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1. Introduction

Lyapunov’s direct method has been proved to be irreplaceable for the stability analysis of non-linear
systems. However, the main difficulty in the application of Lyapunov’s direct method is to find a Lya-
punov function for a given dynamical system. Most positive definite functions will not have a negative
definite derivative for a given dynamical system and therefore cannot be used for stability analysis by
using Lyapunov’s direct method.

There are three ways to relax the requirement of a negative definite derivative:

1. By using the Krasovskii–La Salle principle (see Khalil, 1996; Malisoff & Mazenc, 2008; Mazenc &
Nesic, 2004; Malisoff & Mazenc, 2009) or by using Matrosov’s theorem (see Rouche et al., 1977).
The original result by Matrosov has been generalized recently in various directions (see Loria
et al., 2005; Malisoff & Mazenc, 2008; Mazenc & Nesic, 2007; Mazenc et al., 2009; Malisoff &
Mazenc, 2009; Rouche et al., 1977; Teel et al., 2002). However, in order to be able to apply
all available results, it is necessary to have a positive definite (Lyapunov) function with negative
semi-definite derivative or to assume uniform Lyapunov and Lagrange stability (which can be
shown by a positive definite function with negative semi-definite derivative). It should be noted
that the main idea in the proof of the original Matrosov’s result is the division of the state space
into two regions: in the first region (the ‘bad region’), the non-positive derivative of the Lyapunov
function can be arbitrarily small in absolute value, while in the second region (the ‘good region’),
the derivative of the Lyapunov function has a negative upper bound. The proof is accomplished
by showing that the solution cannot stay in the bad region forever and by estimating the time that
the solution spends in the good region. Recently, in Karafyllis et al. (2009), a different approach
was proposed for a Lyapunov function which can have positive derivative in certain regions of
the state space: by using the derivative of auxiliary functions, the methodology guarantees that
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I. KARAFYLLIS

the solution enters the good region after a finite time and remains bounded. The idea of switching
between system modes with negative and positive derivative of a Lyapunov function has also been
used recently in the stability analysis of hybrid systems in Michel & Hou (2009) and Munoz de la
Pena & Christofides (2008). However, in hybrid systems, the time period for which the derivative
of the Lyapunov function is positive is determined by the switching signal and it is not necessary
to estimate it.

2. By using the ‘discretization approach’ (see Aeyels & Peuteman, 1988, the Appendix in Coron &
Rosier, 1994, and recent generalizations in Michel et al., 2008, and Peuteman & Aeyels, 2002a,b,
as well as the proof of the main result in Karafyllis, 2007), which does not require a negative def-
inite derivative. Instead, the discretization approach requires that the difference of the Lyapunov
function V (x(T )) − V (x(0)) is negative definite, where x(t) denotes the solution of the dynam-
ical system and T > 0 is a fixed time. Therefore, in this approach the Lyapunov function can
even have a positive derivative in certain regions of the state space. However, the main difficulty
in the application of this approach is the estimation of the difference of the Lyapunov function
V (x(T ))−V (x(0)). The application of this approach to feedback stabilization problems gave very
important results in Coron & Rosier (1994) (see also recent extensions in Karafyllis & Tsinias,
2009).

3. By using higher derivatives of the Lyapunov function (see Butz, 1969; Jiang, 2005). Again the
existence of a positive definite function with negative semi-definite derivative is required.
Although the main result by Butz (1969) does not demand the existence of a positive definite
function with negative semi-definite derivative, in Ahmadi (2008), it was recently shown that the
hypotheses of the main result in Butz (1969) imply that a linear combination of the function and
its derivatives gives a positive definite function with negative definite derivative. In this research
direction, the main results in Chow & Dunninger (1974) and Yorke (1970) have to be noted;
however, they do not lead necessarily to stability.

The purpose of the present work is to combine the above approaches and to provide global stability
criteria that use a positive definite function with a non sign-definite derivative. The results are developed
for the autonomous uncertain case

ẋ = f (d, x),

x ∈ �n, d ∈ D,
(1.1)

where x(t) is the state and d(t) ∈ D ⊂ �l is a time-varying disturbance. However, the obtained results
can be extended to the local case or the time-varying case. The key idea is the idea used in the proof
of the original Matrosov’s result described above concerning the division of the state space into two
regions: the ‘good region’, where the derivative of the Lyapunov function has a negative upper bound,
and the ‘bad region’, where the derivative of the Lyapunov function can be positive. The first step is
to show that the solution of (1.1) cannot stay in the bad region forever. Additional technical difficulties
arise since we have to guarantee that the solution remains bounded, while it stays in the bad region. The
second step is to estimate the difference of the Lyapunov function V (x(T )) − V (x(0)), where T > 0 is
chosen appropriately so that the solution is in the good region. Finally, by extending the discretization
approach, we can guarantee robust global asymptotic stability or robust global exponential stability
(Theorem 3.1, Corollary 3.5, Theorem 3.7 and Corollaries 3.8–3.10).

