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SUMMARY

New small-gain results are obtained for nonlinear feedback systems under relaxed assumptions. Specifi-
cally, during a transient period, the solutions of the feedback system may not satisfy some key inequalities
that previous small-gain results usually utilize to prove stability properties. The results allow the
application of the small-gain perspective to various systems that satisfy less-demanding stability notions
than the input-to-output stability property. The robust global feedback stabilization problem of an uncertain
time-delayed chemostat model is solved by means of the new small-gain results. Copyright © 2011 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

Small-gain results are important tools for robustness analysis and robust controller design in math-
ematical control theory. In [1], a nonlinear, generalized small-gain theorem, based on the notion of
input-to-state stability (ISS) originally introduced by Sontag [2], was developed. Recently, nonlinear
small-gain results were developed for monotone systems, an important class of nonlinear systems
in mathematical biology [3, 4]. Further extensions of the small-gain perspective to the cases of
nonuniform-in-time stability, discrete-time systems, and Lyapunov characterizations are pursued by
several authors independently; see, for instance, [5–18]. A general vector small-gain result, which
can be applied to a wide class of control systems, was developed in [19].

One of the most important obstacles in applying nonlinear small-gain results is the representa-
tion of the original composite system as the feedback interconnection of subsystems that satisfy the
input-to-output stability (IOS) property. More specifically, sometimes, the subsystems do not sat-
isfy the IOS property: there is a transient period after which the solution enters a certain region of
the state space. Within this region of the state space, the subsystems satisfy the small-gain require-
ments. In other words, the essential inequalities, which small-gain results utilize in order to prove
stability properties, do not hold for all times: this feature excludes all available small-gain results
from possible application. Particularly, this feature is important in systems arising from mathemat-
ical biology and population dynamics. Indeed, the idea of developing stability results that utilize
certain Lyapunov-like conditions after an initial transient period was used in [20, 21] with primary
motivation from addressing robust feedback stabilization problems for certain chemostat models.
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In this work, we present small-gain results that can allow a transient period during which the
solutions do not satisfy the IOS inequalities (Theorems 2.5 and 2.6). The obtained results are direct
extensions of the recent vector small-gain result in [19], and if the initial transient vanishes, then the
results coincide with Theorem 3.1 in [19]. The significance of the obtained results is twofold:

� it allows the application of the small-gain perspective to various systems that satisfy less-
demanding stability notions than ISS, and
� it allows the study of systems in mathematical biology and population dynamics.

During the time that the paper was submitted for publication, we became aware of the recent
results in [22], where the same idea of combining small-gain results with an initial transient period
is utilized and is used as an interpretation of the results in [9,23]. However, we must point out some
crucial differences between our results and the results in [22].

� Our results can be applied to a wide class of time-varying systems with disturbances, whereas
the results in [22] can be applied to autonomous systems described by ordinary differential
equations (ODEs). The general case of IOS is considered in our case, whereas the results
demand (integral [i]) ISS in [22]. Nonuniform stability phenomena can be taken into account
by Theorems 2.5 and 2.6.
� Our results guarantee IOS for the overall system, whereas the results in [22] guarantee iISS

for the overall system. Moreover, in our case, the gain function of the overall system can
be estimated by means of the functions involved in the key estimates of the hypotheses
(Theorem 2.5).
� Finally, our results can be applied to large-scale systems, because they can take into account

multiple interconnections, whereas the results in [22] only deal with an interconnection of two
subsystems.

It should be noted that Theorems 2.5 and 2.6 can be formulated in terms of vector Lyapunov func-
tionals for the particular cases of systems described by ODEs (Theorem 2.7). The theory of vector
Lyapunov functionals is a rich theory that has recently attracted attention (see, e.g., [24, 25] and the
recent works [19, 26, 27]).

To emphasize the fact that the obtained small-gain results can be applied to biological systems,
we show how the obtained small-gain results can be used for the feedback stabilization of uncertain
chemostat models. Chemostat models are often adequately represented by a simple dynamic model
involving two state variables, the microbial biomass concentration X and the limiting nutrient con-
centration S [28]. The common delay-free model for microbial growth on a limiting substrate in a
chemostat is of the form

PX.t/D .�.S.t//�D.t//X.t/,

PS.t/DD.t/.Si � S.t//�K�.S.t//X.t/,

X.t/ 2 .0,C1/ , S.t/ 2 .0,Si / , D.t/> 0,

(1.1)

where Si is the feed substrate concentration, D is the dilution rate (which is used as the control
input), �.S/ is the specific growth rate and K > 0 is a biomass yield factor. The literature on
control studies of chemostat models of the form (1.1) is extensive. In [29], feedback control of
the chemostat by manipulating the dilution rate was studied for the promotion of coexistence. Other
interesting control studies of the chemostat can be found in [26,30–35]. The stability and robustness
of periodic solutions of the chemostat was studied in [36, 37]. The problem of the stabilization of a
nontrivial steady state .Xs ,Ss/ of the chemostat model (1.1) was considered in [33], where it was
shown that the simple feedback law D D �.S/X=Xs is a globally stabilizing feedback. See also
the recent work [26] for the study of the robustness properties of the closed-loop system (1.1) with
D D �.S/X=Xs for time-varying inlet substrate concentration Si . The recent work [20] studied
the sampled-data stabilization of the nontrivial steady state .Xs ,Ss/ of the chemostat model (1.1),
whereas [21] considered uncertain chemostat models.
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In this work, we consider the robust global feedback stabilization problem for the chemostat
model with delays:

PX.t/D .p .Tr.t/S/�D.t/� b/X.t/,

PS.t/DD.t/.Si � S.t//�K.S.t//�.S.t//X.t/,

X.t/ 2 .0,C1/ , S.t/ 2 .0,Si / , D.t/> 0,

(1.2)

where Tr.t/S W Œ�r , 0�! .0,Si / denotes the r-history of S defined by .Tr.t/S/ .�/D S.t C �/ for
� 2 Œ�r , 0�, b > 0 is the cell mortality rate, r > 0 is the maximum delay, K.S/ > 0 is a possibly
variable yield coefficient, and p W C 0.Œ�r , 0�I .0,Si // ! .0,C1/ is a continuous functional that
satisfies

min
t�r6�6t

�.S.�//6 p .Tr.t/S/6 max
t�r6�6t

�.S.�//. (1.3)

The functions � W Œ0,Si � ! Œ0,�max�, K W Œ0,Si � ! .0,C1/ with �.0/ D 0, �.S/ > 0 for all
S 2 .0,Si � are assumed to be locally Lipschitz functions. The chemostat model (1.2) under (1.3) is
very general, because we may have

� p .Tr.t/S/D �.S.t//, which gives the standard chemostat model with no delays,
� p .Tr.t/S/D �.S.t � r//, which gives the time-delayed chemostat model studied in [28], and
� p .Tr.t/S/D �

Pn
iD0wi�.S.t � ri //C.1��/

R t
t�r h.� C r � t /�.S.�// d� , where � 2 Œ0, 1�,

h 2 C 0.Œ0, r�I Œ0,C1// with
R r
0
h.s/ds D 1, wi > 0, ri 2 Œ0, r� .i D 0, : : : ,n/ withPn

iD0wi D 1.

Moreover, it should be noted that the case of variable yield coefficients has been studied recently
[38,39] and has been proposed for the justification of experimental results. The reader should notice
that chemostat models with time delays were considered in [40, 41]. We assume the existence of a
nontrivial equilibrium point for (1.2), that is, the existence of .Ss ,Xs/ 2 .0,Si /� .0,C1/ such that

�.Ss/DDs C b, Xs D
Ds.Si � Ss/

K.Ss/ .Ds C b/
, (1.4)

where Ds > 0 is the equilibrium value for the dilution rate. The stabilization problem for the equi-
librium point .Ss ,Xs/ 2 .0,Si /� .0,C1/ is crucial. In [28], it is shown that the equilibrium point
is unstable even if � W .0,Si /! .0,�max� is monotone (e.g., the Monod specific growth rate). More-
over, as remarked in [28], the chemostat model (1.2) under (1.3) allows the expression of the effect
of the time difference between consumption of nutrient and growth of the cells [28, pp. 238–240].
We solve the feedback stabilization problem for the chemostat by providing a delay-free feedback
that achieves global stabilization (Theorem 4.1). The proof of the theorem relies on the small-gain
results of the paper. No knowledge of the maximum delay r > 0 is assumed.

The structure of the present work is as follows. Section 2 contains the statements of the new
small-gain results (Theorems 2.5 and 2.6). Moreover, a vector Lyapunov formulation of the small-
gain results for systems described by ODEs is given in Theorem 2.7. Section 3 provides illustrative
examples of the applicability of the obtained results to systems that satisfy less-demanding stability
notions than ISS. Section 4 is devoted to the development of the solution of the feedback stabi-
lization problem for the uncertain chemostat (1.2). The conclusions are provided in Section 5. The
proofs of the small-gain results are given in Appendix A. Finally, for readers’ convenience, the
definitions of the system-theoretic notions used in this work are given in Appendix B.

Notations
Throughout this paper, we adopt the following notations.

� <C WD ¹x 2 < W x > 0 º denotes the set of nonnegative real numbers.
� We say that a function � W <C ! <C is positive definite if �.0/ D 0 and �.s/ > 0 for all
s > 0. We say that a function V W <n ! < is positive definite if V.0/ D 0 and V.x/ > 0 for
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all x ¤ 0. A continuous function V W <n ! <C is called radially unbounded if the level sets
¹ x 2 <n W V.x/6M º are compact for all M > 0.
� We denote by KC the class of all continuous functions ' W <C! .0,C1/. By K, we denote

the set of positive-definite, increasing, and continuous functions. We say that a positive-definite,
increasing, and continuous function � W <C ! <C is of class K1 if lims!C1 �.s/ D C1.
By KL, we denote the set of all continuous functions � W <C�<C ! <C with the following
properties: (i) for each t > 0, the mapping �. � , t / is of class K; and (ii) for each s > 0, the
mapping �.s, �/ is non-increasing with limt!C1 �.s, t /D 0.
� By kkX, we denote the norm of the normed linear space X. By kk, we denote the Euclidean

norm of <n. Let U � X with 0 2 U . By BU Œ0, r� WD ¹u 2 U I kukX 6 r º, we denote the
intersection of U � X with the closed ball of radius r > 0, centered at 0 2 U . If U �<n, then
int.U / denotes the interior of the set U �<n.
� x0 denotes the transpose of x.
� <nC WD .<C/

n D
®
.x1, : : : , xn/

0 2 <n W x1 > 0 , : : : , xn > 0
¯
. ¹eiºniD1 denotes the standard

basis of <n. ZC denotes the set of nonnegative integers.
� Let x,y 2 <n. We say that x 6 y if and only if .y � x/ 2 <nC. We say that a function
� W <nC ! <C is of class Nn if � is continuous with �.0/ D 0 and such that �.x/ 6 �.y/ for
all x,y 2 <nC with x 6 y. We say that 	 W <nC!<

m
C is nondecreasing if 	.x/ 6 	.y/ for all

x,y 2 <nC with x 6 y. For an integer k > 1, we define

	.k/.x/D 	 ı 	 ı : : : ı 	„ ƒ‚ …
k times

.x/

when mD n.
� For t > t0 > 0, let V W Œt0, t �!<n be a bounded map with V.�/ D .V1.�/, : : : ,Vn.�//

0 2 <n

for � 2 Œt0, t �. We define ŒV �Œt0,t� WD
�
sup�2Œt0,t� V1.�/, : : : , sup�2Œt0,t� Vn.�/

�
. For a mea-

surable and essentially bounded function x W Œa, b� ! <n, ess supt2Œa,b� jx.t/j denotes the
essential supremum of jx. � /j. Given a function x W Œa � r , b/ ! <n, where r > 0, a < b,
we define Tr.t/x W Œ�r , 0� ! <n, for t 2 Œa, b/, to be the r-history of x, defined by
.Tr.t/x/ .�/D x.t C �/ for � 2 Œ�r , 0�.
� We define 1D .1, 1, : : : , 1/0 2 <n. If u, v 2 < and u6 v, then 1u6 1v.
� Let U be a subset of a normed linear space [, with 0 2 U . By M.U /, we denote the set of

all locally bounded functions u W <C ! U . By u0, we denote the identically zero input, that
is, the input that satisfies u0.t/ D 0 2 U for all t > 0. If U � <n, then MU or L1loc.<CIU/
denote the space of measurable, locally bounded functions u W <C! U .
� Let A � X and B � Y, where X and Y are normed linear spaces. We denote by C 0.AIB/

the class of continuous mappings f W A ! B . For x 2 C 0.Œ�r , 0�I <n/ , we define
kxkr WDmax�2Œ�r ,0� jx.�/j.

