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In this article, we show that the existence of a Lyapunov-Krasovskii functional is necessary and sufficient
condition for the uniform global asymptotic stability and the global exponential stability (GES) of time-invariant
systems described by neutral functional differential equations in Hale’s form. It is assumed that the difference
operator is linear and strongly stable, and that the map on the right-hand side of the equation is Lipschitz on
bounded sets. A link between GES and input-to-state stability is also provided.

Keywords: converse Lyapunov theorem; Lyapunov-Krasovskii functionals; retarded functional differential

equation; neutral functional differential equation

1. Introduction

In Karafyllis (2006), Karafyllis, Pepe, and Jiang
(2008a,b) and Karafyllis and Jiang (2010), many
converse Lyapunov theorems have been presented,
for many global stability notions, for systems described
by retarded functional differential equations (RFDEs),
in a very general setting. Time-varying delays, distur-
bances and time-varying equations are considered.
Besides the global uniform asymptotic stability, the
input-to-state stability (ISS) and the weighted input-
to-output stability are also investigated. The reader can
refer to the recent monograph Karafyllis and Jiang
(2011) for an extensive presentation of this topic. As
far as the systems described by neutral equations are
concerned, converse Lyapunov-Krasovskii theorems
are available for the (local, uniform) asymptotic
stability (Cruz and Hale 1970; Bena and Godoy
2001). Methods for constructing the quadratic
Lyapunov—Krasovskii functional are also provided,
for the linear case, in Rodriguez, Kharitonov, Dion,
and Dugard (2004), Kharitonov (2005, 2008) and
Velazquez-Velazquez  and  Kharitonov ~ (2009).
Converse Lyapunov—Krasovskii methods are also
used for establishing instability criteria for linear neutral
systems in Mondié, Ochoa, and Ochoa (2011). As far
as global asymptotic stability (GAS) notions are
concerned, to our knowledge, converse Lyapunov—

Krasovskii theorems for nonlinear neutral systems are
not yet available in the literature.

In this article, we consider time-invariant systems
described by neutral equations in Hale’s form (Hale
and Lunel 1993; Kolmanovskii and Myshkis 1999).
The difference operator can involve an arbitrary
number of arbitrary discrete time-delays. It is assumed
to be linear and strongly stable (Hale and Lunel 1993).
The map on the right-hand side of the equation is
assumed to be Lipschitz on bounded sets. An arbitrary
number of arbitrary discrete and distributed time
delays can appear on the right-hand side of the
equation. We prove here that the well-known condi-
tions, extended to the whole state space, in the
Lyapunov—Krasovskii theorem for the (uniform)
local asymptotic stability of the origin (Kolmanovskii
and Nosov 1982, 1986; Hale and Lunel 1993;
Kolmanovskii and Myshkis 1999), are not only suffi-
cient, but also necessary. Moreover, we show here
converse Lyapunov—Krasovskii theorems for global
exponential stability (GES), and a link between GES
and ISS.

This article is organised as follows. In Section 2,
converse Lyapunov—Krasovskii theorems for GAS
and GES are provided. In Section 3, a link
between GES and ISS is provided. In Section 4,
conclusions are drawn. For the sake of readability,
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the proofs of the theorems are reported in the
appendices.

Notations: R denotes the set of real numbers, R*
denotes the extended real line [—oo, +00], Rt denotes
the set of non-negative reals [0, +00), Z denotes the
set of integers in R". For s € R, [s] denotes the largest
number in Z*, smaller or equal to s. The symbol |- |
stands for the Euclidean norm of a real vector, or the
induced Euclidean norm of a matrix. For a positive
integer n, for a positive real A (maximum involved
time-delay): C denotes the Banach space of the contin-
uous functions mapping [—A, 0] into R”, endowed with
the supremum norm, indicated with the symbol ||-||;
W' denotes the space of the absolutely continuous
functions in C, with essentially bounded derivative.
With the symbol |-||,, is denoted any semi-norm in C
(Pepe and Jiang 2006; Yeganefar, Pepe, and Dambrine
2008). For a function x: [—A,c¢)— R", with
0 < ¢ <400, for any real €0, ¢), x, is the function in
C defined as x,(t)=x(t+ 1), t€[—A,0]. For positive
real H, ¢ €C, Cy(¢) denotes the subset (of C) {¢ eC:
v — |l < H}. For Cp, Cy(0) is meant. For positive
integer m, positive real 8, Bs denotes the subset (of R™)
{ue R™ : |u| <8}. For positive integer n, a map Q:
C — R"is said to be: locally Lipschitz if, for any ¢ in C,
there exist positive reals H, L such that, for any ¢,
$2 € C(¢), the inequality |Q(¢1) — Q(¢2)| < Llig1 — ¢2l|
holds; Lipschitz on bounded sets if, for any positive
real H, there exists a positive real L such that, for any
#1, ¢2 € Cp, the inequality |Q(¢1) — Q(¢2)| < Llg1 — ¢al|
holds; globally Lipschitz if there exists a positive real L
such that, for any ¢;,¢,€C, the inequality
10(¢h1) — O(¢)| < Ly — ¢l holds. For positive inte-
gers n, m, amap Q: C x R" — R" is said to be Lipschitz
on bounded sets if, for any positive reals H, &, there
exists a positive real L such that, for any ¢y, ¢, € Cy, for
any uy,uz € Bs, the inequality |Q(¢1, u1) — Q(d2, un)| <
L(|l¢p1 — ¢o|| + |uy — uy|) holds. For positive integer m, a
Lebesgue measurable function v: RT — R™ is said to be
essentially bounded if ess sup,~o|v(?)| < oc. The essential
supremum norm of a Lebesgue measurable and essen-
tially bounded function is indicated again with the
symbol ||-]|. For given times 0 < T, < 7>, we indicate
with v, 1) Rt — R™ the function given by
VT, o) () = v(t) for all te[T,T>) and=0 elsewhere.
An input vis said to be locally essentially bounded if, for
any 7> 0,vo,r) is essentially bounded. Let us recall here
that a function y: RT— RT is: of class P if it is
continuous, zero at zero and positive for any positive
real; of class K if it is of class P and strictly increasing;
of class K, if it is of class K and it is unbounded;
of class £ if it is continuous and it monotonically
decreases to zero as its argument tends to +oo.
A function B: RT x R — R™ is of class KL if B(-, 1) is

of class IC for each >0 and f(s,-) is of class £ for
each s>0. The symbol o denotes composition of
functions.

