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This work studies the design problem of feedback stabilisers for discrete-time systems with input delays. A backstepping
procedure is proposed for disturbance-free discrete-time systems. The feedback law designed by using backstepping coincides
with the predictor-based feedback law used in continuous-time systems with input delays. However, simple examples
demonstrate that the sensitivity of the closed-loop system with respect to modelling errors increases as the value of the delay
increases. The paper proposes a Lyapunov redesign procedure that can minimise the effect of the uncertainty. Specific results
are provided for linear single-input discrete-time systems with multiplicative uncertainty. The feedback law that guarantees
robust global exponential stability is a nonlinear, homogeneous of degree 1 feedback law.
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1. Introduction

Continuous-time systems with input delays have been stud-
ied extensively in the literature (see Artstein, 1982; Krstic,
2009, 2010, and the references therein). However, discrete-
time systems with input delays have been rarely stud-
ied. In many aspects, the results in discrete-time systems
are complementary to the results obtained for continuous-
time systems. The papers by Henson and Seborg (1994)
and Velasco-Villa, del-Muro-Cuellar, and Alvarez-Aguirre
(2007) tried to extend the Smith predictor design for non-
linear discrete-time systems, which are feedback linearis-
able. The works by Garcia, Gonzalez, Castillo, Lozano, and
Albertos (2010), Gonzalez, Sala, and Albertos (2012), Gon-
zalez, Sala, Garcia, and Albertos (2013), Lozano, Castillo,
Garcia, and Dzul (2004) and Olaru and Niculescu (2008)
have provided results for discrete-time linear systems with
input or measurement delays. In most cases where the delay
is time-varying, the delay is considered to be an unknown
perturbation of a nominal value and a predictor-based de-
sign is implemented.

It should be noted that discrete-time systems with input
delays is a special class of systems with characteristics that
are not met in continuous-time systems. The following list
summarises some of the differences between discrete-time
systems and continuous-time systems:

(1) Discrete-time systems with input delays of the
form

x(t + 1) = f (x(t), u(t − r))

x(t) ∈ �n, u(t) ∈ �m,
(1.1)

∗Corresponding author. Email: iasonkar@central.ntua.gr

where f : �n × �m → �n is a mapping with
f (0, 0) = 0 and r ≥ 1 is an integer, or uncertain
discrete-time systems with input delays of the form

x(t + 1) = F (d(t), x(t), u(t − r))

x(t) ∈ �n, u(t) ∈ �m, d(t) ∈ D,
(1.2)

where D ⊆ �l is a non-empty set, d ∈ D denotes
the vector of unknown time-varying parameters
(uncertainties), F : D × �n × �m → �n is a map-
ping with F (d, 0, 0) = 0 for all d ∈ D and r ≥ 1
is an integer, are always forward complete. This is
a major difference with continuous-time systems,
where forward completeness is not guaranteed.

(2) The closed-loop system (1.1) with the feedback
law

u(t) = K(x(t), u(t − r), . . . , u(t − 1)), (1.3)

where K : �n × �rm → �m is a mapping with
K(0, 0, . . . , 0) = 0, or the closed-loop system (1.2)
with the feedback law (1.3), are again finite-
dimensional discrete-time systems, i.e. the feed-
back law (1.3) preserves the qualitative character-
istics of the system. This is in sharp contrast with
continuous-time systems: as shown in the litera-
ture (see Artstein, 1982; Krstic, 2009, 2010, and
the references therein), the closed-loop system of a
finite-dimensional control system with input delays
and a feedback law that depends on the history of

C© 2013 Taylor & Francis
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the input is a system with very different character-
istics (it is not a finite-dimensional system). To see
why the character of the system is preserved for
discrete-time systems, we should note that system
(1.1) is equivalent to the system:

x(t + 1) = f (x(t), y1(t))
yi(t + 1) = yi+1(t), i = 1, . . . , r

x(t) ∈ �n, yi(t) ∈ �m (i = 1, . . . , r) ,

yr+1(t) = u(t) ∈ �m

(1.4)

and system (1.2) is equivalent to the system:

x(t + 1) = F (d(t), x(t), y1(t))
yi(t + 1) = yi+1(t) , i = 1, . . . , r

x(t) ∈ �n , yi(t) ∈ �m (i = 1, . . . , r) ,

yr+1(t) = u(t) ∈ �m , d(t) ∈ D.

(1.5)

Indeed, it is straightforward to verify that the fol-
lowing equalities hold:

yi(t) = u(t − r − 1 + i),

fori, . . . , randt ≥ r + 1 − i. (1.6)

Therefore, the closed-loop system (1.1) with the
feedback law (1.3) is equivalent to the closed-loop
system (1.4) with

u(t) = K(x(t), y1(t), . . . , yr (t)). (1.7)

Clearly, the closed-loop system (1.4) with (1.7) is a
finite-dimensional discrete-time system. Similarly,
the closed-loop system (1.2) with the feedback
law (1.3) is equivalent to the closed-loop system
(1.5) with (1.7), which again is an uncertain finite-
dimensional discrete-time system.

(3) The equivalent description of the discrete-time sys-
tems (1.1) and (1.2), i.e. systems (1.4) and (1.5),
respectively, have a specific structure: they are com-
posed from a nonlinear component and a cascade of
‘sum-ators’. This specific structure can be exploited
in order to design the feedback law (1.7) efficiently
by means of backstepping: this feature is absent in
the analysis of continuous-time systems. The back-
stepping feedback design for discrete-time systems
was studied in Karafyllis and Jiang (2011), Karafyl-
lis and Kotsios (2006) and Simoes, Nijmeijer, and
Tsinias (1996), and is in the same spirit of the back-
stepping feedback design for continuous-time sys-
tems (see Krstic, Kanellakopoulos, & Kokotovic,
1995).

(4) The following implication holds: if the feedback
law (1.3) stabilises the equilibrium point for (1.1)

or (1.2), then the feedback law

u(t) = K(x(t − r), u(t − r), . . . , u(t − 1)) (1.8)

stabilises the equilibrium point for x(t + 1) =
f (x(t), u(t)) or x(t + 1) = F (d(t), x(t), u(t)), re-
spectively. In other words, input delays and mea-
surement delays can be treated in the same way:
this convenient feature is not completely true in
continuous-time systems (see the discussion in
Karafyllis & Krstic, 2012).

This work is devoted to the answer of the following
question: how can we design a feedback law of the form
(1.7) so that 0 ∈ �n × �rm is (robustly) globally asymp-
totically stable (GAS) for the corresponding closed-loop
system. Notice that we consider nonlinear systems with
uncertainties: system (1.2) is a discrete-time system with
vanishing perturbations (multiplicative uncertainties). The
structure of this paper is as follows.

Section 2 describes a backstepping solution that ex-
ploits the specific structure of systems (1.4) and (1.5). It is
shown that the backstepping solution is a direct extension
of the predictor-based approach, which has already been
described for continuous-time systems. Our approach does
not require the assumption of open-loop stability, which
is present in Henson and Seborg (1994) and Velasco-Villa
et al. (2007).