2. NEW SMALL-GAIN THEOREMS

In this section, we state the main results of the present work. The proofs of the main results (The-
orems 2.5 and 2.6) are provided in Appendix A. For the statement of the main result, one needs to
know the abstract system theoretic framework introduced in [16, 42, 43] and used in [19]. For the
convenience of the reader, all definitions of the basic notions are provided in Appendix B.
The following technical definitions were used in [19] and are needed here.

Definition 2.1
Let x D .x1, : : : , xn/0 2 <n, y D .y1, : : : ,yn/

0 2 <n. We define ´ D MAX¹x,yº, where
´D .´1, : : : , ´n/0 2 <n satisfies ´i D max¹xi ,yiº for i D 1, : : : ,n. Similarly for u1, : : : ,um 2 <n,
we have ´ D MAX¹u1, : : : ,umº, a vector ´ D .´1, : : : , ´n/0 2 <n with ´i D max¹u1i , : : : ,umiº,
i D 1, : : : ,n.

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control 2012; 22:1602–1630
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Definition 2.2
We say that 	 W <nC ! <

n
C is MAX-preserving if 	 W <nC ! <

n
C is nondecreasing, and for every

x,y 2 <nC, the following equality holds:

	 .MAX¹x,yº/DMAX¹	.x/,	.y/º. (2.1)

The defined MAX-preserving maps enjoy the following important property [19].

Proposition 2.3
	 W <nC ! <

n
C with 	.x/ D .	1.x/, : : : ,	n.x//0 is MAX-preserving if and only if there exist

nondecreasing functions 
i ,j W <C!<C, i , j D 1, : : : ,n with 	i .x/DmaxjD1,:::,n 
i ,j .xj / for all
x 2 <nC, i D 1, : : : ,n.

The following class of MAX-preserving mappings plays an important role in what follows.

Definition 2.4
Let 	 W <nC ! <

n
C with 	.x/ D .	1.x/, : : : ,	n.x//0 be a MAX-preserving mapping for which

there exist functions 
i ,j 2 N1, i , j D 1, : : : ,n with 	i .x/ D maxjD1,:::,n 
i ,j .xj / for all x 2 <nC,
i D 1, : : : ,n. We say that 	 W <nC ! <

n
C satisfies the cyclic small-gain conditions if the following

inequalities hold:


i ,i .s/ < s, 8s > 0, i D 1, : : : ,n, (2.2)

and if n > 1, then for each r D 2, : : : ,n, it holds that�

i1,i2 , 
i2,i3 , : : : , 
ir ,i1

�
.s/ < s, 8s > 0, (2.3)

for all ij 2 ¹1, : : : ,nº, ij ¤ ik if j ¤ k.

Proposition 2.7 in [19] shows that the MAX-preserving continuous mapping 	 W <nC ! <nC
satisfies the cyclic small-gain conditions if and only if 0 2 <n is globally asymptotically sta-
ble for the discrete-time x.k C 1/ D 	.x.k//, where x.k/ 2 <nC, k 2 ZC. For every
MAX-preserving continuous mapping 	 W <nC ! <nC we define the mapping Q.x/ WD

MAX
®
x,	.x/,	.2/.x/, : : : ,	.n�1/.x/

¯
for all x 2 <nC. The following facts are consequences of

the related results in [7, 19, 44, 45] and the Definitions 2.1, 2.2, and 2.4 and provide important prop-
erties for MAX-preserving continuous mappings 	 W <nC ! <

n
C, which will be used repeatedly in

the proofs of the main results of the present section.

Fact I
If 	 W <nC ! <

n
C satisfies the cyclic small-gain conditions, then limk!C1 	

.k/.x/ D 0 for all
x 2 <nC and 	.k/.x/6Q.x/ for all k > 1 and x 2 <nC.

Fact II
The mapping Q.x/ is a MAX-preserving continuous mapping.

Fact III
If 	 W <nC ! <

n
C satisfies the cyclic small-gain conditions, then 	.Q.x// 6 Q.x/ and Q.x/ > x

for all x 2 <nC.

Fact IV
If p 2 Nn and R W <nC !<

n
C is a nondecreasing mapping, then the following inequality holds for

all s, r 2 <C W p .MAX ¹R .1s/ ,R .1r/º/Dmax .p .R .1s// ,p .R .1r///.

Fact V
If 	 W <nC ! <nC satisfies the cyclic small-gain conditions and x,y 2 <nC satisfy x 6
MAX ¹y,	 .x/º, then x 6Q.y/.
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We consider an abstract control system † WD .X, Y,MU ,MD ,�,� ,H/ with the boundedness-
implies-continuation (BIC) property for which 0 2 X is a robust equilibrium point from the input
u 2 MU (see Appendix B for the notions of an abstract control system, the BIC property, and
the notion of a robust equilibrium point). The reader should notice that for each .t0, x0,u, d/ 2
<C � X �MU �MD , x.t/ D �.t , t0, x0,u, d/ 2 X denotes the transition map (the value of the
state) at time t > t0 with initial condition x.t0/ D �.t0, t0, x0,u, d/ D x0 and corresponding to
external inputs .u, d/ 2MU �MD (Appendix B). We suppose that there exists a set-valued map S W
<C! 2X with 0 2 S.t/ for all t > 0, mappings Vi W

S
t>0 ¹¹tº � S.t/�U º ! <C.i D 1, : : : ,n/,

L W
S
t>0 ¹¹tº � S.t/º ! <C with L.t , 0/ D 0, Vi .t , 0, 0/ D 0 for all t > 0.i D 1, : : : ,n/, and a

MAX-preserving (and therefore nondecreasing) continuous map 	 W <nC!<
n
C with 	.0/D 0 such

that the following hypotheses hold.

Hypothesis (H1) (The ‘input-to-output-stability–like’ inequalities)
There exist functions � 2 KL, 
 2 N1, such that for every .t0, x0,u, d/ 2 <C � X �
MU � MD with �.t , t0, x0,u, d/ 2 S.t/ for all t 2 Œt0, tmax/, the mappings t ! V.t/ D
.V1 .t ,�.t , t0, x0,u, d/,u.t// , : : : ,Vn .t ,�.t , t0, x0,u, d/,u.t///0 and t ! L.t/ D L.t ,�.t , t0, x0,
u, d// are locally bounded on Œt0, tmax/, and the following estimates hold:

V.t/6 MAX
°
1� .L.t0/ , t � t0 / , 	

�
ŒV �Œt0,t�

�
, 1


� �
kukU

�
Œt0,t�

� ±
, for all t 2 Œt0, tmax/,

(2.4)
where tmax is the maximal existence time of the transition map of †.

Hypothesis (H2) (Estimates during and after the transient period)
For every .t0, x0,u, d/ 2 <C � X � MU � MD , there exists � 2 �.t0, x0,u, d/ such that
�.t , t0, x0,u, d/ 2 S.t/ for all t 2 Œ� , tmax/. Moreover, there exist functions �, c, Qc 2 KC,
a, �, Q�, pu,gu 2 N1, p 2 Nn, such that the following inequalities hold for every .t0, x0,u, d/ 2
<C �X�MU �MD W

L.t/6 max
°
�.t � t0/, c.t0/ , a . kx0kX / , p

�
ŒV �Œ�,t�

�
, pu

� �
kukU

�
Œt0,t�

� ±
, for all t 2 Œ� , tmax/I

(2.5)

k�.t , t0, x0,u, d/kX 6 max
°
�.t � t0/, Qc.t0/ , a . kx0kX /, Q�

� �
kukU

�
Œt0,t�

� ±
, for all t 2 Œt0, ��I

(2.6)

� 6 t0C a . kx0kX /C c.t0/I (2.7)

kH.t ,�.t , t0, x0,u, d/,u.t//kY 6 max
°
a .c.t0/ kx0kX /, �

� �
kukU

�
Œt0,t�

�±
, for all t 2 Œt0, ��I

(2.8)

L .� ,�.� , t0, x0,u, d//6max
°
a .c.t0/ kx0kX/, g

u
� �
kukU

�
Œt0,��

�±
. (2.9)

Hypothesis (H3) (Bounds for the norm of the state and the norm of the output)
There exist functions b 2N1, q,g 2Nn, �, � 2KC such that the following inequalities hold:

�.t/ kxkX 6 b .L.t , x/C g.V .t , x,u//C �.t// , for all .t , x,u/ 2
[
t>0
¹¹tº � S.t/�U º, (2.10)

kH.t , x,u/kY 6 q . V .t , x,u/ / , for all .t , x,u/ 2
[
t>0
¹¹tº � S.t/�U º, (2.11)

where V.t , x,u/D .V1 .t , x,u/ , : : : ,Vn .t , x,u//0.

Discussion of Hypotheses (H1), (H2), (H3)
By combining Hypotheses (H1) and (H2), we can conclude that for each trajectory, there exists a

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control 2012; 22:1602–1630
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time � 2 �.t0, x0,u, d/ after which inequalities (2.4) and (2.5) hold. On the other hand, in order to
be able to conclude IOS for the system, we have to assume additional inequalities that hold for the
transient period t 2 Œt0, ��, that is, inequalities (2.6), (2.7), (2.8), and (2.9) are required to hold. We
next discuss each hypothesis in detail.

� Hypothesis (H1) is the hypothesis made in every small-gain result. It deals with the ‘IOS-
like’ inequalities, which are to be used and combined, in order to prove the desired estimates.
Notice that because we are using a family of n functionals, the ‘IOS-like’ inequalities are given
for each functional separately. This is why (2.4) expresses n ‘IOS-like’ inequalities (in vector
notation). The difference between Hypothesis (H1) and similar hypotheses involved in other
small-gain results is that we do not assume that the ‘IOS-like’ inequalities (2.4) hold for every
initial condition and every input; instead, we assume that (2.4) holds only for those initial con-
ditions and inputs for which the state �.t , t0, x0,u, d/ is in the set S.t/ for all times t > t0 for
which the state exists.
� Hypothesis (H2) is the key hypothesis that guarantees that the state will necessarily enter the

set S.t/. The time needed to in order enter the set S.t/ is denoted by � 2 �.t0, x0,u, d/. Esti-
mates (2.6), (2.8), and (2.9) are estimates for the evolution of the state and the output during
the transient period t 2 Œt0, ��, because during the transient period the ‘IOS-like’ inequalities
(2.4) do not hold. Estimate (2.7) is an upper bound for the time needed in order to enter the
set S.t/. Clearly, such an estimate is needed because we have to guarantee that the transient
period (for which the state can behave erratically) is not ‘too long’. Finally, estimate (2.5) is a
key estimate for the functional L W

S
t>0 ¹¹tº � S.t/º !<C that appears in the right-hand side

of inequalities (2.4). Inequality (2.5) holds for all times after the time needed in order to enter
the set S.t/ (after the transient).
� Hypothesis (H3) is a hypothesis made in every small-gain result (explicitly or implicitly).

It provides the bound that allows us to guarantee that the state does not ‘blow up’ and
the bound that allows to conclude that the norm of the output is related to the functionals
Vi W

S
t>0 ¹¹tº � S.t/�U º ! <C.i D 1, : : : ,n/. The reader should notice that for every

small-gain result, such a hypothesis holds.
� Hypotheses (H1) and (H2) hold automatically when Hypotheses (H1–3) of Theorem 3.1 in [19]

hold (Hypotheses (H1-3) in [19] correspond to the special case S.t/ � X and � � t0/. Con-
sequently, Hypotheses (H1) and (H2) are less-restrictive hypotheses. Indeed, inequalities (2.4)
and (2.5) are not assumed to hold for all times t 2 Œt0, tmax/ but only after the solution map
�.t , t0, x0,u, d/ has entered the set S.t/� X.
� Finally, it should be noted that the set-valued map S.t/ � X is not assumed to be posi-

tively invariant. Instead, the state may enter and leave this set during the transient period
t 2 Œt0, ��. However, after the initial transient period, the state never leaves the set S.t/ � X.
The set-valued map S.t/ � X reminds the notion of the ‘nonautonomous set’ introduced in
[46].

We are now ready to state the main results.

