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a b s t r a c t

This paper presents new results concerning the observer design for certain classes of nonlinear systems
with both sampled and delayed measurements. By using a small gain approach we provide sufficient
conditions, which involve both the delay and the sampling period, ensuring exponential convergence
of the observer system error. The proposed observer is robust with respect to measurement errors and
perturbations of the sampling schedule. Moreover, new results on the robust global exponential state
predictor design problem are provided, for wide classes of nonlinear systems.
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1. Introduction

In the last decades, the design of nonlinear observers for contin-
uous systems with communication constraints has received great
attention. This interest is motivated by many engineering appli-
cations, such as sampled-data systems, network control systems
(NCSs), and quantized systems. In the case of sampled-data sys-
tems, the output is available only at sampling instants. For linear
systems it is usually possible to compute the discrete time model
of the continuous time system. This is not the case for nonlin-
ear systems where the exact discrete time model is generally not
available.

In the nonlinear case there are several approaches in the
literature for the design of sampled-data observers.

(1) One approach is the design of a discrete observer by using a
consistent approximation of the exact discretized model. This
approach usually results in the semi-global practical stability
of the observation error. More details on this method can be
found in [1] (see also references therein).
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(2) The second approach is the hybrid approach. The hybrid
approach presents many variations in the literature.
(a) A first approach is based on a mixed continuous and dis-

crete design. This approach has been inspired by Jazwin-
ski in [2], who introduced the continuous–discrete Kalman
filter to solve a filtering problem for stochastic continu-
ous–discrete time systems. In [3] the authors use this ap-
proach to write a discrete–continuous version of the well
known high gain observer (see [4]). In [5], observers for a
MIMO class of state affine systems where the dynamical
matrix depends on the inputs have been designed when
the inputs are regularly persistent. Thisworkwas extended
to adaptive observers in [6]. In [7], a similar method has
been used for a larger class of systems and applied to the
observation of an emulsion copolymerization process. The
observation of a class of systems with output injection
has been treated in [8] and in [9] a high gain continu-
ous–discrete observer has been developed by using con-
stant observation gains. In [10], the authors extend the
work of [9] to the discrete-timemeasurement case. Hybrid
observers based on sampled-data redesign have been stud-
ied in [11] (see also the references in [12]).

(b) Recently, a new hybrid observer design based on emu-
lation has been applied. An inter-sample predictor com-
bined with the continuous-time design has been proposed
in [13]. Other emulation techniques have been studied
in [14,15]. The results of [13] have been extended in [16].
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On the other hand, the observation of systems with output de-
layedmeasurements has been considered in [17]. The authors pro-
posed cascade predictors for a wide class of nonlinear systems to
handle the delay of the output. Another kind of cascade predic-
tors have been proposed in [18,19]. The convergence has been de-
rived by using Lyapunov–Krasovskii tools. The design of observers
for linear detectable systems with sampled and delayed measure-
ments was treated in [20] by using a descriptor system approach
and a Lyapunov–Krasovskii functional. The authors proposed a hy-
brid observer, without using an inter-sample predictor, for a class
of linear systems and derived sufficient conditions based on linear
matrix inequalities to guarantee exponential convergence of the
observation error. This idea has also been used in [21,22] for some
classes of nonlinear systems with sampled measurements.

In this work, we present several results concerning the design
of predictors and observers for certain classes of nonlinear systems
with sampled and delayed measurements by using small gain
arguments. We focus on nonlinear forward complete systems of
the form

ẋ = f (x, u), x ∈ ℜ
n, u ∈ ℜ

m (1.1)

where f : ℜ
n
×ℜ

m
→ ℜ

n is a locally Lipschitz vector field and the
output is given by

y = h(x) (1.2)

where h : ℜ
n

→ ℜ
k is a smooth mapping. We suppose that

delayed and corruptedmeasurements are available at discrete time
instants (the sampling times):

y(τi) = h(x(τi − r))+ v(τi), i = 0, 1, 2, . . . (1.3)

where π = {τi}
∞

i=0 is the set of sampling times (a partition of
ℜ+), r ≥ 0 is the constant (and known) measurement delay
and v is the measurement noise. Section 2 of the present paper
provides a general result (Theorem 2.3), which guarantees that the
combination of

(i) an inter-sample predictor, which attempts to approximate the
continuous output signal y(t) = h(x(t − r)) for which only
sampled measurements are available,

(ii) a robust global exponential observer which uses the approx-
imation provided by the inter-sample predictor and provides
an estimate of x(t − r) (the delayed state vector), and

(iii) a robust global exponential r-predictor for (1.1), which uses
the estimate of x(t− r) provided by the observer and provides
an estimate of x(t) (the current state vector)

will yield a robust global exponential observer with sampled and
delayed measurements. Robustness with respect to measurement
errors and perturbations of the sampling schedule is guaranteed by
Theorem 2.3.

Section 3 of the present work focuses on globally Lipschitz
systems, for which robust global exponential state predictors can
be designed for an arbitrary prediction horizon (Theorem 3.1). The
linear time invariant case is treated as a special case of globally
Lipschitz systems. It has to be noticed that the classes of observers
that can be used in the proposed observer design include several
well-known observers such as the high gain observers in [4] and
the nonlinear observers designed in [23]. Section 4 of the present
paper is devoted to nonlinear systems with a robustly globally
asymptotically stable set, for which robust global exponential
state predictors can be designed for a sufficiently small prediction
horizon (Proposition 4.1). The Appendix contains the proofs of the
existence of exponential state predictors for the aforementioned
classes of nonlinear systems.
Notation. Throughout this paper, we adopt the following notation:

∗ ℜ+ := [0,+∞). A partition of ℜ+ is a set π = {τi}
∞

i=0 with
τ0 = 0, τi+1 > τi for all i ≥ 0 and limi→+∞ τi = +∞.
∗ By L∞(I;U), where I ⊆ ℜ is an interval and U ⊆ ℜ
m is a non-

empty set, we denote the space of Lebesgue measurable and
essentially bounded functions u : I → U . For u ∈ L∞(I;U) we
denote by ∥u∥ the essential supremum of u on I ⊆ ℜ. If I ⊆ ℜ

is an unbounded interval then L∞

loc(I;U) denotes the space of
Lebesguemeasurable and locally essentially bounded functions
u : I → U . By C0(A;U), where A ⊆ ℜ

n and U ⊆ ℜ
m are

non-empty sets, we denote the space of continuous functions
u : A → U . By Ck(A;U), where k ≥ 1 is an integer, we denote
the class of functions on A ⊆ ℜ

n with continuous derivatives of
order k, which take values in U ⊆ ℜ

m.
∗ By [x] we denote the integer part of x ∈ ℜ.
∗ For a vector x ∈ ℜ

n, we denote by x′ its transpose and by |x| its
Euclidean norm. A′

∈ ℜ
n×m denotes the transpose of thematrix

A ∈ ℜ
m×n and |A| denotes the induced norm of the matrix

A ∈ ℜ
m×n, i.e., |A| = sup { |Ax| : x ∈ ℜ

m, |x| = 1}.
∗ For a smooth vector field Ψ : ℜ

l
→ ℜ

n,DΨ (z) denotes the
Jacobian matrix of Ψ at z ∈ ℜ

l.
∗ For a function V ∈ C1(A; ℜ), the gradient of V at x ∈

A ⊆ ℜ
n, denoted by ∇V (x), is the row vector ∇V (x) =

∂V
∂x1

(x) · · ·
∂V
∂xn

(x)

. The Lie derivative of V at x ∈ A ⊆ ℜ

n

along the smooth vector field f (x, u) is denoted by Lf V (x, u) =

∇V (x)f (x, u).

Throughout the paper, we adopt the notion of forward complete-
ness introduced in [24]. In otherwords, a finite dimensional system
described by ordinary differential equationswith inputs is forward
complete if and only if for every initial condition and for every al-
lowable input the corresponding solution exists for all t ≥ 0.

2. Robust global exponential observer with sampled and
delayed measurements

Consider the forward complete system (1.1), (1.2). We first
provide the definitions of the Robust Global Exponential Observer
for (1.1) and the robust global exponential r-predictor for (1.1).

