condition
(32) for arbitrary selection of and
with . On the other hand, the function

does not sat-
isfy condition (31) for any choice of . To see this, notice
that the equation holds for and

.

However, the inequality cannot
be satisfied for arbitrary , and
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(notice that if then

).

In order to obtain condition (32), we apply Corollary 4.1 with
, , satisfying

for all , where . We first notice that implications
(25) and the small-gain conditions (6) hold for arbitrary

, and the selections:

(33)

(34)

(35)

Since with there exist
constants such that

(36)

for sufficiently small. We notice that there exist
such that the vector achieves

for all with ,
and for all

with , . More specifically, the

constant must satisfy

(37)

where is the Lipschitz constant that satisfies
, for all with . Since

, it follows from (36) that a selec-
tion of according to (37) is possible provided that is
selected to be sufficiently small. Finally, we check implication
(24). Indeed, using definitions (33), (34), (35), we conclude that
implication (24) is equivalent to implication (32). The reader
should notice that it might be possible to obtain a single CLF for
system (30) of the form ,
or , where ( )

are positive definite, radially unbounded functions (using the
methodologies for the construction of Lyapunov functions in
[5], [10], [11], [21], [22]). However, it should be noted how
easily condition (32) was obtained from Corollary 4.1.
However, it should be noted that the use of auxiliary functions
can give less demanding conditions for the existence of

a stabilizing feedback. The following example illustrates this
point.
Example 4.4: Again, we study problem (Q) for system (30).

Here, we assume that is independent of , i.e.,
. In this example, we show that system (30)

can be stabilized globally by smooth feedback provided that
there exist constants , , , func-
tions with ,

with for all , such that the
locally Lipschitz function satisfies the following
implication:

(38)

Implication (38) is less demanding than implication
(32) since the inequality

is assumed to hold only for points that
belong to the set

Notice that implication (32) requires that the inequality
holds for

points that belong to the set

and . For example, any function with
for all in the compact set

satisfies implication (38) for appropriate but
does not necessarily satisfies implication (32).
In order to obtain condition (38), we apply Corollary 4.1 with

, ,
, , , ,

sufficiently small constants and an appropriate function
satisfying for all , where

. By virtue of (38), we notice that implications (24),
(25) and the small-gain conditions (6) hold for the selections
given by (33), (34) and (35), provided that:

(39)

We notice that there exist such that the vector
achieves for

all with with and

for all with with
. Furthermore, we obtain for all

satisfying :

(40)

(41)

Finally, we check implications (26), (27). Implications (26)
are equivalent to the implication:

(42)
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and implications (27) are equivalent to the following:

(43)

(44)

Since is independent of , it follows from (39),
(42)–(44) that if are sufficiently small then all re-
quirements of Corollary 4.1 hold with ,

and appropriate .

V. STABILIZATION OF REACTION NETWORKS

Reaction networks taking place in Continuous Stirred Tank
Reactors are described by ordinary differential equations of the
form

(45)

where is the vector of concentrations of all
species, is the continuously differentiable vector
field of the reaction rates, is the stoichiometric
matrix, is the constant vector of the concentrations
of the species at the reactor inlet (feed) and ,
where , is the dilution rate and is the ratio of the
volumetric feed rate over the volume of the tank reactor. The
dilution rate is used as input in many cases for the achievement
of certain control objectives. The vector field satisfies the
condition

(46)

which expresses the (logical) requirement that a reaction cannot
occur if one of its reactants is absent. The equilibrium points of
(45) for satisfy the following equation:

(47)

Notice that without loss of generality we may assume that
(time scaling). This section is devoted to

the global stabilization problem of one of the equilibrium points
of the reactor. More specifically, we study the reaction network
(45) under the following assumptions:
(R1) There exist pairs of vectors ,

such that:

(48)

(R2) There exist constants such that

(49)
(R3) There exists such that for all ,

with it holds that

(50)

The reader should notice that assumption (R3) is a conse-
quence of (46) and the fact that is a vector field. As-
sumptions (R1) and (R2) usually hold for reaction networks. In-
deed, the total mass conservation requires the existence
such that , provided that all species are accounted
in the model. Assumptions (R1) and (R2) can allow the case
where some of the species are not accounted (because they are
inert). Chemostat models (see [28]) satisfy assumptions (R1),
(R2), and (R3).
The control problem of the global stabilization of one of the

equilibrium points of (45) is a meaningful problem because
many times there are multiple equilibrium points, indicating ab-
sence of global stability. The following example illustrates that
multiple equilibrium points can occur even for simple reaction
networks.
Example 5.1: Consider the simple reaction network

taking place in a CSTR

(51)

where , is a constant and
with . The equilibrium points

of (51) satisfy the equations

(52)