Theorem 2.5 (Trajectory-based small-gain result for input-to-output stability)
Consider system † WD .X, Y,MU ,MD ,�,� ,H/ under the aforementioned hypotheses. Assume
that the MAX-preserving continuous map 	 W <nC ! <

n
C with 	.0/ D 0 satisfies the cyclic

small-gain conditions. Then system † satisfies the IOS property from the input u 2MU with gain

.s/ WDmax ¹ � .s/ , q.G.s// º, where G.s/D .G1.s/, : : : ,Gn.s//

0 is defined by

G.s/DQ .1max ¹ � .pu .s/ , 0/ , � .gu .s/ , 0/ , � .p .Q .1� .gu .s/ , 0/// , 0/ ,

� .p .Q .1
 .s/// , 0/ , 
.s/º/ (2.12)

with Q.x/ D MAX
®
x,	.x/,	.2/.x/, : : : ,	.n�1/.x/

¯
for all x 2 <nC. Moreover, if c 2 KC is

bounded, then system † satisfies the uniform IOS property from the input u 2 MU with gain

.s/ WDmax ¹� .s/ , q.G.s//º .
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We consider next an abstract control system † WD .X, Y,MU ,MD ,�,� ,H/ with U D ¹0º and
the BIC property for which 0 2 X is a robust equilibrium point from the input u 2 MU . Sup-
pose that there exists a set-valued map S W <C ! 2X with 0 2 S.t/ for all t > 0, maps
Vi W

S
t>0 ¹¹tº � S.t/º ! <C.i D 1, : : : ,n/, L W

S
t>0 ¹¹tº � S.t/º ! <C with L.t , 0/ D 0,

Vi .t , 0/ D 0 for all t > 0.i D 1, : : : ,n/, and a MAX-preserving continuous map 	 W <nC ! <
n
C

with 	.0/D 0 such that the following hypothesis holds.

Hypothesis (H4) (The ‘input-to-output-stability–like’ inequalities)
There exists a function � 2 KL such that for every .t0, x0, d/ 2 <C� X �MD

with �.t , t0, x0,u0, d/ 2 S.t/ for all t 2 Œt0, tmax/, the mappings t ! V.t/ D
.V1 .t ,�.t , t0, x0,u0, d// , : : : ,Vn .t ,�.t , t0, x0,u0, d///0 and t ! L.t/ D L .t ,�.t , t0, x0,u0, d//
are locally bounded on Œt0, tmax/, and the following estimates hold:

V.t/6MAX
®
1� .L.t0/ , t � t0 / , 	

�
ŒV �Œt0,t�

� ¯
, for all t 2 Œt0, tmax/, (2.13)

where tmax is the maximal existence time of the transition map of †.

Hypothesis (H5) (Estimates during and after the transient period)
For every .t0, x0, d/ 2 <C �X�MD there exists � 2 �.t0, x0,u0, d/ such that �.t , t0, x0,u0, d/ 2
S.t/ for all t 2 Œ� , tmax/. Moreover, there exist functions �, c 2 KC, a 2 N1, p 2 Nn, such that for
every .t0, x0, d/ 2 <C �X�MD the following inequalities hold:

L.t/6max
®
�.t � t0/, c.t0/, a . kx0kX/ ,p

�
ŒV �Œ�,t�

� ¯
, for all t 2 Œ� , tmax/I (2.14)

k�.t , t0, x0,u0, d/kX 6 max ¹ �.t � t0/ , c.t0/ , a . kx0kX / º , for all t 2 Œt0, ��I (2.15)

� 6 t0C a . kx0kX /C c.t0/I (2.16)

L.�/6 a .kx0kX/C c.t0/. (2.17)

Discussion of Hypothesis (H5)
Hypothesis (H5) is almost the same with Hypothesis (H2) applied to the case U D ¹0º. Nonethe-
less, notice the difference that the estimate forL.�/ in inequality (2.17) is less tight than the estimate
needed in inequality (2.9) of Hypothesis (H2). Indeed, when x0 D 0, estimate (2.17) does not yield
L.�/ D 0, contrary to the estimate (2.9), which gives L.�/ D 0. Finally, the analogue of inequal-
ity (2.8) for U D ¹0º (estimation of the norm of the output during the transient period) is not needed
in Hypothesis (H5).

Theorem 2.6 (Trajectory-based small-gain theorem for robust global asymptotic output stability)
Consider system † WD .X, Y,MU ,MD ,�,� ,H/ with U D ¹0º under hypotheses (H3–5). Assume
that the MAX-preserving continuous map 	 W <nC ! <

n
C with 	.0/ D 0 satisfies the cyclic

small-gain conditions. Then system † is robustly globally asymptotically output stable (RGAOS).
Moreover, if † WD .X, Y,MU ,MD ,�,� ,H/ is T -periodic for a certain T > 0, then system † is
uniformly RGAOS (URGAOS).

Remarks on Theorems 2.5 and 2.6

(i) It is clear that Hypotheses (H4) and (H5) are less demanding than Hypotheses (H1) and (H2).
On the other hand, the conclusion of Theorem 2.6 is weaker than the conclusion of Theo-
rem 2.5. Theorem 2.6 guarantees RGAOS, whereas Theorem 2.5 guarantees IOS. The proofs
of Theorems 2.5 and 2.6 are provided in Appendix A and are similar in spirit to the proof of
Theorem 3.1 in [19].

(ii) For the caseH.t , x,u/ WD x, Theorems 2.5 and 2.6 allow us to conclude ISS and robust global
asymptotic stability (RGAS), respectively. In this case, some inequalities in Hypotheses (H1)–
(H5) become redundant. For example, inequalities (2.6) and (2.10) are not needed (because

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control 2012; 22:1602–1630
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inequalities (2.8) and (2.11) with H.t , x,u/ WD x guarantee that (2.6) and (2.10) hold). Fur-
ther simplifications are possible if the functional L W

S
t>0 ¹¹tº � S.t/º ! <C is defined to

be L.t , x/ WD kxkX. In this case, inequality (2.5) is a direct consequence of inequalities (2.4)
and (2.11), and inequality (2.9) is a direct consequence of (2.8). Similarly, inequalities (2.14)
and (2.17) are redundant for the case H.t , x,u/ WD x and L.t , x/ WD kxkX.

It should be noted that Theorems 2.5 and 2.6 can be expressed in terms of vector Lyapunov
functionals for the particular cases of systems described by ODEs, systems described by retarded
functional differential equations, and sampled-data systems exactly as in [19]. We next give suffi-
cient conditions for uniform RGAS (URGAS) in terms of a vector Lyapunov function for systems
described by ODEs, which are based on Theorems 2.5 and 2.6.

Consider the following nonlinear system described by ODEs of the form

Px D f .x, d ,u/, x 2 <n, d 2D, u 2 U , (2.18)

where D � <l , U � <m with 0 2 U and f W <n �D � U ! <n is a continuous mapping with
f .0, d , 0/D 0 for all d 2D that satisfies the following hypotheses.

Hypothesis (A1) (Existence and uniqueness)
There exists a 2K1 such that jf .x, d ,u/j6 a .jxj C juj/ for all .x, d ,u/ 2 <n�D�U . Moreover,
there exists a symmetric positive-definite matrixP 2 <n�n such that for every boundedO �<n�U ,
there exists a constant L> 0 satisfying the following inequality:

.x � y/0 P .f .x, d ,u/� f .y, d ,u//6 L jx � yj2 8.x,u,y,u/ 2O �O , 8d 2D.

Hypothesis (A2) (The vector Lyapunov formulation of the small-gain hypotheses)
There exist functions h 2 C 1.<nI </ with h.0/ 6 0, Vi 2 C 1.<nI <C/.i D 1, : : : , k/, W 2
C 1.<nI <C/ being radially unbounded, a function ı 2 C 0.<CI .0,C1//, a nondecreasing func-
tion K 2 C 0.<CI <C/, a1, a2 2 K1, 
 2 N1, 
i ,j 2 N1, i , j D 1, : : : , k, and a family of
positive-definite functions �i 2 C 0.<CI <C/.i D 1, : : : , k/ such that the following inequalities
hold:

a1 .jxj/6 max
iD1,:::,k

Vi .x/6 a2 .jxj/ , for all x 2 <n with h.x/6 0I (2.19)

sup
d2D

rh.x/f .x, d ,u/6 �ı.h.x//, for all .x,u/ 2 <n �U with h.x/> 0I (2.20)

sup
d2D

rW.x/f .x, d ,u/6K.h.x//W.x/CK.h.x// 
 .juj/ , for all .x,u/ 2 <n�U with h.x/> 0.

(2.21)
Moreover, for every i D 1, : : : , k and x 2 <n with h.x/6 0, the following implication holds:

‘If max

²

 .juj/ , max

jD1,:::,k

i ,j

�
Vj .x/

�³
6 Vi .x/, then sup

d2D

rVi .x/f .x, d ,u/6 ��i .Vi .x// ’.

(2.22)

Discussion of Hypotheses (A1) and (A2)
Hypothesis (A1) is a usual hypothesis that guarantees local existence and uniqueness of solutions
for system (2.18) for every measurable and locally essentially bounded inputs d W <C ! D

and u W <C ! U . Hypothesis (A2) is the ‘translation’ of Hypotheses (H1)–(H3) or Hypothe-
ses (H3)–(H5) in terms of vector Lyapunov functions. In other words, if Hypothesis (A2) holds,
then Hypotheses (H1)–(H3) or Hypotheses (H3)–(H5) also hold for system (2.18) with identity
output mapping. More specifically, the proof of Theorem 2.7 illustrates that

� inequality (2.21) guarantees that the solution does not ‘blow up’ when it evolves out of the set
S WD ¹ x 2 <n W h.x/6 0 º, that is, it provides sufficient conditions for inequalities (2.6), (2.8),
and (2.9) (or (2.15) and (2.17));
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� inequality (2.20) guarantees that the solution enters the set S WD ¹ x 2 <n W h.x/6 0 º in finite
time and that the set S WD ¹ x 2 <n W h.x/6 0 º is positively invariant, that is, it provides
sufficient conditions for inequality (2.7) (or (2.16));
� implications (2.22) guarantee the IOS-like inequalities when the solution evolves in the set
S WD ¹ x 2 <n W h.x/6 0 º; and
� inequality (2.19) provides the necessary bounds for the norm of the state.

The following result guarantees that Hypotheses (H1)–(H3) or Hypotheses (H3)–(H5) hold for
system (2.18). Its proof can be found at Appendix A.

Theorem 2.7
Consider system (2.18) under Hypotheses (A1) and (A2). Suppose that the MAX-preserving map-
ping 	 W <kC ! <

k
C with 	.x/ D .	1.x/, : : : ,	k.x//0, 	i .x/ D maxjD1,:::,k 
i ,j .xj / for all

x 2 <kC, i D 1, : : : , k satisfies the cyclic small-gain conditions. Then the following statements
hold:

� If W 2 C 1.<nI <C/ is positive definite, then system (2.18) satisfies the uniform ISS (UISS)
property from the input u 2 U .
� If U D ¹0º, then system (2.18) is URGAS.

3. EXAMPLES AND DISCUSSIONS

The first example indicates that the trajectory-based small-gain results of the previous section can
be used to study the feedback interconnection of systems that do not necessarily satisfy the IOS
property.