Definition 2.1. Consider the system

ż = F(z, y + v, u)

x̂ = Ψ (z)

z ∈ ℜ
l, y ∈ ℜ

k, v ∈ ℜ
k, u ∈ ℜ

m, x̂ ∈ ℜ
n

(2.1)

where F : ℜ
l
×ℜ

k
×ℜ

m
→ ℜ

l andΨ : ℜ
l
→ ℜ

n are smooth vector
fields. We say that system (2.1) is a Robust Global Exponential Ob-
server for (1.1), if there exist a non-decreasing functionM : ℜ+ →

ℜ+ and constants σ > 0, γ ≥ 0 such that for every (x0, z0, u, v) ∈

ℜ
n
×ℜ

l
× L∞ (ℜ+; ℜ

m)× L∞

loc


ℜ+; ℜ

k

the solution (x(t), z(t)) of

(1.1), (1.2) and (2.1) with initial condition (x(0), z(0)) = (x0, z0)
corresponding to inputs (u, v) ∈ L∞ (ℜ+; ℜ

m)× L∞

loc


ℜ+; ℜ

k

ex-

ists for all t ≥ 0 and satisfies the following estimate for all t ≥ 0:x̂(t)− x(t)
 ≤ e−σ tM (|x0| + |z0| + ∥u∥)

+ γ sup
0≤s≤t


e−σ(t−s)

|v(s)|

. (2.2)

The reader should notice that the variable x̂ is the state estima-
tion provided by the Robust Global Exponential Observer (2.1). On
the other hand, the input v ∈ L∞

loc


ℜ+; ℜ

k

is used for the quan-

tification of the effect of the measurement error. Finally, inequal-
ity (2.2) is an Input-to-Output Stability (IOS) inequality expressed
with a ‘‘fading memory’’ estimate (see [25]), which guarantees ex-
ponential convergence for the error-free case.
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Definition 2.2. Let A(ℜ+; ℜ
n) be a non-empty subset of locally

bounded functions z : ℜ+ → ℜ
n. Consider a deterministic system

of the form

ξ̇ (t) = Fp (ξt , ut , z(t))
x̃(t) = G(ξt , ut , z(t))
ξ(t) ∈ ℜ

q, x̃(t) ∈ ℜ
n, u(t) ∈ ℜ

m, z(t) ∈ ℜ
n

(2.3)

where (ξt) (θ) = ξ(t + θ), (ut) (θ) = u(t + θ), for θ ∈ [−r, 0],G :

C0([−r, 0]; ℜ
q) × L∞([−r, 0]; ℜ

m) × ℜ
n

→ ℜ
n is a continuous

mapping and r > 0 is a positive constant. Assume that themapping
Fp : C0([−r, 0]; ℜ

q)× L∞([−r, 0]; ℜ
m)× ℜ

n
→ ℜ

q is continuous
and such that for every (x0, ξ0, u, z) ∈ C0([−r, 0]; ℜ

n)× C0([−r,
0]; ℜ

q)×L∞([−r,+∞); ℜ
m)×A(ℜ+; ℜ

n) the solution (x(t), ξ(t))
∈ ℜ

n
× ℜ

k of (1.1) and (2.3) with initial condition ξ(θ) =

(ξ0) (θ), x(θ) = (x0) (θ), θ ∈ [−r, 0] and corresponding to inputs
(u, z) ∈ L∞([−r,+∞); ℜ

m)×A(ℜ+; ℜ
n) is unique, defined for all

t ≥ 0 and satisfiesx̃(t)− x(t)
 ≤ e−σ ta


∥x0∥ + ∥ξ0∥ + ∥u∥ + sup

0≤s≤r
|z(s)|


+ P sup

0≤s≤t


e−σ(t−s)

|z(s)− x(s − r)|

, ∀t ≥ 0 (2.4)

for certain non-decreasing function a : ℜ+ → ℜ+ and certain
constants P ≥ 0, σ > 0. Then system (2.3) is called a robust global
exponential r-predictor for (1.1) with input z ∈ A(ℜ+; ℜ

n).

The reader should notice that the input z ∈ A(ℜ+; ℜ
n) pro-

vides an estimation of the delayed state vector x(t − r) to the
robust global exponential r-predictor (2.3). Based on the knowl-
edge of the applied input and on the knowledge of z(t), the output
x̃(t) provides an estimation of the current value of the state vec-
tor x(t). Inequality (2.4) is an Input-to-Output Stability inequality
expressedwith a ‘‘fadingmemory’’ estimate (see [25]),which guar-
antees exponential convergence for the case where z(t) coincides
with x(t − r).

We next provide the key assumptions of this section. The as-
sumptions should be compared with the assumptions of the main
result in [13]. The assumptions introduced here aremore demand-
ing but this is expected because here we consider systems with
inputs, with delayed measurements and we require exponential
convergence.

Assumption (H1). System (1.1) admits a Robust Global Exponen-
tial Observer given by (2.1). Moreover, the system

ż(t) = F(z(t), w(t), u(t − r))
ẇ(t) = Lf h(Ψ (z(t)), u(t − r))

(2.5)

is forward complete for inputs u ∈ L∞ ([−r,+∞); ℜ
m).

Furthermore, the system

ż(t) = F(z(t), w(t), u(t − r)) (2.6)

is forward complete for inputs (u, w) ∈ L∞ ([−r,+∞); ℜ
m) ×

L∞

loc


ℜ+; ℜ

k

.

Assumption (H2). There exists a non-empty subset of locally
bounded functions z : ℜ+ → ℜ

n denoted by A(ℜ+; ℜ
n) such that

system (1.1) admits a robust global exponential r-predictor for
(1.1) with input z ∈ A(ℜ+; ℜ

n), which is given by (2.3). Moreover,
for every (z0, u, w) ∈ ℜ

l
×L∞ ([−r,+∞); ℜ

m)×L∞

loc


ℜ+; ℜ

k

, the

output signal x̂(t) = Ψ (z(t)) produced by the unique solution of
(2.6) with initial condition z(0) = z0 and corresponding to inputs
(u, w) ∈ L∞ ([−r,+∞); ℜ

m)× L∞

loc


ℜ+; ℜ

k

is a function of class

A(ℜ+; ℜ
n).
Assumption (H3). There exist a constant C > 0, a continuous
function T : ℜ

n
× ℜ

l
→ ℜ+ and a non-decreasing function N :

ℜ+ → ℜ+ such that for every (x0, z0, u, v) ∈ ℜ
n

× ℜ
l
×

L∞(ℜ+; ℜ
m)× L∞

loc(ℜ+; ℜ
k) the solution (x(t), z(t)) of (1.1), (1.2)

and (2.1) with initial condition (x(0), z(0)) = (x0, z0) correspond-
ing to inputs (u, v) ∈ L∞(ℜ+; ℜ

m) × L∞

loc(ℜ+; ℜ
k) satisfies the

following estimate for all t ≥ T (x0, z0):Lf h(x̂(t), u(t))− Lf h(x(t), u(t))


≤ e−σ tN (|x0| + |z0| + ∥u∥)+ C sup
0≤s≤t


e−σ(t−s)

|v(s)|

. (2.7)

The key difference with the assumptions made in [13] is the
fact that inequality (2.7) is not required to hold for all times:
inequality (2.7) holds only after an initial transient period. This is a
major generalization which allows the consideration and study of
many classes of nonlinear systems which do not satisfy inequality
(2.7) for all times. For example, nonlinear systems with a globally
asymptotically stable compact set (studied in [16]) do not satisfy
the assumptions made in [13] but satisfy Assumption (H3).

The main result of the section follows. The following theorem
guarantees that there exists a global exponential sampled-data
observer for system (1.1) under Assumptions (H1)–(H3).Moreover,
the observer is robust to measurement errors and perturbations of
the sampling schedule.

Theorem 2.3. Consider system (1.1) under Assumptions (H1)–(H3).
For every pair of constants 0 < b ≤ B satisfying

CB exp (σB) < 1 (2.8)

there exists a non-decreasing function Q : ℜ+ → ℜ+ such that
for every partition π = {τi}

∞

i=0 of ℜ+ with supi≥0 (τi+1 − τi) ≤ B
and infi≥0 (τi+1 − τi) ≥ b, for every (z0, w0, u, v) ∈ ℜ

l
× ℜ

k
×

L∞ ([−r,+∞); ℜ
m)×L∞

loc


ℜ+; ℜ

k

, (x0, ξ0) ∈ C0([−r, 0]; ℜ

n)×

C0([−r, 0]; ℜ
q) the unique solution of the system (1.1) with

ż(t) = F(z(t), w(t), u(t − r))
x̂(t) = Ψ (z(t)) (2.9)

ẇ(t) = Lf h(x̂(t), u(t − r)), t ∈ [τi, τi+1) (2.10)

w(τi+1) = h(x(τi+1 − r))+ v(τi+1) (2.11)

ξ̇ (t) = Fp

ξt , ut , x̂(t)


x̃(t) = G(ξt , ut , x̂(t))

(2.12)

with initial condition ξ(θ) = (ξ0) (θ), x(θ) = (x0) (θ), θ ∈ [−r, 0],
(z(0), w(0)) = (z0, w0) corresponding to inputs (u, v) ∈ L∞([−r,
+∞); ℜ

m) × L∞

loc


ℜ+; ℜ

k

is defined for all t ≥ 0 and satisfies the

estimatex̃(t)− x(t)
 ≤ e−σ tQ


∥x0∥ + ∥ξ0∥ + ∥u∥ + |z0| + |w0|

+ sup
0≤s≤t

(|v(s)|)


+
γ P exp(σB)

1 − CB exp(σB)

× sup
0≤s≤t

(e−σ(t−s)
|v(s)|), ∀t ≥ 0. (2.13)

Remark 2.4. (a) It should be clear that the input v ∈ L∞

loc


ℜ+; ℜ

k


is introduced in order to describe the effect of measurement
errors. The partition π = {τi}

∞

i=0 is the sampling partition,
i.e., the set of sampling times.