The above system of equations has a unique solution if
. On the other hand, if

then (52) admits three different solutions. It is clear that the
global stabilization problem for one of the equilibrium points of
(51) is particularly meaningful for the case .
The reader should notice that assumption (R1) holds with

and . Inequality (49) with
and is a consequence of the inequality for all

:

(53)

Finally, assumption (R3) holds with .
Without loss of generality, if there exists an equilibrium point

satisfying (47) with then
we may assume that . The following theorem provides
sufficient conditions for the existence of a smooth stabilizing
feedback. Its proof is given in the Appendix.
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Theorem 5.2: Consider system (45) under (R1), (R2), and
(R3). Assume that satisfies (47) with
. Moreover, suppose that there exist , ,
with for which satisfy the small-gain
conditions (6), with for all

and constants such that the
following implications hold for :

(54)

(55)

(56)

(57)

(58)

where the logical statements (D1), (D2), (D3), and (D4) are
expressed by
(D1) and
(D2) and

(D3) and
(D4) and .
Moreover, suppose that there exists

such that

for all in a neighborhood of with
. Then

there exists , with ,
such that is GAS for system (45) with .
The proof of Theorem 5.2 is based on Corollary 4.2 and the

following methodology:
• First, we exploit the “mass balance” assumption (R1) in
order to show that the solution of (45) necessarily enters
to a certain region of the state space. This is accomplished
by constructing appropriate functions which sat-
isfy the properties assumed in Corollary 4.2. The solution
of (45) remains in a compact subset of during
the transient period needed in order to enter the aforemen-
tioned region of the state space: this is guaranteed by as-
sumptions (R2) and (R3).

• After the transient period, we utilize the vector Lyapunov
function ,
and show that the assumptions of Corollary 4.2 hold.

The following example illustrates how Theorem 5.2 can be
applied to reaction networks. Theorem 5.2 guarantees the exis-
tence of a globally stabilizing bounded feedback.
Example 5.1(continued): We turn to the global stabilization

problem of one of the equilibrium points of
system (51) by means of smooth bounded feedback. In order
to apply Theorem 5.2 we first apply a coordinate change that
“brings” the equilibrium point to . Then system
(51) takes the form

(59)

where and are constant parameters
. For system (59),

is the equilibrium point to be globally stabilized. Assump-
tions (R1)-(R3) hold with , ,

. We further assume that ,
i.e., for (51). The problem that we study here is:
“How large must be so that can be

globally stabilized by a smooth feedback law with
and for all ?”

We next show that all conditions of Theorem 5.2 hold pro-
vided that

(60)
We first check conditions Equations (54)– (58) of Theorem 5.2.
Let be an arbitrary constant, be an arbitrary
function and select , where
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is to be selected (notice that the small-gain conditions
are automatically satisfied). Implication (54) holds provided that
the inequality

holds for all with ,
,

which satisfy one of the logical statements (D1), (D2), (D3)
and (D4). It is clear that the previous inequality holds pro-
vided that the inequalities

and
hold for all

with ,
, which satisfy one of

the logical statements (D1), (D2), (D3), and (D4). The above
requirements imply that:
• If (D1) holds ,

, then we must have
and .

• If (D2) holds, i.e., and
, then we

must have and
.

• If (D3) holds , , then we must
have and

• If (D4) holds, i.e., and
, then we must

have and
.

Consequently, implication (54) automatically holds, if
is selected to be

(61)

(62)

where is a constant (yet to be selected). Condi-
tions (55) with give the inequalities

and
, which

hold automatically for defined by (61), (62). Conditions (56)
with and hold provided that

(63)

and conditions (57) hold automatically for the above selections.
Finally, we check condition (58). Conditions (58) hold provided
that and
for all with . Since

is arbitrary, we conclude (by virtue of (60)) that the above
inequalities hold.
The existence of a vector with

for all in a neighborhood of with

is guaranteed by the observation that the
unbounded smooth feedback law guarantees the
inequalities

for appropriate and for
all in a neighborhood of with

.