Example 3.1
Consider the system

Px D f .d , x,y,u/,

Py D g.d , x,y/,

x 2 <n , y 2 <k , d 2D �<l , u 2 <m,

(3.1)

where D �<l is a nonempty compact set, f WD �<n �<k �<m!<n, g WD �<n �<k!<k

are locally Lipschitz mappings with f .d , 0, 0, 0/ D 0, g.d , 0, 0/ D 0 for all d 2 D. Suppose
that there exist positive-definite, continuously differentiable, and radially unbounded functions
V1 W <

n ! <C, V2 W <k ! <C, a constant a 2 Œ0, 1�, and a function k 2 K1 satisfying the
following inequalities for all .x,y,u/ 2 <n �<k �<m:

max
d2D
rV1.x/f .d , x,y,u/6 �.2Ca/ V1.x/

1C V1.x/
C .1�a/

V2.y/

.1C V1.x//.1C V2.y//
Ca

k.juj/

1C k.juj/
,

(3.2)

max
d2D
rV2.y/g.d , x,y/6 �2 V2.y/

1C V2.y/
C V1.x/. (3.3)

It is clear that the subsystem Py D g.d , x,y/ does not satisfy necessarily the ISS property from the
input x 2 <n. Consequently, the classical small-gain theorem in [1] cannot be applied because the
y-subsystem in (3.1) is not ISS but iISS with x 2 <n as input [47,48]. Recent small-gain approaches
have been used for system (3.1), where it is shown that 0 2 <n�<k is globally asymptotically stable
[5, 49] for the disturbance-free case with a D 0. From (3.2) and (3.3), the small-gain approaches
in [9, 23] directly establish the UISS property as well as the iISS property for system (3.1) with
respect to the input u through an explicit construction of a Lyapunov function. Here, we will show,
by making use of Theorem 2.7, that system (3.1) satisfies the UISS property from the input u 2 <m.
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Let " 2 .0, 1/ arbitrary and define

h.x,y/ WD V1.x/�
1C "

2� "
, W.x,y/ WD V1.x/C V2.y/. (3.4)

Inequalities (3.2) and (3.3) guarantee that if h.x,y/ > 0, then inequalities (2.20) and (2.21)
hold with ı.s/ � ", K.s/ � 1, and 
.s/ � 0. Using (3.2), (3.3), (3.4), and the inequality
s C w 6 max

®
.1C�/s , .1C��1/w

¯
, which holds for all � > 0, s,w > 0, we can prove that

for every � 2 .0, 1/, � > 0 with � > .a=.2� �// and " 2 .0, 1/ with " < ..3� 2�/=.3� �//, the
following implications hold:

V1.x/>max

²
.1� a/.1C�/

2C a� �

V2.y/

1C V2.y/
, k.juj/

³
)max

d2D
rV1.x/f .d , x,y,u/6 ��.V1.x//,

(3.5)

V2.y/>
V1.x/

2� �� V1.x/
and h.x,y/6 0 )max

d2D
rV2.y/g.d , x,y/6 ��.V2.y//, (3.6)

where �.s/ WD .�s=.1C s//. Therefore, implications (2.22) hold with 
.s/ WD k.juj/, 
1,1.s/ D


2,2.s/ � 0, 
1,2.s/ WD
.1�a/.1C�/
2Ca��

s
1Cs

, 
2,1.s/ WD
s

2���s
for s 2

�
0, 1C"
2�"

�
, and 
2,1.s/ WD

1C"
3�3"�2�C"�

for s > 1C"
2�"

. Finally, because V1 W <
n ! <C, V2 W <k ! <C are radi-

ally unbounded, positive-definite functions, it follows that inequality (2.19) holds for appropriate
functions a1, a2 2K1.

Therefore, Hypothesis (A2) of Theorem 2.7 holds. Hypothesis (A1) of Theorem 2.7 holds as well,
because the mappings f WD �<n �<k �<m!<n, g WD �<n �<k!<k are locally Lipschitz
mappings with f .d , 0, 0, 0/ D 0, g.d , 0, 0/ D 0 for all d 2 D, and D � <l is compact. It follows
from Theorem 2.7 that system (3.1) satisfies the UISS property from the input u 2 <m provided
that the small-gain inequalities hold. In this case, the small-gain inequalities are equivalent to the
following inequality:

.1� a/.1C�/ < .2� �/ .2C a� �/ .

Because a 2 Œ0, 1�, the aforementioned inequality as well as the inequality �> .a=.2� �// hold for
�D 2=3 and �D 1=2.

The following example deals with the robust global sampled-data stabilization of a nonlinear planar
system.

Example 3.2
Consider the planar system

Px D�
�
1C y2

�
xC y,

Py D f .x/C g.x/y C u,

.x,y/ 2 <2 , u 2 <, (3.7)

where f ,g W < ! < are locally Lipschitz functions with f .0/ D 0. We will show that there exist
constants M > 0 sufficiently large and r > 0 sufficiently small so that system (3.7) in closed loop
with the feedback law uD�My applied with zero order hold, that is, the closed-loop system

Px.t/D�
�
1C y2.t/

�
x.t/C y.t/,

Py.t/D�My.�i /C f .x.t//C g.x.t//y.t// , t 2 Œ�i , �iC1/,

�iC1 D �i C exp .�w.�i // r , w.t/ 2 <C (3.8)

satisfies the UISS property with zero gain when w is considered as input.
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First, notice that there exists a function � 2 KL such that for all .x0,y/ 2 <n � L1loc.<
CI </

the solution of Px D �
�
1C y2

�
x C y with initial condition x.0/ D x0 corresponding to inputs

y 2 L1loc.<
CI </ satisfies the following estimate for all t > 0:

jx.t/j6 max

²
� . jx0j , t / , sup

06�6t

 .jy.�/j/

³
(3.9)

with 
.s/ WD
�p

2 s=
�p

1C 4s2
��

. Indeed, inequality (3.9) can be verified by using the Lyapunov

function V.x/D x2 that satisfies the following implication:

if V.x/D x2 > 2y2

1C 4y2
then PV 6 �1

4
V.x/.

The aforementioned implication in conjunction with Lemma 3.5 in [27] guarantees that (3.9) holds
for appropriate � 2KL. Next, we show the following claim.

Claim 1
For every ", a > 0, there exist � 2 KL, M > 0 sufficiently large and r > 0 sufficiently small such
that for every .y0, x,w/ 2 <�L1loc.<

CIBŒ0, a�/�L1loc.<
CI <C/, the solution of

Py.t/D�My.�i /C f .x.t//C g.x.t//y.t/ , t 2 Œ�i , �iC1/

�iC1 D �i C exp .�w.�i // r , w.t/ 2 <C (3.10)

with initial condition y.0/D y0 corresponding to inputs .x,w/ 2 L1loc.<
CIBŒ0, a�/�L1loc.<

CI <C/
satisfies the following inequality:

jy.t/j6max

²
� . jy0j , t / , " sup

06�6t
jx.�/j

³
. (3.11)

Proof of Claim 1
Let ", a > 0 be arbitrary. Because f ,g W < ! < are locally Lipschitz functions with f .0/ D 0,

there exist constants P ,Q> 0 such that

jf .x/j6 P jxj and g.x/6Q, for all x 2 BŒ0, a�. (3.12)

Let M > 0 and r > 0 be chosen so that

M > 2C 2QC 9P 2

2"2
and 3.M CQ/r exp.Qr/6 1. (3.13)

Consider a solution y.t/ of (3.10) corresponding to arbitrary .x,w/ 2 L1loc.<
CIBŒ0, a�/ �

L1loc.<
CI <C/with initial condition y.0/D y0 2 <. By virtue of Proposition 2.5 in [42], there exists

a maximal existence time for the solution denoted by tmax 6 C1. Moreover, let � WD ¹�0, �1, : : :º
the set of sampling times (which may be finite if tmax < C1/ and mp.t/ WD max ¹� 2 � W � 6 tº.
Let kxk WD sup06s6t jx.s/j and � Dmp.t/. Inequalities (3.12) and (3.13) and the fact that t �� 6 r
in conjunction with the Gronwall–Bellman inequality implies

jy.t/� y.�/j6 .M CQ/r exp.Qr/

1� .M CQ/r exp.Qr/
jy.t/jC

P r

1� .M CQ/r exp.Qr/
exp.Qr/ kxk . (3.14)

Define V.t/ D y2.t/ on Œ0, tmax/. Let I � Œ0, tmax/ be the zero Lebesgue measure set where y.t/ is
not differentiable or where Py.t/ ¤ �My.�i /C f .x.t//C g.x.t//y.t//. Using (3.12), (3.13), and
(3.14), we obtain

PV 6 �2V.t/C "2

2
kxk2 , for all t 2 Œ0, tmax/nI . (3.15)
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Direct integration of the differential inequality (3.15) and the fact that V.t/D y2.t/ implies that

jy.t/j6max
°p

2 exp.�t / jy0j , " kxk
±

, for all t 2 Œ0, tmax/. (3.16)

Clearly, inequality (3.16) implies that as long as the solution of (3.10) exists, y.t/ is bounded. A
standard contradiction argument in conjunction with the ‘BIC’ property for (3.10) [42, Proposi-
tion 2.5] implies that tmax DC1. Inequality (3.11) is a direct consequence of inequality (3.16). The
proof is complete. �

We select M > 0 sufficiently large and r > 0 sufficiently small such that inequality (3.11) holds
with " < 1=

p
2 and aD 1C

p
2=2. The solution of the closed-loop system (3.8) exists for all t > 0.

The existence of the solution is guaranteed by the following claim.

Claim 2
For everyM > 0, r > 0, and .y0, x0,w/ 2 <�<n�L1loc.<

CI <C/, the solution of (3.8) with initial
condition .x.0/,y.0// D .x0,y0/ corresponding to input w 2 L1loc.<

CI <C/ exists for all t > 0.
Moreover, for M > 0 sufficiently large and r > 0 sufficiently small, there exist g 2 K1 and � 2 �
such that

jx.t/j C jy.t/j6 g .j.x0,y0/j/ , for all t 2 Œ0, ��, (3.17)

jx.t/j6 a, for all t > � , (3.18)

� 6 1C r C g .jx0j/ , (3.19)

where aD 1C
p
2=2.

Proof of Claim 2
Let M > 0, r > 0, and .y0, x0,w/ 2 < � <n � L1loc.<

CI <C/ be arbitrary. Consider a solu-
tion .x.t/,y.t// of (3.8) corresponding to arbitrary w 2 L1loc.<

CI <C/ with initial condition
.x.0/, y.0// D .x0,y0/. By virtue of Proposition 2.5 in [42], there exists a maximal existence
time for the solution denoted by tmax 6C1. Moreover, let � WD ¹�0, �1, : : :º be the set of sampling
times (which may be finite if tmax < C1/ and mp.t/ WD max ¹� 2 � W � 6 tº. By virtue of (3.9),
we have for all t 2 Œ0, tmax/

jx.t/j6 max ¹� . jx0j , 0/ , aº . (3.20)

Define

P WDmax ¹jf .x/j W jxj6max ¹� . jx0j , 0/ , aºº andQWDmax ¹jg.x/j W jxj6max ¹� . jx0j , 0/ , aºº.
(3.21)

Using (3.10) and (3.21) in conjunction with Gronwall–Bellman’s lemma, we obtain the following
inequality for all t 2 Œ0, tmax/:

jy.t/j6 jy.�/j exp..M C 2Q/.t � �//CP.t � �/ exp.Q.t � �//, (3.22)

where � D mp.t/. Using (3.22) and by induction, we can show the following inequality for all
�i 2 � :

jy.�i /j6 jy0j exp..M C 2Q/�i /CP�i exp.Qr/ exp..M C 2Q/�i /, (3.23)

where we have used the fact that �iC1 � �i 6 r . Estimate (3.22) in conjunction with (3.32) gives for
all t 2 Œ0, tmax/

jy.t/j6 Œjy0j CP t exp.Qr/� exp..M C 2Q/t/. (3.24)

A standard contradiction argument in conjunction with the ‘BIC’ property for (3.8) [42, Proposition
2.5] implies that tmax DC1.
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The existence of � 2 � such that (3.18) holds is a direct consequence of (3.9) and definitions

.s/ WD .

p
2 s=.
p
1C 4s2//, a D 1 C

p
2=2. By virtue of (3.9) and Proposition 7 in [48], there

exists ˇ 2K1 such that

� 6 1C r C ˇ .jx0j/ . (3.25)

Finally, let M > 0 sufficiently large and r > 0 sufficiently small so that (3.11) holds for
a D 1 C

p
2=2 and " < 1=

p
2. For x0 2 <n with � . jx0j , 0/ 6 a, we obtain from (3.11) and

(3.9) for all t > 0

jx.t/j C jy.t/j6
�
1C "C

p
2
�
.� . jx0j , 0/C � . jy0j , 0// . (3.26)

Using (3.20), (3.21), (3.24), (3.25), and (3.26), we guarantee the existence of Q̌ 2K1 such that

jx.t/j C jy.t/j6 Q̌ . j.x0,y0/j / , for all t 2 Œ0, ��. (3.27)

The existence of g 2 K1 satisfying (3.17) and (3.19) is a direct consequence of (3.25) and (3.27).
The proof is complete. �

The fact that the robust global stabilization problem for (3.8) with sampled-data feedback applied
with zero order hold is solvable with M > 0 being sufficiently large and r > 0 being sufficiently
small is a consequence from all that were discussed and Theorem 2.5. Indeed, we apply Theorem 2.5
with n D 2, V1 D jxj, V2 D jyj, L D jxj C jyj, H D .x,y/, S.t/ WD ¹ .x,y/ 2 <�< W jxj6 a º,

1,2.s/ WD

p
2 s, 
2,1.s/ WD " s, 
1,1 � 0, 
2,2 � 0, 
 � 0, gu � 0, � � 0, Q� � 0, pu � 0,

c.t/ D Qc.t/ D �.t/ D �.t/ D �.t/ � 1C r , g � 0, p.s,w/ WD s Cw, for appropriate a, b 2 K1,
� 2 KL, and q 2 N2. All Hypotheses (H1)–(H3) are satisfied by using the aforementioned defini-
tions and previous results. Therefore, we say that the closed-loop system (3.8) with M > 0 being
sufficiently large and r > 0 being sufficiently small satisfies the UISS property from the input w
with zero gain.