(b) The structure of the observer is exactly what was described in
the Introduction. More specifically,
– The continuous signal w(t) attempts to approximate the

continuous output signal y(t) = h(x(t − r)) for which only
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sampled measurements are available. The signal w(t) is
updated in an impulsive way when a new measurement
becomes available (at the sampling times π = {τi}

∞

i=0).

– The robust global exponential observer is used with w(t) as
input. The observer is used in order to provide an estimate
x̂(t) of x(t − r).

– The signal x̂(t) is used by the robust global exponential
r-predictor for (1.1). The observer provides an estimate x̃(t)
of x(t).

(c) Clearly, inequality (2.13) is an IOS-like inequality, which guar-
antees the IOS property from the input v ∈ L∞

loc


ℜ+; ℜ

k

in an

almost uniform way for the input u ∈ L∞ ([−r,+∞); ℜ
m) for

the overall system (1.1), (2.9), (2.10), (2.11) and (2.12). More
specifically, the effect of the input in (2.13) is expressed by
means of a ‘‘fading memory estimate’’ (see [25]), which is par-
ticularly useful for proving exponential stability in the case
where v is a function of the state variables. Fading memory es-
timates always imply ‘‘Sontag-like’’ estimates (i.e. an estimate
with sup0≤s≤t (|v(s)|) in place of sup0≤s≤t


e−σ(t−s) |v(s)|


) and

are equivalent of finite-dimensional systems described by
ordinary differential equations. However, the reader should
notice that for hybrid systems with delays the equivalence be-
tween ‘‘fadingmemory’’ estimates and ‘‘Sontag-like’’ estimates
has not been established yet. Moreover, fading memory esti-
mates play an important role in the proof of Theorem 2.3.

(d) The reader may be surprised by the non-appearance of the
lower diameter of the sampling partition (b) in (2.8). Indeed,
inequality (2.8) depends only on the upper diameter of the
sampling partition. However, this does not mean that b is
irrelevant. The proof of Theorem 2.3 shows that when b
becomes smaller and smaller (or more correctly when the
cardinal number of sampling times which are less than r
becomes larger and larger) then the non-decreasing function
Q : ℜ+ → ℜ+ involved in (2.13) becomes larger and larger.

Proof. Let 0 < b ≤ B be constants such that (2.8) holds and let
(z0, w0, u, v) ∈ ℜ

l
× ℜ

k
× L∞ ([−r,+∞); ℜ

m) × L∞

loc


ℜ+; ℜ

k

,

(x0, ξ0) ∈ C0([−r, 0]; ℜ
n) × C0([−r, 0]; ℜ

q) be arbitrary. Let
π = {τi}

∞

i=0 be an arbitrary sampling partition of ℜ+ with
supi≥0 (τi+1 − τi) ≤ B and infi≥0 (τi+1 − τi) ≥ b.

The solution of system (1.1) with (2.9)–(2.12)with initial condi-
tion ξ(θ) = (ξ0) (θ), x(θ) = (x0) (θ), θ ∈ [−r, 0], (z(0), w(0)) =

(z0, w0) corresponding to inputs (u, v) ∈ L∞ ([−r,+∞);U) ×

L∞

loc


ℜ+; ℜ

k

exists for all t ≥ 0. Indeed, for every integer i ≥ 0 the

solution (x(t), z(t), w(t)) of (1.1), (2.9)–(2.11) exists on [τi, τi+1]

by virtue of Assumption (H1). Therefore (by induction and since
τi → +∞), the solution (x(t), z(t), w(t)) of (1.1), (2.9)–(2.11) ex-
ists for all t ≥ 0 (no Zeno behavior can appear since the sampling
partition satisfies infi≥0 (τi+1 − τi) ≥ b). Assumption (H2) guaran-
tees that the output signal x̂(t) = Ψ (z(t)) is a function of class
A(ℜ+; ℜ

n). Therefore, Definition 2.2 guarantees that the solution
ξ(t) of (2.12) exists for all t ≥ 0 and satisfies the estimatex̃(t)− x(t)

 ≤ e−σ ta


∥x0∥ + ∥ξ0∥ + ∥u∥ + sup
0≤s≤r

x̂(s)
+ P sup

0≤s≤t


e−σ(t−s)

x̂(s)− x(s − r)
 , ∀t ≥ 0. (2.14)

From this point, the proof is divided into two parts:
Part 1: Estimates for t ≥ r
Part 2: Estimates for an initial transient period.
Part 1: Estimates for t ≥ r .
Definition (2.1) guarantees that the following estimate holds for

all t ≥ r:x̂(t)− x(t − r)
 ≤ e−σ(t−r)M (∥x0∥ + |z(r)| + ∥u∥)

+ γ sup
r≤s≤t

(e−σ(t−s)
|w(s)− h(x(s − r))|) (2.15)

and Assumption (H3) guarantees that the following estimate holds
for all t ≥ r + T (x(0), z(r)):Lf h(x̂(t), u(t − r))− Lf h(x(t − r), u(t − r))


≤ e−σ(t−r)N (∥x0∥ + |z(r)| + ∥u∥)

+ C sup
r≤s≤t


e−σ(t−s)

|w(s)− h(x(s − r))|


(2.16)

where T : ℜ
n

× ℜ
l

→ ℜ+ is the time function involved in
Assumption (H3). Moreover, for all t ∈ [τi, τi+1) with τi ≥ r , we
obtain the following from (2.10) and (2.11):

|w(t)− h(x(t − r))| ≤ |v(τi)| + (t − τi) sup
τi≤s≤t

|Lf h(x̂(s),

u(s − r))− Lf h(x(s − r), u(s − r))|.

Notice that for all t ≥ r + B there exists τi ≥ r with t ∈ [τi, τi+1)
and t − τi ≤ B. Therefore, we get the following from the above
inequality for all t ≥ r + B:

sup
r+B≤s≤t


|w(s)− h(x(s − r))| eσ s


≤ eσB sup

r≤s≤t


|v(s)| eσ s


+ BeσB sup

r≤s≤t
(eσ s|Lf h(x̂(s),

u(s − r))− Lf h(x(s − r), u(s − r))|). (2.17)

For all t ≥ r+max(T (x(0), z(r)), B) it holds that supr≤s≤t(eσ s|w(s)
− h(x(s − r))|) = supr≤s≤r+B(eσ s|w(s) − h(x(s − r))|) or
supr≤s≤t(eσ s|w(s)−h(x(s− r))|) = supr+B≤s≤t(eσ s|w(s)−h(x(s−
r))|). Therefore, we get the following from (2.16) and (2.17) for all
t ≥ R, where R := r + max(T (x(0), z(r)), B):

sup
R≤s≤t


eσ s
Lf h(x̂(s), u(s − r))− Lf h(x(s − r), u(s − r))


≤ eσ rN (∥x0∥ + |z(r)| + ∥u∥)+ CeσB sup

r≤s≤t


eσ s |v(s)|


+ CBeσB sup

r≤s≤t
(eσ s|Lf h(x̂(s), u(s − r))

− Lf h(x(s − r), u(s − r))|) (2.18)

or

sup
R≤s≤t


eσ s
Lf h(x̂(s), u(s − r))− Lf h(x(s − r), u(s − r))


≤ eσ rN (∥x0∥ + |z(r)| + ∥u∥)

+ C sup
r≤s≤r+B


eσ s |w(s)− h(x(s − r))|


. (2.19)

