
This article was downloaded by: [Technical University of Crete]
On: 04 February 2013, At: 01:05
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House,
37-41 Mortimer Street, London W1T 3JH, UK

International Journal of Control
Publication details, including instructions for authors and subscription information:
http://www.tandfonline.com/loi/tcon20

Converse Lyapunov–Krasovskii theorems for systems
described by neutral functional differential equations
in Hale's form
Pierdomenico Pepe a & Iasson Karafyllis b
a Department of Information Engineering, Computer Science, and Mathematics, University
of L'Aquila, 67100 L'Aquila, Italy
b Department of Environmental Engineering, Technical University of Crete, Chania 73100,
Greece
Version of record first published: 14 Sep 2012.

To cite this article: Pierdomenico Pepe & Iasson Karafyllis (2013): Converse Lyapunov–Krasovskii theorems for systems
described by neutral functional differential equations in Hale's form, International Journal of Control, 86:2, 232-243

To link to this article:  http://dx.doi.org/10.1080/00207179.2012.723137

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions

This article may be used for research, teaching, and private study purposes. Any substantial or systematic
reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to
anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should
be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims,
proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in
connection with or arising out of the use of this material.

http://www.tandfonline.com/loi/tcon20
http://dx.doi.org/10.1080/00207179.2012.723137
http://www.tandfonline.com/page/terms-and-conditions


International Journal of Control
Vol. 86, No. 2, February 2013, 232–243

Converse Lyapunov–Krasovskii theorems for systems described by neutral functional

differential equations in Hale’s form

Pierdomenico Pepea* and Iasson Karafyllisb

aDepartment of Information Engineering, Computer Science, and Mathematics, University of L’Aquila,
67100 L’Aquila, Italy; bDepartment of Environmental Engineering, Technical University of Crete,

Chania 73100, Greece

(Received 13 June 2012; final version received 17 August 2012)

In this article, we show that the existence of a Lyapunov–Krasovskii functional is necessary and sufficient
condition for the uniform global asymptotic stability and the global exponential stability (GES) of time-invariant
systems described by neutral functional differential equations in Hale’s form. It is assumed that the difference
operator is linear and strongly stable, and that the map on the right-hand side of the equation is Lipschitz on
bounded sets. A link between GES and input-to-state stability is also provided.

Keywords: converse Lyapunov theorem; Lyapunov–Krasovskii functionals; retarded functional differential
equation; neutral functional differential equation

1. Introduction

In Karafyllis (2006), Karafyllis, Pepe, and Jiang
(2008a,b) and Karafyllis and Jiang (2010), many
converse Lyapunov theorems have been presented,
for many global stability notions, for systems described
by retarded functional differential equations (RFDEs),
in a very general setting. Time-varying delays, distur-
bances and time-varying equations are considered.
Besides the global uniform asymptotic stability, the
input-to-state stability (ISS) and the weighted input-
to-output stability are also investigated. The reader can
refer to the recent monograph Karafyllis and Jiang
(2011) for an extensive presentation of this topic. As
far as the systems described by neutral equations are
concerned, converse Lyapunov–Krasovskii theorems
are available for the (local, uniform) asymptotic
stability (Cruz and Hale 1970; Bená and Godoy
2001). Methods for constructing the quadratic
Lyapunov–Krasovskii functional are also provided,
for the linear case, in Rodriguez, Kharitonov, Dion,
and Dugard (2004), Kharitonov (2005, 2008) and
Velazquez-Velazquez and Kharitonov (2009).
Converse Lyapunov–Krasovskii methods are also
used for establishing instability criteria for linear neutral
systems in Mondié, Ochoa, and Ochoa (2011). As far
as global asymptotic stability (GAS) notions are
concerned, to our knowledge, converse Lyapunov–

Krasovskii theorems for nonlinear neutral systems are
not yet available in the literature.

In this article, we consider time-invariant systems

described by neutral equations in Hale’s form (Hale
and Lunel 1993; Kolmanovskii and Myshkis 1999).
The difference operator can involve an arbitrary

number of arbitrary discrete time-delays. It is assumed
to be linear and strongly stable (Hale and Lunel 1993).
The map on the right-hand side of the equation is

assumed to be Lipschitz on bounded sets. An arbitrary
number of arbitrary discrete and distributed time
delays can appear on the right-hand side of the

equation. We prove here that the well-known condi-
tions, extended to the whole state space, in the

Lyapunov–Krasovskii theorem for the (uniform)
local asymptotic stability of the origin (Kolmanovskii
and Nosov 1982, 1986; Hale and Lunel 1993;

Kolmanovskii and Myshkis 1999), are not only suffi-
cient, but also necessary. Moreover, we show here
converse Lyapunov–Krasovskii theorems for global

exponential stability (GES), and a link between GES
and ISS.

This article is organised as follows. In Section 2,
converse Lyapunov–Krasovskii theorems for GAS

and GES are provided. In Section 3, a link
between GES and ISS is provided. In Section 4,
conclusions are drawn. For the sake of readability,
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the proofs of the theorems are reported in the
appendices.

Notations: R denotes the set of real numbers, R?

denotes the extended real line [�1,þ1], Rþ denotes
the set of non-negative reals [0,þ1), Zþ denotes the
set of integers in Rþ. For s2Rþ, [s] denotes the largest
number in Zþ, smaller or equal to s. The symbol j � j
stands for the Euclidean norm of a real vector, or the
induced Euclidean norm of a matrix. For a positive
integer n, for a positive real D (maximum involved
time-delay): C denotes the Banach space of the contin-
uous functions mapping [�D, 0] into Rn, endowed with
the supremum norm, indicated with the symbol k�k;
W1,1 denotes the space of the absolutely continuous
functions in C, with essentially bounded derivative.
With the symbol k�ka is denoted any semi-norm in C
(Pepe and Jiang 2006; Yeganefar, Pepe, and Dambrine
2008). For a function x: [�D, c)!Rn, with
0< c�þ1, for any real t2 [0, c), xt is the function in
C defined as xt(�)¼x(tþ �), � 2 [�D, 0]. For positive
real H, �2C, CH(�) denotes the subset (of C) { 2C:
k ��k�H}. For CH, CH(0) is meant. For positive
integer m, positive real �, B� denotes the subset (of R

m)
{u2Rm : juj � �}. For positive integer n, a map Q:
C!Rn is said to be: locally Lipschitz if, for any � in C,
there exist positive reals H, L such that, for any �1,
�22CH(�), the inequality jQ(�1)�Q(�2)j �Lk�1��2k
holds; Lipschitz on bounded sets if, for any positive
real H, there exists a positive real L such that, for any
�1, �22CH, the inequality jQ(�1)�Q(�2)j �Lk�1��2k
holds; globally Lipschitz if there exists a positive real L
such that, for any �1,�22C, the inequality
jQ(�1)�Q(�2)j �Lk�1��2k holds. For positive inte-
gers n, m, a map Q: C�Rm

!Rn is said to be Lipschitz
on bounded sets if, for any positive reals H, �, there
exists a positive real L such that, for any �1, �22CH, for
any u1, u22B�, the inequality jQ(�1, u1)�Q(�2, u2)j �
L(k�1��2kþ ju1� u2j) holds. For positive integer m, a
Lebesgue measurable function v: Rþ!Rm is said to be
essentially bounded if ess supt�0jv(t)j<1. The essential
supremum norm of a Lebesgue measurable and essen-
tially bounded function is indicated again with the
symbol k�k. For given times 0�T1<T2, we indicate
with v½T1,T2Þ : Rþ ! Rm the function given by
v½T1,T2ÞðtÞ ¼ vðtÞ for all t2 [T1,T2) and¼ 0 elsewhere.
An input v is said to be locally essentially bounded if, for
any T> 0,v[0,T ) is essentially bounded. Let us recall here
that a function �: Rþ!Rþ is: of class P if it is
continuous, zero at zero and positive for any positive
real; of class K if it is of class P and strictly increasing;
of class K1 if it is of class K and it is unbounded;
of class L if it is continuous and it monotonically
decreases to zero as its argument tends to þ1.
A function �: Rþ�Rþ!Rþ is of class KL if �(�, t) is

of class K for each t� 0 and �(s, �) is of class L for
each s� 0. The symbol � denotes composition of
functions.