VI. CONCLUDING REMARKS

This paper has shown how recent results on vector Lyapunov
functions can be used for smooth globally stabilizing feedback
design for nonlinear systems. In particular, Theorem 3.4 pro-
vides necessary and sufficient conditions based on vector con-
trol Lyapunov functions for the existence of a smooth global
stabilizer for affine in the control uncertain nonlinear systems.
The flexibility of vector Lyapunov functions is a feature that

can be exploited for feedback design in large scale systems.
Corollaries 4.1 and 4.2 provide practically checkable sufficient
conditions for the existence of a stabilizer for nonlinear systems.
Corollaries 4.1 and 4.2 are direct applications of Theorem 3.4
and show how vector Lyapunov functions can lead to results
which are not easily obtained by the classical single Lyapunov
analysis. The obtained results are exploited for the derivation of
sufficient conditions which guarantee stabilizability of the equi-
librium point of a reaction network taking place in a continuous
stirred tank reactor. Future research may include:
i) the extension of the present results to the multiple-input
case,

ii) the development of explicit formulas for the feedback sta-
bilizers which are designed based on VRCLFs,

iii) the development of “adding an integrator”-like results
based on VRCLFs, which can allow important modifica-
tions to the backstepping methodology (see [17]).

It should be noted that the extension of the results to the
multiple-input case is not straightforward. The reason is that a
system of linear inequalities must be verified and if more than
one inputs are present then one cannot use Lemma 3.5. How-
ever, other tools (Farkas’ lemma) might be helpful.

APPENDIX

Proof of Lemma 3.5: Define
,

and . Notice that
implication (I) gives:

(64)
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and implication (II) gives:

(65)
Consider all possible cases:
(a) . In this case (64) implies that we can

select arbitrary so that for all
.

(b) . In this case, we can select
. The previous inequality in con-

junction with (64) implies that for all
.

(c) . In this case, we can select
. The previous inequality in con-

junction with (64) implies that for all
.

(d) . In this case (65) implies

. Therefore, the inequality

holds. In this case, we can select so that
. The pre-

vious inequality in conjunction with (64) implies that
.

Notice that the above selections in each case guarantee
that there exists so that for all

, provided that either or and
. Implication (III) guarantees that one

of the previously mentioned cases holds. Finally, notice that
the above selections in each case guarantee that there exists

so that for all , pro-
vided that the following implications hold: (i) if then

, (ii) if then .

Implications (III) and (IV) guarantee that the previous impli-
cations hold.
The converse statements are proved in the same way by dis-

tinguishing the above cases. The proof is complete.
Proof of Lemma 3.6: The methodology of the proof is to

show that every can be
replaced by a function which is positive definite and
satisfies in such a way that the “new”

set of functions with
replaced by satisfies all properties of the VRCLF.
A key observation is that all inequalities (9), (10), (14), (15),

(16), (17) and (20) hold automatically if is replaced
by a function satisfying:

(66)

The only thing that remains to be checked is the set of small-
gain inequalities (6). The inequalities (6) which are affected by
the replacement of with the function can
be expressed by the following inequality:

(67)

where is defined as follows:
“ for a given is the maximum of and the

maximum of all over

the set of all indices , with
if ”

To see this, notice that each inequality (6) which is affected
by the replacement of with the function is
guaranteed by (67) and the following fact:

Notice that since inequalities (6) hold with the original
, it holds that:

(68)

Define next:

(69)

where . Definition (69) and inequality (68)
guarantee that inequalities (66) and (67) hold. Moreover,
since it follows that and satisfies

. The proof is complete.

Proof of Theorem 3.4: Without loss of generality and
since we may assume that the neighborhood
involved in property (vi) satisfies .
Let with . Moreover, by virtue
of Lemma 3.6, without loss of generality we may assume
that all functions , , are positive
definite for . Using properties (ii), (iii), (iv), convexity
of and partition of unity arguments, we next construct
smooth feedback laws ,

and
such that the fol-

lowing hold:

(70)

(71)

(72)

(73)

(74)

(75)

Let be a smooth non-decreasing function with
for all and for all . Define:

(76)

(77)

(78)
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(79)

(80)

(81)

(82)

where is the locally Lipschitz mapping
involved in property (vi). It follows directly from as-
sumption (H), compactness of and the fact
that the mapping defined above is locally
Lipschitz with , that the closed-loop system
(7) with satisfies assumptions (A1–3) with

,
and in place
of , . Con-
sequently, we conclude from Theorem 2.7 in [15] that the
closed-loop system (7) with is RGAS.
Therefore, we are left with the task of constructing smooth

feedback laws and so that (70)–(75) hold.
Construction of . By virtue

of (11), (12), (13), (18), (19), (21), (22), and Lemma 3.5, it
follows that for every with there exists

with and
. Continuity of

,
implies that there exists such that ,

,
for all with .