2. Neutral functional differential equations and
converse Lyapunov—Krasovskii theorems for
0-GAS and 0-GES properties

Let us consider the following neutral functional
differential equation (NFDE) in Hale’s form (Hale

and Lunel 1993; Kolmanovskii and Myshkis 1999):
d '
apxr =f(x), =0, )

x(f) = EO(.[)s TE [_A’ O]7 EO € C7
where x(7) € R", n is a positive integer; A>0 is the
maximum involved time delay; the map f: C— R" is
Lipschitz on bounded sets and satisfies f{0)=0; the
operator D: C— R" is defined, for ¢ €C, as

»
D = p(0) — Y Aip(—A,). 2)
=1
with p a positive integer, A; positive reals satisfying
Ai<A, j=1,2,...,p, A; matrices in R",

j=1,2,...,p. It is assumed that the operator D is

strongly stable (see Definition 6.2, p. 284 of Hale and
Lunel 1993). Let us recall here that: in the case p=1,
the operator D is strongly stable if and only if the
eigenvalues of 4; are located inside the open unitary
disc; in the case of multiple delays, a necessary and
sufficient condition for the strong stability of the
operator D is provided in Theorem 6.1, pp. 284-287, of
Hale and Lunel (1993). Sufficient conditions for the
strong stability of the operator D, in terms of matrix
inequalities, are provided in Pepe and Verriest (2003),
Pepe (2005), Gu and Liu (2009), Gu (2010), Li and Gu
(2010) and Li (2012).

In the following well-known definition, reported
here for reader’s convenience, GAS is meant uniform
with respect to Cy, for any positive real H
(see Definition 4.4, pp. 149-150, of Khalil 2000,
for systems described by ODEs, see also Definition
1.1, pp. 130-131 of Hale and Lunel 1993, as far as the
local, uniform asymptotic stability of systems
described by RFDE:s is concerned).

Definition 2.1: The system described by (1) is said to
be 0-GAS if:

(1) For any € >0 there exists § >0 such that, for
any initial condition & € Cs, the solution exists
for all e RT and, furthermore, satisfies

lx() <€, t=0; (3)

moreover, § can be chosen arbitrarily large for
sufficiently large e.
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(i) For any positive real H, for any positive real e,
there exists a positive real 7 such that, for any
initial condition &,€Cy, the corresponding
solution exists for all e R* and, furthermore,
satisfies

x()) <e Vi>T. 4)

Property (i) in Definition 2.1 is equivalent to
Lyapunov and Lagrange stability for dynamical sys-
tems. The following well-known definition concerns
the GES (see Definition 4.5, p. 150 of Khalil 2000,
as far as systems described by ODEs are concerned,
see Krasovskii 1963, as far as systems described by
RFDE:s are concerned).

Definition 2.2: The system described by (1) is said to
be 0-GES if there exist positive reals M, A such that, for
any initial condition & € C, the corresponding solution
of (1) exists for all 1€ R" and, furthermore, satisfies the
inequality

Ix(0)] < Me™|&ll, 1> 0. (%)

Notice that, in Definition 2.2, M > 1 is mandatory.
For a locally Lipschitz functional V: C— R*, the
derivative of the functional ¥, D*V: C— R*, is defined
(in Driver 1962; Pepe 2007a), for ¢ €C, as

D*¥($) = lim sogp%(wh) V). (6

where for 0 <h <A, ¢, €C is given by
¢(S+h)s NES [_As - h]a

Do+ [(¢)(s+h)—Dg;,, +¢(0), s€(=h,0],
(7

o1(5) = {

for 0 <6 <h, ¢; € C is given by

b(s) = {¢(s +6), sel[-A, —4], ®)
¢(0), s € (—6,0].
Let us recall here that for any locally Lipschitz
functional V: C— RT, the following result holds
(Driver 1962; Pepe 2007a)
lim supM =D"V(x,), te[0,b), (9)

h—0+ h
where x; is the solution of (1) in a maximal time
interval [0, 5), 0 <b < +o0.

The main result of this article is given by the necessity
part of the following theorem (see Theorem 8.1, p. 293,
of Hale and Lunel 1993; and Theorem 7.2 of Cruz and
Hale 1970; as far as local, uniform asymptotic stability
is concerned).

Theorem 2.3: The system described by (1) is 0-GAS if
and only if there exist a locally Lipschitz functional V:
C— R, functions oy, o, of class Keo, a function oz of
class IC, such that the following conditions hold for
all peC:

(1) a1(IDg)) = V(¢) < ax(lIll);
(i) DTV(¢) < —as(I1Dg).

The proof of Theorem 2.3, based on recently
developed methodologies for converse Lyapunov-
Krasovskii theorems concerning systems described by
RFDEs (Karafyllis 2006; Karafyllis et al. 2008a,b), is
reported in Appendix A. The following Theorems
provide necessary and sufficient Lyapunov—Krasovskii
conditions for the 0-GES property.

Theorem 2.4: The system described by (1) is 0-GES if
and only if there exist a locally Lipschitz functional V:
C— R*" and positive reals a;, a», as, such that the
following conditions hold for all ¢ €C:

(i) ai|Dg| < V(@) < a9 |;
(i) DTV(9) = —asV(g).

Theorem 2.5: [f the map fin (1) is globally Lipschitz,
then the system described by (1) is 0-GES if and only if
there exists a globally Lipschitz functional V: C— R,
such that the following conditions hold for all ¢ € C:

(i) a|DPl = V($) = axll;
(i) DTV(¢) = —asV ().

The proofs of Theorems 2.4 and 2.5, based on well-
known methodologies for converse Lyapunov—
Krasovskii theorems concerning systems described by
RFDEs and exponential stability (Krasovskii 1963;
Kim 1999), is reported in Appendices B and C. The
following theorem will be used for establishing a link
between 0-GES and ISS properties in the following
section.

Theorem 2.6: If the map fin (1) is globally Lipschitz,
then the system described by (1) is 0-GES if and only if
there exist a globally Lipschitz functional V: C— R, a
semi-norm ||-||, and positive reals ay, a», as, a4, such that
the following conditions hold for all ¢ €C:

(1) ai1|Dg| < V(¢) < axl|Pllas
(i) DV($) < —asllopllu
(iil) [Plly < aasll@ll.