As expected, simple examples show that the sensitivity
of the closed-loop system with respect to uncertainties is
magnified as the value of the delay r ≥ 1 increases. For this
reason, it is important to redesign the stabilising feedback
after applying the backstepping approach in order to reduce
the sensitivity: this is the topic of Section 3. Specific results
for the Lyapunov redesign are provided for linear single-
input systems with vanishing perturbations (Theorem 3.2).
Explicit inequalities allow the determination of the lowest
upper bound for the magnitude of the uncertainty for which
robust global exponential stability holds for the closed-
loop system. A simple example shows the importance of
the Lyapunov redesign procedure (Example 3.4).

It should be noted that Lyapunov redesign is a well-
known procedure for nonlinear continuous-time systems
(see Khalil, 1996). Recently, Lyapunov redesign has been
used extensively in sampled-data feedback design (see
Grüne & Worthmann, 2008; Grüne, Worthmann, & Nešic,
2008; Nešic & Grüne, 2005).

Throughout the paper, we adopt the following nota-
tion: For a vector x ∈ �n we denote by |x| its usual Eu-
clidean norm, and by x′ its transpose. For a real matrix
A ∈ �n×m, A′ ∈ �m×n denotes its transpose and |A| :=
sup {|Ax| ; x ∈ �n, |x| = 1} is its induced norm. I ∈ �n×n

denotes the identity matrix. �+ denotes the set of non-
negative real numbers.
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1654 I. Karafyllis and M. Krstic

Throughout the paper, we assume that the mapping
f : �n × �m → �n appearing in the right-hand side of
(1.1) is continuous. Moreover, we assume that the map-
ping F : D × �n × �m → �n appearing in the right-hand
side of (1.2) is continuous. The notions of (robust) global
asymptotic stability and robust global exponential stability
employed in this work are the standard notions described
in Jiang and Wang (2002), Karafyllis and Jiang (2011) and
Kellett and Teel (2004).

2. A backstepping solution

We assume, as in the continuous-time case, that system (1.1)
with r = 0 (the delay-free version of (1.1)) is stabilisable,
i.e. we make the following assumption.

(H1): There exists a continuous function k : �n → �m

with k(0) = 0 such that 0 ∈ �n is GAS for the closed-loop
system (1.1) with r = 0 and u(t) = k(x(t)).

In order to be able to address the stabilisation prob-
lem for (1.1) with r > 0, or equivalently the stabilisa-
tion problem for (1.4), we need the following technical
lemma.

Lemma 2.1 (the backstepping lemma for discrete-time
systems): Suppose that (H1) holds. Let a continuous, posi-
tive definite and radially unbounded function V : �n → �+
and a constant λ ∈ [0, 1) be such that the following inequal-
ity holds:

V (f (x, k(x))) ≤ λV (x), for all x ∈ �n, (2.1)

Then the following hold:

(i) 0 ∈ �n × �m is GAS for the closed-loop (1.4) with
r = 1 and u(t) = k (f (x(t), y1(t))),

(ii) for every a ∈ K∞ and for every constant c > 1
1−λ

,

the function V̄ : �n × �m → �+ defined by

V̄ (x, y1) := V (x) + cV (f (x, y1))

+a (|y1 − k(x)|) (2.2)

is a continuous, positive definite and radially un-
bounded function that satisfies:

V̄ (f (x, y1), k(f (x, y1))) ≤ (
λ + c−1

)
V̄ (x, y1),

for all (x, y1) ∈ �n × �m (2.3)

Proof: (i) is a direct consequence of (ii), the fact that
λ + c−1 < 1 (which is a consequence of c > 1

1−λ
) and the

Lyapunov theorem for discrete-time systems (see Jiang &
Wang, 2002; Karafyllis & Jiang, 2011; Kellett & Teel,
2004). Therefore, we focus on proving (ii).

Continuity of V̄ : �n × �m → �+ is a direct conse-
quence of continuity of V : �n → �+, f : �n × �m →
�n and a ∈ K∞. The fact that V̄ : �n × �m → �+ as de-
fined by (2.2) is positive definite is a direct consequence of
definition (2.2) and the fact that k(0) = 0. In order to show
that V̄ : �n × �m → �+ is radially unbounded, it suffices
to show that the set

SM := {
(x, y1) ∈ �n × �m : V̄ (x, y1) ≤ M

}
(2.4)

is bounded for every M ≥ 0. Indeed, by virtue of definition
(2.2), we conclude that for each (x, y1) ∈ SM it holds that
V (x) ≤ M . Since V : �n → �+ is radially unbounded, it
follows that the component x ∈ �n of the vector (x, y1) ∈
SM is bounded, i.e. there exists R ≥ 0 such that |x| ≤ R

for all (x, y1) ∈ SM . Since k : �n → �m is continuous, it
follows that there exists R̃ ≥ 0 such that |k(x)| ≤ R̃, for
all (x, y1) ∈ SM . Finally, notice that definitions (2.2) and
(2.4) allow us to conclude the following inequality for all
(x, y1) ∈ SM :

|y1 − k(x)| ≤ a−1(M) (2.5)

Combining (2.5) with the inequality |k(x)| ≤ R̃, for
all (x, y1) ∈ SM , we obtain |y1| ≤ a−1(M) + R̃, for all
(x, y1) ∈ SM . In other words, the component y1 ∈ �m of
the vector (x, y1) ∈ SM is bounded. Therefore, SM as de-
fined by (2.4) is bounded for every M ≥ 0.

We are left with the task of proving (2.3). Definition
(2.2) implies:

V̄ (f (x, y1), k(f (x, y1))) = V (f (x, y1))

+ cV (f (f (x, y1), k(f (x, y1))))

for all (x, y1) ∈ �n × �m. (2.6)

Using (2.1) with f (x, y1) in place of x ∈ �n and (2.6),
we obtain:

V̄ (f (x, y1), k(f (x, y1))) ≤ (1 + cλ) V (f (x, y1)),

for all (x, y1) ∈ �n × �m. (2.7)

Finally, notice that definition (2.2) implies
V (f (x, y1)) ≤ 1

c
V̄ (x, y1) for all (x, y1) ∈ �n × �m.

The previous inequality in conjunction with (2.7) gives
(2.3).

The reader should notice at this point that the existence
of a continuous, positive definite and radially unbounded
function V : �n → �+ and a constant λ ∈ [0, 1) satisfy-
ing (2.1) is a direct consequence of assumption (H1) and
Proposition 3.1 in Karafyllis and Jiang (2011).

Applying Lemma 2.1 inductively allows us to construct
a globally stabilising feedback for system (1.4). We define
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International Journal of Control 1655

the extended vectors

z0 = x, zi = (x, y1, · · · , yi), for i = 1, ..., r + 1, (2.8)

and the vector fields Fi(zi), i = 0, 1, . . . , r + 1 by the re-
cursive formula:

Fi+1(zi+1) := f (Fi(zi), yi+1)

for i = 0, . . . , r and F0(x) := x (2.9)

We notice that the following formulae hold:

Fi(f (x, y1A), y2, · · · , yi+1) = Fi+1(x, y1, · · · , yi+1)

= Fi+1(zi+1) for i = 1, . . . , r (2.10)

We are now ready to state and prove a result that
deals with the global stabilisation of (1.4). The proof of
Lemma 2.2 can be made by induction. However, for clar-
ity purposes, we will provide a different (and more di-
rect) proof for Lemma 2.2, which uses the identities (2.9)
and (2.10).