The reader should notice that alternative sampled-data feedback designs for system (3.7) applied
with zero order hold, and positive sampling rate can be obtained by using the results [50, 51] that,
however, achieve semiglobal and practical stabilization. It should be emphasized that the feedback
design obtained by using the trajectory-based small-gain results of the present work guarantee global
and asymptotic stabilization. Moreover, robustness to perturbations of the sampling schedule is
guaranteed (that is the reason for introducing the input w in the closed-loop system (3.13)).

The following example is a large-scale system and shows how efficiently the small-gain results
of the present work can be applied to large-scale systems.

Example 3.3
Consider the following system described by ODEs:

Pxi .t/D�aixi .t/C gi .d.t/, y.t/, x.t// , i D 1, : : : ,n, (3.28)

Py.t/D� .! CP.x.t/// y.t/C q.x.t//, (3.29)

where x.t/ D .x1.t/, : : : , xn.t// 2 <n, y.t/ 2 <, d.t/ 2 D � <m, D � <m is compact, ai > 0

(i D 1, : : : ,n/, ! > 0 and gi W D � < � <n ! < (i D 1, : : : ,n/, P W <n ! <C, q W <n ! <
are locally Lipschitz mappings with q.0/ D 0 for which there exist constants � 2 .0, 1/, ci ,j > 0
(i , j D 1, : : : ,n/ and R > 0 such that

jq.x/j

�! CP.x/
6R, for all x 2 <n, (3.30)

sup
d2D

jgi .d ,y, x/j6 max
jD1,:::,n

ci ,j
ˇ̌
xj
ˇ̌
, for all x 2 <n, y 2 < with jyj6R. (3.31)
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Moreover, we assume that there exists a nondecreasing function L W <C!<C such that

sup
d2D

Œxigi .d ,y, x/�6 L.jyj/
�
1C jxj2

�
, i D 1, : : : ,n, (3.32)

for all x 2 <n, y 2 <.
We will next show that systems (3.28) and (3.29) are URGAS, if ci ,i < ai for all i D 1, : : : ,n,

and the following small-gain conditions hold for each r D 2, : : : ,n:

ci1,i2ci2,i3 : : : cir ,i1 < ai1ai2 : : : air (3.33)

for all ij 2 ¹1, : : : ,nº, ij ¤ ik if j ¤ k.
Because the set D � <m is compact and the mappings gi W D � < � <n ! < (i D 1, : : : ,n/,

P W <n ! <C, q W <n ! < are locally Lipschitz mappings vanishing at zero, it follows that
Hypothesis (A1) of Theorem 2.7 holds for systems (3.28) and (3.29). Define the family of functions
Vi .x,y/ WD .1=2/x2i .i D 1, : : : ,n/, VnC1.x,y/ WD .1=2/y2,W.x,y/ WD 1C .1=2/ jxj2C .1=2/y2

and h.x,y/ WD y2 �R2 for .x,y/ 2 <n �<. The inequalities

y Py 6 � .! CP.x// y2C jq.x/j jyj6R .�! CP.x// jyj � .�! CP.x// jyj2 �!.1� �/ jyj2
D� jyj .�! CP.x// .jyj �R/�!.1� �/ jyj2

show that inequality (2.20) holds ı.s/� 2!.1��/R2. Moreover, by virtue of (3.32) and the previous
inequality, we obtain

rW.x,y/

�
Px
Py

	
6 L.jyj/

�
1C jxj2,

�
and consequently inequality (2.21) holds with K.s/ WD 2L

�p
R2C s2

�
. Inequality (2.19) holds

with a1.s/ WD .s2=2.nC 1//, a2.s/ WD s2=2. Finally, notice that for every � 2 .0, 1/ and
i D 1, : : : ,n, the following implications hold:

Vi .x/>
1

2�2a2i
jgi .d ,y, x/j2 , then xi .�aixi C gi .d , y, x//6 �.1��/aix2i . (3.34)

It follows from (3.34) and (3.31) that, implications (2.22) for i D 1, : : : ,n hold with

�i .s/ WD 2.1��/ais, 
i ,j .s/ WD
c2i ,j

�2a2i
s and 
i ,nC1.s/ WD 0, for s > 0 and i , j D 1, : : : ,n.

(3.35)
Because q W <n ! < is a continuous mapping with q.0/ D 0, it follows that there exist a function

 2K1 such that the following inequality holds:

jq.x/j6 
 .jxj/ , for all x 2 <n. (3.36)

Inequality (3.36) and the fact that P.x/ > 0 for all x 2 <n (notice that P W <n ! <C/ imply that
the following implication holds for every � 2 .0, 1/:

VnC1.y/>
1

2�2!2
.
 .jxj//2 then y Œ� .! CP.x// y C q.x/�6 �.1��/! y2. (3.37)

It follows from (3.37) that implication (2.22) holds for i D nC 1 with


nC1,j .s/ WD
1

2�2!2

�


�p

2ns
��2

and 
nC1,nC1.s/ WD 0, for s > 0 and j D 1, : : : ,n. (3.38)

Definitions (3.35) and (3.38) in conjunction with (3.33) and the fact that ci ,i < ai for all i D 1, : : : ,n
guarantee that there exists� 2 .0, 1/ (sufficiently close to 1) such that the MAX-preserving mapping
	 W <nC1C ! <nC1C with 	.x/ D .	1.x/, : : : ,	nC1.x//

0, 	i .x/ D maxjD1,:::,nC1 
i ,j .xj / for all
x 2 <nC1C , i D 1, : : : ,nC 1 satisfies the cyclic small-gain conditions. It follows from Theorem 2.7
that systems (3.28) and (3.29) is URGAS.
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4. A DELAYED CHEMOSTAT MODEL

In this section, we study the robust global feedback stabilization problem for system (1.2) under
(1.3). More specifically, in order to emphasize the fact that the mapping p W C 0.Œ�r , 0�I .0,Si //!
.0,C1/ is unknown, we will consider the stabilization problem of the equilibrium point
.Xs ,S.�// 2 .0,C1/ � C 0.Œ�r , 0�I .0,Si // with S.�/ D Ss for all � 2 Œ�r , 0� satisfying (1.4)
for the uncertain chemostat model:

PX.t/D



min

t�r6�6t
�.S.�//C d.t/



max

t�r6�6t
�.S.�//� min

t�r6�6t
�.S.�//

�
�D.t/� b

�
X.t/,

PS.t/DD.t/.Si � S.t//�K.S.t//�.S.t//X.t/,

X.t/ 2 .0,C1/ , S.t/ 2 .0,Si / , D.t/> 0 , d.t/ 2 Œ0, 1�,
(4.1)

where d.t/ 2 Œ0, 1� is the uncertainty. We will assume the following:

Hypothesis (H)
There exists S� < Ss such that �.S/ > b for all S 2 ŒS�,Si �.

Hypothesis (H) is automatically satisfied for the case of a monotone-specific growth rate. Hypoth-
esis (H) can be satisfied for nonmonotone-specific growth rates (e.g., Haldane or generalized Hal-
dane growth expressions). By using the trajectory-based small-gain Theorem 2.6, we can prove the
following theorem.

Theorem 4.1
Let a > 0 be a constant that satisfies

min
S�6S6Si

�.S/� b > aDs
Ss

Si
. (4.2)

Then the locally Lipschitz delay-free feedback law

D.t/D
K.S.t//�.S.t//X.t/C aDs .Ss �min .S.t/ , Ss//

Si �min .S.t/ , Ss/
(4.3)

achieves robust global stabilization of the equilibrium point .Xs ,S.�// 2 .0,C1/ �
C 0.Œ�r , 0�I .0,Si // with S.�/ D Ss for all � 2 Œ�r , 0� for the uncertain chemostat model (4.1)
under Hypothesis (H).

It should be noted that the change of coordinates

X DXs exp.x/, S D
Si exp.y/

G C exp.y/
, (4.4a)

where G WD .Si=Ss/� 1, and the input transformation

D DDs exp.u/ (4.4b)

maps the set .0,Si / � .0,C1/ onto <2 and the equilibrium point .Xs ,S.�// 2 .0,C1/ �
C 0.Œ�r , 0�I .0,Si // with S.�/ D Ss for all � 2 Œ�r , 0� of system (4.1) to the equilibrium point
0 2 <�C 0.Œ�r , 0�I </ of the transformed control system:

Px.t/D min
t�r6�6t

Q�.y.�//C d.t/



max

t�r6�6t
Q�.y.�//� min

t�r6�6t
Q�.y.�//

�
�Ds exp.u.t//� b,

Py.t/DDs.G exp.�y.t//C 1/ Œexp.u.t//� .G C exp.y.t///g.y.t// exp.x.t//� ,

.x,y/ 2 <2, u.t/ 2 < , d.t/ 2 Œ0, 1�, (4.5)
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where

Q�.y/ WD �



Si exp.y/

G C exp.y/

�
,

g.y/ WD
Xs

DsSiG
K



Si exp.y/

G C exp.y/

�
�



Si exp.y/

G C exp.y/

�
. (4.6)

In the new coordinates, the feedback law (4.3) takes the form

u.t/D ln



g.y.t// exp.x.t//min.G C exp.y.t//,G C 1/C

a

G C 1
max .1� exp.y.t// , 0 /

�
.

(4.7)

The feedback law (4.7) (or (4.3)) is a delay-free feedback that achieves global stabilization of
0 2 <�C 0.Œ�r , 0�I </ for system (4.5) no matter how large the delay is. Furthermore, no knowledge
of the maximum delay r > 0 is needed for the implementation of (4.7).

The proof of Theorem 4.1 is therefore equivalent to the proof of RGAS of the equilibrium point
0 2 <�C 0.Œ�r , 0�I </ for system (4.5).

Before we give the proof of Theorem 4.1, it is important to understand the intuition that leads to
the construction of the feedback law (4.7) and the ideas behind the proof of Theorem 4.1. To explain
the procedure, we follow the following arguments.

(i) For the stabilization of the equilibrium point 0 2 <�C 0.Œ�r , 0�I </, we first start with the sta-
bilization of subsystem Py.t/DDs.G exp.�y.t//C 1/ Œexp.u.t//� .G C exp.y.t/// g.y.t//
exp.x.t//�with x as input. Any feedback law that satisfies u.t/Dln .g.y.t//exp.x.t//.GC 1//
for y.t/ > 0 and u.t/ > ln .g.y.t// exp.x.t//.G C exp.y.t//// for y.t/ < 0 achieves ISS
stabilization of the subsystem with x as input.

(ii) In order to prove URGAS for the composite system by means of small-gain arguments,
one has to show the ISS property of the x-subsystem Px.t/ D mint�r6�6t Q�.y.�// C
d.t/ .maxt�r6�6t Q�.y.�//�mint�r6�6t Q�.y.�///�Ds exp.u.t//�b with y as input. Notice
that the feedback selection from the previous step gives Px.t/ D mint�r6�6t Q�.y.�// C
d.t/ .maxt�r6�6t Q�.y.�//�mint�r6�6t Q�.y.�/// � Dsg.y.t// exp.x.t//.G C 1/ � b for
y.t/> 0 and Px.t/ <mint�r6�6t Q�.y.�//Cd.t/ .maxt�r6�6t Q�.y.�//�mint�r6�6t Q�.y.�///
�Dsg.y.t// exp.x.t//.G C exp.y.t/// � b for y.t/ < 0. The estimation of the deriva-
tive Px.t/ shows that the ISS inequality for the x�subsystem does not hold, unless we have
mint�r6�6t Q�.y.�// > b for all t being sufficiently large. By virtue of Hypothesis (H), there
exists y� < 0, such that the ISS inequality for the the x-subsystem holds if mint�r6�6t y.�/>
y� holds for all t sufficiently being large.

(iii) The feedback law u.t/ > ln .g.y.t// exp.x.t//.G C exp.y.t//// for y.t/ < 0 is selected
such that the inequality mint�r6�6t y.�/ > y� holds for all initial conditions after a transient
period. Because the ISS inequalities will hold only after this transient period, the trajectory-
based small-gain result Theorem 2.6 must be used for the proof of URGAS of the closed-loop
system.