2. Neutral functional differential equations and

converse Lyapunov–Krasovskii theorems for

0-GAS and 0-GES properties

Let us consider the following neutral functional
differential equation (NFDE) in Hale’s form (Hale
and Lunel 1993; Kolmanovskii and Myshkis 1999):

d

dt
Dxt ¼ f ðxtÞ, t � 0,

xð�Þ ¼ �0ð�Þ, � 2 ½�D, 0�, �0 2 C,
ð1Þ

where x(t)2Rn, n is a positive integer; D> 0 is the
maximum involved time delay; the map f: C!Rn is
Lipschitz on bounded sets and satisfies f(0)¼ 0; the
operator D: C!Rn is defined, for �2C, as

D� ¼ �ð0Þ �
Xp
j¼1

Aj�ð�Dj Þ, ð2Þ

with p a positive integer, Dj positive reals satisfying
Dj�D, j¼ 1, 2, . . . , p, Aj matrices in Rn�n,
j¼ 1, 2, . . . , p. It is assumed that the operator D is
strongly stable (see Definition 6.2, p. 284 of Hale and
Lunel 1993). Let us recall here that: in the case p¼ 1,
the operator D is strongly stable if and only if the
eigenvalues of A1 are located inside the open unitary
disc; in the case of multiple delays, a necessary and
sufficient condition for the strong stability of the
operator D is provided in Theorem 6.1, pp. 284–287, of
Hale and Lunel (1993). Sufficient conditions for the
strong stability of the operator D, in terms of matrix
inequalities, are provided in Pepe and Verriest (2003),
Pepe (2005), Gu and Liu (2009), Gu (2010), Li and Gu
(2010) and Li (2012).

In the following well-known definition, reported
here for reader’s convenience, GAS is meant uniform
with respect to CH, for any positive real H
(see Definition 4.4, pp. 149–150, of Khalil 2000,
for systems described by ODEs, see also Definition
1.1, pp. 130–131 of Hale and Lunel 1993, as far as the
local, uniform asymptotic stability of systems
described by RFDEs is concerned).

Definition 2.1: The system described by (1) is said to
be 0-GAS if:

(i) For any �> 0 there exists �> 0 such that, for
any initial condition �02C�, the solution exists
for all t2Rþ and, furthermore, satisfies

jxðtÞj5 �, t � 0; ð3Þ

moreover, � can be chosen arbitrarily large for
sufficiently large �.
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(ii) For any positive realH, for any positive real �,
there exists a positive real T such that, for any

initial condition �02CH, the corresponding

solution exists for all t2Rþ and, furthermore,

satisfies

jxðtÞj5 � 8t � T: ð4Þ

Property (i) in Definition 2.1 is equivalent to

Lyapunov and Lagrange stability for dynamical sys-

tems. The following well-known definition concerns

the GES (see Definition 4.5, p. 150 of Khalil 2000,

as far as systems described by ODEs are concerned,

see Krasovskii 1963, as far as systems described by

RFDEs are concerned).

Definition 2.2: The system described by (1) is said to

be 0-GES if there exist positive realsM, 	 such that, for

any initial condition �02C, the corresponding solution

of (1) exists for all t2Rþ and, furthermore, satisfies the

inequality

jxðtÞj �Me�	tk�0k, t � 0: ð5Þ

Notice that, in Definition 2.2, M� 1 is mandatory.

For a locally Lipschitz functional V: C!Rþ, the

derivative of the functional V, DþV: C!R?, is defined

(in Driver 1962; Pepe 2007a), for �2C, as

DþVð�Þ ¼ lim sup
h!0þ

1

h
Vð�hÞ � Vð�Þð Þ, ð6Þ

where for 0< h<D, �h2C is given by

�hðsÞ ¼
�ðsþhÞ, s2 ½�D, �h�,

D�þ fð�ÞðsþhÞ�D�?sþhþ�ð0Þ, s2 ð�h,0�,

�
ð7Þ

for 0<
� h, �?
 2 C is given by

�?
ðsÞ ¼
�ðsþ 
Þ, s 2 ½�D, � 
�,

�ð0Þ, s 2 ð�
, 0�:

�
ð8Þ

Let us recall here that for any locally Lipschitz

functional V: C!Rþ, the following result holds

(Driver 1962; Pepe 2007a)

lim sup
h!0þ

VðxtþhÞ � VðxtÞ

h
¼ DþVðxtÞ, t 2 ½0, bÞ, ð9Þ

where xt is the solution of (1) in a maximal time

interval [0, b), 0< b�þ1.
Themain result of this article is given by the necessity

part of the following theorem (see Theorem 8.1, p. 293,

of Hale and Lunel 1993; and Theorem 7.2 of Cruz and

Hale 1970; as far as local, uniform asymptotic stability

is concerned).

Theorem 2.3: The system described by (1) is 0-GAS if
and only if there exist a locally Lipschitz functional V:
C!Rþ, functions �1, �2 of class K1, a function �3 of
class K, such that the following conditions hold for
all �2C:

(i) �1(jD�j)�V(�)��2(k�k);
(ii) DþV(�)���3(jD�j).

The proof of Theorem 2.3, based on recently
developed methodologies for converse Lyapunov–
Krasovskii theorems concerning systems described by
RFDEs (Karafyllis 2006; Karafyllis et al. 2008a,b), is
reported in Appendix A. The following Theorems
provide necessary and sufficient Lyapunov–Krasovskii
conditions for the 0-GES property.

Theorem 2.4: The system described by (1) is 0-GES if
and only if there exist a locally Lipschitz functional V:
C!Rþ and positive reals a1, a2, a3, such that the
following conditions hold for all �2C:

(i) a1jD�j �V(�)� a2k�k;
(ii) DþV(�)��a3V(�).

Theorem 2.5: If the map f in (1) is globally Lipschitz,
then the system described by (1) is 0-GES if and only if
there exists a globally Lipschitz functional V: C!Rþ,
such that the following conditions hold for all �2C:

(i) a1jD�j �V(�)� a2k�k;
(ii) DþV(�)��a3V(�).

The proofs of Theorems 2.4 and 2.5, based on well-
known methodologies for converse Lyapunov–
Krasovskii theorems concerning systems described by
RFDEs and exponential stability (Krasovskii 1963;
Kim 1999), is reported in Appendices B and C. The
following theorem will be used for establishing a link
between 0-GES and ISS properties in the following
section.

Theorem 2.6: If the map f in (1) is globally Lipschitz,
then the system described by (1) is 0-GES if and only if
there exist a globally Lipschitz functional V: C!Rþ, a
semi-norm k�ka and positive reals a1, a2, a3, a4, such that
the following conditions hold for all �2C:

(i) a1jD�j �V(�)� a2k�ka;
(ii) DþV(�)��a3k�ka;
(iii) k�ka� a4k�k.