Therefore, the sets for
all with form an open covering
of the open set . By partition
of unity, there exists a family of smooth functions

such that:
a) For every there exists with

and .
b) The sum is locally finite and satisfies

for all with .
We define for all with :

(83)

We first notice that (by local finiteness) the mapping de-
fined by (83) is smooth and satisfies for all
with . For arbitrary with we define
the finite set of indices such that .
It follows that for all
. Therefore, we get ,

for all .
Using the previous inequalities, the fact that
and definition (83) we obtain (70) and (71).
Construction of . Let

with , be arbitrary. Let be the set

of all such that .

Since all , are positive definite, we have
for all . By virtue of (9), (10), (17), (20)

and Lemma 3.5, there exists with

(84)

Define to be the set of all such that
. Notice that

for all with , . Conti-
nuity of mappings

, implies that there exists such
that , , for all

, for all
and for all with . Notice that the

previous inequality imply that for all
with . Therefore, we have

(85)

Therefore, the sets for all
with , form an open covering

of the open set . By parti-
tion of unity, there exists a family of smooth functions

, such
that:
a) For every there exists with

, and .
b) The sum is locally finite and satisfies

for all with ,
.

We define for all with , :

(86)

We first notice that (by local finiteness) the mapping de-
fined by (86) is smooth and satisfies for all
with , . For arbitrary with ,
we define the finite set of indices such that

. It follows that for all
. Therefore, by virtue of (85), the fact that

, the fact that is the set of all such that
and definition (86), we obtain

(72).
The construction of is

similar to the constructions of and .
Proof of Theorem 5.2: The proof utilizes Corollary 4.2 for

the system obtained by the following change of coordinates and
the input transformation:

(87)

namely, the system:

(88)
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for . It follows from (87) that
and consequently assumption (P3) holds for

system (88). Moreover, . Define

(89)

We apply Corollary 4.2 with
, for

and

(90)

(91)

(92)

(93)

All functions defined above satisfy the requirements im-
posed by Corollary 4.2. More specifically, using (47) and (48)
we get for . Since

and , it follows that
and . Consequently, definition (90) implies

. Next notice that definitions (90), (91)
imply that , for

all . Inequality (49) implies

for all
, which combined with definition (90) gives:

(94)

The above inequalities in conjunction with definition (91),
allow us to conclude that the following inequalities hold

(95)

for all . Inequality (95) shows that
as defined by (91) is radially

unbounded. Using (48) and definitions (90), (91) we obtain by
differentiating for all :

(96)

(97)

Since and , it follows that
for .

Therefore, we obtain from (96) and (97) for all
:

(98)

(99)

Using (50) and (89) we get

for all .

Hence, we obtain from (89), (91), (93), (94) and (99) for all
and :

(100)

Using (92), (98) and (100) we conclude that the
function defined by (92) satisfies

and for
all with . We next notice that by virtue
of the change of coordinates (87), definition (90) and the
definition of in (92), it follows that implications (24), (25),
(28), and (29) are equivalent to implications Equations (54),
(55), (57), and (58), respectively. Moreover, implication
(56) implies implication (26). Indeed, first notice that (96)
implies for
all with and consequently the condition

implies , or
equivalently, . Implication
(26) requires
for

.
Notice that (56) implies that

and
inequality (98) combined with definition (92) gives

for
all with . Consequently, implication
(26) holds.
We next show that implication (27) holds. By virtue of (100)

it suffices to show that for all with

:
• for
and ,

• for and
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The above conditions are implied by the following conditions
for all with ,

:
•
for or ,

• for

The above conditions are direct consequences of (57) and
(58). Thus we conclude that implication (27) holds.

REFERENCES
[1] D. Angeli, “A tutorial on chemical reaction network dynamics,” Euro.