Proof of Theorem 4.1
Consider the solution .x.t/, y.t// 2 <2 of (4.5) with (4.7) with arbitrary initial condition x.0/ D
x0 2 <, Tr.0/y D y0 2 C 0.Œ�r , 0�I </ and corresponding to arbitrary input d 2MD . The following
equations hold for system (4.5) with (4.7):

Py.t/D aDs
G exp.�y.t//C 1

G C 1
.1� exp.y.t/// , if y.t/6 0I

Py.t/DDsg.y.t//.G exp.�y.t//C 1/ exp.x.t// .1� exp.y.t/// , if y.t/ > 0. (4.8)

Equation (4.8) imply that the function V.t/D y2.t/ is nonincreasing; consequently, we obtain

jy.t/j6 ky0kr , for all t 2 Œ0, tmax/. (4.9)
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Using the fact that � W .0,Si /! .0,�max� and Definition (4.6) of Q�, we obtain that Q�.y/6 �max for
all y 2 <. This implies the differential inequality

Px.t/6 2�max � b,

which, by direct integration, yields the estimate

x.t/6 x0C .2�max � b/ t , for all t 2 Œ0, tmax/. (4.10)

Define �.s/ WD .G C 1/Ds maxjyj6s g.y/. Inequalities (4.9) and (4.10) imply that the following
differential inequality holds:

Px.t/> �b � aDs

G C 1
� � .ky0kr/ exp.x0C .2�max � b/ t/,

which, by direct integration, yields the estimate:

x.t/> x0 �


bC

aDs

G C 1

�
t � � .ky0kr/ exp.x0/

exp..2�max � b/ t/� 1

2�max � b
, for all t 2 Œ0, tmax/.

(4.11)

Inequalities (4.9), (4.10), and (4.11) and a standard contradiction argument show that system (4.5)
with (4.7) is forward complete, that is, tmax DC1. Therefore, inequalities (4.9), (4.10), and (4.11)
hold for all t > 0, and because system (4.5) with (4.7) is autonomous, it follows that system (4.5)
with (4.7) is robustly forward complete (RFC, see Appendix B).

By considering (4.8) and the function

W.t/D

²
y2.t/ if y.t/6 0,
0 if y.t/ > 0,

we obtain the existence of a positive-definite function � 2 C 0.<CI <C/ such that

PW .t/6 �� .W.t// , for all t > 0. (4.12)

Lemma 3.5 in [27] implies the existence of � 2 KL such that for every x.0/ D x0 2 <,
Tr.0/y D y0 2 C

0.Œ�r , 0�I </ and d 2MD , it holds that

W.t/6 � .W.0/ , t / , for all t > 0. (4.13)

Inequality (4.13), in conjunction with Proposition 7 in [48], shows the existence of a 2 K1 such
that for every x.0/D x0 2 <, Tr.0/y D y0 2 C 0.Œ�r , 0�I </ and d 2MD , there exists � > r with
� 6 r C a .ky0kr/ satisfying

y.t � r/> �c
2

, for all t > � , (4.14)

where c WD ln ..Si � S�/=.S�G// > 0, and S� < Ss is the constant involved in Hypothesis (H).
Define S WD < �C 0.Œ�r , 0�I Œ�c=2,C1//. Inequality (4.14) shows that .x.t/,Tr.t/y/ 2 S for all
t > � and that inequality (2.16) holds for appropriate a 2K1 and c.t/� 1.

Notice that for .x.t/,Tr.t/y/ 2 S , the functionals

V1.t/D max
�2Œ�r ,0�

exp .2��/ j´.t C �/j2 , V2 D jx.t/j
2 , (4.15)

where � > 0, and

y.t/D c .exp.´.t//� 1/ (4.16)

are well-defined. Moreover, by considering the differential equations

Ṕ.t/D aDs
G exp.c .1� exp.´.t////C 1

c.G C 1/
exp.�´.t// .1� exp .c .exp.´.t//� 1/// if ´.t/6 0,

Ṕ.t/D c�1Dsg .c .exp.´.t//� 1// .G exp .c .1� exp.´.t////C 1/ exp.x.t/� ´.t//

� .1� exp .c .exp.´.t//� 1/// if ´.t/ > 0,
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we conclude from Lemma 3.5 in [26] that for every 
1,2 2K1, there exists �1 2KL such that

V1.t/6max

´
�1 .V1.t0/, t � t0/ , sup

t06�6t

1,2 .V2.�//

μ
, for all t > t0 > 0. (4.17)

Finally, using Hypothesis (H) and definitions (4.15), we guarantee that there exists a positive-definite
function � 2 C 0.<CI <C/ such that the following implication holds for every " > 0:
‘If

.1C "/ ln

0
BB@

�
G C exp

�
c
�

exp.
p
V1.t//� 1

���
Ds max
j´j6
p
V1.t/

g .c .exp.´/� 1//

min
j´j6exp.� r/

p
V1.t/

Q� .c .exp.´/� 1//� b � a
GC1

Ds

�
1� exp

�
c
�

exp.�
p
V1.t//� 1

���
1
CCA

6 jx.t/j

and

.1C "/ ln

0
BB@

max
j´j6exp.� r/

p
V1.t/

Q� .c .exp.´/� 1//� b�
G C exp

�
c
�

exp.�
p
V1.t//� 1

���
Ds min
j´j6
p
V1.t/

g .c .exp.´/� 1//

1
CCA6 jx.t/j ,

then

2x.t/ Px.t/6 ��
�
x2.t/

�
’.

Therefore, Lemma 3.5 in [26] implies that there exists �2 2KL such that

V2.t/6max

´
�2 .V2.t0/, t � t0/ , sup

t06�6t

2,1 .V1.�//

μ
, for all t > t0 > 0, (4.18)

where


2,1.s/ WD .1C "/
2 .ln .max ¹g1.s/ , g2.s/ º//

2 ,

g1.s/ WD

�
G C exp

�
c
�
exp.
p
s/� 1

���
Ds max
j´j6
p
s
g .c .exp.´/� 1//

min
j´j6exp.� r/

p
s
Q� .c .exp.´/� 1//� b � aDs

GC1

�
1� exp

�
c
�
exp.�

p
s/� 1

��� ,

g2.s/ WD

max
j´j6exp.� r/

p
s
Q� .c .exp.´/� 1//� b�

G C exp
�
c
�
exp.�

p
s/� 1

���
Ds min
j´j6
p
s
g .c .exp.´/� 1//

. (4.19)

Inequalities (4.9), (4.10), (4.11), (4.17), and (4.18) guarantee that inequalities (2.10), (2.11), (2.13),
(2.14), (2.15), and (2.17) hold for appropriate � 2 KL, � 2 KC, a 2 K1 with c.t/ � 1, p � 0,


1,2.s/ WD 
2,1 .s=2/, 
1,1.s/D 
2,2 .s/� 0, L WD V1CV2 andH.t , x,y/ WD
q
x2Ckyk2r . Finally,

notice that the MAX-preserving mapping 	 W <2C!<
2
C with 	i .x/DmaxjD1,2 
i ,j .xj / (i D 1, 2/

satisfies the cyclic small-gain conditions.
By virtue of Theorem 2.6, we conclude that the autonomous system (4.5) with (4.7) is

URGAS. �

5. CONCLUSIONS

One of the most important obstacles in applying nonlinear small-gain results is the fact that the
essential inequalities, which small-gain results utilize in order to prove stability properties, do not
hold for all times. This feature excludes all available small-gain results from possible application. In
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this work, novel small-gain results that can allow for a transient period during which the solutions
do not satisfy the usual inequalities required by previous small-gain results (Theorems 2.5 and 2.6)
were presented. The obtained results allow the application of the small-gain methodology to various
classes of systems that satisfy less-demanding stability notions than the IOS property. Moreover, a
vector Lyapunov function formulation of the small-gain results was presented in Theorem 2.7 and
was shown by an illustrative example that it is applicable to large-scale systems.

The robust global feedback stabilization problem of an uncertain time-delay chemostat model is
solved by means of the trajectory-based small-gain results. Future research will focus on the appli-
cation of the trajectory-based small-gain results to Lotka–Volterra systems in mathematical biology
([52]).
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APPENDIX A: PROOFS OF THEOREM 2.5, THEOREM 2.6, AND THEOREM 2.7

Proof of Theorem 2.5
The proof is similar to the proof of Theorem 3.1 in [19] and consists of four steps:

Step 1: We show that for every .t0, x0,u, d/ 2 <C � X �MU �MD , the following inequality
holds for all t 2 Œ� , tmax/:

V.t/6MAX
°
Q.1� .L.�/, 0// , Q

�
1

��
kukU

�
Œ�,t�

�� ±
, (A.1)

where � 2 �.t0, x0,u, d/ is the time such that �.t , t0, x0,u, d/ 2 S.t/ for all t 2 Œ� , tmax/

(recall Hypothesis (H2)).
This step is proved in exactly the same way as in the proof of Theorem 3.1 in [19]

(using Fact V).
Step 2: We show that for every .t0, x0,u, d/ 2 <C �X�MU �MD , it holds that tmax DC1.

The proof of Step 2 is exactly the same with the proof of Theorem 3.1 in [19]. The only
difference is the additional use of inequality (2.6), which guarantees that the transition
map is bounded during the transient period t 2 Œt0, ��.

Step 3: We show that † is RFC from the input u 2MU .
Again, the proof of Step 3 is exactly the same with the proof of Theorem 3.1 in [19].

The only difference is the additional use of inequalities (2.6) and (2.9).
Step 4: We prove the following claim.

Claim
For every " > 0, k 2 ZC,R,T > 0, there exists �k.",R,T / > 0 such that for every .t0, x0,u, d/ 2
<C �X�MU �MD with t0 2 Œ0,T � and kx0kX 6R, the following inequality holds:

V.t/6MAX
°
Q.1"/ , 	.k/ .Q .1� .L.�/, 0/// , G

��
kukU

�
Œt0,t�

� ±
, for all t > � C �k . (A.2)

Moreover, if c 2 KC is bounded, then for every " > 0, k 2 ZC,R > 0, there exists �k.",R/ > 0
such that for every .t0, x0,u, d/ 2 <C �X�MU �MD with kx0kX 6R, inequality (A.2) holds.

Proof of Step 4: The proof of the claim is made by an induction on k 2ZC.
Inequality (A.2) for k D 1 is a direct consequence of inequalities (2.4) and (2.9) and

definition (2.12).
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We notice that inequality (2.5) in conjunction with inequality (A.1) and Fact IV imply, for all
t > � , that

L.t/6 max
°
�.t � t0/ , c.t0/ , a . kx0kX / , p .Q .1� .L.�/, 0/// ,p

�
Q
�
1

��
kukU

�
Œt0,t�

���
,

pu
� �
kukU

�
Œt0,t�

� ±
. (A.3)

Next, suppose that for every " > 0, R,T > 0, there exists �k.",R,T / > 0 such that for every
.t0, x0,u, d/ 2 <C�X�MU �MD with t0 2 Œ0,T � and kx0kX 6R, (A.2) holds for some k 2ZC.
Let arbitrary " > 0,R,T > 0, .t0, x0,u, d/ 2 <C�X�MU�MD with t0 2 Œ0,T � and kx0kX 6R be
given. Notice that the weak semigroup property implies that �.t0, x0,u, d/\Œ�C�k , �C�kCr�¤ ;.
Let tk 2 �.t0, x0,u, d/\ Œ� C �k , � C �k C r�. Then, (2.4) implies

V.t/6 MAX
°
1� .L.tk/, t � tk / , 	

�
ŒV �Œtk ,t�

�
, 1


� �
kukU

�
Œtk ,t�

� ±
, for all t > tk . (A.4)

Using inequalities (A.2), (A.3), (A.4), and (2.9) and working in the same way as in the proof of
Theorem 3.1 in [19], we can derive the following inequality for all t > � C �k C r :

V.t/6MAX
°
1� .L.tk/, t � � � �k � r / , Q.1"/, 	.kC1/ .Q .1� .L.�/, 0/// , G

��
kukU

�
Œt0,t�

�±
.

(A.5)
Definition (2.12) in conjunction with (2.7), (2.9), inequality (A.3), and the facts that tk 6 �C�kCr ,
t0 2 Œ0,T �, and kx0kX 6R implies that, for all t > � C �k C r ,

1� .L.tk/, t � � � �k � r /6 MAX
°
1� . f .",T ,R/, t � � � �k � r / , G

��
kukU

�
Œt0,t�

�±
,

(A.6)
where

f .",T ,R/ WDmax

²
max

06t6a.R/CC.T /C�k.",R,T /Cr
�.t/, C.T /, a .R/ , p .Q .1� .a.RC.T //, 0///

³
(A.7)

and

C.T / WD max
06t6T

c.t/. (A.8)

The reader should notice that if c 2 KC is bounded and �k is independent of T , then f can
be chosen to be independent of T as well. The rest of the proof of the claim follows from
a combination of inequalities (A.5) and (A.6) and from an appropriate selection of �kC1 (set
�kC1.",R,T /D �k.",R,T /CrC�.",R,T /, where �.",R,T /> 0 satisfies � .f .",T ,R/ , �/6 "/.