The sufficiency part in Theorem 2.6 readily follows
from Theorem 2.4. The necessity part in Theorem 2.6
can be proved almost identically as the one in Theorem
2.4 (just choose k�ka¼k�k and make use of Lemma
B.2). The proof of the global Lipschitz property of the
functional V is identical to the one provided for
Theorem 2.5. Therefore, the proof of Theorem 2.6 is
omitted.

234 P. Pepe and I. Karafyllis
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3. A link between 0-GAS and ISS properties for

systems described by NFDEs

A link between 0-GES and ISS properties is provided
here (see Lemma 4.6, pp. 176–177, of Khalil 2000, as
far as 0-GES systems described by ODEs are con-
cerned, Yeganefar et al. 2008, as far as 0-GES systems
described by RFDEs are concerned). Let us consider
the following NFDE in Hale’s form:

d

dt
Dxt ¼ f ðxt, uðtÞÞ, t � 0,

xð�Þ ¼ �0ð�Þ, � 2 ½�D, 0�, �0 2 C,
ð10Þ

where x(t)2Rn, n is a positive integer; D> 0 is the
maximum involved time delay; the map f: C�Rm

!Rn

is Lipschitz on bounded sets and satisfies f(0, 0)¼ 0; m
is a positive integer; u(�) is a Lebesgue measurable,
locally essentially bounded input signal; the operator
D: C!Rn, defined as in (1), is assumed to be strongly
stable. It is assumed that there exists a map
f : Rn � C � Rm! Rn, independent of the second
argument at 0 (Pepe 2011, see Definition 5.1, p. 281,
of Hale and Lunel 1993), such that, for any �2C,
u2Rm, the equality f ð�, uÞ ¼ f ð�ð0Þ,�, uÞ holds.

Definition 3.1 (Sontag 1989): The system described
by (10) is said to be ISS if there exists a function � of
class KL and a function � of class K such that, for any
initial condition �02C, for any Lebesgue measurable,
locally essentially bounded input signal u, the corre-
sponding solution of (10) exists for all t� 0 and,
furthermore, satisfies the inequality

jxðtÞj � �ðk�0k, tÞ þ �ðku½0,tÞkÞ, t 2 Rþ: ð11Þ

For a locally Lipschitz functional V: C!Rþ, the
derivative of the functional V, DþV: C�Rm

!R?, is
defined (in Driver’s form, see Driver 1962; Pepe
2007a), for �2C, d2Rm, as

DþVð�, d Þ ¼ lim sup
h!0þ

1

h
Vð�h,dÞ � Vð�Þ
� �

, ð12Þ

where for 0< h<D, �h,d2C is given by

�h,dðsÞ¼
�ðsþhÞ, s2 ½�D, �h�,

D�þ f ð�,dÞðsþhÞ�D�?sþhþ�ð0Þ, s2 ð�h,0�,

�
ð13Þ

for 0<
� h, �?
 2 C is given by (8).
Let us here recall that, for any locally Lipschitz

functional V: C!Rþ, the following result holds
(Pepe 2007a)

lim sup
h!0þ

VðxtþhÞ � VðxtÞ

h
¼ DþVðxt, uðtÞÞ,

t 2 ½0, bÞ, a:e:, ð14Þ

where xt is the solution of (10) in a maximal time
interval [0, b), 0< b�þ1.

Theorem 3.2: Let the system described by (10), with
u(t)	 0, be 0-GES. Let the map f in (10) satisfy the
following hypotheses:

(i) There exists a positive real L0 such that, for any
�i2C, i¼ 1, 2, the inequality holds

j f ð�1, 0Þ � f ð�2, 0Þj � L0k�1 � �2k: ð15Þ

(ii) there exists a function L of class K such that,
for any �2C, for any u2Rm, the inequality
holds

j f ð�, uÞ � f ð�, 0Þj � LðjujÞ: ð16Þ

Then, the system described by (10) is ISS.

The proof of Theorem 3.2 is reported in
Appendix D.

4. Conclusions

In this article we have dealt with converse Lyapunov–
Krasovskii theorems for time-invariant systems
described by NFDEs in Hale’s form, with linear,
strongly stable difference operator. We have proved
that the well-known Lyapunov–Krasovskii conditions,
sufficient for the 0-GAS property of these systems, are
also necessary. Moreover, we have given necessary and
sufficient Lyapunov–Krasovskii conditions for the 0-
GES property. Finally, we have shown a link between
the 0-GES property and the ISS property. Future
investigation will concern the case of nonlinear differ-
ence operator, namely D�¼�(0)� g(�), �2C, with g
nonlinear, involving discrete as well as distributed time
delays (Pepe, Karafyllis, and Jiang 2008b; Melchor-
Aguilar 2012). Notions for the nonlinear difference
operator such as, for instance, g(�) independent of �(0),
�2C (see Definition 5.1, p. 281, of Hale and Lunel
1993), ISS (Pepe, Jiang, and Fridman 2008a), incre-
mental GAS, incremental ISS (see Angeli 2002, as far as
systems described by ODEs are concerned), may be
instrumental in order to further extend the results
presented here to systems described by more general
NFDEs. Another topic which will be considered con-
cerns the converse Lyapunov–Krasovskii theorem for
the ISS of systems described by NFDEs in Hale’s form,
for which sufficient Lyapunov–Krasovskii conditions
are provided in Pepe (2007a) and Pepe et al. (2008b).We
believe that a converse Lyapunov–Krasovskii theorem
for the notion of robust 0-GAS (see Lin, Sontag, and
Wang 1996; as far as systems described by ODEs are
concerned) may be instrumental for deriving the con-
verse Lyapunov–Krasovskii theorem for the ISS of
these systems, as it happens for systems described
by RFDEs (Karafyllis et al. 2008a,b).
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Appendix A: Proof of Theorem 2.3

Lemma A.1: The system described by (1) is 0-GAS if and
only if there exist a function � of class KL such that, for any
initial condition �02C, the solution exists for all t2Rþ and,
furthermore, satisfies

kxtk � �ðk�0k, tÞ, t 2 Rþ: ðA1Þ

Proof: See Theorem 2.2, p. 62 of Karafyllis and Jiang
(2011). See also Lemma 4.5, p. 150 of Khalil (2000), as far as
systems described by ODEs are concerned. œ

Lemma A.2 (See Proposition 7 of Sontag 1998): For any
function � of class KL, there exist functions �1, �2 of class K1,
such that, for all (s, t)2Rþ�Rþ, the inequality holds

�ðs, tÞ � ��11 e�2t�2ðsÞ
� �

: ðA2Þ

Lemma A.3 (Karafyllis 2006; Karafyllis et al. 2008a;
Karafyllis and Jiang 2011): For any given function � of
class K1, there exists a function � of class K1 with the
following properties:

(i) �(s)��(s) 8s2Rþ;
(ii) j�(s1)� �(s2)j � js1� s2j 8s1, s22R

þ.