Notice that (2.8), (2.18) and (2.19) in conjunction with the fact
that supr≤s≤t(eσ s|Lf h(x̂(s), u(s − r))− Lf h(x(s − r), u(s − r))|) =

supr≤s≤R(eσ s|Lf h(x̂(s), u(s − r)) − Lf h(x(s − r), u(s − r))|) or
supr≤s≤t(eσ s|Lf h(x̂(s), u(s − r)) − Lf h(x(s − r), u(s − r))|) =

supR≤s≤t(eσ s|Lf h(x̂(s), u(s− r))− Lf h(x(s− r), u(s− r))|) give the
following for all t ≥ r:

sup
r≤s≤t


eσ s
Lf h(x̂(s), u(s − r))− Lf h(x(s − r), u(s − r))


≤ C sup

r≤s≤r+B


eσ s |w(s)− h(x(s − r))|


+

eσ r

1 − CBeσB

×N (∥x0∥ + |z(r)| + ∥u∥)+
CeσB

1 − CBeσB
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× sup
r≤s≤t


eσ s |v(s)|


+ sup

r≤s≤R
(eσ s|Lf h(x̂(s), u(s − r))

− Lf h(x(s − r), u(s − r))|). (2.20)

Inequality (2.17) in conjunction with (2.20) implies that the
following inequality holds for all t ≥ r:

sup
r≤s≤t


eσ s |w(s)− h(x(s − r))|


≤ eσB sup

r≤s≤t


eσ s |v(s)|


+

Beσ(r+B)

1 − CBeσB

×N (∥x0∥ + |z(r)| + ∥u∥)+
CBe2σB

1 − CBeσB

× sup
r≤s≤t


eσ s |v(s)|


+ BeσB sup

r≤s≤R
(eσ s|Lf h(x̂(s),

u(s − r))− Lf h(x(s − r), u(s − r))|)+ (1 + BeσBC)

× sup
r≤s≤r+B


eσ s |w(s)− h(x(s − r))|


. (2.21)

Inequality (2.15) in conjunction with (2.21) implies that the
following inequality holds for all t ≥ r:

sup
r≤s≤t


eσ s
x̂(s)− x(s − r)


≤ eσ rM (∥x0∥ + |z(r)| + ∥u∥)+

γ eσB

1 − CBeσB

× sup
r≤s≤t


eσ s |v(s)|


+ γ

Beσ(r+B)

1 − CBeσB

×N (∥x0∥ + |z(r)| + ∥u∥)+ γ (1 + BeσBC)
× sup

r≤s≤r+B


eσ s |w(s)− h(x(s − r))|


+ γ BeσB

× sup
r≤s≤R

(eσ s|Lf h(x̂(s), u(s − r))

− Lf h(x(s − r), u(s − r))|). (2.22)

Inequality (2.14) in conjunction with (2.22) implies that the
following inequality holds for all t ≥ 0:

sup
0≤s≤t

(eσ s|x̃(s)− x(s)|)

≤ a


∥x0∥ + ∥ξ0∥ + ∥u∥ + sup
0≤s≤r

|x̂(s)|


+ Peσ r

×M(∥x0∥ + |z(r)| + ∥u∥)+ Pγ
Beσ(r+B)

1 − CBeσB

×N(∥x0∥ + |z(r)| + ∥u∥)+
Pγ eσB

1 − CBeσB

× sup
0≤s≤t

(eσ s|v(s)|)+ Pγ (1 + BeσBC)

× sup
r≤s≤r+B

(eσ s|w(s)− h(x(s − r))|)+ P sup
0≤s≤r

(eσ s|x̂(s)

− x(s − r)|)+ Pγ BeσB sup
r≤s≤R

(eσ s|Lf h(x̂(s),

u(s − r))− Lf h(x(s − r), u(s − r))|). (2.23)

Part 2: Estimates for an initial transient period.
Initially, we assume that v is essentially bounded, i.e., v ∈

L∞

ℜ+; ℜ

k

. Using Lemma 2.2 in [24], Assumption (H1) and the

fact that the mapping Ψ (z) is continuous, we can guarantee the
existence of a non-decreasing function c : ℜ+ → ℜ+ such that for
every t ∈ [τi, τi+1) the following estimate holds:

|z(t)| + |w(t)| + |Ψ (z(t))| ≤ c(|z(τi)| + |w(τi)| + ∥u∥). (2.24)

It follows from (2.24) and the fact that infi≥0 (τi+1 − τi) ≥ b (which
directly implies that at most Ñ =

 r
b


points of the partition
π = {τi}
∞

i=0 are in the interval [0, r)), in conjunction with the
fact that the mapping h(x) is continuous, that there exists a non-
decreasing function c̃ : ℜ+ → ℜ+ such that

sup
0≤s≤r

x̂(s)+ sup
0≤s≤r

|w(s)| + sup
0≤s≤r

|z(s)|

≤ c̃ (|z0| + |w0| + ∥u∥ + ∥x0∥ + ∥v∥) . (2.25)

Since T (x, z) is continuous (recall that T : ℜ
n

× ℜ
l

→ ℜ+ is
the time function involved in Assumption (H3)), inequality (2.25)
implies that there exists a non-decreasing function φ : ℜ+ → ℜ+

such that

R = r + max(B, T (x(0), z(r)))
≤ φ (|z0| + |w0| + ∥u∥ + ∥x0∥ + ∥v∥) . (2.26)

It follows from Lemma 2.2 in [24], the fact that (1.1) is forward
complete, (2.24) and the fact that infi≥0 (τi+1 − τi) ≥ b (which
directly implies that at most N̂ = [

φ(|z0|+|w0|+∥u∥+∥x0∥+∥v∥)

b ] points
of the partition π = {τi}

∞

i=0 are in the interval [0, φ(|z0| + |w0| +

∥u∥ + ∥x0∥ + ∥v∥))) that there exists a non-decreasing function
c̄ : ℜ+ → ℜ+ such that

sup
r≤s≤R

Lf h(x̂(s), u(s − r))− Lf h(x(s − r), u(s − r))


+ sup
r≤s≤R

|w(s)− h(x(s − r))|

≤ c̄ (|z0| + |w0| + ∥u∥ + ∥x0∥ + ∥v∥) . (2.27)

Using (2.23), (2.25), (2.26), (2.27), it follows that there exists a
non-decreasing function Q : ℜ+ → ℜ+ such that the following
inequality holds for all t ≥ 0:

sup
0≤s≤t

(eσ s|x̃(s)− x(s)|) ≤ Q (∥x0∥ + ∥ξ0∥ + |w0| + |z0|

+ ∥u∥ + ∥v∥)+
Pγ eσB

1 − CBeσB

× sup
0≤s≤t

(eσ s|v(s)|). (2.28)

Inequality (2.13) is a direct consequence of (2.28) and the
causality property for system (1.1) with (2.9)–(2.12). The proof is
complete. �

3. Globally Lipschitz systems

In this section we consider the construction of global exponen-
tial sampled-data observers for globally Lipschitz systems.We con-
sider system (1.1), (1.2) and we assume the following.

Assumption (H4). There exists a constant L > 0 such that

|f (x, u)− f (z, u)| ≤ L |x − z| , ∀x, z ∈ ℜ
n, ∀u ∈ ℜ

m. (3.1)

Assumption (H5). There exists a symmetric, positive definite
matrix P ∈ ℜ

n×n, a constant q > 0 and matrices K ∈ ℜ
n×k,H ∈

ℜ
k×n such that

h(x) = Hx, ∀x ∈ ℜ
n (3.2)

(z − x)′P (f (z, u)− f (x, u))+ (z − x)′PKH(z − x)

≤ −q |z − x|2 , ∀x, z ∈ ℜ
n, ∀u ∈ ℜ

m. (3.3)

Assumptions (H4), (H5) are automatically satisfied for triangu-
lar systems of the form

ẋi = fi(u, x1, . . . , xi)+ xi+1, i = 1, . . . , n − 1
ẋn = fn(u, x1, . . . , xn)
y = x1 ∈ ℜ

x = (x1, . . . , xn) ∈ ℜ
n
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where the smooth mappings fi : ℜ
m

× ℜ
i
→ ℜ (i = 1, . . . , n) are

globally Lipschitz with respect to x ∈ ℜ
n (see [4]).

Assumption (H5) guarantees that (2.1) with l = n, F(z, y, u) =

f (z, u) + K (Hz − y) and Ψ (z) = z ∈ ℜ
n is a Robust Global

Exponential Observer for (1.1). Moreover, due to Assumptions
(H4), (H5), the system ż = f (z, u) + K (Hz − w) with inputs u, w
and the system ż = f (z, u)+K (Hz − w) , ẇ = Hf (z, u)with input
u, are forward complete. Consequently, Assumption (H1) holds.