Lemma 2.2: Consider system (1.4) with r ≥ 2 and sup-
pose that (H1) holds. Let a continuous, positive definite and
radially unbounded function V : �n → �+ and a constant
λ ∈ [0, 1) be such that (2.1) holds. Then the following hold:

(i) 0 ∈ �n × �m is GAS for the closed-loop (1.4) and
u(t) = k (Fr (zr (t))),

(ii) for every ai ∈ K∞(i = 1, . . . , r) with ai(s) ≤
ai+1(s) for all i = 1, . . . , r − 1 and s ≥ 0, for every
constant c > 1

1−λ
, the function V̄ : �n × �rm →

�+ defined by

V̄ (zr ) :=
r∑

i=0

ciV (Fi(zi))

+
r∑

i=1

ciai (|yi − k (Fi−1(zi−1))|) (2.11)

is a continuous, positive definite and radially un-
bounded function that satisfies:

V̄ (f (x, y1), y2, . . . , yr , k(Fr (zr ))) ≤ (
λ + c−1

)
×V̄ (zr ), for all zr = (x, y1, . . . , yr ) ∈ �n × �rm

(2.12)

Proof: (i) is a direct consequence of (ii), the fact that λ +
c−1 < 1 (which is a direct consequence of the fact that c >

1
1−λ

) and Proposition 2.3 in Karafyllis and Jiang (2011). The
fact that the function V̄ : �n × �rm → �+ is a continuous,
positive definite and radially unbounded function can be
proved in exactly the same way as in the proof of Lemma
2.1. We show next the validity of inequality (2.12).

Using definition (2.11), we obtain:

V̄ (f (x, y1), y2, . . . , yr , u)
= crV (Fr (f (x, y1), y2, . . . , yr , u))

+
r−1∑
i=0

ciV (Fi(f (x, y1), y2, . . . , yi+1))

+
r∑

i=1
ciai (|yi+1 − k (Fi−1(f (x, y1), y2, . . . , yi))|)

(2.13)

The identities (2.10) in conjunction with (2.13) give:

V̄ (f (x, y1), y2, . . . , yr , u) = crV (Fr+1(zr+1))

+ 1
c

r∑
i=1

ciV (Fi(zi))

+
r−1∑
i=1

ciai (|yi+1 − k (Fi(zi))|) + crar (|u − k (Fr (zr ))|)
(2.14)

Using identity (2.9) for i = r and inequality (2.1) with
Fr (zr ) in place of x ∈ �n, in conjunction with (2.14), we
obtain for u = k (Fr (zr )):

V̄ (f (x, y1), y2, . . . , yr , u)

= crV (f (Fr (zr ), u)) + 1
c

r∑
i=1

ciV (Fi(zi))

+crar (|u − k (Fr (zr ))|) +
r−1∑
i=1

ciai (|yi+1 − k (Fi(zi))|)

≤ crλV (Fr (zr )) + 1
c

r∑
i=1

ciV (Fi(zi))

+
r−1∑
i=1

ciai (|yi+1 − k (Fi(zi))|)
(2.15)

Inequality (2.15) in conjunction with the
equality 1

c

∑r
i=1 ciV (Fi(zi)) = 1

c
V̄ (zr ) − 1

c
V (x) −

1
c

∑r
i=1 ciai (|yi − k (Fi−1(zi−1))|) (which is a direct

consequence of definition (2.11)) gives:

V̄ (f (x, y1), y2, . . . , yr , k (Fr (zr ))) ≤ crλV (Fr (zr ))
+ 1

c
V̄ (zr ) − 1

c
V (x)

−
r∑

i=1
ci−1ai (|yi − k (Fi−1(zi−1))|)

+
r∑

i=2
ci−1ai−1 (|yi − k (Fi−1(zi−1))|)

(2.16)
Finally, inequality (2.12) is a consequence of (2.16),

the fact that ai(s) ≤ ai+1(s) for all i = 1, . . . , r − 1, s ≥ 0
and the inequality crV (Fr (zr )) ≤ V̄ (zr ) (which is a direct
consequence of definition (2.11)).) �
The globally stabilising feedback laws that are proposed
by Lemma 2.1 (for the case r = 1) or Lemma 2.2 (for
the case r ≥ 2) are feedback laws that are based on pre-
diction schemes. Indeed, we may verify that the imple-
mentation of the feedback law u(t) = k (f (x(t), y1(t)))
for system (1.4) with r = 1 guarantees u(t) = k(x(t + 1))
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1656 I. Karafyllis and M. Krstic

for all t ≥ 0 and that the implementation of the feed-
back law u(t) = k (Fr (zr (t))) for system (1.4) with r ≥ 2
guarantees u(t) = k(x(t + r)) for all t ≥ 0. Therefore, the
prediction-based control schemes described in Artstein
(1982), Karafyllis and Krstic (2012) and Krstic (2009,
2010) for continuous-time systems are modified in an ob-
vious way for discrete-time systems.

For the case of continuous-time systems, the predictor-
based control scheme suffers from sensitivity with respect
to modelling errors: the sensitivity with respect to mod-
elling errors tends to be larger as the value of the input delay
increases. This feature is present in discrete-time systems
as well. The following example shows how the sensitivity
with respect to vanishing perturbations is magnified as the
value of the input delay becomes higher and higher.

Example 2.3: Consider the scalar discrete-time system

x(t + 1) = x(t) + d(t)x(t) + u(t − r)

x(t) ∈ �, d(t) ∈ D = [−a, a], u(t) ∈ �,
(2.17)

where a ≥ 0 and r ≥ 0 is an integer. System (2.17) is equiv-
alent to the system

x(t + 1) = x(t) + d(t)x(t) + y1(t)

yi(t + 1) = yi+1(t), i = 1, . . . , r

x(t) ∈ �n, yi(t) ∈ � (i = 1, . . . , r) ,

yr+1(t) = u(t) ∈ �, d(t) ∈ [−a, a].

(2.18)

The nominal value for the uncertainty d ∈ [−a, a] is
d ≡ 0. Based on the nominal value for the uncertain param-
eter, we obtain the disturbance-free discrete-time system:

x(t + 1) = x(t) + y1(t)

yi(t + 1) = yi+1(t), i = 1, . . . , r

x(t) ∈ �n , yi(t) ∈ � (i = 1, . . . , r) ,

yr+1(t) = u(t) ∈ � , d(t) ∈ [−a, a].

(2.19)

The assumptions of Lemmas 2.1 (for the case r = 1)
and 2.2 (for the case r ≥ 2) hold for system (2.19) with
k(x) = −x, V (x) = x2 and λ = 0. Therefore, a globally
stabilising feedback for (2.19) is

u(t) = −
(

x(t) +
r∑

i=1

yi(t)

)
. (2.20)

If the feedback law (2.20) is applied to the uncertain system
(2.18), then the following question arises: ‘For what values
of a ≥ 0, is 0 ∈ � × �r robustly GAS for the closed-loop
system (2.18) with (2.20)?’