Proof: In Karafyllis (2006), Karafyllis and Jiang (2011) and
Karafyllis et al. (2008a), examples are provided for the
function �. For instance, the function �: Rþ!Rþ defined,
for s� 0, as

�ðsÞ ¼ min
0�y�s
f�ð yÞ þ s� yg ðA3Þ

has properties (i), (ii) and is a function of class K1. œ

Lemma A.4 (Karafyllis 2006; Karafyllis et al. 2008a,b):
There exists a continuous non-decreasing function
L : Rþ ! Rþ such that the following inequality holds, for all
�1, �22C,

j f ð�1Þ � f ð�2Þj � Lðk�1k þ k�2kÞk�1 � �2k: ðA4Þ

Proof: It is a consequence of the fact that the map f
is assumed Lipschitz on bounded sets (see, e.g. Karafyllis
2006). œ

For the system described by the continous-time difference
equation (CTDE), for t� 0,

Dxt ¼ wðtÞ, xð�Þ ¼ �0ð�Þ, � 2 ½�D, 0�, �0 2 C, ðA5Þ

with w: Rþ!Rn continuous, the following result holds.

Lemma A.5 (Hale and Lunel 1993): There exist positive
constants M, !, such that, for any initial conditions �1, �2 in C,
for any continuous signals w1: Rþ!R, w2: Rþ!R, the
corresponding solutions x(t,�1,w1) and x(t,�2,w2) of (A5)
exist for all t2Rþ and, furthermore, satisfy the following
inequality:

jxðt, �1,w1Þ � xðt,�2,w2Þj

�Me�!tk�1 � �2k þM sup

2½0,t�
jw1ð
Þ � w2ð
Þj: ðA6Þ

Proof: Clearly the solutions exist in Rþ. Let y(t)¼
x(t,�1,w1)� x(t,�2,w2), u(t)¼w1(t)�w2(t) and y0¼ �1��2.
Then y is solution of the CTDE

Dyt ¼ uðtÞ, yð�Þ ¼ y0ð�Þ, � 2 ½�D, 0�: ðA7Þ

Since the operator D is strongly stable, it follows from
Theorem 3.5, p. 275 of Hale and Lunel (1993), that there
exist positive constants M, ! such that

j yðtÞj �Me�!tk y0k þM sup

2½0,t�
juð
Þj: ðA8Þ

Inequality (A6) follows directly from inequality (A8),
taking into account of the previous definitions of y(t), u(t)
and y0. œ

Notice that, in Lemma A.5, M � 1 is mandatory.

Lemma A.6: Let the system described by (1) be 0-GAS, with
related function � of class KL as in Lemma A.1. Let M be a
positive real as depicted in Lemma A.5 and let L be a
continuous non-decreasing function as depicted in Lemma A.4.
Define the positive real M and the continuous non-decreasing
function L: Rþ!Rþ as follows:

M :¼M 2þ
Xp
k¼1

jAkj

 !
, LðsÞ :¼M L 2�ðs, 0Þð Þ, s � 0:

ðA9Þ

Then, for any initial conditions �1, �22C, the corresponding
solutions xt(�1), xt(�2) of (1) satisfy the following inequality,
for t� 0,

kxtð�1Þ � xtð�2Þk �Mk�1 � �2ke
Lðk�1kþk�2kÞt: ðA10Þ

Proof: The solutions x(t,�i), i¼ 1, 2, satisfy the following
equations:

xðt,�iÞ ¼
Xp
k¼1

Akxðt� Dk, �iÞ þ wiðtÞ, ðA11Þ

where wiðtÞ ¼ D�i þ
R t
0 f ðxsð�iÞÞds, i¼ 1, 2. Lemma A.5

implies that the following inequality holds:

jxðt,�1Þ � xðt,�2Þj �Mk�1 � �2k þM sup

2½0,t�
jw1ð
Þ � w2ð
Þj:

ðA12Þ

Now, the following equality/inequalities hold

jw1ðtÞ � w2ðtÞj

¼ D�1 þ

Z t

0

f ðxsð�1ÞÞds�D�2 �

Z t

0

f ðxsð�2ÞÞds

����
����

� jD�1 �D�2j þ

Z t

0

f ðxsð�1ÞÞ � f ðxsð�2ÞÞð Þds

����
����

� 1þ
Xp
k¼1

jAkj

 !
k�1 � �2k þ

Z t

0

f ðxsð�1ÞÞ � f ðxsð�2ÞÞ
�� ��ds:

ðA13Þ
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From Lemma A.4, the inequality follows:

jw1ðtÞ � w2ðtÞj

� 1þ
Xp
k¼1

jAkj

 !
k�1 � �2k

þ

Z t

0

L kxsð�1Þk þ kxsð�2Þkð Þkxsð�1Þ � xsð�2Þkds: ðA14Þ

From the fact that kxs(�i)k��(k�ik, s), the inequality follows:

jw1ðtÞ � w2ðtÞj

� 1þ
Xp
k¼1

jAkj

 !
k�1 � �2k

þ

Z t

0

L �ðk�1k, 0Þ þ �ðk�2k, 0Þð Þkxsð�1Þ � xsð�2Þkds:

ðA15Þ

From (A12) and (A15) the inequality follows

kxtð�1Þ � xtð�2Þk

�M 2þ
Xp
k¼1

jAkj

 !
k�1 � �2k

þM

Z t

0

L �ðk�1k, 0Þ þ �ðk�2k, 0Þð Þkxsð�1Þ � xsð�2kds:

ðA16Þ

Inequality (A10) is a direct consequence of inequality (A16)
and the Bellman–Gronwall lemma. œ

Lemma A.7: Let the system described by (1) be 0-GAS, with
� as related KL function, according to Lemma A.1. Let (taking
into account of Lemma A.3) �1 be a globally Lipschitz
function, with Lipschitz constant equal to 1, of class K1, �2 be
a function of class K1, such that inequality (A2) in Lemma
A.2 holds. Let M be the positive real and L be the continuous,
non-decreasing function defined in (A9), in Lemma A.6. Let,
for any positive integer q, Uq: C!Rþ be the functional
defined, for all �2C, by

Uqð�Þ ¼ sup
t�0

max 0,�1ðkxtð�ÞkÞ �
1

q

� �
et

� �
, ðA17Þ

where xt(�) is the solution of (1) with initial condition �. Let G:
Rþ�Zþ!Rþ be the function defined as

Gðs, qÞ ¼Mð1þ q�2ðsÞÞ
ðLð2sÞþ1Þ, s 2 Rþ, q 2 Zþ: ðA18Þ

Then, for any positive integer q, the following results hold:

(1) max
	
0, �1ðk�kÞ �

1
q



� Uqð�Þ � �2ðk�kÞ 8� 2 C;

(2) Uq(xt(�))� e�tUq(�) 8t2R
þ, 8�2C;

(3) for any positive real H, for any �1,�22CH, the
inequality holds:

jUqð�1Þ �Uqð�2Þj � GðH, qÞk�2 � �1k: ðA19Þ

Proof: The proof follows the same lines of the one for the
case of RFDEs studied in Karafyllis (2006) and Karafyllis
et al. (2008a,b). For reader’s convenience, the proof is
reported here, with some slight modifications, mainly related
to the definition of the function G (see also the definition of
the functional V in (A28)). The first inequality in (1) follows
by choosing t¼ 0 on the right-hand side of (A17). The second

inequality in (1), taking into account of Lemma A.2, follows
from the inequalities

sup
t�0

max 0,�1ðkxtð�ÞkÞ �
1

q

� �
et

� �

� sup
t�0

max 0, e�2t�2ðk�kÞ �
1

q

� �
et

� �

� sup
t�0

max 0, e�t�2ðk�kÞ �
et

q

� �� �
� �2ðk�kÞ: ðA20Þ

Point (2) follows from the inequality

sup

�0

max 0,�1ðkx
ðxtð�ÞÞkÞ �
1

q

� �
e


� �

� sup

�0

max 0, �1ðkx
ð�ÞkÞ �
1

q

� �
e
�t

� �
: ðA21Þ

As far as Points (3) is concerned, the following equality holds
(we consider log(0)¼�1):

sup
t�max 0,12 logðq�2ðk�kÞÞf g

max 0,�1ðkxtð�ÞkÞ �
1

q

� �
et

� �
¼ 0:

ðA22Þ

In order to prove this we can consider the two cases:

(i) max 0, 1
2 logðq�2ðk�kÞÞ

	 

¼ 0;

(ii) max 0, 1
2 logðq�2ðk�kÞÞ

	 

¼ 1

2 logðq�2ðk�kÞÞ:

In case (i), we have �2ðk�kÞ �
1
q. It follows that

�1ðkxtð�ÞkÞ �
1
q, t� 0, and thus (A22) holds in this case. In

case (ii), we have, for t � 1
2 logðq�2ðk�kÞÞ,

�1ðkxtð�ÞkÞ � e�2
1
2logðq�2ðk�kÞÞ�2ðk�kÞ ¼

1

q
, ðA23Þ

and thus (A22) also holds in this case. Therefore, for any
� � max 0, 1

2 logðq�2ðk�kÞÞ
	 


, we have

Uqð�Þ ¼ sup
0�t��

max 0,�1ðkxtð�ÞkÞ �
1

q

� �
et

� �
: ðA24Þ

Now, let H be a positive real. Let us choose
� ¼ max 0, 1

2 logðq�2ðHÞ
	 


. Let us take any �1,�22CH. Then,
taking into account of the Lipschitz property of �1, and of
the fact that also the function s! max

	
0, s� 1

q



is globally

Lipschitz with Lipschitz constant 1, we have

jUqð�2Þ �Uqð�1Þj

¼ sup
0�t��

max 0,�1ðkxtð�2ÞkÞ �
1

q

� �
et

� ������
� sup

0�t��
max 0,�1ðkxtð�1ÞkÞ �

1

q

� �
et

� ������
� sup

0�t��

����max 0,�1ðkxtð�2ÞkÞ �
1

q

� �

�max 0,�1ðkxtð�1ÞkÞ �
1

q

� �����et
� sup

0�t��
j�1ðkxtð�2ÞkÞ � �1ðkxtð�1ÞkÞje

t

� sup
0�t��
jkxtð�2Þk � kxtð�1Þkje

t

� sup
0�t��
kxtð�2Þ � xtð�1Þke

t: ðA25Þ
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Thus, from Lemma A.6, we obtain

jUqð�2Þ �Uqð�1Þj

� e�MeLð2HÞ�k�2 � �1k

� e
1
2logð1þq�2ðHÞÞMe

1
2Lð2HÞlogð1þq�2ðHÞÞk�2 � �1k

� GðH, qÞk�2 � �1k: ðA26Þ

The proof of the lemma is complete. œ

Lemma A.8: The system described by (1) is 0-GAS if and
only if there exist a functional V: C!Rþ, Lipschitz on
bounded sets, and functions �1, �2, �3 of class K1, such that,
8�2C, the following inequalities hold:

(i) �1(k�k)�V(�)��2(k�k);
(ii) DþV(�)���3(k�k).

Proof: Let us prove first the necessity part. We will make
use of Lemma A.7. Let the trivial solution of the system
described by (1) be 0-GAS, with � as related KL function,
according to Lemma A.1. Let �1 be a globally Lipschitz (with
Lipschitz constant equal to 1) function of class K1, �2 be a
function of class K1, such that, according to Lemma A.2,

�ðs, tÞ � ��11 e�2t�2ðsÞ
� �

, s, t 2 Rþ: ðA27Þ

Let M be the positive real and L: Rþ!Rþ be the
continuous, non-decreasing function as depicted in Lemma
A.6. Let, for any positive integer q, Uq: C!Rþ be the
functional defined as in Lemma A.7. Let V: C!Rþ be the
functional defined, for �2C, by (Karafyllis 2006; Karafyllis
et al. 2008a,b)

Vð�Þ ¼
Xþ1
q¼1

2�q

1þ Gðq, qÞ
Uqð�Þ, ðA28Þ

where G: Rþ�Zþ!Rþ is the function defined in (A18), in
Lemma A.7. Notice that, from result (1) in Lemma A.7, and
non-negativeness of G, it follows that, for any �2C, the sum
in the right-hand side of (A28) is convergent. The functional
V satisfies (i), (ii) in the lemma and is locally Lipschitz.
Indeed, from result (1) in Lemma A.7, it follows that �1, �2 in
(i) can be chosen, for s� 0, as

�1ðsÞ ¼
Xþ1
q¼1

2�q

1þ Gðq, qÞ
max 0, �1ðsÞ �

1

q

� �
,

�2ðsÞ ¼ 2�2ðsÞ:

ðA29Þ

As far as (ii) is concerned, we have, for �2C (see (6)–(8)),

DþVð�Þ ¼ lim sup
h!0þ

Vð�hÞ � Vð�Þ

h

� lim sup
h!0þ

Vð�hÞ � Vðxhð�ÞÞ

h

þ lim sup
h!0þ

Vðxhð�ÞÞ � Vð�Þ

h
, ðA30Þ

where xh(�) is the solution of (1) with initial condition �.
From item (2) on Lemma A.7, it follows that
V(xh(�))� e�hV(�), and therefore, for the second limit on
the right-hand side of (A30), we have

lim sup
h!0þ

Vðxhð�ÞÞ � Vð�Þ

h
� �Vð�Þ: ðA31Þ

As far as the first limit on the right-hand side of the
inequality in (A30) is concerned, since, from (A18), it follows
that G(s, q)�G(q, q) for 0� s� q, recalling result (3) in
Lemma A.7, taking into account of the continuity of the map
t!xt (see Lemma 2.1, p. 40 of Hale and Lunel 1993),
we have, for z¼ [k�k]þ 1, for sufficiently small positive h,

jVð�hÞ � Vðxhð�ÞÞj �
Xþ1
q¼1

2�q

1þ Gðq, qÞ
jUqð�hÞ �Uqðxhð�ÞÞj

� 2þ
Xz
q¼1

2�qGðz, qÞ

1þ Gðq, qÞ

 !
k�h � xhð�Þk:

ðA32Þ

Now, from (6)–(8), for sufficiently small h, we have

k�h � xhð�Þk

¼ sup

2ð�h,0�

D�þ ð
 þ hÞ f ð�Þ þ
Xp
k¼1

Ak�ð�Dk þ 
 þ hÞ

�����
�D��

Z 
þh

0

f ðxsð�ÞÞds�
Xp
k¼1

Ak�ð�Dk þ 
 þ hÞ

�����
¼ sup


2ð�h,0�
ð
 þ hÞ f ð�Þ �

Z 
þh

0

f ðxsð�ÞÞds

�����
�����: ðA33Þ

Therefore,

lim sup
h!0þ

1

h
k�h � xhð�Þk

¼ lim sup
h!0þ

sup

2ð�h,0�

1

h
ð
 þ hÞ f ð�Þ �

1

h

Z 
þh

0

f ðxsð�ÞÞds

�����
�����

¼ lim sup
h!0þ

sup

2ð�h,0�

1

h
j
 þ hj f ð�Þ �

1


 þ h

Z 
þh

0

f ðxsð�ÞÞds

�����
�����

� lim sup
h!0þ

sup

2ð�h,0�

f ð�Þ �
1


 þ h

Z 
þh

0

f ðxsð�ÞÞds

�����
����� ¼ 0:

ðA34Þ

So, the first limit on the right-hand side of (A30) is equal to
zero. Taking into account of the result in (A31), taking into
account of the already proved conditions (i), we can choose
�3 in (ii) equal to �1. It remains to prove that the functional V
is Lipschitz on bounded sets. Let H be a positive real. Let
z¼ [H]þ 1. Taking again into account of the definition of G
in (A18), in Lemma A.7, taking into account of result (3) in
the same lemma, we have, for any given �i2CH, i¼ 1, 2,

jVð�1Þ � Vð�2Þj � 2þ
Xz
q¼1

2�qGðH, qÞ

1þ Gðq, qÞ

 !
k�2 � �1k: ðA35Þ

The proof of the necessity part of the Lemma is complete. As
far as the sufficiency part is concerned, by Lemma 6 in Pepe
et al. (2008b), we can assume, without any loss of generality,
that �02W

1,1 (see also Pepe, 2007b, as far as RFDEs are
concerned). From Lemma 5 in Pepe et al. (2008b), it follows
that the function t!w(t)¼V(xt(�0)) is locally absolutely
continuous (thus its derivative exists almost everywhere).
From conditions (i), (ii) it follows, for the function
t!w(t)¼V(xt(�0)), taking into account of (9), that

dwðtÞ

dt
¼ DþVðxtð�0ÞÞ � ��3 � �

�1
2 ðwðtÞÞ, t 2 ½0, bÞ, a:e:,

ðA36Þ
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where [0, b), 0< b�þ1, is the maximal interval of existence
of the solution. From Lemma 4.4 in Lin et al. (1996), it
follows that there exists a function � of class KL (depending
only on �2, �3) such that wðtÞ � �ðwð0Þ, tÞ, t2 [0, b). From
condition (i), it follows that

kxtk � �
�1
1 � �ð�2ðk�0kÞ, tÞ, t 2 ½0, bÞ ðA37Þ

Since the solution xt is bounded in [0, b) (and thus Dxt
is bounded in [0, b)), it follows that b¼þ1 (see Hale
and Lunel 1993; Lemma 3 in Pepe 2011). Since the func-
tion ðs, tÞ ! �ðs, tÞ ¼ ��11 � �ð�2ðsÞ, tÞ, s, t2Rþ, is of class
KL, the proof of the sufficiency part of the lemma is
complete. The proof of the lemma is complete. œ

We are now ready to prove Theorem 2.3. The necessity
part follows from Lemma A.8, since, for all �2C, the
inequality holds

jD�j � 1þ
Xp
k¼1

jAkj

 !
k�k: ðA38Þ

The sufficiency part is a standard result, as far as the local,
uniform, asymptotic stability of the origin is concerned. The
proof can be obtained by similar, though more involved,
reasoning as the one used in the proof of Theorem 2.1,
pp. 132–133 of Hale and Lunel (1993), for the local,
uniform asymptotic stability of the origin of systems
described by RFDEs, taking into account of Theorem 3.5,
p. 275 of Hale and Lunel (1993). In the case of the uniform
0-GAS property, to our best knowledge, such proof is not
available in the literature. For reader’s convenience and
for the sake of completeness, we report it here, using
the derivative of the functional V in Driver’s form, which
does not involve the solution, not even formally (see (6)–(8)).
Let � be an arbitrary positive real. Let M be as in Lemma
A.5. Let

� ¼ min
�

4M
,��12 � �1

�

4M

� �� �
: ðA39Þ

Let k�0k<�. Let [0, b), 0< b�þ1, be the maximal interval
of existence of the solution x(t). Then, jx(t)j<�, t2 [0, b). In
order to prove this, by Lemma 6.2 of Bacciotti and Rosier
(2005), taking into account of (9) and ii), the following
inequalities hold for t2 [0, b),

jDxtj � �
�1
1 ðVðxtÞÞ

� ��11 ðVð�0ÞÞ

� ��11 � �2ð�Þ

� ��11 � �2 � �
�1
2 � �1

�

4M

� �
¼

�

4M
: ðA40Þ

Since Dxt is bounded in [0, b), it follows that b¼þ1
(see Hale and Lunel 1993; Lemma 3 of Pepe 2011).
From (A40), taking into account of Lemma A.5, the
inequalities hold:

jxðtÞj �Mk�0k þM sup
�2½0,t�
jDx�j �M

�

4M
þM

�

4M
¼
�

2
,

t 2 Rþ: ðA41Þ

Therefore, we have proved Lagrange and Lyapunov stability.
Now, letH, � be arbitrary positive reals. By Lemma 6 of Pepe

et al. (2008b), we can assume, without any loss of generality,
that �02W

1,1. From Lemma 5 of Pepe et al. (2008b), it
follows that the function t!w(t)¼V(xt(�0)) is locally
absolutely continuous (thus its derivative exists almost
everywhere). We wish to show that: for any
�02CH\W

1,1, the solution exists for all t2Rþ; there
exists a positive real T such that, for all t�T, jx(t, �0)j<�
8�02CH\W

1,1. First, let us notice that, for �02CH\W
1,1,

and [0, b) the related maximal interval of existence of the
solution, we have that

jDxtj � �
�1
1 � �2ðHÞ, t 2 ½0, bÞ, ðA42Þ

and thus, from Lemma A.5,

jxðtÞj �MHþM��11 � �2ðHÞ, t 2 ½�D, bÞ: ðA43Þ

Again, since Dxt is bounded in [0, b), it follows b¼þ1. Let
us choose � as in (A39). Let � ¼ �

4M
. Let j be the smallest

positive integer such that

e�!jD MHþM��11 � �2ðHÞ
� �

5 �, ðA44Þ

where ! is the positive real in inequality (A6), in Lemma A.5
(see Theorem 3.5, p. 275 of Hale and Lunel 1993). Let
D ¼ ð jþ 1ÞD: Let k be the smallest integer satisfying

k� 1 �
L�2ðHÞ

��3
�
2

� � , ðA45Þ

where

L ¼ max sup
�2C,k�k�MHþM��1

1
��2ðHÞ

j f ð�Þj,
2�

D

8<
:

9=
;: ðA46Þ

Let T ¼ 2k D. Let �02CH\W
1,1. From the time-invariant

character of the system described by (1) and the conditions
on the functional V, it follows that, if, at a time t, kxtk5 �,
then jxðtÞj5 � 8t � t. Now, for some � 2 D,T


 �
, the inequal-

ity holds:

sup

2½��D,��

jDx
j5 �:
ðA47Þ

In order to prove this, by contradiction, if such � does not
exist, in each interval ½ð2k� 1ÞD, 2kD�, k ¼ 1, 2, , k, there
exists a time tk such that jDxtk j � �. Since jf(xt)j �L 8t2Rþ,

it follows that jDxtj �
�
2 8t 2 Ik ¼ ½tk �

�
2L , tk þ

�
2L�. In order

to prove this, take into account that, from the equality

Dxmaxðt,tkÞ ¼ Dxminðt,tkÞ þ

Z maxðt,tkÞ

minðt,tkÞ

f ðx
Þd
, ðA48Þ

the inequality follows

jDxtj � jDxtk j �

Z maxðt,tkÞ

minðt,tkÞ

j f ðx
Þjd
: ðA49Þ

Notice that the intervals Ik, k ¼ 1, 2, , k, do not overlap,
because of the choice of L. Now, taking into account of the
absolute continuity property of the functional V, and of (9),
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we have