J. Control, vol. 15, no. 3-4, pp. 398–406, 2009.
[2] Z. Artstein, “Stabilization with relaxed controls,” Nonlinear Analysis:

Theory, Methods and Applicat, vol. 7, pp. 1163–1173, 1983.
[3] R. Bellman, “Vector Lyapunov functions,” SIAM J. Control, vol. 1, pp.

32–34, 1962.
[4] G. Craciun and M. Feinberg, “Multiple equilibria in complex chemical

reaction networks: I. the injectivity property,” SIAM J. Appl. Mathe-
matics, vol. 65, no. 5, pp. 1526–1546, 2006.

[5] Dashkovskiy, S. B. Rüffer, and F. Wirth, “Small gain theorems for
large scale systems and construction of ISS Lyapunov functions,”
SIAM J. Control Optim., vol. 48, no. 6, pp. 4089–4118, 2010.

[6] R. A. Freeman and P. V. Kokotovic, Robust Nonlinear Control
Design-State Space and Lyapunov Techniques. Boston, USA:
Birkhauser, 1996.

[7] W. M. Haddad, V. Chellaboina, and S. G. Nersesov, “Vector dissipa-
tivity theory and stability of feedback interconnections for largescale
non-linear dynamical systems,” Int. J. Control, vol. 77, no. 10, pp.
907–919, 2004.

[8] W. M. Haddad and V. Chellaboina, Nonlinear Dynamical Systems
and Control. A Lyapunov-Based Approach. Princeton, NJ: Princeton
Univ. Press, 2008.

[9] Y. G. Hong and D. Cheng, Analysis and Control of Nonlinear Sys-
tems. Beijing, China: , 2005.

[10] H. Ito, Z. P. Jiang, S. Dashkovskiy, and B. S. Rüffer, “Robust stability
of networks of iISS systems: Construction of sum-type Lyapunov func-
tions,” IEEE Trans. Autom. Control, vol. 58, no. 5, pp. 1192–1207,May
2013, .

[11] Z. P. Jiang, I. M. Y. Mareels, and Y. Wang, “A Lyapunov formulation
of the nonlinear small-gain theorem for interconnected systems,” Au-
tomatica, vol. 32, pp. 1211–1214, 1996.

[12] Z.-P. Jiang, “Decentralized control for large-scale nonlinear systems: A
review of recent results,” J. Dynam. Contin., Discrete Impulsive Syst.,
vol. 11, pp. 537–552, 2004.

[13] I. Karafyllis, C. Kravaris, L. Syrou, and G. Lyberatos, “A vector Lya-
punov function characterization of input-to-State stability with appli-
cation to robust global stabilization of the chemostat,” Eur. J. Control,
vol. 14, no. 1, pp. 47–61, 2008.

[14] I. Karafyllis and Z.-P. Jiang, “A vector small-gain theorem for general
nonlinear control systems,” IMA J. Math. Control Inf., vol. 28, no. 3,
pp. 309–344, 2011.

[15] I. Karafyllis and Z.-P. Jiang, “A new small-gain theorem with an appli-
cation to the stabilization of the chemostat,” Int. J. Robust Nonlinear
Control, vol. 22, no. 14, pp. 1602–1630, 2012.

[16] I. Karafyllis and Z.-P. Jiang, Stability and Stabilization of Nonlinear
Systems, ser. Communications and Control Engineering. London,
U.K.: Springer-Verlag, 2011.

[17] M. Krstic, I. Kanellakopoulos, and P. V. Kokotovic, Nonlinear and
Adaptive Control Design. Hobokon, NJ: Wiley, 1995.

[18] V. Lakshmikantham and X. Liu, Stability Analysis in Terms of Two
Measures. Singapore: World Scientific, 1993.

[19] V. Lakshmikantham, V.M.Matrosov, and S. Sivasundram, Vector Lya-
punov Functions and Stability Analysis of Nonlinear Systems. Dor-
drecht, The Netherlands: Kluwer Academic, 1991.

[20] Y. Lin, E. D. Sontag, and Y. Wang, “A smooth converse Lyapunov
theorem for robust stability,” SIAM J. Control Optim., vol. 34, pp.
124–160, 1996.

[21] T. Liu, D. J. Hill, and Z. P. Jiang, “Lyapunov formulation of ISS small-
gain in continuous-time dynamical networks,” Automatica, vol. 47, pp.
2088–2093, 2011.

[22] M. Malisoff and F. Mazenc, Constructions of Strict Lyapunov Func-
tions. London, U.K.: Springer-Verlag, 2009.