First, we notice that the closed-loop system (2.18) with
(2.20) has a constant and non-zero solution when the con-
stant sequence d(t) ≡ 1

r+1 is applied and the initial condi-

tion satisfies y1(0) = · · · = yr (0) = − x(0)
r+1 = 0. Therefore,

it is clear that a necessary condition for robust global
asymptotic stability of the equilibrium point 0 ∈ � × �r

for the closed-loop system (2.18) with (2.20) is

a <
1

r + 1
. (2.21)

In order to obtain a sufficient condition for robust global
asymptotic stability, we use the knowledge of a Lyapunov
function for the closed-loop system (2.18) with (2.20) with
d ≡ 0. Notice that the function Fi(zi) defined by (2.9) is
given by Fi(zi) = x + y1 + · · · + yi for i = 1, . . . , r + 1.
Therefore, Lemma 2.1 or Lemma 2.2 guarantees that the
function

V̄ (x, y1, . . . , yr ) := x2 + (1 + ϕ)

×
r∑

i=1

ci (x + y1 + · · · + yi)
2 (2.22)

with c > 1, ϕ > 0, is a Lyapunov function for the closed-
loop system (2.18) with (2.20) with d ≡ 0. Notice that the
function defined by (2.22) corresponds to formula (2.11)
with ai(s) ≡ ϕs2 for i = 1, . . . , r , k(x) = −x, V (x) = x2

and λ = 0. However, it is clear that the function defined
by (2.22) is a continuous, positive definite and radially un-
bounded function for all c > 0 and ϕ > −1. Therefore,
we consider the function defined by (2.22) for c > 0 and
ϕ > −1.

For r = 1, we get for u = −x − y1 and for all (x, y1) ∈
�2, d ∈ �:

V̄ (x + dx + y1, u) = (x + dx + y1)2

+(1 + ϕ)c (x + dx + y1 + u)2

= (x + y1)2 + (1 + (1 + ϕ)c) d2x2 + 2dx(x + y1)
(2.23)

Completing the squares, we obtain from (2.23) for all
ε > 0, (x, y1) ∈ �2 and |d| ≤ a:

V̄ (x + dx + y1, u) ≤ (1 + ε−1)(x + y1)2

+ (1 + ε + (1 + ϕ)c) a2x2 (2.24)

It follows from (2.24) and (2.22) with r = 1, that there
exists σ ∈ [0, 1) such that V̄ (x + dx + y1, u) ≤ σ V̄ (x, y1)
holds for all (x, y1) ∈ �2 and |d| ≤ a, provided that there
exists ε > 0 so that the following inequalities hold:

(1 + ε + (1 + ϕ)c) a2 < 1

1 + ε−1 < (1 + ϕ)c
(2.25)
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Inequalities (2.25) hold for certain ε > 0, provided that
the following inequality holds:

a2 <
c(1 + ϕ) − 1

c2(1 + ϕ)2
(2.26)

The greatest value for the fraction c(1+ϕ)−1
c2(1+ϕ)2 is ob-

tained for c(1 + ϕ) = 2. Therefore, using Proposition 2.3
in Karafyllis and Jiang (2011), we can conclude that the
equilibrium point 0 ∈ � × � for the closed-loop system
(2.18) with (2.20) and r = 1 is robustly GAS, provided that
a < 1/2.

Next, we consider the case r ≥ 2. We get for u = −x −
y1 − · · · − yr and for all (x, y1, . . . , yr ) ∈ �r+1, d ∈ �:

V̄ (x + dx + y1, y2, ..., yr , u) = (x + dx + y1)2

+(1 + ϕ)
r∑

i=1
ci (x + dx + y1 + ... + yi + yi+1)2

=
(

1 + (1 + ϕ)
r∑

i=1
ci

)
d2x2 + (x + y1)2

+(1 + ϕ)
r−1∑
i=1

ci (x + y1 + ... + yi + yi+1)2

+2dx(x + y1) + 2(1 + ϕ)dx

×
r−1∑
i=1

ci (x + y1 + ... + yi + yi+1)

(2.27)
Using the inequality 2dx(x + y1) ≤ ε1d

2x2 + ε−1
1 (x +

y1)2, which holds for every ε1 > 0, (x, y1) ∈ �2, d ∈
� and the inequalities 2dx (x + y1 + . . . + yi + yi+1) ≤
ε2d

2x2 + ε−1
2 (x + y1 + . . . + yi + yi+1)2, which hold for

all i = 1, . . . , r − 1, ε2 > 0, (x, y1, . . . , yr ) ∈ �r+1, d ∈
�, we obtain from (2.27) for all |d| ≤ a:

V̄ (x + dx + y1, y2, ..., yr , u)

× ≤
(

1 + ε1 + (1 + ϕ)cr + (1 + ϕ)(1 + ε2)
r−1∑
i=1

ci

)
a2x2

+(1 + ε−1
1 )(x + y1)2 + c−1(1 + ϕ)(1 + ε−1

2 )

×
r∑

i=2
ci (x + y1 + ... + yi)

2

(2.28)
It follows from (2.28) and (2.22) that there ex-

ists σ ∈ [0, 1) such that V̄ (x + dx + y1, y2, . . . , yr , u) ≤
σ V̄ (x, y1, y2, . . . , yr ) holds for all (x, y1, . . . , yr ) ∈ �r+1

and |d| ≤ a, provided that there exist ε1 > 0 and ε2 > 0 so
that the following inequalities hold:

(
1 + ε1 + (1 + ϕ)cr + (1 + ϕ)(1 + ε2)

r−1∑
i=1

ci

)
a2 < 1

1 + ε−1
1 < c(1 + ϕ)

1 + ε−1
2 < c

(2.29)

Table 1. Results of the robustness analysis for system (2.18)
with system (2.20).

r Ar

0 A0 = 1
1 A1 = 0.5
2 A2 ∈ [0.3311, 0.3333]
3 A3 ∈ [0.2451, 0.25]
4 A4 ∈ [0.1923, 0.2]
5 A5 ∈ [0.1573, 0.1667]
6 A6 ∈ [0.1326, 0.1429]
7 A7 ∈ [0.1144, 0.125]
8 A8 ∈ [0.1005, 0.1112]
9 A9 ∈ [0.0896, 0.1]

10 A10 ∈ [0.0807, 0.0909]
15 A15 ∈ [0.0539, 0.0625]
20 A20 ∈ [0.0404, 0.0476]

Inequalities (2.29) hold for appropriate ε1 > 0 and ε2 >

0 provided that the following inequality holds:

a2 <
s

1 + s
(

1 + cr+1−cr+cr−1−c
(c−1)2

)
+ s2

(
cr+1−cr+cr−1−c

(c−1)2

) ,

(2.30)
where s = c(1 + ϕ) − 1 > 0. The greatest value for the
fraction s

1+s
(

1+ cr+1−cr +cr−1−c

(c−1)2

)
+s2

(
cr+1−cr +cr−1−c

(c−1)2

) is obtained for

s = c−1√
cr+1−cr+cr−1−c

. The value of c > 1, which maximises

the right-hand side of (2.30) for s = c−1√
cr+1−cr+cr−1−c

can be
found numerically.