The sufficiency part in Theorem 2.6 readily follows
from Theorem 2.4. The necessity part in Theorem 2.6
can be proved almost identically as the one in Theorem
2.4 (just choose |-l.=|- and make use of Lemma
B.2). The proof of the global Lipschitz property of the
functional V' is identical to the one provided for
Theorem 2.5. Therefore, the proof of Theorem 2.6 is
omitted.
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3. A link between 0-GAS and ISS properties for
systems described by NFDEs

A link between 0-GES and ISS properties is provided
here (see Lemma 4.6, pp. 176-177, of Khalil 2000, as
far as 0-GES systems described by ODEs are con-
cerned, Yeganefar et al. 2008, as far as 0-GES systems
described by RFDEs are concerned). Let us consider
the following NFDE in Hale’s form:

d
3 DX =f(xpu), 120, (10)

X(T) = %'()(T), TE [_A7 O]a é,-:() € Ca

where x(f) € R", n is a positive integer; A>0 is the
maximum involved time delay; the map f: C x R — R"
is Lipschitz on bounded sets and satisfies f{0,0)=0; m
is a positive integer; u(-) is a Lebesgue measurable,
locally essentially bounded input signal; the operator
D: C— R", defined as in (1), is assumed to be strongly
stable. It is assumed that there exists a map
f:R"xCx R"™— R", independent of the second
argument at 0 (Pepe 2011, see Definition 5.1, p. 281,
of Hale and Lunel 1993), such that, for any ¢eC,
ue R™, the equality f(¢, u) = f(¢(0), ¢, ) holds.

Definition 3.1 (Sontag 1989): The system described
by (10) is said to be ISS if there exists a function 8 of
class KL and a function y of class K such that, for any
initial condition &y e C, for any Lebesgue measurable,
locally essentially bounded input signal u, the corre-
sponding solution of (10) exists for all r>0 and,
furthermore, satisfies the inequality

X0 < B(lEoll, ) + ¥(luppl), € R (11)

For a locally Lipschitz functional V: C— R*, the
derivative of the functional ¥V, DYV: Cx R" — R*, is
defined (in Driver’s form, see Driver 1962; Pepe
2007a), for p€C, de R™, as

D V(@) =lim sogp% V) — V@), (12)

where for 0 <h <A, ¢, ,€C is given by
¢(S+h)a s€ [_Aa - h],
Ph.als) = { x
Do +f(¢.d)(s+h) —Dei,,,+¢(0), s€(—h,0],
(13)
for 0 <0 <h, ¢ € C is given by (8).
Let us here recall that, for any locally Lipschitz

functional V: C— RT, the following result holds
(Pepe 2007a)

h—0t h
t €10,b), a.e., (14)

= D"V (x,,u(1),

where x, is the solution of (10) in a maximal time
interval [0, 5), 0 < b < +4o0.

Theorem 3.2: Let the system described by (10), with
w(t)=0, be 0-GES. Let the map f in (10) satisfy the
following hypotheses:

(1) There exists a positive real Ly such that, for any
¢;€C, i=1, 2, the inequality holds

[f(#1,0) = f(2,0)| < Lollp1 — ¢2ll. (15)

(i) there exists a function L of class IC such that,
for any ¢€C, for any ue R"™, the inequality
holds

|f(@,u) — f(¢,0)] < L(Jul). (16)

Then, the system described by (10) is ISS.

The proof of Theorem 3.2 is reported in
Appendix D.

4. Conclusions

In this article we have dealt with converse Lyapunov—
Krasovskii theorems for time-invariant systems
described by NFDEs in Hale’s form, with linear,
strongly stable difference operator. We have proved
that the well-known Lyapunov—Krasovskii conditions,
sufficient for the 0-GAS property of these systems, are
also necessary. Moreover, we have given necessary and
sufficient Lyapunov—Krasovskii conditions for the 0-
GES property. Finally, we have shown a link between
the 0-GES property and the ISS property. Future
investigation will concern the case of nonlinear differ-
ence operator, namely D¢ = ¢(0) — g(¢), ¢pC, with g
nonlinear, involving discrete as well as distributed time
delays (Pepe, Karafyllis, and Jiang 2008b; Melchor-
Aguilar 2012). Notions for the nonlinear difference
operator such as, for instance, g(¢) independent of ¢(0),
¢ €C (see Definition 5.1, p. 281, of Hale and Lunel
1993), ISS (Pepe, Jiang, and Fridman 2008a), incre-
mental GAS, incremental ISS (see Angeli 2002, as far as
systems described by ODEs are concerned), may be
instrumental in order to further extend the results
presented here to systems described by more general
NFDEs. Another topic which will be considered con-
cerns the converse Lyapunov—Krasovskii theorem for
the ISS of systems described by NFDEs in Hale’s form,
for which sufficient Lyapunov—Krasovskii conditions
are provided in Pepe (2007a) and Pepe et al. (2008b). We
believe that a converse Lyapunov—Krasovskii theorem
for the notion of robust 0-GAS (see Lin, Sontag, and
Wang 1996; as far as systems described by ODEs are
concerned) may be instrumental for deriving the con-
verse Lyapunov—Krasovskii theorem for the ISS of
these systems, as it happens for systems described
by RFDEs (Karafyllis et al. 2008a,b).
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Appendix A: Proof of Theorem 2.3

Lemma A.1: The system described by (1) is 0-GAS if and
only if there exist a function B of class ICL such that, for any
initial condition & €C, the solution exists for all t€ R" and,

furthermore, satisfies

Ix < Blll&ll. 0, 7€ RT. (A1)

Proof: See Theorem 2.2, p. 62 of Karafyllis and Jiang
(2011). See also Lemma 4.5, p. 150 of Khalil (2000), as far as
systems described by ODEs are concerned. (I

Lemma A.2 (See Proposition 7 of Sontag 1998): For any

function B of class KL, there exist functions &y, &, of class K,

such that, for all (s, t) e R* x RT, the inequality holds
Bls, 1) < @' (e H@a(s)). (A2)

Lemma A.3 (Karafyllis 2006; Karafyllis et al. 2008a;
Karafyllis and Jiang 2011): For any given function o of
class Koo, there exists a function y of class Ko, with the

following properties:

() y(s) <a(s) Vse RT;

(i) |¥(s1) = y(s2)| < |s1 — 52| Vs1, s2€ R
Proof: In Karafyllis (2006), Karafyllis and Jiang (2011) and
Karafyllis et al. (2008a), examples are provided for the
function y. For instance, the function y: R™ — R defined,
for s> 0, as

v(s) = min {a(y) +s ) (A3)
<yss
has properties (i), (ii) and is a function of class K. O

Lemma A.4 (Karafyllis 2006; Karafyllis et al. 2008a,b):
There exists a continuous non-decreasing  function
L: Rt — R such that the following inequality holds, for all
¢1, 92 €C,

/(@) = f($2)] = L1l + d2DlI b1 — ¢21l. (A4)

Proof: It is a consequence of the fact that the map f
is assumed Lipschitz on bounded sets (see, e.g. Karafyllis
2006). O

For the system described by the continous-time difference
equation (CTDE), for >0,

Dx; = w(t), x(t)=4&(r), te€[-A,0], & €C, (AS)

with w: R — R continuous, the following result holds.

Lemma A.5 (Hale and Lunel 1993): There exist positive
constants M, w, such that, for any initial conditions ¢y, ¢- in C,
for any continuous signals wy: R*— R, w»: Rt — R, the
corresponding solutions x(t, ¢, wy) and x(t,$r, wo) of (AS)
exist for all te RY and, furthermore, satisfy the following
inequality:
[x(2, 1, wi) — x(2, 2, w2)
< Me™||¢1 — gall + M sup [wi(6) — wa(0)].  (A6)
0€l0,7]

Proof: Clearly the solutions exist in RY. Let y(r)=
X(t, @1, wi) — X(1, 2, wa), u(t)=wi()—wy() and yo=¢ — ¢».
Then y is solution of the CTDE

Dy, =u(1), y(x) =yo(v), 1€[-A,0] (AT)

Since the operator D is strongly stable, it follows from
Theorem 3.5, p. 275 of Hale and Lunel (1993), that there
exist positive constants M, o such that

[ (D] < Me™ || yoll + M sup |u(®)].
’ Y0 P (A8)

Inequality (A6) follows directly from inequality (AS),
taking into account of the previous definitions of y(f), u(?)
and yy.

Notice that, in Lemma A.5, M > | is mandatory.

Lemma A.6: Let the system described by (1) be 0-GAS, with
related function B of class KL as in Lemma A.1. Let M be a
positive real as depicted in Lemma A.5 and let L be a
continuous non-decreasing function as depicted in Lemma A.4.
Define the positive real M and the continuous non-decreasing
function L: R — R™ as follows:

M= M<2 + Xp: |Ak|>, L(s) := M L(28(s,0)), s > 0.

k=1
(A9)

Then, for any initial conditions ¢, ¢» €C, the corresponding
solutions x/(¢1), x/(p2) of (1) satisfy the following inequality,
for t>0,

Ix%(@1) = xi(@2)Il < My — ol ™ 1#1F120r - (A10)
Proof: The solutions x(z,¢,), i=1,2, satisfy the following
equations:

)4
Xt i) = Y Apx(t = Mg, i) + wild), (A11)

k=1
where wi(1) = Doy + [3 f(xs(#))ds, i=1,2. Lemma A.S
implies that the following inequality holds:

|x(7, 1) — x(2, $2)| < Ml — ol + MQSI[BP] [wi(0) — w2(6)].
(0,7

(A12)
Now, the following equality/inequalities hold

[wi(t) — wa(2)]
_ ‘an + [resioas—pos = [ eoas
0 0

< |D$1 — Dép| + ’ /0 (f (es(@1)) =/ (x5(¢2)))dss

P t
< (1 +> |Ak|) llgr — ¢all + /0 |/ (xi(1)) =/ (x(¢2))|ds.
k=1

(A13)
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From Lemma A.4, the inequality follows:

lwi (1) = wa(2)]

r
< (1 +y |Ak|) g1 — oo

k=1
+ /0 L(lIxs(@0ll =+ [1xs(@2) D1l x5(¢p1) — x(#2)lIds.  (A14)
From the fact that ||x,(¢;)|| < B(l|¢:]l 5), the inequality follows:
w1 (1) — wa (D)l

)4
< (1 +y° |Ak|)||¢1 — ¢l

k=1

t
+ [ T(B111.0) + B16a1. 0Dl 01) ~ g,
(A15)
From (A12) and (A15) the inequality follows

llx(é1) — x:(D2)l
V4
< M(z +y |Ak|> g1 — ¢al
k=1

+M/O LBU¢111,0) + B2l 0 llx,(1) — x4(ep 1 ds.
(A16)

Inequality (A10) is a direct consequence of inequality (A16)
and the Bellman-Gronwall lemma. O

Lemma A.7: Let the system described by (1) be 0-GAS, with
B as related KCL function, according to Lemma A.1. Let (taking
into account of Lemma A.3) @, be a globally Lipschitz
Sfunction, with Lipschitz constant equal to 1, of class K., @ be
a function of class Koo, such that inequality (A2) in Lemma
A.2 holds. Let M be the positive real and L be the continuous,
non-decreasing function defined in (A9), in Lemma A.6. Let,
for any positive integer q, Uy C— RT be the functional
defined, for all ¢ €C, by

Uy(6) = sug(max{o,m(nx,(@n) - é}e) (A17)

where x{¢) is the solution of (1) with initial condition ¢. Let G-
RY x Zt — R be the function defined as

G(s,q) = M(1 + qar(s)) LMD, se RY, ge zt. (AIB)

Then, for any positive integer q, the following results hold:

(1) max {0,@ (o) -1} < Uq(¢) <m(l¢l) Vo € C;

() Ufxd@) =e 'Uyd) VieR", vpeC;

(3) for any positive real H, fo; any ¢1,¢2€Cyy, the
inequality holds:

|Uq(1) — Ug(¢2)| = G(H, q)llp2 — . (A19)

Proof: The proof follows the same lines of the one for the
case of RFDEs studied in Karafyllis (2006) and Karafyllis
et al. (2008a,b). For reader’s convenience, the proof is
reported here, with some slight modifications, mainly related
to the definition of the function G (see also the definition of
the functional V" in (A28)). The first inequality in (1) follows
by choosing =0 on the right-hand side of (A17). The second

inequality in (1), taking into account of Lemma A.2, follows
from the inequalities

sup (maX{O, ai(lx(@)l) — %1}6’)