Notice that, by virtue of (3.3), for every (x0, z0, u, v) ∈ ℜ
n

×

ℜ
n

× L∞ (ℜ+; ℜ
m) × L∞

loc


ℜ+; ℜ

k

the solution (x(t), z(t)) of

(1.1), (1.2) and (2.1) with initial condition (x(0), z(0)) = (x0, z0)
corresponding to inputs (u, v) ∈ L∞ (ℜ+; ℜ

m) × L∞

loc


ℜ+; ℜ

k


satisfies the following estimate for all t ≥ 0:x̂(t)− x(t)
 ≤


|P|

R
e−σ t

|z0 − x0| +

√
|K ′PPK |

q


2 |P|

R

× sup
0≤s≤t


e−σ(t−s)

|v(s)|


(3.4)

where R := min

x′Px : |x| = 1


and σ :=

q
4|P|

. Therefore, by
virtue of (3.1), (3.2) and (3.4), it follows that Assumption (H3)

holds with σ :=
q

4|P|
, T (x0, z0) ≡ 0, C := L |H|

√
|K ′PPK|
q


2|P|

R

and N(s) := s


|P|

R . Indeed, (3.4) follows from evaluating the time
derivative of the function V (t) = (z(t)−x(t))′P(z(t)−x(t)) along
the trajectories of (1.1), (1.2) and (2.1). Using (3.3), we obtain the
following for t ≥ 0 a.e.:

V̇ (t) ≤ −2q |z(t)− x(t)|2 − 2(z(t)− x(t))′PKv(t).

Completing the squares (−2(z − x)′PKv ≤ q−1
K ′PPK

 |v|2 +

q |z − x|2), integrating and using the fact that R |z(t)− x(t)|2 ≤

V (t) ≤ |P| |z(t)− x(t)|2, allows us to obtain (3.4).
We show next that Assumption (H2) holds as well with

A(ℜ+; ℜ
n) being the set of the functions z : ℜ+ → ℜ

n which
are absolutely continuous on every bounded interval of ℜ+ and
satisfies ż = F(z(t), ut , xt) for t ≥ 0 a.e. for certain continuous
mapping F : ℜ

n
× L∞([−r, 0]; ℜ

m) × C0([−r, 0]; ℜ
n) → ℜ

n

which is bounded on bounded sets of ℜ
n

× L∞([−r, 0]; ℜ
m) ×

C0([−r, 0]; ℜ
n). The following theorem guarantees (in a construc-

tive way) that there exists a robust global exponential r-predictor
for (1.1).

Theorem 3.1. Consider system (1.1) under Assumption (H4) and
let σ , r > 0 be given constants. For every constant µ > σ

and for every positive integer p ≥ 1 with L exp(σ rp−1)−1
σ

< 1
there exist constants Qj > 0 (j = 1, . . . , 5), such that for ev-
ery u ∈ L∞

loc ([−r,+∞); ℜ
m), for every absolutely continuous map-

ping z : ℜ+ → ℜ
n with ż ∈ L∞

loc (ℜ+; ℜ
n) and for every x0 ∈

C0([−r, 0]; ℜ
n), ξi,0 ∈ C0([−r, 0]; ℜ

n) (i = 1, . . . , p), the unique
solution of system (1.1) with

ξ̇1(t) = f (ξ1(t), u(t − r + δ))− f (ξ1(t − δ), u(t − r))

+ ż(t)− µ


ξ1(t)− z(t)−

 t

t−δ
f (ξ1(s),

u(s − r + δ))ds


(3.5)

ξ̇i(t) = f (ξi(t), u(t − r + iδ))− f (ξi(t − δ), u(t − r

+ (i − 1)δ))+ ξ̇i−1(t)− µ


ξi(t)− ξi−1(t)

−

 t

t−δ
f (ξi(s), u(s − r + iδ)) ds


,

i = 2, . . . , p (3.6)
where δ := p−1r, with initial condition x(θ) = x0(θ), ξi(θ) =

ξi,0(θ), θ ∈ [−r, 0], (i = 1, . . . , p), exists for all t ≥ 0 and satis-
fies the following estimate for all i = 1, . . . , p and t ≥ 0:

|ξi(t)− x(t − r + iδ)|
≤ β i sup

0≤s≤t
(exp (−σ(t − s)) |z(s)− x(s − r)|)

+Q1 exp (−σ t) sup
−r≤s≤0

(|x(s)|)+ Q2 exp (−σ t)

× sup
−r≤s≤r+δ

(|f (0, u(s))|)+ Q3 exp (−σ t)

×

i
k=1

sup
−δ≤s≤0

(|ξk(s)|)+ Q4 exp (−σ t) |z(0)|

+Q5 exp (−σ t) sup
0≤s≤r

(|ż(s)|) (3.7)

where β :=
σ

σ−L(exp(σ δ)−1) .

Remark 3.2. It is clear that inequality (3.7) guarantees that the
system (3.5), (3.6) with output y(t) = ξp(t) is a robust global
exponential r-predictor for (1.1) with input z ∈ A(ℜ+; ℜ

n), where
A(ℜ+; ℜ

n) is the set of the functions z : ℜ+ → ℜ
n which

are absolutely continuous on every bounded interval of ℜ+ and
satisfies ż = F(z(t), ut , xt) for t ≥ 0 a.e. for certain continuous
mapping F : ℜ

n
× L∞([−r, 0]; ℜ

m) × C0([−r, 0]; ℜ
n) → ℜ

n

which is bounded on bounded sets of ℜ
n

× L∞([−r, 0]; ℜ
m) ×

C0([−r, 0]; ℜ
n).

The proof of Theorem 3.1 is an inductive application of the
following technical lemma, which is proved in the Appendix.

Lemma 3.3. Consider system (1.1) under Assumption (H4) and let
σ , r > 0 be constants. For every constant µ > σ and for every
δ ∈ [0, r] with L exp(σ δ)−1

σ
< 1 there exist constants Qi > 0 (i =

1, . . . , 5), such that for every u ∈ L∞

loc ([−r,+∞); ℜ
m), for every

absolutely continuousmapping z : ℜ+ → ℜ
n with ż ∈ L∞

loc (ℜ+; ℜ
n)

and for every x0 ∈ C0([−r, 0]; ℜ
n), ξ0 ∈ C0([−r, 0]; ℜ

n), the
unique solution of system (1.1) with

ξ̇ (t) = f (ξ(t), u(t − r + δ))− f (ξ(t − δ), u(t − r))+ ż(t)

−µ


ξ(t)− z(t)−

 t

t−δ
f (ξ(s), u(s − r + δ)) ds


(3.8)

with initial condition x(θ) = x0(θ), ξ(θ) = ξ0(θ), θ ∈ [−r, 0],
exists for all t ≥ 0 and satisfies the following estimate for all t ≥ 0:

|ξ(t)− x(t − r + δ)|

≤ β sup
0≤s≤t

(exp (−σ(t − s)) |z(s)− x(s − r)|)

+Q1 exp (−σ t) sup
−r≤s≤0

(|x(s)|)+ Q2 exp (−σ t)

× sup
−r≤s≤δ

(|f (0, u(s))|)+ Q3 exp (−σ t) sup
−δ≤s≤0

(|ξ(s)|)

+Q4 exp (−σ t) |z(0)| + Q5 exp (−σ t) sup
0≤s≤r

(|ż(s)|) (3.9)

where β :=
σ

σ−L(exp(σ δ)−1) .

Therefore, all the above enable us to design a robust global
sampled-data exponential observer with delayed measurements.

Theorem 3.4. Consider system (1.1) under Assumptions (H4)–(H5)
and let r > 0 be constant. Then the following system

ż(t) = f (z(t), u(t − r))+ K(Hz(t)− w(t)) (3.10)
ẇ(t) = Hf (z(t), u(t − r)), t ∈ [τi, τi+1) (3.11)

w(τi+1) = Hx(τi+1 − r)+ v(τi+1) (3.12)
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with (3.5), (3.6), µ > 0, δ := p−1r and Lδ < 1, is a robust global
exponential sampled-data observer for (1.1), provided that the upper

diameter B of the sampling partition satisfies L |H|

√
|K ′PPK|
q


2|P|

R B <
1, i.e., for every positive integer p > 0 with Lr < p, for every

µ > 0, 0 < b ≤ B with L |H|

√
|K ′PPK|
q


2|P|

R B < 1, there exist a non-
decreasing function Q : ℜ+ → ℜ+ and constants σ ,Γ > 0 such
that for every partition π = {τi}