What have we found so far? We have shown that
0 ∈ � × �r is robustly GAS for the closed-loop system
(2.18) with (2.20) provided that a < Ar . The value of
a < Ar is estimated by the necessary condition (2.21) and
the sufficient condition (2.30) with s = c−1√

cr+1−cr+cr−1−c
. The

results are shown in Table 1.
It is clear that as the value of the input delay r in-

creases, the value of Ar with the property that 0 ∈ � × �r

is robustly GAS for the closed-loop system (2.18) with
(2.20), |d| ≤ a and a < Ar , decreases rapidly. In other
words, as the value of the input delay r increases, the
sensitivity with respect to uncertain parameter d ∈ � is
magnified. �

The results of Example 2.3 are expected. However, it
should be emphasised that the results are not discouraging
for the use of predictor feedback: the sensitivity with re-
spect to modelling errors is not magnified because of the
use of the predictor feedback. This happens because the
control problem itself is difficult when the value of the
input delay increases. On the other hand, we should seek
predictor-based feedback laws that minimise the sensitivity
with respect to modelling errors as much as possible. This
is the topic of the following section.
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3. Lyapunov redesign

As remarked in the previous section, it is very important to
design a feedback law that minimises the sensitivity with
respect to modelling errors. It is important to emphasise
that although the ‘nominal feedback law’ u = k(x) may
be ‘optimal’ in the sense that it minimises some measure
of the sensitivity of the corresponding closed-loop system
with respect to modelling errors, this is not necessarily
true for the feedback law proposed by Lemma 2.1 or Lemma
2.2.

In order to design a feedback law that minimises the
sensitivity with respect to modelling errors, we exploit the
Lyapunov function proposed by Lemmas 2.1 and 2.2. We
consider the problem of robust global feedback stabilisation
of the equilibrium point 0 ∈ �n × �mr for the uncertain
control system (1.5).

The procedure that we are proposing includes the fol-
lowing steps.

3.1. The Lyapunov redesign procedure

Step 1: Find a value d0 ∈ D for the uncertainty d ∈
D, which is nominal in a certain sense. Define the
‘nominal’ vector field f (x, u) = F (d0, x, u), for all
(x, u) ∈ �n × �m.

Step 2: Verify assumption (H1) for the corresponding
system (1.1) with r = 0. More specifically, find a
continuous function k : �n → �m with k(0) = 0,
a continuous, positive definite and radially un-
bounded function V : �n → �+ and a constant
λ ∈ [0, 1) such that inequality (2.1) holds.

Step 3: Use a family of functions ai ∈ K∞ (i =
1, . . . , r) with ai(s) ≤ ai+1(s) for all i = 1, . . . , r −
1 and s ≥ 0, and a constant c > 1 and define the
function V̄ : �n × �rm → �+ by means of (2.11).

Step 4: For each (x, y1, . . . , yr ) ∈ �n × �rm solve the
minimax problem

min
yr+1∈�m

max
d∈D

V̄ (F (d, x, y1), y2, ..., yr+1) (3.1)

If problem (3.1) is solvable for every (x, y1, . . . , yr ) ∈
�n × �rm and if the following inequality holds for all
(x, y1, . . . , yr ) ∈ �n × �rm:

min
yr+1∈�m

max
d∈D

V̄ (F (d, x, y1), y2, ..., yr+1)

≤ V̄ (x, y1, ..., yr ) − ρ
(
V̄ (x, y1, ..., yr )

)
(3.2)

for certain continuous and positive definite function ρ :
�+ → �+ then the robust global feedback stabiliser
K(x, y1, . . . , yr ) can be defined as any of the minimisers of
the minimax problem (3.1), i.e. the robust global feedback
stabiliser K(x, y1, . . . , yr ) satisfies for all (x, y1, . . . , yr ) ∈

�n × �rm:

min
yr+1∈�m

max
d∈D

V̄ (F (d, x, y1), y2, ..., yr+1)

= max
d∈D

V̄ (F (d, x, y1), y2, ..., yr ,K(x, y1, ..., yr ))

(3.3)

The procedure that we just described has many ‘ques-
tions’:

(1) Under what conditions will the minimax prob-
lem (3.1) be solvable for all (x, y1, . . . , yr ) ∈ �n ×
�rm?

(2) Under what conditions does there exist a continuous
and positive definite function ρ : �+ → �+ such
that (3.2) holds?

(3) What are the regularity properties for the function
K(x, y1, . . . , yr ) that satisfies (3.3)?

(4) How can we select the nominal value for the uncer-
tainty parameter d0 ∈ D, the constant c > 1 and the
family of functions ai ∈ K∞ (i = 1, . . . , r) with
ai(s) ≤ ai+1(s) for all i = 1, . . . , r − 1 and s ≥ 0?

The following theorem answers Questions (1) and (3)
above.

Theorem 3.1: Assume that D ⊆ �l is a non-empty, com-
pact set. Then the minimax problem (3.1) is solvable for all
(x, y1, . . . , yr ) ∈ �n × �rm and every function K : �n ×
�rm → �m, that satisfies (3.3) for all (x, y1, . . . , yr ) ∈
�n × �rm, is locally bounded. Moreover, there exists a mea-
surable function K : �n × �rm → �m that satisfies (3.3)
for all (x, y1, . . . , yr ) ∈ �n × �rm. Finally, if there exists
an open set O ⊆ �n × �rm, such that the minimax prob-
lem (3.1) has a unique solution for all (x, y1, . . . , yr ) ∈ O,
then every function K : �n × �rm → �m, that satisfies
(3.3) for all (x, y1, . . . , yr ) ∈ �n × �rm, is continuous on
O ⊆ �n × �rm.

Proof: Since V̄ : �n × �rm → �+ is a continuous, pos-
itive definite and radially unbounded function, by virtue
of Lemma 3.5 in Khalil (1996), there exist functions
a1, a2 ∈ K∞ such that:

a1 (|x, y1, y2, ..., yr |) ≤ V̄ (x, y1, y2, ..., yr )

≤ a2 (|x, y1, y2, ..., yr |) , for all

(x, y1, ..., yr ) ∈ �n × �rm (3.4)

Define for all (x, y1, . . . , yr , yr+1) ∈ �n × �(r+1)m:

�(x, y1, y2, ..., yr+1) := max
d∈D

V̄ (F (d, x, y1), y2, ..., yr+1)

(3.5)
Theorem 1.4.16 in Aubin and Frankowska (1990),

in conjunction with continuity of V̄ : �n × �rm → �+,
F : D × �n × �m → �n and compactness of D ⊆ �l ,
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implies that � : �n × �(r+1)m → �+ as defined by (3.5) is
continuous. Since the mapping � : �n × �(r+1)m → �+ is
bounded from below, we can define for all (x, y1, . . . , yr ) ∈
�n × �rm:

Ṽ (x, y1, ..., yr ) := inf
{
�(x, y1, ..., yr , yr+1); yr+1 ∈ �m

}
(3.6)