=0

< sup(max{O e a(llgl) — _} )
=0

< sup(max{o, @ (1g1) —;}) <@m(lol).  (A20)

=0
Point (2) follows from the inequality

sup(max{o,a1(||x9(x,(¢))n) - é}ee)

0>0
< sup(max{o, B (X @) 1}ea-’). (A21)
>0 q

As far as Points (3) is concerned, the following equality holds
(we consider log(0) = —00):

sup }(max{o,m(uxt(d))n) —é}e’) ~0.

r=max{0.}log(qa(l|$I1))

(A22)
In order to prove this we can consider the two cases:

(i) max{0, Slog(qax(ll¢l)} = 0;
(ii) max{0, $log(gax([lpl))} = Slog(gar(lIpID)-
In case (i), we have @(||l¢l]) <1l It follows that

@i (x| <L >0, and thus (A22) "holds in this case. In
case (ii), we have fort > 5 log(qa2(||</>||))

G (@) < o2 g, (p]) = é (A23)

and thus (A22) also holds in this case. Therefore, for any
& > max({0, 3log(¢ax(lI9l))}, we have

Uy(#) = sup (max{o m(ﬂx[(@n)——} ) (A24)

0<1<é&
Now, let H be a positive real. Let us choose
& = max{0, }log(qa,(H)}. Let us take any ¢y, ¢> € Cy. Then,
taking into account of the Lipschitz property of @;, and of
the fact that also the function s — max {0,5 — ] is globally
Lipschitz with Lipschitz constant 1, we have

|Uq(¢2) - Uq(¢l)|
sup (max{oﬁl(ll-’w(%)ﬂ) - é}€’>

0=r<§

— sup (maX{Oﬁl(er((bl)ll) - é}e[>

O=1=§

< sup
0<r=k

maX{O,al(llxt(qb)ll) - é}

- maX{O,al(lle(tm)ll) - é} ¢
< ()SlipAE o1 (I1x(@2)11) — @1 (Ix(p)Dle!

=< 083135 Hxe(@2)ll = llx(@0)llle’

< osggs lxi(#2) = x:i(p1)le". (A25)
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Thus, from Lemma A.6, we obtain

[Uy(h2) — Uyl
< M CHE gy — g |
< é,zl(uz(lJrqom(H)) MeéL(ZH)log(qu(H)) lldr — 1l

< GH, Plig> — ¢l (A26)
The proof of the lemma is complete. U

Lemma A.8: The system described by (1) is 0-GAS if and
only if there exist a functional V: C— RY, Lipschitz on
bounded sets, and functions oy, as, a3 of class Koo, such that,
Vo €C, the following inequalities hold:

@) e (lll) = V(@) < cx(ligl);
(i) DV(¢) < —as(lgl).

Proof: Let us prove first the necessity part. We will make
use of Lemma A.7. Let the trivial solution of the system
described by (1) be 0-GAS, with 8 as related KL function,
according to Lemma A.1. Let @; be a globally Lipschitz (with
Lipschitz constant equal to 1) function of class K., @, be a
function of class K, such that, according to Lemma A.2,

B(s,t) <@ (e *@(s)), s,t€ R (A27)

Let M be the positive real and L: R"™— R" be the
continuous, non-decreasing function as depicted in Lemma
A.6. Let, for any positive integer ¢, U, C— R" be the
functional defined as in Lemma A.7. Let V: C— R™ be the
functional defined, for ¢ € C, by (Karafyllis 2006; Karafyllis
et al. 2008a,b)

.
9= g

Uy(9), (A28)
where G: Rt x Zt — R* is the function defined in (A18), in
Lemma A.7. Notice that, from result (1) in Lemma A.7, and
non-negativeness of G, it follows that, for any ¢ € C, the sum
in the right-hand side of (A28) is convergent. The functional
V satisfies (i), (ii) in the lemma and is locally Lipschitz.
Indeed, from result (1) in Lemma A.7, it follows that o, > in
(i) can be chosen, for s> 0, as

ay(s) = +ioimax{o @) (s) — l}
= 1+G(q.9) ’ ql’ (A29)
aa(s) = 2ax(s).

As far as (ii) is concerned, we have, for ¢ € C (see (6)—(8)),

D V) = limsup 80~ V®
h—0+
< lim sup V(¢/z) - V(xlz(¢))
h—0F h
+ lim sup 71/(’”’(‘1’)})1 V@ (a0
h—0F

where x,(¢) is the solution of (1) with initial condition ¢.
From item (2) on Lemma A.7, it follows that
V(xu(@)) < e "V(¢), and therefore, for the second limit on
the right-hand side of (A30), we have

lim supw < —W(¢). (A31)
h—0t

As far as the first limit on the right-hand side of the
inequality in (A30) is concerned, since, from (A18), it follows
that G(s, ¢) <G(q, q) for 0<s<gq, recalling result (3) in
Lemma A.7, taking into account of the continuity of the map
t—x, (see Lemma 2.1, p. 40 of Hale and Lunel 1993),
we have, for z=[||¢||]] + 1, for sufficiently small positive 4,

+00 2
Vign) = Vi@ < ;leq(m) = Uyxi(@))|

q)

271G(z,9)
(“21 o )ud)h—xh(qb)n.