[23] A. N. Michel, “On the status of stability of interconnected systems,”
IEEE Trans. Circuits Syst., vol. CS-30, no. 6, pp. 326–340, 1983.

[24] S. G. Nersesov and W. M. Haddad, “On the stability and control of
nonlinear dynamical systems via vector Lyapunov functions,” IEEE
Trans. Autom. Control, vol. 51, no. 2, pp. 203–215, Feb. 2006.

[25] S. G. Nersesov,W.M.Haddad, andQ. Hui, “Finite-time stabilization of
nonlinear dynamical systems via control vector Lyapunov functions,”
J. Franklin Inst., vol. 345, pp. 819–837, 2008.

[26] S. G. Nersesov and W. M. Haddad, “Control vector Lyapunov func-
tions for large-scale impulsive dynamical systems,” Nonlinear Anal-
ysis: Hybrid Syst, vol. 1, pp. 223–243, 2007.

[27] D. Siljak, Decentralized Control of Complex Systems. New York:
Academic, 1991.

[28] H. Smith and P. Waltman, The Theory of the Chemostat. Dynamics of
Microbial Competition, Cambridge Studies in Mathematical Biology,
13. Cambridge, U.K.: Cambridge Univ. Press, 1995.

[29] E. D. Sontag, “Universal” construction of Artstein’s theorem on non-
linear stabilization,” Syst. Control Lett., vol. 13, pp. 117–123, 1989.

[30] J. Tsinias, “Sufficient Lyapunov-like conditions for stabilization,”
Math. Control, Signals Syst., vol. 2, pp. 343–357, 1989.

[31] A. Van der Schaft, S. Rao, and B. Jayawardhana, “On theMathematical
Structure of Balanced Chemical Reaction Networks Governed byMass
Action Kinetics,” arXiv:1110.6078v1 [math.OC].

[32] V. I. Vorotnikov, Partial Stability and Control. Boston, MA:
Birkhauser, 1998.

Iasson Karafyllis received the B.S. degree in
chemical engineering from the National Technical
University of Athens (NTUA), Athens, Greece, in
1994, the M.Sc. degree in mathematics from the
University of Minnesota, Minneapolis, MN, USA,
in 1997, and the Ph.D. degree in mathematics from
the NTUA, in 2003.
He is currently an Assistant Professor in the

Department of Mathematics at NTUA. His research
interests include mathematical systems and control
theory, stability theory, and robust feedback sta-

bilization problems for deterministic systems. He is a coauthor of the book
Stability and Stabilization of Nonlinear Systems, (with Zhong-Ping Jiang,
Springer, 2011).

Zhong-Ping Jiang (M’94–SM’02–F’08) received
the B.Sc. degree in mathematics from the University
of Wuhan, Wuhan, China, in 1988, the M.Sc. degree
in statistics from the University of Paris XI, Paris,
France, in 1989, and the Ph.D. degree in automatic
control and mathematics from the Ecole des Mines
de Paris, France, in 1993.
Currently, he is a Full Professor of electrical and

computer engineering at the Polytechnic Institute of
New York University, Brooklyn, NY, USA. His main
research interests include stability theory, robust,

adaptive and distributed nonlinear control, adaptive dynamic programming
and their applications to information, mechanical, and biological systems. He
is coauthor of the book Stability and Stabilization of Nonlinear Systems (with
Dr. Iasson Karafyllis, Springer 2011). He is an Editor for the International
Journal of Robust and Nonlinear Control and has served as an Associate Editor
for several journals including Mathematics of Control, Signals and Systems,
Systems and Control Letters, IEEE TRANSACTIONS ON AUTOMATIC CONTROL,
and the European Journal of Control and Science China: Information Sciences.
Dr. Jiang is a recipient of the prestigious Queen Elizabeth II Fellowship

Award from the Australian Research Council, the CAREER Award from the
U.S. National Science Foundation, and the Young Investigator Award from
the National Natural Science Foundation of China. Recent awards recognizing
his research work include the Best Theory Paper Award (with Y. Wang) at
the 2008 WCICA, and the Guan Zhao Zhi Best Paper Award (with T. Liu and
D. Hill) at the 2011 CCC, and the Shimemura Young Author Prize (with his
student Yu Jiang) at the 2013 Asian Control Conference in Istanbul, Turkey.
Prof. Jiang is a Fellow of IFAC.