M(x, y1, ..., yr ) := {
yr+1 ∈ �m : Ṽ (x, y1, ..., yr )

= �(x, , y1, ..., yr , yr+1)
}

(3.7)

In order to show that every function K : �n × �rm →
�m, that satisfies (3.3) for all (x, y1, . . . , yr ) ∈ �n × �rm,
is locally bounded, it suffices to show that the set-valued
mapping (x, y1, . . . , yr ) ⊆ �m defined by (3.7) is non-
empty for all (x, y1, . . . , yr ) ∈ �n × �rm and locally
bounded. Define

p(x, y1, ..., yr ) := a−1
1 (� (x, y1, ..., yr , 0) + 1) (3.8)

and notice that the mapping p(x, y1, . . . , yr ) is a contin-
uous, positive function. Definitions (3.5), (3.6), (3.8) and
the left-hand side inequality (3.4) imply that for each fixed
(x, y1, . . . , yr ) ∈ �n × �rm we have:

Ṽ (x, y1, · · · , yr ) =
min

(
inf {�(x, y1, ..., yr , yr+1); |yr+1| ≤ p (x, y1, ..., yr )},

inf {�(x, y1, ..., yr , yr+1); |yr+1| > p (x, y1, ..., yr )} )
≥ min

(
inf{�(x, y1, ..., yr , yr+1); |yr+1| ≤p (x, y1, ..., yr )},

inf {a1(|yr+1|); |yr+1| > p (x, y1, ..., yr )} )
≥ min

(
inf{�(x, y1, ..., yr , yr+1); |yr+1| ≤p (x, y1, ..., yr )},

�(x, y1, ..., yr , 0) + 1
)

Clearly, since Ṽ (x, y1, . . . , yr ) ≤ �(x, y1, . . . , yr ,

yr+1), the above inequality implies that the case
min(�,�{(x, y1, . . . , yr , 0) + 1) = �(x, y1, . . . , yr , 0) + 1
� := inf{�(x, y1, . . . , yr , yr+1); |yr+1| ≤ p(x, y1, . . . , yr )}
cannot happen. Thus, we conclude that:

Ṽ (x, y1, ..., yr ) = inf
{
�(x, y1, ..., yr , yr+1); |yr+1|

≤ p (x, y1, ..., yr )
}

(3.9)

Equality (3.9) in conjunction with continuity of
�(x, y1, y2, . . . , yr+1) implies that the set-valued map
M(x, y1, . . . , yr ) ⊆ �m, as defined by (3.7), is non-empty
for each (x, y1, . . . , yr ) ∈ �n × �rm. Continuity of the
mapping p(x, y1, . . . , yr ) and definitions (3.6), (3.7) in
conjunction with (3.9) imply that the set-valued map
M(x, y1, . . . , yr ) ⊆ �m is locally bounded: notice that ev-
ery Mu ∈ (x, y1, . . . , yr ) satisfies |u| ≤ p (x, y1, . . . , yr ).

Moreover, continuity of the mapping p(x, y1, . . . , yr ),
Corollary 1.4.10 in Aubin and Frankowska (1990, and
the remark just after the statement of Corollary 1.4.20

in Aubin & Frankowska, 1990, p. 43), Theorem 1.4.16
in Aubin and Frankowska (1990, p. 48) and equal-
ity (3.9) imply that the mapping (x, y1, . . . , yr ) →
Ṽ (x, y1, . . . , yr ) is continuous. Continuity of the map-
pings (x, y1, . . . , yr ) → Ṽ (x, y1, . . . , yr ) and � : �n ×
�(r+1)m → �+ in conjunction with definition (3.7) and
statement (c) in Clarke, Ledyaev, Stern, and Wolen-
ski (1998, p. 150) imply that the set-valued map-
ping M(x, y1, . . . , yr ) is measurable. Consequently, The-
orem 5.3 in Clarke et al. (1998, p. 151) implies that
there exists a measurable function K : �n × �rm → �m

that satisfies K(x, y1, . . . , yr ) ∈ M(x, y1, . . . , yr ) for all
(x, y1, . . . , yr ) ∈ �n × �rm. Therefore, definitions (3.5),
(3.6) and (3.7) imply that K : �n × �rm → �m satisfies
(3.3) for all (x, y1, . . . , yr ) ∈ �n × �rm.

In order to show the last assertion of the theorem, it suf-
fices to show that the set-valued map M(x, y1, . . . , yr ) ⊆
�m is upper semi-continuous. Indeed, this automati-
cally implies that if (x, y1, . . . , yr ) ⊆ �m is a single-
ton for all (x, y1, . . . , yr ) ∈ O, where O ⊆ �n × �rm is
an open set, i.e. (x, y1, . . . , yr ) = {ϕ(x, y1, . . . , yr )}, then
ϕ(x, y1, . . . , yr ) is continuous on O ⊆ �n × �rm.

In order to show that M(x, y1, . . . , yr ) ⊆ �m is upper
semi-continuous, it suffices to prove that for every zr =
(x, y1, . . . , yr ) ∈ �n × �rm and for every ε > 0 there exists
δ > 0 such that

|w − zr | < δ ⇒ M(w) ⊂ M(zr ) + ε B.

The proof is made by contradiction. Suppose the con-
trary: there exists zr = (x, y1, . . . , yr ) ∈ �n × �rm and
ε > 0, such that for all δ > 0 there exists w ∈ {zr} + δB and
u′ ∈ M(w) with |u′ − u| ≥ ε, for all u ∈ M(zr ). Clearly,
this implies the existence of a sequence

{
(wj, u′j )

}∞
j=1

with wj → zr , u′j ∈ (wj ) and
∣∣u′j − u

∣∣ ≥ ε, for all u ∈
(zr ) and j = 1, 2, . . .. On the other hand since u′j is
bounded, it contains a convergent subsequence u′i →
ū /∈ (zr ). By continuity of the mappings Ṽ (x, y1, . . . , yr )
and �(x, y1, . . . , yr , u), we have: Ṽ (wi) → Ṽ (zr ) and
Ṽ (wi) = �(wi, u′i) → �(zr , ū). Consequently, we must
have: Ṽ (zr ) = �(zr , ū), which, by virtue of definition (3.7),
implies that ū ∈ (zr ), a contradiction. �

The answer to Question (4) above is an open problem
that is directly related to the answer to Question (2). How-
ever, there are some simple cases for which we can give
explicit formulae for the stabilising feedback. Next, we con-
sider the simple single-input case (1.2) with F (d, x, u) =
Ax + Bu + dGx, x ∈ �n, u ∈ �, d ∈ D = [−a, a] ⊆ �.
The reader should notice that even in this ‘almost linear’
case, the proposed feedback is nonlinear: it is a homoge-
neous function of degree 1.
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Theorem 3.2: Consider the single-input discrete-time sys-
tem

x(t + 1) = Ax(t) + Bu(t) + d(t)Gx(t)
x(t) ∈ �n, u(t) ∈ �, d(t) ∈ D = [−a, a] ⊆ �,