(A32)

Now, from (6)—(8), for sufficiently small 4, we have

”(bh - x/z(¢)||

= sup
0e(—h0

D¢+(9+h)f(¢>+ZA/\¢( Ai+0+h)

k=

~Dg /: FO@Nds— 3 Aup—A +0+ h)'
k=1
0+
= sup |(O@+h)[f(d)—
0e(~h0]

S(xs(#))ds|. (A33)

Therefore,

1
lim sup lén — xn(@)l

h—0+

=limsup sup
h—0+ oe(—ho)|l

(9 +Mf (@) - —f S (xs())ds

0-+h
SO =g [ e

0-+h

g Sea(@nds

= lim sup sup 7|9+h|
h—0t  Oe(—h

<limsup sup =0.

h—0%  6e(—=h0]

/@) -

(A34)

So, the first limit on the right-hand side of (A30) is equal to
zero. Taking into account of the result in (A31), taking into
account of the already proved conditions (i), we can choose
a3 in (ii) equal to «y. It remains to prove that the functional V’
is Lipschitz on bounded sets. Let H be a positive real. Let
z=[H]+ 1. Taking again into account of the definition of G
in (A18), in Lemma A.7, taking into account of result (3) in
the same lemma, we have, for any given ¢, €Cy, i=1, 2,

14 G(q,9)

The proof of the necessity part of the Lemma is complete. As
far as the sufficiency part is concerned, by Lemma 6 in Pepe
et al. (2008b), we can assume, without any loss of generality,
that & € W' (see also Pepe, 2007b, as far as RFDEs are
concerned). From Lemma 5 in Pepe et al. (2008b), it follows
that the function ¢— w(z)=V(x,(&y)) is locally absolutely
continuous (thus its derivative exists almost everywhere).
From conditions (i), (i) it follows, for the function
t — w(t) = V(x(&p)), taking into account of (9), that

dw(z)
dt

Vi) — Vo) < (2+ZL(H")) 62— dill. (A39)

g=1

= DTV(x,(%)) < —az o5 ' (w(1)), te€[0,b), ae.,
(A36)
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where [0, ), 0 < b < +o00, is the maximal interval of existence
of the solution. From Lemma 4.4 in Lin et al. (1996), it
follows that there exists a function B of class KL (depending
only on a», a3) such that w(z) < B(w(0),?), t<[0,b). From
condition (i), it follows that

Il < eyt o Blealll&oll), 1), ¢ €[0,b) (A37)

Since the solution x; is bounded in [0,b) (and thus Dx,
is bounded in [0, b)), it follows that h=+oc0 (see Hale
and Lunel 1993; Lemma 3 in Pepe 2011). Since the func-
tion (s, 1) — B(s, 1) = a7 o Blaa(s), 1), s, t€ R, is of class
KL, the proof of the sufficiency part of the lemma is
complete. The proof of the lemma is complete. O

We are now ready to prove Theorem 2.3. The necessity
part follows from Lemma A.8, since, for all ¢ €C, the
inequality holds

P
IDg| < (1 +y |Ak|) 1l (A38)

k=1

The sufficiency part is a standard result, as far as the local,
uniform, asymptotic stability of the origin is concerned. The
proof can be obtained by similar, though more involved,
reasoning as the one used in the proof of Theorem 2.1,
pp. 132-133 of Hale and Lunel (1993), for the local,
uniform asymptotic stability of the origin of systems
described by RFDEs, taking into account of Theorem 3.5,
p. 275 of Hale and Lunel (1993). In the case of the uniform
0-GAS property, to our best knowledge, such proof is not
available in the literature. For reader’s convenience and
for the sake of completeness, we report it here, using
the derivative of the functional 7 in Driver’s form, which
does not involve the solution, not even formally (see (6)—(8)).
Let € be an arbitrary positive real. Let M be as in Lemma
A.S. Let

5= min{i_,a;‘ o (é)} (A39)
A A

Let ||&|| < 4. Let [0, b), 0 < b < +o00, be the maximal interval
of existence of the solution x(z). Then, |x(7)| <€, t€[0,b). In
order to prove this, by Lemma 6.2 of Bacciotti and Rosier
(2005), taking into account of (9) and ii), the following
inequalities hold for 7 €[0, b),

IDxi| < o (V(x))

<o (V&)

<o o(d)
Safloazoaglom(ﬁfl):ﬁ. (A40)
Since Dx, is bounded in [0,5b), it follows that b=+o0
(see Hale and Lunel 1993; Lemma 3 of Pepe 2011).

From (A40), taking into account of Lemma A.5, the
inequalities hold:

s

N ™

_ _ __ € _
[x()] < M|l + M sup |Dx;| < M—+ M
e[0,1] 4M

te R (A41)

g

Therefore, we have proved Lagrange and Lyapunov stability.
Now, let H, € be arbitrary positive reals. By Lemma 6 of Pepe

et al. (2008b), we can assume, without any loss of generality,
that & e W', From Lemma 5 of Pepe et al. (2008b), it
follows that the function ¢— w(r)=V(x,(&)) is locally
absolutely continuous (thus its derivative exists almost
everywhere). We wish to show that: for any
&€ CyNWE™, the solution exists for all re R'; there
exists a positive real T such that, for all 1> T, |x(¢, &)| <€
V&, € CiyN W, First, let us notice that, for & e CiyN W,
and [0,b) the related maximal interval of existence of the
solution, we have that

IDx,| <oy oan(H), t€][0,b), (A42)
and thus, from Lemma A.5,

|x(t)] < MH + Ma;"' o an(H), te[-A,b). (A43)

Again, since Dx, is bounded in [0, ), it follows b =+o00. Let
us choose § as in (A39). Let § = ﬁ. Let j be the smallest
positive integer such that

e " (MH + Moy o ax(H)) <8, (A44)

where w is the positive real in inequality (A6), in Lemma A.5
(see Theorem 3.5, p. 275 of Hale and Lunel 1993). Let
A = (j+ 1)A. Let k be the smallest integer satisfying

_ Lao(H)

k—1=> . (%) . (A45)

where

L = max sup £ (@), % . (A46)

peC.ll¢ll <MH+Mar; ' ooy (H)

Let T =2k A. Let & €Cy N W"*°. From the time-invariant
character of the system described by (1) and the conditions
on the functional V, it follows that, if, at a time 7, |x;]| <8,
then |x(7)] < € V¢ > 7. Now, for some 7 € [ A, 7], the inequal-
ity holds:

sup |Dxy| < 6. (A47)
felt—A1]

In order to prove this, by contradiction, if such v does not
exist, in each interval [(2k — 1)A,2kA], k=1,2,,k, there
exists a time #;, such tha_t |Dx,, | > 6. Sinc§ [f(x))] <LVie R,
it follows that |Dx,| > § Vi € I = [ty — 57 . tx + 7). In order

to prove this, take into account that, from the equality

max(?,7)
Dy = Dy + [ fCuldo. (AdS)
min(z,t;)
the inequality follows
max (7, )
Dz 5= [ i (Ad)
min(z,)

Notice that the intervals I, k=1,2,,k, do not overlap,
because of the choice of L. Now, taking into account of the
absolute continuity property of the functional V, and of (9),
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we have