Vðxt
k
Þ ¼ Vð�0Þ þ

Z t
k

0

dVðx�Þ

d�
d�

¼ Vð�0Þ þ

Z t
k

0

DþVðx�Þd�

� Vð�0Þ �

Z t
k

0

�3ðjDx
jÞd
 � �2ðHÞ

�
Xk�1
k¼1

Z tkþ
�
2L

tk�
�
2L

�3
�

2

� �
d


¼ �2ðHÞ � ðk� 1Þ�3
�

2

� �
�

L

� �2ðHÞ �
L�2ðHÞ

��3
�
2

� � �3 �

2

� �
�

L
¼ 0, ðA50Þ

which, by (i), is a contradiction, since we hypothesised
jDxt

k
j � �. Now, for t2 [��D, �], taking into account of

Theorem 3.5, p. 275 of Hale and Lunel (1993) (see Lemma
A.5) and of (A44), we have

jxðtÞj �Me�! t� ��Dð Þð Þ MHþM��11 � �2ðHÞ
� �

þM �

�Me�!ð jDÞ MHþM��11 � �2ðHÞ
� �

þM �

� 2M � ¼
�

2
: ðA51Þ

Therefore, kx�k<� and, for any t�T, jx(t)j<�. Since this
result holds for any �02CH\W

1,1, the proof of the theorem
is complete.

Appendix B: proof of Theorem 2.4

Lemma B.1: Let the system described by (1) be 0-GES, with
related positive reals M, 	. Let H be a positive real. Let M be a
positive real as depicted in Lemma A.5 (see (A6)). Let L be a
positive real such that, for all �1, �22C(HþMH), the inequality
follows:

j f ð�1Þ � f ð�2Þj � Lk�1 � �2k: ðB1Þ

Let L, P be the positive reals defined as follows:

P ¼M 2þ
Xp
k¼1

jAkj

 !
, L ¼ML: ðB2Þ

Then, for any given initial conditions �1, �22CH, the corre-
sponding solutions xt(�1) and xt(�2) satisfy the inequality

kxtð�1Þ � xtð�2Þk � PeLtk�1 � �2k, t � 0: ðB3Þ

Proof: The solutions x(t, �i), i¼ 1, 2, satisfy the following
equation, for t� 0,

xðt, �iÞ ¼
Xp
k¼1

Akxðt� Dk,�iÞ þ wiðtÞ, ðB4Þ

where wiðtÞ ¼ D�i þ
R t
0 f ðxsð�iÞÞds, i¼ 1, 2. From Lemma

A.5, the inequality follows:

jxðt, �1Þ � xðt,�2Þj �Mk�1 � �2k þM sup

2½0,t�
jw1ð
Þ � w2ð
Þj:

ðB5Þ

Now, the following equality/inequalities holds:

jw1ðtÞ � w2ðtÞj

¼ D�1 þ

Z t

0

f ðxsð�1ÞÞds�D�2 �

Z t

0

f ðxsð�2ÞÞds

����
����

� jD�1 �D�2j þ

Z t

0

f ðxsð�1ÞÞ � f ðxsð�2ÞÞð Þds

����
����

� 1þ
Xp
k¼1

jAkj

 !
k�1 � �2k þ

Z t

0

f ðxsð�1ÞÞ � f ðxsð�2ÞÞ
�� ��ds:

ðB6Þ

Taking into account that kxt(�i)k�HþMH, t� 0, from
the Lipschitz property of the map f it follows that the
inequality holds:

jw1ðtÞ � w2ðtÞj

� 1þ
Xp
k¼1

jAkj

 !
k�1 � �2k þ

Z t

0

Lkxsð�1Þ � xsð�2Þkds:

ðB7Þ

The inequality follows

kxtð�1Þ � xtð�2Þk �M 2þ
Xp
k¼1

jAkj

 !
k�1 � �2k

þM

Z t

0

Lkxsð�1Þ � xsð�2Þkds: ðB8Þ

Inequality (B3) follows from inequality (B8) by the Bellman–
Gronwall lemma. œ

Lemma B.2: The system described by (1) is 0-GES if and
only if there exist a functional V: C!Rþ, Lipschitz on
bounded sets, and positive reals a1, a2, a3, such that the
following conditions hold for all �2C:

(i) a1jD�j �V(�)� a2k�k;
(ii) DþV(�)��a3k�k

Proof: Let us prove the sufficiency part. Let x(t), t2 [0, b),
0< b�þ1, be the solution of (1) corresponding to an initial
condition �0. By Lemma 6 of Pepe et al. (2008b), we can
assume, without any loss of generality, that �02W

1,1. From
Lemma 5 of Pepe et al. (2008b), it follows that the function
t!w(t)¼V(xt(�0)) is locally absolutely continuous (thus its
derivative exists almost everywhere). From condition (ii),
taking into account of (9), it follows, for the function
t!w(t)¼V(xt(�0)), that

dwðtÞ

dt
¼ DþVðxtð�0ÞÞ � �a3kxtð�0Þk, t 2 ½0, bÞ, a:e:,

ðB9Þ

and, from (i),

dwðtÞ

dt
� �

a3
a2

wðtÞ, t 2 ½0, bÞ, a:e: ðB10Þ

From (B10), taking into account of the absolute continuity
property of the function t!w(t), by the Bellman–Gronwall
lemma, the inequality follows

wðtÞ � e�	twð0Þ, t 2 ½0, bÞ, ðB11Þ
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with 	 ¼ a3
a2
. Finally, from (i), the inequality follows:

jDxtj �
a2
a1

e�	tk�0k, t 2 ½0, bÞ: ðB12Þ

Moreover, b¼þ1, otherwise the function t!Dxt, in [0, b),
was unbounded (see Hale and Lunel 1993; see Lemma 3 of
Pepe 2011). From (B12), from Theorem 4.5, p. 275 of
Hale and Lunel (1993), it follows that there exists a positive
real q such that, for any t� 0, for any �02W

1,1,
the inequality holds:

kxtk � qk�0k: ðB13Þ

Now, taking into account of Theorem 4.5, p. 275 of Hale and
Lunel (1993), and of the time-invariant character of the
system described by (1), there exist positive reals q1, q2, such
that, for any t� t0� 0, the inequality holds:

jxðtÞj � q1 e�q2ðt�t0Þqk�0k þ
a2
a1

e�	t0k�0k

� �
: ðB14Þ

Then the 0-GES property follows by choosing t0¼ t/2,
M ¼ q1

�
qþ a2

a1

�
, 	 ¼ 1

2min q2, 	
	 


. As far as the necessity
part is concerned, let the solution satisfy the inequality

jxðtÞj �Me�	tk�0k1, t 2 ½0, þ1Þ, ðB15Þ

for suitable positive reals M, 	. It follows that

kxtk �Me	De�	tk�0k, t 2 ½0, þ1Þ: ðB16Þ

Let T be a positive real such that

Me	De�	T ¼
1

2
: ðB17Þ

Let V: C!Rþ be defined (Krasovskii 1963), for �2C, as

Vð�Þ ¼

Z T

0

kxtkdtþ sup
t2½0,T�

kxtk, ðB18Þ

where x(t) is the solution of (1), corresponding to an initial
condition �0¼�. From the inequality

jD�j � 1þ
Xp
k¼1

jAkj

 !
k�k, � 2 C, ðB19Þ

it follows that the functional V satisfies the first inequality
in (i). As far as the second inequality in (i) is concerned, the
following inequality helps:

Vð�Þ �

Z T

0

Me	De�	tdtþMe	D
� �

k�k: ðB20Þ

As far as inequality (ii) is concerned, taking into account of
(9), the following equality/inequalities holds (recall that x(t)
is the solution corresponding to �),