(3.10)

where A ∈ �n×n,G ∈ �n×n are constant matrices, a ≥ 0
is a constant and B ∈ �n is a constant vector. Suppose
that there is a vector k ∈ �n, a constant λ ∈ [0, 1) and a
symmetric positive definite matrix P ∈ �n×n such that the
following inequality holds for all x ∈ �n:

x ′(A + Bk′)′P (A + Bk′)x ≤ λx ′Px (3.11)

Let r ≥ 2 be a positive integer, and let c > 1, ϕ > 0, σ ∈
[0, 1) be constants. Define:

p := cr (B ′PB + ϕ) (3.12)

L(x) := cr
(
B ′PA − ϕk′)Ar−1Gx (3.13)

κ(x, y1, ..., yr ) := (Ax + By1)′ PGx

+
r−1∑
i=1

ciyi+1 (B ′PA − ϕk′) Ai−1Gx

+
r∑

i=1
ci

(
Aix +

i∑
j=1

Ai−jByj

)′
(A′PA + ϕkk′) Ai−1Gx

(3.14)

b(x, y1, ..., yr ) := cr
(
B ′PA − ϕk′)

×
⎛
⎝Arx +

r∑
j=1

Ar−jByj

⎞
⎠ (3.15)

c(x, y1, . . . , yr ) := a2
r∑

i=0
cix ′G′(Ai)′P (Ai)Gx

+a2ϕ
r∑

i=1
ci

(
k′Ai−1Gx

)2

+(1 − σc)
r∑

i=1
ci−1

(
Aix +

i∑
j=1

Ai−jByj

)′

×P

(
Aix +

i∑
j=1

Ai−jByj

)

+cr

(
Arx +

r∑
j=1

Ar−jByj

)′
(A′PA + ϕkk′)

×
(

Arx +
r∑

j=1
Ar−jByj

)

+(1 − σc)ϕ
r∑

i=2
ci−1

(
yi − k′Ai−1x − k′ i−1∑

j=1
Ai−1−jByj

)2

−σ x ′Px − σcϕ (y1 − k′x)2

(3.16)

Consider the continuous, homogeneous of degree 1,
function defined by:

K(x, y1, ..., yr ) :

= −L−1(x)κ(x, y1, ..., yr )if
∣∣pκ(x, y1, ..., yr )

−b(x, y1, ..., yr )L(x)
∣∣ < aL2(x)

−p−1 (aL(x) + b(x, y1, ..., yr )) ifpκ(x, y1, ..., yr )

−b(x, y1, ..., yr )L(x) ≥ aL2(x)

p−1 (aL(x) − b(x, y1, ..., yr )) ifpκ(x, y1, ..., yr )

−b(x, y1, ..., yr )L(x) ≤ −aL2(x) (3.17)

Suppose that the following inequalities hold:

p

(
κ(x, y1, ..., yr )

L(x)

)2

− 2b(x, y1, ..., yr )
κ(x, y1, ..., yr )

L(x)
+ c(x, y1, ..., yr ) ≤ 0,

for all (x, y . . . , yr ) ∈ �n × �r with pκ(x, y1, . . . , yr )

− b(x, y1, . . . , yr )L(x) ≥ aL2(x) (3.18)

−p−1 (aL(x) + b(x, y1, . . . , yr ))2 + c(x, y1, . . . , yr )

+ 2aκ(x, y1, . . . , yr ) ≤ 0,

for all (x, y1, . . . , yr ) ∈ �n × �r with pκ(x, y1, . . . , yr )

− b(x, y1, . . . , yr )L(x) ≥ aL2(x) (3.19)

−p−1 (aL(x) − b(x, y1, . . . , yr ))2

+ c(x, y1, . . . , yr ) − 2aκ(x, y1, . . . , yr ) ≤ 0,

for all (x, y1, . . . , yr ) ∈ �n × �r with pκ(x, y1, . . . , yr )

− b(x, y1, . . . , yr )L(x) ≤ −aL2(x) (3.20)

Then 0 ∈ �n × �r is robustly globally exponentially stable
for the closed-loop system:

x(t + 1) = Ax(t) + By1(t) + d(t)Gx(t)
yi(t + 1) = yi+1(t), i = 1, ..., r

x(t) ∈ �n, yi(t) ∈ � (i = 1, ..., r) ,

yr+1(t) = u(t) ∈ �, d(t) ∈ D = [−a, a],

(3.21)

with (1.7) and (3.17).

Remark 3.3: Inequalities (3.18), (3.19) and (3.20) cannot
be guaranteed by design. They are the inequalities that allow
us to calculate (numerically) the lowest upper bound for
the uncertainty magnitude a > 0 for which robust global
exponential stability holds for the closed-loop system (3.21)
with (1.7) and (3.17). The use of inequalities (3.18), (3.19)
and (3.20) is illustrated in the example below.

Proof: For c > 1, ϕ > 0, we consider the Lyapunov func-
tion V̄ : �n × �r → �+ defined by (2.11) with ai(s) ≡
ϕs2 for i = 1, . . . , r , k(x) = k′x and V (x) = x′Px for the
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disturbance-free discrete-time system (1.4) with f (x, u) =
Ax + Bu, x ∈ �n, u ∈ �(this is the control system that cor-
responds to the nominal value of the disturbance d = 0):

V̄ (zr ) := x ′Px

+
r∑

i=1
ci

(
Aix +

i∑
j=1

Ai−jByj

)′
P

(
Aix +

i∑
j=1

Ai−jByj

)

+cϕ (y1 − k′x)2 + ϕ
r∑

i=2

ci

(
yi − k′Ai−1x − k′ i−1∑

j=1
Ai−1−jByj

)2

,

(3.22)

where zr := (x, y1, . . . , yr ) ∈ �n × �r . Notice that the
formula (3.22) coincides with formula (2.11), since we
have Fi(zi) = Aix + ∑i

j=1 Ai−jByj , where the vector
fields Fi(zi), i = 0, 1, . . . , r + 1 are defined by the recur-
sive formula (2.9). Using (3.22) and definitions (3.12),
(3.13), (3.14), (3.15) and (3.16), we obtain for all
(x, y1, . . . , yr , u, d) ∈ �n × �r × � × �:

V̄ (Ax + By1 + dGx, y2, ..., yr , u)
= pu2 + 2b(x, y1, y2, ..., yr )u

+ 2d (κ(x, y1, y2, ..., yr ) + L(x)u)
+ c(x, y1, y2, ..., yr ) + σ V̄ (x, y1, y2, ..., yr )

+ (
d2 − a2

) ( r∑
i=0

cix ′G′(Ai)′P (Ai)Gx

+ϕ
r∑

i=1
ci

(
dk′Ai−1Gx

)2)
(3.23)

Since P ∈ �n×n is positive definite, it follows that
the coefficient of d2 in (3.23) is non-negative, i.e.∑r

i=0 cix′G′(Ai)′P (Ai)Gx + ϕ
∑r

i=1 ci
(
dk′Ai−1Gx

)2 ≥
0. Therefore, it follows from (3.23) for all
(x, y1, . . . , yr , u) ∈ �n × �r × �:

max
|d|≤a

V̄ (Ax + By1 + dGx, y2, ..., yr , u)

= pu2 + 2b(x, y1, y2, ..., yr )u
+ 2a |κ(x, y1, y2, ..., yr ) + L(x)u|
+ c(x, y1, y2, ..., yr ) + σ V̄ (x, y1, y2, ..., yr )

(3.24)

It follows from the minimisation of the function
defined in (3.24) that the minimiser must satisfy u =
K(x, y1, . . . , yr ), where K : �n × �r → � is defined by
(3.17). Finally, inequalities (3.18), (3.19) and (3.20) guar-
antee that the inequality

max
|d|≤a

V̄ (Ax + By1 + dGx, y2, ..., yr ,

K(x, y1, y2, ..., yr )) ≤ σ V̄ (x, y1, y2, ..., yr ) (3.25)

holds for all (x, y1, . . . , yr ) ∈ �n × �r . The conclusion of
the theorem is a consequence of (3.25) and Proposition 2.3
in Karafyllis and Jiang (2011).