To finish the proof, let arbitrary " > 0, R,T > 0, .t0, x0,u, d/ 2 <C�X�MU �MD and denote
Y.t/ D H .t ,�.t , t0, x0,u, d/,u.t// for t > t0. Using Fact IV, (2.11), and (A.1), we obtain for all
t > �:

kY.t/kY 6max
°
q .Q .1� .L.�/, 0/// , q

�
Q
�
1

��
kukU

�
Œ�,t�

��� ±
.

The aforementioned inequality in conjunction with (2.9) implies that, for all t > � ,

kY.t/kY 6max
°
q .Q .1� .a .c.t0/ kx0kX/ , 0/// , q

�
Q
�
1�
�
gu
��
kukU

�
Œt0, t�

�
, 0
���

,

q
�
Q
�
1

��
kukU

�
Œt0, t�

���±
. (A.9)

Using (2.8) and (A.9), we conclude that the following estimate holds for all t > t0:

kY.t/kY 6max

8<
:
q .Q .1� .a .c.t0/ kx0kX/ , 0/// , a .c.t0/ kx0kX/ ,

�
��
kukU

�
Œt0, t�

�
, q
�
Q
�
1�
�
gu
��
kukU

�
Œt0,t�

�
, 0
���

, q
�
Q
�
1

��
kukU

�
Œt0,t�

���
9=
;.

(A.10)
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Inequality (A.10) shows that properties P1 and P2 of Lemma 2.16 in [16] hold for system †

with V D kH.t , x,u/kY and 
.s/ WD max ¹ � .s/ , q.G.s// º. Moreover, if c 2 KC is bounded,
then (A.10) implies that properties P1 and P2 of Lemma 2.17 in [16] hold for system † with
V D kH.t , x,u/kY and 
.s/ WDmax ¹ � .s/ , q.G.s//º.

Inequality (A.2) in conjunction with Fact III, (2.9), (A.8), and definition (2.12) guarantees
that for every " > 0, k 2 ZC, R,T > 0, there exists �k.",R,T / > 0 such that for every
.t0, x0,u, d/ 2 <C � X �MU �MD with t0 2 Œ0,T � and kx0kX 6 R, the following inequality
holds:

V.t/6MAX
°
Q.1"/ , 	.k/ .Q .1� .a .RC.T // , 0/// , G

��
kukU

�
Œt0,t�

� ±
, for all t > � C �k .

(A.11)
Notice that Fact I guarantees the existence of k.",T ,R/ 2 ZC such that Q.1"/ >
	.l/ .Q .1� .a .RC.T // , 0/// for all l > k. If c 2 KC is bounded, then k is independent of T .
Therefore, by virtue of (A.11) and (2.7), property P3 of Lemma 2.16 in [16] holds for system†with
V D kH.t , x,u/kY and 
.s/ WDmax ¹� .s/ , q.G.s//º. Moreover, if c 2KC is bounded, then (A.11)
and (2.7) imply that property P3 of Lemma 2.17 in [16] hold for system † with V D kH.t , x,u/kY
and 
.s/ WDmax ¹ � .s/ , q.G.s//º.

The proof of Theorem 2.4 is thus completed with the help of Lemma 2.16 (or Lemma 2.17) in
[16]. �

Proof of Theorem 2.6
By virtue of Lemma 3.3 in [15], we have to show that † is RFC and satisfies the robust output
attractivity property, that is, for every " > 0, T > 0 and R > 0, there exists a � WD � .",T ,R/ > 0,
such that

kx0kX 6R , t0 2 Œ0,T � ) kH.t ,�.t , t0, x0,u0, d/, 0/kY 6 " , 8t 2 Œt0C � ,C1/, 8d 2MD .

The reader should notice that Lemma 3.3 in [15] assumes the classical semigroup property; how-
ever, the semigroup property is not used in the proof of Lemma 3.3 in [15]. Consequently, Lemma
3.3 in [15] holds as well for systems satisfying the weak semigroup property.

Moreover, Lemma 3.5 in [42] guarantees that system † is uniformly RGAOS in case that
† WD .X, Y,MU ,MD ,�,� ,H/ is T -periodic for certain T > 0.

Again, the proof consists of four steps:

Step 1: We show that for every .t0, x0, d/ 2 <C�X�MD , the following inequality holds for all
t 2 Œ� , tmax/:

V.t/6Q.1� .L.�/, 0// , (A.12)

where � 2 �.t0, x0,u0, d/ is the time such that �.t , t0, x0,u0, d/ 2 S.t/ for all
t 2 Œ� , tmax/ (recall Hypothesis (H2)).

Step 2: We show that for every .t0, x0, d/ 2 <C �X�MD , tmax DC1 holds.
Step 3: We show that † is RFC.
Step 4: We prove the following claim.

Claim
For every " > 0, k 2 ZC,R,T > 0, there exists �k.",R,T / > 0 such that for every .t0, x0, d/ 2
<C �X�MD with t0 2 Œ0,T � and kx0kX 6R the following inequality holds:

V.t/6MAX
°
Q.1"/ , 	.k/ .Q .1� .L.�/, 0///

±
, for all t > � C �k . (A.13)

The proofs of the previous steps are exactly the same with the proof of Theorem 2.5 and are omitted.
The difference between inequalities (2.9) and (2.17) does not play any role. To finish the proof, let
arbitrary " > 0, R,T > 0, .t0, x0, d/ 2 <C�X�MD and denote Y.t/DH .t ,�.t , t0, x0,u0, d/, 0/
for t > t0.
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Inequality (A.13) in conjunction with (2.17) and (A.8) guarantees that for every " > 0, k 2 ZC,
R,T > 0, there exists �k.",R,T /> 0 such that for every .t0, x0, d/ 2 <C�X�MD with t0 2 Œ0,T �
and kx0kX 6R, the following inequality holds:

V.t/6MAX
°
Q.1"/ , 	.k/ .Q .1� .a .R/CC.T /, 0///

±
, for all t > � C �k . (A.14)

Notice that Fact I guarantees the existence of k.",T ,R/ 2 ZC such that Q.1"/ >
	.l/ .Q .1� .a .R/CC.T /, 0/// for all l > k. Therefore, (A.14) implies that for every " > 0,
R,T > 0, there exists �.",R,T /> 0 such that for every .t0, x0, d/ 2 <C�X�MD with t0 2 Œ0,T �
and kx0kX 6R, it holds that

V.t/6Q.1"/, for all t > � C � . (A.15)

It follows from inequalities (2.11) and (A.15) that for every " > 0, R,T > 0, there exists
�.",R,T / > 0 such that for every .t0, x0, d/ 2 <C � X �MD with t0 2 Œ0,T � and kx0kX 6 R, it
holds that

kY.t/kY 6 q.Q.1"//, for all t > � C � . (A.16)

Therefore, by virtue of (A.16) and (2.16), the robust output attractivity property holds for system
†. The proof is complete. �

Proof of Theorem 2.7
Consider a solution x.t/ of (2.18) corresponding to arbitrary .u, d/ 2MU �MD (here, MU ,MD

denote the classes of measurable and locally essentially bounded functions u W <C ! U and
d W <C ! D, respectively) with arbitrary initial condition x.0/ D x0 2 <

n. Clearly, there exists
a maximal existence time for the solution denoted by tmax 6 C1. Suppose that h.x.t// 6 0 for
all t 2 Œ0, tmax/ and let Vi .t/D Vi .x.t//, i D 1, : : : , k, absolutely continuous functions on Œ0, tmax/.
Moreover, let I � Œ0, tmax/ be the zero Lebesgue measure set where x.t/ is not differentiable or
Px.t/ ¤ f .x.t/, d.t/,u.t//. By virtue of (2.22), it follows that the following implication holds for
t 2 Œ0, tmax/nI and i D 1, : : : , k:

Vi .t/>max

²

 .ju.t/j/ , max

jD1,:::,k

i ,j

�
Vj .t/

�³
) PVi .t/6 ��i .Vi .t//. (A.17)

Lemma 3.5 in [27] in conjunction with (A.17) implies that there exists a family of continuous func-
tions �i (i D 1, : : : , k/ of class KL, with �i .s, 0/D s for all s > 0 such that for all t 2 Œ0, tmax/ and
i D 1, : : : , k, we have

Vi .t/6max

²
�i .Vi .0/, t / , sup

06�6t
�i



max

jD1,:::,k
sup
06s6�


i ,j
�
Vj .s/

�
, t � �

�
,

sup
06�6t

�i








sup
06s6�

ju.s/j

�
, t � �

�³
. (A.18)

Let �.s, t / WD maxiD1,:::,k �i .s, t /, which is a function of class KL that satisfies �.s, 0/ D s for
all s > 0. It follows from (A.18) that, if the solution x.t/ of (2.18) satisfies h.x.t// 6 0 for all
t 2 Œ0, tmax/, then the following inequalities hold for all t 2 Œ0, tmax/ and i D 1, : : : , k:

Vi .t/6max

²
�



max
iD1,:::,k

Vi .0/, t

�
, max
jD1,:::,k


i ,j



sup
06s6t

Vj .s/

�
, 




sup
06s6t

ju.s/j

�³
. (A.19)

Clearly, inequalities (A.19) in conjunction with the fact that system (2.18) is autonomous (and, con-
sequently, we need to consider only the case that the initial time is 0) show that Hypothesis (H1)
holds with 	 W <kC ! <

k
C, 	.x/ D .	1.x/, : : : ,	n.x//0 with 	i .x/ D maxjD1,:::,k 
i ,j .xj / for all

i D 1, : : : , k, x 2 <nC and

L.t , x/ WD max
iD1,:::,k

Vi .x/, for all .t , x/ 2 <C �<
n, and S.t/ WD S D ¹ x 2 <n W h.x/6 0 º ,

for all t > 0.
(A.20)
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Furthermore, if U D ¹0º, then inequalities (A.19) and definitions (A.20) imply that Hypothesis (H4)
holds. Definitions (A.20) in conjunction with (2.19) show that Hypothesis (H3) holds as well with
q.x/ WD a�11

�
maxiD1,:::,k xi

�
for all x 2 <kC, H.t , x/ WD x for all .t , x/ 2 <C � <n, and g � 0,

�.t/D �.t/� 1, and b.s/ WD a�11 .s/ for all s > 0.
It should be noticed that inequality (2.20) guarantees that the set S D ¹ x 2 <n W h.x/6 0 º is

positively invariant for system (2.18) and for every applied input .u, d/ 2MU �MD .
We next consider the solution x.t/ of (2.18) corresponding to arbitrary .u, d/ 2MU �MD with

arbitrary initial condition x.0/D x0 … S . Define

� WD sup ¹ t 2 Œ0, tmax/ W h.x.t// > 0 º . (A.21)

The continuity of h and the fact that x.0/D x0 … S imply that � > 0. Definition (A.21) and positive
invariance of the set S D ¹ x 2 <n W h.x/6 0 º imply that

(i) h.x.t// > 0 for all t 2 Œ0, �/, and
(ii) either � D tmax or � < tmax and h.x.�//D 0.

Therefore, inequalities (2.20) and (2.21) imply that the following differential inequalities hold:

Ph.t/6 �ı.h.t//, for almost all t 2 Œ0, �/, (A.22)

PW .t/6K.h.t//W.t/CK.h.t// 
 .ju.t/j/ , for almost all t 2 Œ0, �/, (A.23)

where h.t/ WD h.x.t// and W.t/ WDW.x.t//. Inequality (A.22) implies that the mapping t ! h.t/

is nonincreasing on Œ0, ��. Using the fact thatK is nondecreasing, we obtain from (A.22) and (A.23)
the following inequalities:

0 < h.t/6 h.x0/� Qı t , for all t 2 Œ0, �/, (A.24)

W.t/6 exp .K.h.x0// t/

�
W.x0/C sup

06�6t

 .ju.�/j/

	
, for all t 2 Œ0, �/, (A.25)

where Qı WDmin06s6h.x0/ ı.s/ > 0.
We next show by contradiction that the case � D tmax cannot happen. Suppose that � D tmax.

� If tmax < C1, then standard theory implies that lim supt!t�max
jx.t/j D C1. Because W is

radially unbounded, we must have lim supt!t�max
W.x.t// D C1. On the other hand, inequal-

ity (A.25) shows that there exists a finite constant A > 0 such that W.x.t// 6 A for all
t 2 Œ0, tmax/, a contradiction.
� If � D tmax D C1, then inequality (A.24) shows that 0 < h.t/ 6 h.x0/ � Qı t , for all t > 0, a

contradiction.