DþVð�Þ ¼ lim sup
h!0þ

VðxhÞ � Vð�Þ

h

� lim sup
h!0þ

R Tþh
h kxtkdt�

R T
0 kxtkdt

h

þ lim sup
h!0þ

supt2½h,Tþh� kxtk � supt2½0,T� kxtk

h
:

ðB21Þ

Taking into account of (B16) and (B17), it follows that

lim sup
h!0þ

supt2½h,Tþh� kxtk � supt2½0,T� kxtk

h
� 0: ðB22Þ

Therefore,

DþVð�Þ � kxTk � k�k: ðB23Þ

Taking account of (B16) and (B17), the inequality follows:

DþVð�Þ � �
1

2
k�k: ðB24Þ

It remains to prove that the functional V is Lipschitz on
bounded sets. Let H be a positive real. Let �1, �22CH.
The inequality follows

jVð�1Þ � Vð�2Þj

�

Z T

0

jkxtð�1Þk � kxtð�2Þkjdt

þ sup
t2½0,T�

kxtð�1Þk � sup
t2½0,T�

kxtð�2Þk

�����
�����: ðB25Þ

Taking into account that

sup
t2½0,T�

kxtð�1Þk � sup
t2½0,T�

kxtð�2Þk

�����
�����

� sup
t2½0,T�

jkxtð�1Þk � kxtð�2Þkj

� sup
t2½0,T�

kxtð�1Þ � xtð�2Þk, ðB26Þ

by Lemma B.1 the inequality follows, for suitable positive
reals P, L,

jVð�1Þ �Vð�2Þj �

Z T

0

PeLtk�1 � �2kdtþ sup
t2½0,T�

PeLtk�1 � �2k:

ðB27Þ

Therefore

jVð�1Þ � Vð�2Þj � LVk�1 � �2k 8�i 2 CH, i ¼ 1, 2, ðB28Þ

where 0<LV�P(Tþ 1)eLT. œ

The necessity part of Theorem 2.4 follows straightforwardly
by Lemma B.2. As far as the sufficiency part is concerned, let
x(t), t2 [0, b), 0< b�þ1, be the solution of (1) correspond-
ing to an initial condition �0. By Lemma 6 of Pepe et al.
(2008b), we can assume, without any loss of generality, that
�02W

1,1. From Lemma 5 of Pepe et al. (2008b), it follows
that the function t!w(t)¼V(xt(�0)) is locally absolutely
continuous (thus its derivative exists almost everywhere).
From condition (ii), taking into account of (9), it follows, for
the function t!w(t)¼V(xt(�0)), that

dwðtÞ

dt
¼ DþVðxtð�0ÞÞ � �a3wðtÞ, t 2 ½0, bÞ, a:e: ðB29Þ

From (B29), taking into account of the absolute continuity
property of the function t!w(t), by the Bellman–Gronwall
lemma, the inequality follows:

wðtÞ � e�a3twð0Þ, t 2 ½0, bÞ, ðB30Þ
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Finally, from (i), the inequality follows:

jDxtj �
a2
a1

e�a3tk�0k t 2 ½0, bÞ: ðB31Þ

From here on, the same lines of the proof of the sufficiency
part of Lemma B.2 can be followed (just use (B13) and (B14)
with 	 ¼ a3).

Appendix C: proof of Theorem 2.5

The sufficiency part follows from Theorem 2.4. As far as the
necessity part is concerned, we have the following lemma.

Lemma C.1: Let the system described by (1) be 0-GES, with
related positive reals M, 	. Let M be a positive real as depicted
in (A6), in Lemma A.5. Let L be a positive real such that, for
all �1, �22C, the inequality follows:

j f ð�1Þ � f ð�2Þj � Lk�1 � �2k: ðC1Þ

Let L, P be the positive reals defined as follows

P ¼M 2þ
Xp
k¼1

jAkj

 !
, L ¼ML: ðC2Þ

Then, for any given initial conditions �1, �22C, the corre-
sponding solutions xt(�1) and xt(�2) satisfy the inequality

kxtð�1Þ � xtð�2Þk � PeLtk�1 � �2k, t � 0: ðC3Þ

Proof: The same steps of the proof of Lemma B.1 can be
used here. Just take into account that, from (C1), the
inequalities (B7), (B8) hold for any �i2C, i¼ 1, 2. œ

Now, take the same functional V defined in (B18). Such
functional satisfies the conditions (i), (ii) of Lemma B.2 and
thus satisfies (i), (ii) of Theorem 2.5. It remains to prove that
such functional V is globally Lipschitz. Let �1, �22C. The
inequality follows

jVð�1Þ � Vð�2Þj

�

Z T

0

jkxtð�1Þk � kxtð�2Þkjdt

þ sup
t2½0,T�

kxtð�1Þk � sup
t2½0,T�

kxtð�2Þk

�����
�����: ðC4Þ

Taking into account of (B26), by Lemma C.1 the inequality
follows, for suitable positive reals P, L,

jVð�1Þ � Vð�2Þj �

Z T

0

PeLtk�1 � �2kdtþ sup
t2½0,T�

PeLtk�1 � �2k:

ðC5Þ

Therefore

jVð�1Þ � Vð�2Þj � LVk�1 � �2k, 8�i 2 C, i ¼ 1, 2, ðC6Þ

where 0<LV�P(Tþ 1)eLT.

Appendix D: proof of Theorem 3.2

We will make use of Theorem 2.6 and of Theorem 4 of Pepe
(2007a). From the 0-GES property and condition (i), it
follows that there exists a globally Lipschitz functional V and
a semi-norm k�ka as depicted in Theorem 2.6 (see conditions
(i), (ii), (iii) in Theorem 2.6), for the system described by (10)
with u(t)	 0. Now, for the same functional V and semi-norm
k�ka, taking into account of Theorem 2.6, the following
equality/inequalities holds, for any �2C, u2Rm, by (8),
(12), (13),

DþVð�, uÞ ¼ lim sup
h!0þ

1

h
Vð�h,uÞ � Vð�Þ
� �

� lim sup
h!0þ

1

h
Vð�h,uÞ � Vð�h,0Þ
� �

þ lim sup
h!0þ

1

h
Vð�h,0Þ � Vð�Þ
� �

� lim sup
h!0þ

1

h
Vð�h,uÞ � Vð�h,0Þ
� �

� a3k�ka, ðD1Þ

where a3 is the positive real given in Theorem 2.6. Taking
into account of the global Lipschitz property of the
functional V and of condition (ii), we obtain, for suitable
positive real l,

lim sup
h!0þ

1

h
Vð�h,uÞ � Vð�h,0Þ
� �

� lim sup
h!0þ

1

h
l k�h,u � �h,0k
� �

¼ lim sup
h!0þ

1

h
sup

s2½�h,0�

l jD�þ f ð�, uÞðsþ hÞ � D�?sþh þ �ð0Þ

� D�� f ð�, 0Þðsþ hÞ þ D�?sþh � �ð0Þj

� lim sup
h!0þ

1

h
sup

s2½�h,0�

ðsþ hÞl j f ð�, uÞ � f ð�, 0Þj � lLðjujÞ:

ðD2Þ

From (D1), (D2), we obtain

DþVð�, uÞ � �a3k�ka þ lLðjujÞ: ðD3Þ

From Theorem 4 of Pepe (2007a), taking into account of
condition (i) in Theorem 2.6, the ISS of the system described
by (10) follows. The proof of the theorem is complete.
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