A similar result with that of Theorem 3.2 holds for the case
r = 1.

Notice that Theorem 3.2 does not give a complete an-
swer to the Lyapunov redesign procedure for the simple
system (3.21). However, the control practitioner can use
the formulae in the statement of Theorem 3.2 and se-
lect values for the constants c > 1, ϕ > 0, σ ∈ [0, 1) so
that the value of a ≥ 0 becomes as large as possible and
thus minimise the sensitivity with respect to modelling
errors.

Example 3.4: The importance of Lyapunov redesign will
be illustrated by means of system (2.18) for r = 1, which
was studied in Example 2.3. We consider again the Lya-
punov function defined by (2.22) for c > 0 and ϕ > −1.
For r = 1, we get for all (x, y1) ∈ �2, d ∈ �:

V̄ (x + dx + y1, u) = (x + dx + y1)2

+ (1 + ϕ)c (x + dx + y1 + u)2

= (x + y1)2 + (1 + ϕ)c (x + y1 + u)2

+ (1 + c(1 + ϕ)) d2x2 + 2dx (2x + 2y1 + u)

The above equality implies that:

max
|d|≤a

V̄ (x + dx + y1, u)

= qu2 + (1 + q) a2x2 + 2a
∣∣2x2 + 2xy1 + xu

∣∣
+ (1 + q) (x + y1)2 + 2qu (x + y1) ,

where q = c(1 + ϕ) > 0. The feedback law is defined as
the minimiser of the above quantity, i.e.

u = −
(

1 + a

q

)
x − y1, for x2 + xy1 ≥ a

q
x2 (3.26)

u = −
(

1 − a

q

)
x − y1, for x2 + xy1 ≤ −a

q
x2 (3.27)

u = −2x − 2y1, for |x + y1| <
a

q
|x| (3.28)

Figure 1 shows the three regions in the state space that
are involved in (3.26), (3.27) and (3.28). Notice that the
feedback law defined by (3.26), (3.27) and (3.28) is a con-
tinuous, piecewise linear feedback law, which is homoge-
neous of degree 1.

The reader should notice the difference between the
above feedback law and the feedback law defined by (2.20)
with r = 1, which was obtained with no Lyapunov redesign.
In order to find the value for q = c(1 + ϕ) > 0 that allows
a ≥ 0 to be as large as possible, we follow a robustness anal-
ysis similar to the analysis of Example 2.3. The existence
of σ ∈ [0, 1) so that max

|d|≤a
V̄ (x + dx + y1, u) ≤ σ V̄ (x, y1)

for all (x, y1) ∈ �2 and u given by (3.26), (3.27) and (3.38)
is equivalent to the following inequalities:
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Figure 1. The three regions in the state space, which are involved in (3.26), (3.27) and (3.28), for ζ = a
q

= 0.5.

(
2a − a2

q
+ (1 + q) a2 − σ + 1 − σq

)
x2

+ 2 (a + 1 − σq) xy1 + (1 − σq)y2
1 ≤ 0, for

x2 + xy1 ≥ a

q
x2

(
(1 + q) a2 − 2a − a2

q
− σ + 1 − σq

)
x2

−2 (a + σq − 1) xy1 + (1 − σq)y2
1 ≤ 0, for

x2 + xy1 ≤ −a

q
x2

(1 + q − σq) (x + y1)2

+ (
(1 + q) a2 − σ

)
x2 ≤ 0, for |x + y1| <

a

q
|x|

The existence of σ ∈ [0, 1) that satisfies the above in-
equalities is equivalent to the following inequalities:(

2a − a2

q
+ (1 + q) a2 − 1

)
cos2(θ )

+ (a + 1 − q) sin(2θ ) < q − 1 for all θ ∈ [0, 2π )

with sin(2θ ) ≥ 2

(
a

q
− 1

)
cos2(θ )(

(1 + q) a2 − 2a − a2

q
− 1

)
cos2(θ )

+ (1 − a − q) sin(2θ ) < q − 1 for all θ ∈ [0, 2π )

with sin(2θ ) ≤ −2

(
a

q
+ 1

)
cos2(θ )

(
(1 + q) a2 − 1

)
cos2(θ ) + 1

+ sin(2θ ) < 0, for all θ ∈ [0, 2π ) with

−2

(
a

q
+ 1

)
cos2(θ ) < sin(2θ ) < 2

(
a

q
− 1

)
cos2(θ )

The numerical evaluation of all the above quantities
shows that for a = 0.535 all the above inequalities hold with
q = 1.81. The reader should notice the improvement com-
pared to the feedback design with no Lyapunov redesign of
Example 2.3, where the necessary and sufficient condition
for robust global asymptotic stability was a < 0.5.

Even better results can be obtained if we notice that a
feedback stabiliser for the delay-free system can be given
by the formula k(x) = −βx, where β ∈ (0, 2).)

4. Concluding remarks

This work studied the design problem of feedback stabilis-
ers for discrete-time systems with input delays. A backstep-
ping procedure is proposed for disturbance-free discrete-
time systems. The feedback law designed by using back-
stepping coincides with the predictor-based feedback law
used in continuous-time systems with input delays. As in
the continuous-time case, the backstepping procedure al-
lows a simultaneous determination of a stabilising feedback
and a Lyapunov function for the corresponding closed-loop
system (Lemmas 2.1 and 2.2).

However, simple examples demonstrate that the sensi-
tivity of the closed-loop system with respect to modelling
errors increases as the value of the delay increases (Example
2.3). The paper proposed a Lyapunov redesign procedure
that can minimise the effect of the uncertainty. The point
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values of the feedback law can be found as the solution of a
specific minimax problem (Theorem 3.1). Specific results
are provided for linear single-input discrete-time systems
with multiplicative uncertainty (Theorem 3.2). The feed-
back law that guarantees robust global exponential stability
is a nonlinear, homogeneous of degree 1 feedback law.
Explicit inequalities allow the determination of the lowest
upper bound for the magnitude of the uncertainty for which
robust global exponential stability holds for the closed-
loop system. A simple example showed the importance of
the Lyapunov redesign procedure (Example 3.4).

Future research on discrete-time systems with input
delays may focus on the important topic of uncertain
delays.
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