∞

i=0 of ℜ+ with supi≥0 (τi+1 − τi) ≤

B and infi≥0 (τi+1 − τi) ≥ b, for every (z0, w0, u, v) ∈ ℜ
n
× ℜ

k
×

L∞ ([−r,+∞); ℜ
m)× L∞

loc


ℜ+; ℜ

k

, x0 ∈ C0([−r, 0]; ℜ

n), ξi,0 ∈

C0([−r, 0]; ℜ
n)(i = 1, . . . , p) the unique solution of the system

(1.1) with (3.5), (3.6), (3.10), (3.11), (3.12) with δ := p−1r, initial
condition x(θ) = x0(θ), ξi(θ) = ξi,0(θ), θ ∈ [−r, 0], (i =

1, . . . , p), (z(0), w(0)) = (z0, w0) corresponding to inputs (u, v) ∈

L∞ ([−r,+∞); ℜ
m) × L∞

loc


ℜ+; ℜ

k

is defined for all t ≥ 0 and

satisfies the estimate

|ξp(t)− x(t)| ≤ e−σ tQ


∥x0∥ +

p
i=1

∥ξi,0∥ + ∥u∥ + |z0| + |w0|

+ sup
0≤s≤t

(|v(s)|)


+ Γ sup

0≤s≤t
(e−σ(t−s)

|v(s)|),

∀t ≥ 0. (3.13)

Proof. If the above inequalities hold then (by continuity) there

exists σ > 0 (sufficiently small) such that L |H|

√
|K ′PPK|
p


2|P|

R B

exp(σB) < 1, L exp(σ δ)−1
σ

< 1 and such that all Assumptions (H1)–
(H3) hold. The rest is a direct consequence of Theorem 2.3. �

A direct application to the Linear Time-Invariant case ẋ = Fx + Gu
(where F ∈ ℜ

n×n,G ∈ ℜ
n×m) guarantees that the linear system

ξ̇0(t) = (F + KH)ξ0(t)+ Gu(t − r)− Kw(t) (3.14)
ẇ(t) = HFξ0(t)+ HGu(t − r), t ∈ [τi, τi+1) (3.15)

w(τi+1) = Hx(τi+1 − r)+ v(τi+1) (3.16)

ξ̇i(t) = F

ξi(t)− ξi(t − δ)+ µ

 t

t−δ
ξi(s)ds


+ ξ̇i−1(t)

−µ(ξi(t)− ξi−1(t))+ G


u(t − r + iδ)− u(t − r

+ (i − 1)δ)+ µ

 t

t−δ
u(s − r + iδ)ds


,

i = 1, . . . , p (3.17)

with µ > 0, δ := p−1r and |F | r < p is a robust global
exponential sampled-data observer for ẋ = Fx + Gu, provided
that the upper diameter B of the sampling partition satisfies

|F | |H|

√
|K ′PPK|
q


2|P|

R B < 1.

4. Systems with a globally asymptotically stable set

In this section we consider the construction of global exponen-
tial sampled-data observers for nonlinear systems with a globally
asymptotically stable set. More specifically, we consider system
(1.1), (1.2) and we assume the following

Assumption (H6). There exists a compact convex set U ⊂ ℜ
m and

a vector field f̃ ∈ C2(ℜn
× U; ℜ

n) such that f (x, u) = f̃ (x, Pr(u))
for all (x, u) ∈ ℜ

n
×ℜ

m, where Pr(u) is the projection of u ∈ ℜ
m on

U ⊂ ℜ
m. Moreover, there exist a non-empty compact set S ⊂ ℜ

n, a
continuous function T : ℜ

n
→ ℜ+ and a smooth positive function
ψ : ℜ
n

→ (0,+∞) such that for every u ∈ L∞ (ℜ+; ℜ
m) and for

every initial condition x(0) ∈ ℜ
n the solution of (1.1) satisfies

x(t) ∈ S, ∀t ≥ T (x(0)) (4.1)
|x(t)| ≤ ψ(x(0)), ∀t ≥ 0. (4.2)

For systems satisfying Assumption (H6), a general procedure for
the design of robust global exponential observers of the form (2.1)
with l = n was proposed in [16]. More specifically, the proof of
Theorem 2.2 in [16] shows that the observer satisfies the following
assumption:

Assumption (H7). h(ℜn) = ℜ and for every (u, w) ∈ L∞(ℜ+;

ℜ
m) × L∞

loc


ℜ+; ℜ

k

and for every initial condition z(0) ∈ ℜ

n the
solution of (2.6) satisfies

z(t) ∈ S, ∀t ≥ T (z(0)) (4.3)
|z(t)| ≤ ψ(z(0)), ∀t ≥ 0. (4.4)

Assumption (H7) guarantees that Assumption (H1) holds.
Sufficient conditions for Assumptions (H6), (H7) are given in [16]
(see Assumptions (H1)–(H4) Lemma 2.1 in [16] and the proof
of Theorem 2.2 in [16]). Moreover, Assumptions (H6), (H7)
guarantee that there exists a constant G ≥ 0 such that for
every (x0, z0, u, v) ∈ ℜ

n
× ℜ

l
× L∞ (ℜ+; ℜ

m) × L∞

loc


ℜ+; ℜ

k


the solution (x(t), z(t)) of (1.1), (1.2) and (2.1) with initial
condition (x(0), z(0)) = (x0, z0) corresponding to inputs (u, v) ∈

L∞ (ℜ+; ℜ
m)×L∞

loc


ℜ+; ℜ

k

satisfies the following estimate for all

t ≥ max(T (x0), T (z0)):Lf h(x̂(t), u(t))− Lf h(x(t), u(t))
 ≤ G

x̂(t)− x(t)
 . (4.5)

Inequality (4.5) in conjunction with (2.2) shows that Assump-
tion (H3) holds with N(s) := GM(s), C := Gγ and T (x0, z0) :=

max(T (x0), T (z0)).
We show next that Assumption (H2) holds as well with

A(ℜ+; ℜ
n) being the set of the functions z : ℜ+ → ℜ

n which
are absolutely continuous on every bounded interval of ℜ+ with
ż ∈ L∞

loc (ℜ+; ℜ
n) , |z(t)| ≤ ψ(z(s)) for all 0 ≤ s ≤ t and

z(t) ∈ S, for all t ≥ T (z(0)) and satisfies ż = F(z(t), ut , xt)
for t ≥ 0 a.e. for certain continuous mapping F : ℜ

n
×

L∞([−r, 0]; ℜ
m) × C0([−r, 0]; ℜ

n) → ℜ
n which is bounded on

bounded sets of ℜ
n

× L∞([−r, 0]; ℜ
m) × C0([−r, 0]; ℜ

n). The
following proposition guarantees (in a constructiveway) that there
exists a robust global exponential r-predictor for (1.1). Its proof is
provided in the Appendix.

Proposition 4.1. Consider system (1.1) under Assumption (H6). Let
σ , r > 0 be constants and let q : ℜ → ℜ+ be a continuously
differentiable function with q(s) = 1 for s ≤ 1 and sq(s) ≤ K for
s ≥ 1, where K ≥ 1 is a constant. Furthermore, define

p(s) := max{|f̃ (ξ , u)| : u ∈ U, |ξ | ≤ K max{ψ(z) : |z| ≤ s}} (4.6)
a := max {|z| : z ∈ S} (4.7)

S̃ :=

ξ ∈ ℜ

n
: |ξ | ≤ 1 + a + r p(a)


. (4.8)

Let G1,G2 > 0 be constants satisfyingf̃ q |ξ |

ψ(z)


ξ, u


− f̃


q


|x|
ψ(y)


x, u


≤ G1 |ξ − x| + G2 |z − y| ∀u ∈ U, y, x, z ∈ S, ξ ∈ S̃. (4.9)

Then for every constant µ ≥ σ , for every δ ∈ [0, r] with
G1

exp(σ δ)−1
σ

< 1, there exist a non-decreasing function M :

ℜ+ → ℜ+, such that for every u ∈ L∞

loc ([−r,+∞); ℜ
m), for

every absolutely continuous mapping z : ℜ+ → ℜ
n with ż ∈

L∞

loc (ℜ+; ℜ
n) , |z(t)| ≤ ψ(z(s)) for all 0 ≤ s ≤ t and z(t) ∈ S,



546 T. Ahmed-Ali et al. / Systems & Control Letters 62 (2013) 539–549
for all t ≥ T (z(0)) and for every x0 ∈ C0([−r, 0]; ℜ
n), ξ0 ∈

C0([−r, 0]; ℜ
n), the unique solution of system (1.1) with

ξ̇ (t) = ż(t)+
d
dt

 t

t−δ
f

q


|ξ(s)|
ψ(z(t))


ξ(s), u(s − r + δ)


ds

−µ


ξ(t)− z(t)−

 t

t−δ
f


q


|ξ(s)|
ψ(z(t))


ξ(s),

u(s − r + δ)


ds


(4.10)

with initial condition x(θ) = x0(θ), ξ(θ) = ξ0(θ), θ ∈ [−r, 0],
exists for all t ≥ 0 and satisfies the following estimate for all t ≥ 0:

|ξ(t)− x(t − r + δ)| ≤ exp (−σ t)M (∥x0∥ + |z(0)| + ∥ξ0∥)

+β sup
0≤s≤t

(exp (−σ(t − s)) |z(s)− x(s − r)|) (4.11)

where β :=
σ(1+G2δ)

σ−G1(exp(σδ)−1) .