Therefore, we can conclude that � < tmax and h.x.�//D 0. Inequality (A.24) implies that � 6 h.x0/
Qı

.
Positive invariance of the set S D ¹ x 2 <n W h.x/6 0 º implies that for every x.0/ D x0 2 <n,

.u, d/ 2MU �MD , there exists � 2 Œ0, tmax/with � 6„.x0/ satisfying x.t/ 2 S , for all t 2 Œ� , tmax/,
where

„.x/ WD
max¹0,h.x/º

min
06s6max¹0,h.x/º

ı.s/
. (A.26)

It should be noticed that the function „ W <n ! <C defined by (A.26) is a continuous mapping
with„.0/D 0. Therefore, there exists A 2K1 such that„.x/6 A . jxj / for all x 2 <n. It follows
from those discussed that inequalities (2.7) and (2.16) hold with c.t/ � 1. Moreover, definition
(A.20) implies that inequalities (2.5) and (2.14) hold with p.x/ WD maxiD1,:::,k xi for all x 2 <kC,
v.t/D c.t/� 1, pu � 0, and arbitrary a 2K1.
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In order to finish the proof we have to show the following.

� There exist a, � 2 N1 such that (2.8) holds with H.t , x/ WD x, c.t/ � 1, for the case
that W 2 C 1.<nI <C/ is positive definite. Notice that inequalities (2.6) and (2.9) are direct
consequences of (2.8) with H.t , x/ WD x, c.t/ � 1 and (2.19) and (A.20) for appropri-
ate a, Q�,gu 2 K1 and c.t/ � 1. In this case, the conclusion of the theorem follows from
Theorem 2.5.
� There exists a 2 K1 and R > 0 such that (2.15) holds with �.t/ D c.t/ � 2.1 C R/,

for the case U D ¹0º. Notice that inequality (2.17) is a direct consequence of (2.15) with
�.t/ D c.t/ � 2.1CR/ and (2.19) and (A.20) for appropriate a 2 K1, c 2 KC. In this case,
the conclusion of the theorem follows from Theorem 2.6.

If W 2 C 1.<nI <C/ is positive definite and radially unbounded, there exist b1, b2 2 K1 such that
b1 .jxj/ 6 W.x/ 6 b2 .jxj/, for all x 2 <n. Moreover, using the fact that � 6 „.x0/, we obtain
from (A.25) for all x.0/D x0 2 <n, .u, d/ 2MU �MD and t 2 Œ0, ��

b1 .jx.t/j/6W.t/6 exp .K.max¹0,h.x0/º/ t/

�
W.x0/C sup

06�6t

 .ju.�/j/

	

6 exp .K.max¹0, h.x0/º/„.x0//

�
W.x0/C sup

06�6t

 .ju.�/j/

	
D exp .K.max¹0, h.x0/º/„.x0//W.x0/

C .exp .K.max¹0,h.x0/º/„.x0//� 1/ sup
06�6t


 .ju.�/j/C sup
06�6t


 .ju.�/j/

6 exp .K.max¹0, h.x0/º/„.x0// b2 .jx0j/C
1

2
.exp .K.max¹0,h.x0/º/„.x0//� 1/

2

C
1

2
sup
06�6t


2 .ju.�/j/C sup
06�6t


 .ju.�/j/

6max

²
2 exp .K.max¹0, h.x0/º/„.x0// b2 .jx0j/

C
1

2
.exp .K.max¹0, h.x0/º/„.x0//� 1/

2 , sup
06�6t

� .ju.�/j/

³
,

where �.s/ WD 
2.s/C 2
.s/. Because the mapping

<n Ö x! B.x/ WD 2 exp .K.max¹0, h.x/º/„.x// b2 .jxj/C
1

2
.exp .K.max¹0, h.x/º/„.x//� 1/2

is nonnegative, continuous, and vanishing at zero, there exists b1 2 K1 such that B.x/ 6 b1 .jxj/,
for all x 2 <n. The aforementioned inequalities show that (2.8) holds with H.t , x/ WD x, c.t/� 1,
�.s/ WD 
2.s/C 2
.s/ and a.s/ WD b�11 .b3.s//.

Finally, if U D ¹0º, then we can define the function P W <n!<C:

P.x/ WDmax ¹jyj W y 2 <n, W.y/6 exp .K.max¹0, h.x/º/„.x//W.x/º . (A.27)

Notice that becauseW is continuous, nonnegative, and radially unbounded, the functions P W <n!
<C is locally bounded. Because P W <n!<C is locally bounded, there exists b4 2K1 and R > 0
such that P.x/ 6 RC b4 .jxj/, for all x 2 <n. It follows from (A.25) and (A.27) and the fact that
P.x/ 6 R C b4 .jxj/ for all x 2 <n that the following inequality holds for all x.0/ D x0 2 <

n,
.u, d/ 2MU �MD , and t 2 Œ0, ��:

jx.t/j6max ¹ 2b4 .jx0j/ , 2R º . (A.28)

Therefore, inequality (2.15) holds with �.t/ D c.t/ � 2.1CR/ and a.s/ WD 2b4.s/. The proof is
complete. �
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APPENDIX B: BASIC NOTIONS

To make our work self-contained, we introduce some notions that are essential to the system
theoretic framework presented in [16, 42, 43]. The abstract system theoretic framework used in
[16, 42, 43] is utilized in the present work. The difference of the basic notions used here and the
classical systems notions in [53–55] is that the classical semigroup property does not hold, and no
continuity assumptions are made for the transition map.

The notion of a control system—Definition 2.1 in [16]
A control system † WD .X, Y,MU ,MD ,�,� ,H/ with outputs consists of

(i) a set U (control set), which is a subset of a normed linear space U with 0 2 U , and a set
MU �M. U / (allowable control inputs), which contains at least the identically zero input u0;

(ii) a set D (disturbance set) and a set MD � M.D/, which is called the ‘set of allowable
disturbances’;

(iii) a pair of normed linear spaces X and Y called the ‘state space’ and the ‘output space’,
respectively;

(iv) a continuous mapH W <C�X�U ! Y that maps bounded sets of <C�X�U into bounded
sets of Y, called the ‘output map’;

(v) a set-valued map <C � X �MU �MD 3 .t0, x0,u, d/ ! � .t0, x0,u, d/ � Œt0,C1/, with
t0 2 �.t0, x0,u, d/ for all .t0, x0,u, d/ 2 <C � X �MU �MD , called the set of ‘sampling
times’; and

(vi) the map � W A	 ! X where A	 �<C �<C �X�MU �MD , called the ‘transition map’ that
has the following properties:

(1) Existence: For each .t0, x0,u, d/ 2 <C � X �MU �MD , there exists t > t0 such that
Œt0, t �� .t0, x0,u, d/� A	 .

(2) Identity property: For each .t0, x0,u, d/ 2 <C � X � MU � MD , it holds that
�.t0, t0, x0,u, d/D x0.

(3) Causality: For each .t , t0, x0,u, d/ 2 A	 with t > t0 and for each . Qu, Qd/ 2 MU �MD

with . Qu.�/, Qd.�//D .u.�/, d.�// for all � 2 Œt0, t �, it holds that .t , t0, x0, Qu, Qd/ 2 A	 with
�.t , t0, x0,u, d/D �.t , t0, x0, Qu, Qd/.

(4) Weak semigroup property: There exists a constant r > 0, such that for each t > t0 with
.t , t0, x0,u, d/ 2 A	
(a) .� , t0, x0,u, d/ 2 A	 for all � 2 Œt0, t �;
(b) �.t , � ,�.� , t0, x0,u, d/,u, d/D �.t , t0, x0,u, d/ for all � 2 Œt0, t �\ �.t0, x0,u, d/;
(c) if .t C r , t0, x0,u, d/ 2 A	 , then it holds that �.t0, x0,u, d/\ Œt , t C r�¤ ;; and
(d) for all � 2 �.t0, x0,u, d/ with .� , t0, x0,u, d/ 2 A	 , we have �.� ,�.� , t0, x0,u, d/,

u, d/D �.t0, x0,u, d/\ Œ� ,C1/.

The boundedness-implies-continuation and robust forward completeness (RFC) properties—
Definition 2.4 in [16]
Consider a control system † WD .X, Y,MU ,MD ,�,� ,H/ with outputs. We say the following for
system †.

(i) System † has the ‘BIC’ property if for each .t0, x0,u, d/ 2 <C �X�MU �MD , there exists
a maximal existence time, that is, there exists tmax WD tmax.t0, x0,u, d/ 2 .t0,C1�, such that

A	 D [
.t0,x0,u,d/2<C�X�MU�MD

Œt0, tmax/� ¹.t0, x0,u, d/º.

In addition, if tmax < C1, then for every M > 0, there exists t 2 Œt0, tmax/ with
k�.t , t0, x0,u, d/kX >M .
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(ii) System† is RFC from the input u 2MU if it has the BIC property and for every r > 0,T > 0,
it holds that

sup ¹k�.t0C s, t0, x0,u, d/kX I u 2M.BU Œ0, r�/\ MU , s 2 Œ0,T �, kx0kX 6 r , t0 2 Œ0,T �,

d 2MD º<C1.

The notion of a robust equilibrium point—Definition 2.5 in [16]
Consider a control system † WD .X, Y,MU ,MD ,�,� ,H/ and suppose that H.t , 0, 0/ D 0 for all
t > 0. We say that 0 2 X is a robust equilibrium point from the input u 2MU for † if

(i) for every .t , t0, d/ 2 <C �<C �MD with t > t0 it holds that �.t , t0, 0,u0, d/D 0; and
(ii) for every " > 0,T , h 2 <C, there exists ı WD ı.",T , h/ > 0 such that for all .t0, x,u/ 2 Œ0,T ��

X �MU , � 2 Œt0, t0 C h� with kxkX C supt>0 ku.t/kU < ı, it holds that .� , t0, x,u, d/ 2 A	
for all d 2MD and

sup ¹ k�.� , t0, x,u, d/kX I d 2MD , � 2 Œt0, t0C h� , t0 2 Œ0,T � º< ".

Let T > 0. A deterministic control system † WD .X, Y,MU ,MD ,�,� ,H/ with outputs is called
T -periodic, if

(i) H.t C T , x,u/DH.t , x,u/ for all .t , x,u/ 2 <C �X�U ;
(ii) for every .u, d/ 2MU �MD and integer k, there exist inputs PkT u 2MU , PkT d 2MD with

.PkT u/ .t/D u .t C kT / and .PkT d/ .t/D d .t C kT / for all t C kT > 0; and
(iii) for each .t , t0, x0,u, d/ 2 A	 with t > t0 and for each integer k with t0 � kT > 0, it

follows that .t � kT , t0 � kT , x0,PkT u,PkT d/ 2 A	 and � .t0 � kT , x0,PkT u,PkT d/ D
[�2
.t0,x0,u,d/¹� � kT º with � .t , t0, x0,u, d/D � .t � kT , t0 � kT , x0,PkT u,PkT d/.

A deterministic control system † WD .X, Y,MU ,MD ,�,� ,H/ with outputs is called time-
invariant, or autonomous, if it is T -periodic for all T > 0.

Next, we present the IOS property for the class of systems described previously (see also [1, 56]
for finite-dimensional, time-invariant dynamic systems).

The notion of input-to-output stability, uniform input-to-output stability, input-to-state stability, and
uniform input-to-state stability—Definition 2.5 in [16]
Consider a control system † WD .X, Y,MU ,MD ,�,� ,H/ with outputs and the BIC property and
for which 0 2 X is a robust equilibrium point from the input u 2MU . Suppose that † is RFC from
the input u 2MU . If there exist functions � 2KL,ˇ 2KC, 
 2N1 such that the following estimate
holds for all u 2MU , .t0, x0, d/ 2 <C �X�MD and t > t0 W

kH.t ,�.t , t0, x0,u, d/,u.t//kY 6 � .ˇ.t0/ kx0kX , t � t0 / C sup
t06�6t



�
ku.�/kU

�
,

then we say that † satisfies the IOS property from the input u 2MU with gain 
 2N. Moreover, if
ˇ 2KC may be chosen as ˇ.t/� 1, then we say that † satisfies the uniform IOS property from the
input u 2MU with gain 
 2N1.

For the special case of the identity output mapping, that is, H.t , x,u/ WD x, the (uniform) IOS
property from the input u 2 MU is called (uniform) ISS property from the input u 2 MU . When
U D ¹0º (the no-input case) and † satisfies the (U)IOS property, then we say that † satisfies the
(uniform) RGAOS property. When U D ¹0º (the no-input case) and † satisfies the (uniform) ISS
property, then we say that † satisfies the (uniform) RGAS property.
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