TdV(xo)
i dr

Vo) = Vie +

V(&) + /0 "t V(x,)dt

IA

V(&) — /0 *ors(1Dxo)d6 < an(H)

k=1 ot 3
- Z _ a3l = de
=), i 2

k3L

— sl ~ - D) 7

L
LOtz(H) (g) S _
< ar(H) — - ~]==0, (A50)
P () L

which, by (i), is a contradiction, since we hypothesised
|Dx,;| > 3. Now, for te[t—A, 1], taking into account of
Theorem 3.5, p. 275 of Hale and Lunel (1993) (see Lemma
A.5) and of (A44), we have

(1) < Me (D) (MH + Ma;" o ar(H)) + M §

< ]T/[e*“’(jA)(VH + H(xfl o (xz(H)) +MS$

<2M3=1. (AS])
Therefore, ||x.|| <& and, for any 1> T, |x(7)| <e. Since this
result holds for any & € C;N W, the proof of the theorem
is complete.

Appendix B: proof of Theorem 2.4

Lemma B.1: Let the system described by (1) be 0-GES, with
related positive reals M, \. Let H be a positive real. Let M be a
positive real as depicted in Lemma A.5 (see (A6)). Let L be a
positive real such that, for all ¢\, ¢> € Ciyirrmy, the inequality

follows:
|f(@1) = f(¢2)] < Lllgr — ¢2ll. (BI)
Let L, P be the positive reals defined as follows:
I
P:W(2+Z|Ak|>, L=ML. (B2)
k=1

Then, for any given initial conditions ¢y, ¢> € Cyy, the corre-
sponding solutions x,(¢1) and x,(¢o) satisfy the inequality

[x(p1) — x(¢)]| < Pe™llpy —all, t=0.  (B3)

Proof: The solutions x(z, ¢,), i=1, 2, satisfy the following
equation, for >0,

P
Xt ¢) = Y Apx(t = Ay, ) + wi(0), (B4)
k=1

where w,-(t):Dq),-—l—f()’f(xs(d),-))ds, i=1, 2. From Lemma
A.5, the inequality follows:

Ix(r, 1) — x(t, $2)| < Ml — ol + MQS?OP] [wi(0) — w2 (0)].

(BS)

Now, the following equality/inequalities holds:
i () — wa(0)l
! !
= oo+ [ est0nds = Do~ [ sionas

< [Dg1 — Dl + ] /0 (F ) —f(ea(d2)ds

» t
< (1 + Z |Ak|) o1 — @l +/0 |/ (Gxs(@1)) — [ (xs(h) | ds.

k=1
(B6)

Taking into account that |x(¢)|<H+ MH, t>0, from
the Lipschitz property of the map f it follows that the
inequality holds:

[wi(2) — wa (D)
V4 li
< (1 +) |Ak|> 1 — all + f Llx,(¢1) — x,(@2)1ds.
k=1 0

(B7)
The inequality follows

P
lxi(¢1) — xi(@2)ll < V<2 +> |Ak|) g1 — ol
k=1

v /0 Tlx(é) — x(@p)lds.  (BS)

Inequality (B3) follows from inequality (B8) by the Bellman—
Gronwall lemma. O

Lemma B.2: The system described by (1) is 0-GES if and
only if there exist a functional V: C— R, Lipschitz on
bounded sets, and positive reals ay, a, as, such that the
following conditions hold for all ¢ € C:

(i) a|Dg| < V($) < aslll;
(i) DTV(¢) < —aslgll

Proof: Let us prove the sufficiency part. Let x(z), 1 €[0, b),
0 < b <400, be the solution of (1) corresponding to an initial
condition &, By Lemma 6 of Pepe et al. (2008b), we can
assume, without any loss of generality, that & € W"*°. From
Lemma 5 of Pepe et al. (2008b), it follows that the function
t— w(t) = V(x/(&p)) is locally absolutely continuous (thus its
derivative exists almost everywhere). From condition (ii),
taking into account of (9), it follows, for the function
t— w(t) = V(x,(&p)), that

dggl) = D V(x,(&)) < —as|lx(E)l.  1€[0.b).  ae.,
(B9)
and, from (i),
w < —ﬁw(t), t€0,b), ae. (B10)
dr a

From (B10), taking into account of the absolute continuity
property of the function ¢ — w(z), by the Bellman—Gronwall
lemma, the inequality follows

w(t) < e_x'w(O), t €10, b), (B11)
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with A = Z—‘ Finally, from (i), the inequality follows:
@
|Dx| < @t I§oll, 2 €10,b). (B12)

Moreover, b = +o00, otherwise the function r— Dx,, in [0, b),
was unbounded (see Hale and Lunel 1993; see Lemma 3 of
Pepe 2011). From (B12), from Theorem 4.5, p. 275 of
Hale and Lunel (1993), it follows that there exists a positive
real ¢ such that, for any >0, for any &€ w-ee,
the inequality holds:

Xl < qliéoll- (B13)

Now, taking into account of Theorem 4.5, p. 275 of Hale and
Lunel (1993), and of the time-invariant character of the
system described by (1), there exist positive reals ¢, ¢», such
that, for any 7>ty > 0, the inequality holds:

—q(l— D%
IXx(Ol < q1 (e (=0 g || | +a—fe Ho ||so||>. (B14)

Then the 0-GES property follows by choosing #=1/2,

M= ql(q—l—”?), L =1min{g:.%}. As far as the necessity

part is concerned let the solution satisfy the inequality
IX(0)] < Me ™M |& o, 1 €0, +00), (B15)

for suitable positive reals M, A. It follows that

x|l < M*be™ &l 1 € [0, + o). (B16)

Let T be a positive real such that
Mt T = % (B17)
Let V: C— R" be defined (Krasovskii 1963), for ¢ €C, as

@) = / Jldr+ sup . (BIB)

where x(7) is the solution of (1), corresponding to an initial
condition & =¢. From the inequality

P
D¢l < <1 +Z|Ak|>||¢||, e (B19)

k=1

it follows that the functional V satisfies the first inequality
in (i). As far as the second inequality in (i) is concerned, the
following inequality helps:

T
V() < ( / Meme—“derMeM) loll. (B20)
0

As far as inequality (ii) is concerned, taking into account of
(9), the following equality/inequalities holds (recall that x(7)
is the solution corresponding to ¢),