Remark 4.2. An example of a function q : ℜ → ℜ+ that satisfies
the requirements of Proposition 4.1 is the function q(s) := 2s−1

−

s−2 for s > 1 and q(s) = 1 for s ≤ 1.

We are now in a position to state and prove the main result of this
section.

Theorem 4.3. Consider system (1.1) under Assumptions (H6)–(H7)
and let r > 0 be a constant. If G1r < 1, where G1 > 0 is the
constant involved in (4.9) then for every µ > 0, 0 < b ≤ B with
Gγ B < 1, where G > 0 is the constant involved in (4.5) and γ is the
constant involved in (2.2), there exist a non-decreasing function Q :

ℜ+ → ℜ+ and constants σ ,Γ > 0 such that for every partitionπ =

{τi}
∞

i=0 of ℜ+ with supi≥0 (τi+1 − τi) ≤ B and infi≥0 (τi+1 − τi) ≥

b, for every (z0, w0, u, v) ∈ ℜ
n

× ℜ
k

× L∞ ([−r,+∞); ℜ
m) ×

L∞

loc


ℜ+; ℜ

k

, (x0, ξ0) ∈ C0([−r, 0]; ℜ

n) × C0([−r, 0]; ℜ
n) the

unique solution of the system (1.1), (2.9), (2.10), (2.11), (4.10) with
δ = r, initial condition x(θ) = x0(θ), ξ(θ) = ξ0(θ), θ ∈

[−r, 0], (z(0), w(0)) = (z0, w0) corresponding to inputs (u, v) ∈

L∞ ([−r,+∞); ℜ
m) × L∞

loc


ℜ+; ℜ

k

is defined for all t ≥ 0 and

satisfies the estimate

|ξ(t)− x(t)| ≤ e−σ tQ


∥x0∥ + ∥ξ0∥ + ∥u∥

+ |z0| + |w0| + sup
0≤s≤t

(|v(s)|)


+Γ sup
0≤s≤t


e−σ(t−s)

|v(s)|

, ∀t ≥ 0. (4.12)

Proof. If G1r < 1 then (by continuity) there exists sufficiently
small σ > 0 such that G1

exp(σ δ)−1
σ

< 1 and deduce that (H1)
and (H3) also hold as explained above. If the upper diameter B of
the sampling partition satisfies Gγ B < 1 then, by continuity there
exists sufficiently small σ > 0 such that Gγ B exp (σB) < 1. The
rest is a direct consequence of Theorem 2.3. �

Example 4.4. Consider the nonlinear planar system

ẋ1 = −x31 + x2
ẋ2 = −x32 + sat(u)
y = x1 + v

(x1, x2)′ ∈ ℜ
2, u ∈ ℜ

(4.13)

where sat(u) := u for u ∈ [−1, 1] and sat(u) = u/ |u| for
|u| > 1 is the usual saturation function. It is clearly shown in [16]
that system (4.13) satisfies Assumptions (H6)–(H7) with nonlin-
earities which are not globally Lipschitz. More specifically, the
Table 1
Parameters, initial conditions and inputs used in the simulations.

q(s) As defined in Remark 4.2

µ 1

g(s) g(s) = 0, s ≤ 4
g(s) =

1
2 (s − 4), 4 < s < 6

g(s) = 1, s ≥ 6

p 1/5376

L1, L2 L1 = −0.0302, L2 = −0.0313

Initial conditions z(0) = (0, 0), w(0) = 0

x(s) = (1,−1) for s ∈ [−r, 0]

ξ(s) = (0, 0) for s ∈ [−r, 0]

Applied inputs u(t) = sin2(t), v(t) ≡ 0

observer is given by

ż1(t) = −z31(t)+ z2(t)+ k1(z(t), x1(t)+ v(t), u(t))

ż2(t) = −z32(t)+ sat(u(t))+ k2(z(t), x1(t)+ v(t), u(t))

x̂(t) = z(t)

(4.14)

where v ∈ L∞

loc (ℜ+; ℜ) denotes the measurement error and

k(z, y, u) :=


L1
L2


(z1 − y) ,

for all (z, y, u) ∈ ℜ
2
× ℜ × ℜ with z21 + z22 ≤

√
10 (4.15)

k(z, y, u) :=


L1
L2


(z1 − y)−

ϕ(z, y, u)
z21 + z22


z1
z2


,

for all (z, y, u) ∈ ℜ
2
× ℜ × ℜ with z21 + z22 >

√
10 (4.16)

with

L1 = −p
10 402 + 9p
2(32 − p2)

;

L2 = −
1

32 − p2


p2

64
(10 400 + 9p)+ 1


, p ≤

√
2

5376

ϕ(z, y, u) := max


0,−z41 + (z1 + sat(u))z2 − z42

+
1
8


z21 + z22

2
+ (z1 − y) g


z21 + z22


(L1z1 + L2z2)


and g : ℜ+ → [0, 1] is an arbitrary locally Lipschitz function that
satisfies g(s) = 1 for all s ≥ 6 and g(s) = 0 for all s ≤ 4. Notice
that the analysis in [16] guarantees that Assumptions (H6)–(H7)
hold with ψ(x) := 2 +

1
2 |x|2 and S ⊆ ℜ

2 being the compact set
x ∈ ℜ

2
: |x| ≤

√
6

.

Here, we have applied the result of Theorem 4.3 by using the
predictor (4.10) and the sampled-data observer obtained by (4.13)
(Eq. (4.10) in [16]). The simulations are performed for a sampling
period Ts = 1 and measurement delays r = 1 and r = 2.5. All the
parameters, initial conditions and inputs used in the simulations
are contained in Table 1.

The results of the simulations are shown in Figs. 1–4. Exponen-
tial convergence of the observation error to zero is exhibited, as
expected. However, notice that as the value of measurement delay
becomes higher the convergence rate becomes slower.

5. Concluding remarks

This present work provides new results concerning
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Fig. 1.

Fig. 2.

(1) the robust global exponential sampled-data observer design
for wide classes of nonlinear systems with both sampled and
delayed measurements (Theorems 2.3, 3.4 and 4.3), and

(2) the robust global exponential state predictor design for wide
classes of nonlinear systems (Theorem3.1 and Proposition 4.1).

The global exponential state predictors are constructed by
means of small-gain arguments and additional conditions on the
prediction time horizon. It is also shown that, if a special structure
cascade is used with a sufficient number of predictors, then
an exponential state predictor for an arbitrary prediction time
horizon can be constructed for the special class of globally Lipschitz
systems (Theorem 3.1).

The global exponential sampled-data observer design is accom-
plished by using a small gain approach and sufficient conditions
are provided, which involve both the delay and the sampling pe-
riod. The structure of the proposed observer can be described as
follows:
– a hybrid sampled-data observer is first used in order to

utilize the sampled and delayed measurements and provide an
estimate of the delayed state vector,

– the estimate of the delayed state vector is used by the
robust global exponential predictor. The predictor provides an
estimate of the current value of the state vector.
Fig. 3.

Fig. 4.

The proposed robust global exponential sampled-data observer
is robust with respect to measurement errors and perturbations of
the sampling schedule.

The reader cannot exclude the possibility for certain specific
classes of systems that trade-offs between the delay and the Max-
imum Allowable Sampling Period (MASP, denoted by B in the pa-
per)might arise (see [12]). However, no trade-off arises for globally
Lipschitz systems or for nonlinear systems with a globally asymp-
totically compact set: in the latter case we have two independent
bounds for the delay and the MASP, respectively.

The obtained results can be used in a straightforward way
for the stabilization of nonlinear systems with input delays.
The predictor-based feedback, which was recently proposed in
[26–29], can be used in conjunction with the proposed robust
global exponential sampled-data observers in order to solve the
output feedback stabilization problem for nonlinear systems with
input delays. This will be the topic of future research.

Appendix

Proof of Lemma 3.3. First notice that by virtue of (3.1), the right
hand side of (3.8) satisfies the inequality
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ξ̇ (t) ≤ |ż(t)+ µz(t)| + (µLδ + µ+ 2L) sup
t−δ≤s≤t

(|ξ(s)|)

+ (µδ + 2) sup
t−δ≤s≤t

(|f (0, u(s − r + δ))|) (A.1)

for almost all t ≥ 0 for which the solution of (3.8) exists. Notice
that the continuous functional V (t) = supt−δ≤s≤t (|ξ(s)|) satisfies

lim sup
h→0+

V (t + h)− V (t)
h

≤ (µLδ + µ+ 2L) V (t)+ sup
0≤s≤t

|ż(s)+ µz(s)|

+ (µδ + 2) sup
−r≤s≤t−r+δ

|f (0, u(s))| . (A.2)

Using the comparison lemma (Lemma2.12, p. 77 in [25]),we obtain

sup
t−δ≤s≤t

|ξ(s)| ≤ exp((µLδ + µ+ 2L) t)


sup

−δ≤s≤0
|ξ(s)|

+

sup
0≤s≤t

|ż(s)+ µz(s)| + (µδ + 2) sup
−r≤s≤t−r+δ

|f (0, u(s))|

µLδ + µ+ 2L


. (A.3)

The above inequality shows that the solution of (3.8) exists for all
t ≥ 0. Next, notice that the solution of (3.8) satisfies the following
equation for all t ≥ 0:

ξ(t)− z(t)−

 t

t−δ
f (ξ(s), u(s − r + δ)) ds

= exp(−µ t)


ξ(0)− z(0)−

 0

−δ

f (ξ(s),

u(s − r + δ))ds


. (A.4)

Moreover, the following equation holds for all t ≥ r:

x(t − r + δ) = x(t − r)+

 t

t−δ
f (x(s − r + δ),

u(s − r + δ))ds. (A.5)

Using (3.1), (A.4) and (A.5) we get the following for all t ≥ r:

|ξ(t)− x(t − r + δ)|

≤ |z(t)− x(t − r)| + L
 t

t−δ
|ξ(s)− x(s − r + δ)| ds

+ exp (−µ t)
ξ(0)− z(0)

−

 0

−δ

f (ξ(s), u(s − r + δ))ds
 . (A.6)

Since σ ∈ (0, µ)we obtain from (A.6) for all t ≥ r

exp (σ t) |ξ(t)− x(t − r + δ)|

≤ exp (σ t) |z(t)− x(t − r)| + L
exp (σ δ)− 1

σ

× sup
t−δ≤s≤t

(exp (σ s) |ξ(s)− x(s − r + δ)|)

+

ξ(0)− z(0)−

 0

−δ

f (ξ(s), u(s − r + δ))ds

which directly implies for all t ≥ r that

sup
r≤s≤t

(exp (σ s) |ξ(s)− x(s − r + δ)|)

≤ sup
r≤s≤t

(exp (σ s) |z(s)− x(s − r)|)+ L
exp (σ δ)− 1

σ

× sup
r−δ≤s≤t

(exp (σ s) |ξ(s)− x(s − r + δ)|)

+

ξ(0)− z(0)−

 0

−δ

f (ξ(s), u(s − r + δ))ds
 . (A.7)

By distinguishing the cases supr≤s≤t(exp(σ s)|ξ(s)− x(s− r + δ)|)
= supr−δ≤s≤t(exp(σ s)|ξ(s) − x(s − r + δ)|) and supr−δ≤s≤r
(exp(σ s)|ξ(s) − x(s − r + δ)|) = supr−δ≤s≤t(exp(σ s)|ξ(s)
− x(s− r + δ)|), and using the inequality L exp(σ δ)−1

σ
< 1 we obtain

the following for all t ≥ r:

sup
r≤s≤t

(exp (σ s) |ξ(s)− x(s − r + δ)|)

≤
σ

σ − L (exp (σ δ)− 1)
sup
r≤s≤t

(exp (σ s) |z(s)− x(s − r)|)

+ sup
r−δ≤s≤r

(exp (σ s) |ξ(s)− x(s − r + δ)|)

+
σ

σ − L (exp (σ δ)− 1)

×

ξ(0)− z(0)−

 0

−δ

f (ξ(s), u(s − r + δ))ds
 . (A.8)

Using (2.1), evaluating the Dini derivative of the continuous
functional V (t) = supt−r≤s≤t (|x(s)|) and using the comparison
lemma (Lemma 2.12, p. 77 in [25]), we obtain the following for all
t ≥ 0:

sup
t−r≤s≤t

|x(s)| ≤ exp (Lt)


sup
−r≤s≤0

|x(s)|

+ L−1 sup
0≤s≤t

|f (0, u(s))|

. (A.9)

Combining (A.3), (A.8), (A.9) and the fact that

sup
0≤s≤r

|z(s)| ≤ |z(0)| + r sup
0≤s≤r

|ż(s)|

we are in a position to conclude that there exist constants Qi >
0 (i = 1, . . . , 5) such that (3.9) holds for all t ≥ 0. The proof is
complete. �

Proof of Proposition 4.1. We notice that the solution of (4.10)
satisfies

ξ(t) = z(t)+

 t

t−δ
f

q


|ξ(s)|
ψ(z(t))


ξ(s), u(s − r + δ)


ds

+ exp(−µt)


ξ(0)− z(0)−

 0

−δ

f


q


|ξ(s)|
ψ(z(0))



× ξ(s), u(s − r + δ)


ds


(A.10)

for all t ≥ 0 for which the solution of (4.10) exists. Using (4.6) and
(A.10) and the fact that q


|ξ(s)|
ψ(z(t))


|ξ(s)| ≤ Kψ(z(t)), we obtain

|ξ(t)| ≤ |z(t)| + δ p(|z(t)|)+ exp(−µt)(|ξ(0)|
+ |z(0)| + δ p(|z(0)|)) (A.11)

for all t ≥ 0 for which the solution of (4.10) exists. A standard
contradiction argument in conjunction with (A.11) shows that the
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solution of (4.10) exists for all t ≥ 0. Define

T̃ := max{T (x(0))+ r + δ, T (z(0))+ δ,

µ−1 ln(1 + |ξ(0)| + |z(0)| + δ p(|z(0)|))} + δ. (A.12)

Using the facts that z(t) ∈ S for all t ≥ T (z(0)) and δ ∈ [0, r],
in conjunction with (4.1), (A.11), (4.7), (4.8), the fact that f (x, u) =

f̃ (x, Pr(u)) and definition (A.12), we conclude that

ξ(t − δ) ∈ S̃, for all t ≥ T̃ (A.13)

z(t − δ) ∈ S, for all t ≥ T̃ (A.14)

x(t − δ − r) ∈ S, for all t ≥ T̃ . (A.15)

By virtue of (4.2) and the semigroup property for the solutions
of (1.1), we conclude that the following equation holds for all
t ≥ r:

x(t − r + δ) = x(t − r)

+

 t−r+δ

t−r
f

q


|x(s)|
ψ(x(t − r))


x(s), u(s)


ds

which directly implies that

x(t − r + δ) = x(t − r)+

 t

t−δ
f


q


|x(s − r + δ)|

ψ(x(t − r))



× x(s − r + δ), u(s − r + δ)


ds (A.16)

for all t ≥ T̃ . Exploiting (A.13), (A.14), (A.15), (A.10), (A.16), the
fact that f (x, u) = f̃ (x, Pr(u)) in conjunction with (4.9) we get the
following for all t ≥ T̃ :

|ξ(t)− x(t − r + δ)|

≤ (1 + G2δ) |z(t)− x(t − r)| + G1

 t

t−δ
|ξ(s)

− x(s − r + δ)|ds + exp (−µt)

ξ(0)− z(0)

−

 0

−δ

f


q


|ξ(s)|
ψ(z(0))


ξ(s), u(s − r + δ)


ds

.
The above inequality in conjunction with G1

exp(σ δ)−1
σ

< 1 implies
that the following inequality holds for all t ≥ T̃ :

sup
T̃≤s≤t

(exp(σ s)|ξ(s)− x(s − r + δ)|)

≤
G1(exp(σδ)− 1)

σ − G1(exp(σδ)− 1)
sup

T̃−δ≤s≤T̃
(exp(σ s)|ξ(s)

− x(s − r + δ)|)+
σ(1 + G2δ)

σ − G1(exp(σδ)− 1)

× sup
T̃≤s≤t

(exp(σ s)|z(s)− x(s − r)|)

+
σ

σ − G1(exp(σδ)− 1)

ξ(0)− z(0)

−

 0

−δ

f

q


|ξ(s)|
ψ(z(0))


ξ(s), u(s − r + δ)


ds

. (A.17)
Using (A.17), (4.2), (4.4) and (A.11)we are in a position to construct
a non-decreasing function M : ℜ+ → ℜ+ such that (4.11) holds.
The proof is complete. �
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