D V(¢) = lim sup w

h—0+

T+h T
Jp xide = o lixlde

< limsup
h—0+ h
su X/ —su X
+ lim sup Preth, 7 1%l Prefo,r 1|l ‘
h—0+ h

(B21)

Taking into account of (B16) and (B17), it follows that

SUP g, 7n 1% — Supepo, 7y 1l

lim sup <0. (B22)
h—0+ h
Therefore,
DTV(¢) < lIxzll — 1l (B23)

Taking account of (B16) and (B17), the inequality follows:

D V@) < —5 61, (B24)

It remains to prove that the functional V is Lipschitz on
bounded sets. Let H be a positive real. Let ¢y, ¢€Cp.
The inequality follows

[V(g1) — Vgn)
T
< fo @)l — I (@)llds
+ | sup [Ix, (D)l — sup [Ix/(d)Il]. (B25)
1€[0,7] 1€[0,7]
Taking into account that
sup [lx(¢0)ll — sup ||Xz(¢2)||’
1€[0,7] 1€[0.7]
< Sup Mxd(@)Il — llx ()l
< Sup lx:(d1) — x:(2)l, (B26)

tel0,

by Lemma B.1 the inequality follows, for suitable positive
reals P, L,

T
[V(g1) — Vig)l S/O Pe gy — ¢olldt + S[l(l)lg1 Pt |y — o
(B27)

Therefore

V(1) — Vgl < Lyllgr — ol V¢ € Cy, i=1,2, (B28)
where 0 < L, < P(T+ 1)e"". O

The necessity part of Theorem 2.4 follows straightforwardly
by Lemma B.2. As far as the sufficiency part is concerned, let
x(1), t€[0,b), 0 <b < +o00, be the solution of (1) correspond-
ing to an initial condition &, By Lemma 6 of Pepe et al.
(2008b), we can assume, without any loss of generality, that
& € W' From Lemma 5 of Pepe et al. (2008b), it follows
that the function ¢— w(f)=V(x/(&)) is locally absolutely
continuous (thus its derivative exists almost everywhere).
From condition (ii), taking into account of (9), it follows, for
the function  — w(r) = V(x(&)), that

= D" V(x,(&)) < —azw(f), te[0,h), ae. (B29)

dw(7)
dt

From (B29), taking into account of the absolute continuity
property of the function #— w(z), by the Bellman—Gronwall
lemma, the inequality follows:

w(t) < e 'w(0), 1€ [0,b), (B30)
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Finally, from (i), the inequality follows:
a
Dx,| < a—je—‘”’nson 1 €[0,b). (B31)

From here on, the same lines of the proof of the sufficiency
part of Lemma B.2 can be followed (just use (B13) and (B14)
with A = a3).

Appendix C: proof of Theorem 2.5
The sufficiency part follows from Theorem 2.4. As far as the
necessity part is concerned, we have the following lemma.

Lemma C.1: Let the system described by (1) be 0-GES, with
related positive reals M, ,. Let M be a positive real as depicted
in (A6), in Lemma A.5. Let L be a positive real such that, for
all ¢y, ¢ €C, the inequality follows:

|f(@1) —f(¢2)] < Lllgr — ¢2ll. (CD)
Let L, P be the positive reals defined as follows
P
P:M(2+Z|Ak|), L=DML. (C2)
k=1

Then, for any given initial conditions ¢, ¢»€C, the corre-
sponding solutions x,(¢1) and x,(¢,) satisfy the inequality

[x:(¢1) — x(@2) | < Pe“ N1 — pall, > 0. (C3)

Proof: The same steps of the proof of Lemma B.1 can be
used here. Just take into account that, from (Cl), the
inequalities (B7), (B8) hold for any ¢;€C, i=1,2. O

Now, take the same functional V" defined in (B18). Such
functional satisfies the conditions (i), (ii) of Lemma B.2 and
thus satisfies (i), (ii) of Theorem 2.5. It remains to prove that
such functional ¥ is globally Lipschitz. Let ¢, ¢»€C. The
inequality follows

[V (1) — Vigo)l
T
< fo @l — Ix@llde

+ | sup [Ix(¢v)ll — sup [lx(#2)]l|- (C4)
1€[0.7] 1€[0.7]

Taking into account of (B26), by Lemma C.1 the inequality
follows, for suitable positive reals P, L,

T
V(1) = Vi)l = /0 Pet|igr — polldr + SE)I;]PGL’H@ — .
(C5)

Therefore
[V(g1) — V()| < Lyligr —d2ll, Ve eC, i=1,2, (C6)
where 0 < L < P(T+ 1)e*7.

Appendix D: proof of Theorem 3.2

We will make use of Theorem 2.6 and of Theorem 4 of Pepe
(2007a). From the 0-GES property and condition (i), it
follows that there exists a globally Lipschitz functional " and
a semi-norm ||-||, as depicted in Theorem 2.6 (see conditions
(1), (i), (ii1) in Theorem 2.6), for the system described by (10)
with u(7) =0. Now, for the same functional V" and semi-norm
[I-lles taking into account of Theorem 2.6, the following
equality/inequalities holds, for any ¢eC, ue R", by (8),
(12), (13),

D V(p,u) = 11m sup (V(¢h W) — V(@)

< limsup — (V((bh W) — V($no))

h—0+
+ 11;n %up (V(¢>h 0) — V(9))
< 11}11 sup (V(d)h W) = V(gno)) — asllgll,  (D1)

where a3 is the positive real given in Theorem 2.6. Taking
into account of the global Lipschitz property of the
functional V" and of condition (ii), we obtain, for suitable
positive real /,

lim sup - (V(¢h W) = Vi¢no))

h—0t

< lim sup—- (1 I6n.u — Pnoll)

h—0+

1
= lim sup 7 sup l|D</> + (@, w)(s + h) — Dy, + $(0)
h—0+ se[—h,0

— D¢ —1(¢, 0)(S + 1)+ DLy, — $O0)l

. 1 . .
<limsup sup (s+/)/[f($,u)—f(#, 0) < [L(lul).
h—0+ 1 se[—h,0]

(D2)
From (D1), (D2), we obtain

From Theorem 4 of Pepe (2007a), taking into account of
condition (i) in Theorem 2.6, the ISS of the system described
by (10) follows. The proof of the theorem is complete.