The structure of the paper is as follows. Section 2 provides the definitions of the notions used in the
paper and some preliminary results that generalize the discretization approach. The results of Section 2
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are interesting since the results are necessary and sufficient conditions for robust global asymptotic
stability. In Section 3, the main results are stated and proved. Illustrative examples of the proposed
approach are provided in Section 4: the examples show how we can use very simple positive definite
functions (e.g. V (x) = |x |2), which do not have a sign-definite derivative. Finally, some concluding
remarks are provided in Section 5. The Appendix contains the proofs of some technical steps needed in
the proof of Theorem 3.1.

Notations. Throughout this paper, we adopt the following notations:

∗ For a vector x ∈ �n , we denote by |x | its usual Euclidean norm and by x ′ its transpose.

∗ We say that an increasing continuous function γ : �+ → �+ is of class K if γ (0) = 0. We say that
an increasing continuous function γ : �+ → �+ is of class K∞ if γ (0) = 0 and lims→+∞ γ (s) =
+∞. By K L we denote the set of all continuous functions σ = σ(s, t): �+ ×�+ → �+ with the
following properties: (i) for each t � 0, the mapping σ(·, t) is of class K and (ii) for each s � 0,
the mapping σ(s, ·) is non-increasing with limt→+∞ σ(s, t) = 0.

∗ Let D ⊆ �l be a non-empty set. By MD we denote the class of all Lebesgue measurable and
locally essentially bounded mappings d: �+ → D.

∗ By C j (A) (C j (A; Ω)), where j � 0 is a non-negative integer, A ⊆ �n , we denote the class of
functions (taking values in Ω ⊆ �m) that have continuous derivatives of order j on A.

∗ For every scalar continuously differentiable function V : �n → �, ∇V (x) denotes the gradient
of V at x ∈ �n , i.e. ∇V (x) = (

∂V
∂x1

(x), . . . , ∂V
∂xn

(x)
)
. We say that a function V : �n → �+ is

positive definite if V (x) > 0 for all x �= 0 and V (0) = 0. We say that a continuous function
V : �n → �+ is radially unbounded if the following property holds: ‘for every M > 0, the set
{x ∈ �n : V (x) � M} is compact’.

2. Preliminary results

Throughout this paper, we assume that system (1.1) satisfies the following hypotheses:

(H1) D ⊂ �l is compact.

(H2) The mapping D × �n
� (d, x) → f (d, x) ∈ �n is continuous with f (d, 0) = 0 for all d ∈ D.

(H3) There exists a symmetric positive definite matrix P ∈ �n×n such that for every compact set
S ⊂ �n , it holds that sup

{ (x−y)′ P( f (d,x)− f (d,y))
|x−y|2 : d ∈ D, x, y ∈ S, x �= y

}
< +∞.

Hypothesis (H2) is a standard continuity hypothesis and hypothesis (H3) is often used in the lit-
erature instead of the usual local Lipschitz hypothesis for various purposes and is a generalization of
the so-called ‘one-sided Lipschitz condition’ (see, e.g. Stuart & Humphries, 1998, p. 416 and Filippov,
1988, p. 106). Note that the one-sided Lipschitz condition is weaker than the hypothesis of local Lip-
schitz continuity of the vector field f (d, x) with respect to x ∈ �n . It is clear that hypothesis (H3)
guarantees that for every (x0, d) ∈ �n × MD , there exists a unique solution x(t) of (1.1) with initial
condition x(0) = x0 corresponding to input d ∈ MD . We denote by x(t, x0; d) the unique solution of
(1.1) with initial condition x(0) = x0 ∈ �n corresponding to input d ∈ MD . Occasionally, we will use
the following hypothesis for system (1.1):

(H4) For every compact set S ⊂ �n , it holds that sup
{ | f (d,x)− f (d,y)|

|x−y| : d ∈ D, x, y ∈ S, x �= y
}

<
+∞,
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I. KARAFYLLIS

instead of hypothesis (H3). Hypothesis (H4) is more demanding than hypothesis (H3) in the sense that
the implication (H4) ⇒(H3) holds.

We next continue by recalling the notion of uniform (robust) global asymptotic stability.

DEFINITION 2.1 We say that 0 ∈ �n is uniformly robustly globally asymptotically stable (URGAS) for
system (1.1) under hypotheses (H1)–(H3) if the following properties hold:

• For every s > 0, it holds that

sup{|x(t, x0; d)|; t � 0, |x0| � s, d ∈ MD} < +∞.

(Uniform robust Lagrange stability)

• For every ε > 0, there exists a δ := δ(ε) > 0 such that

sup{|x(t, x0; d)|; t � 0, |x0| � δ, d ∈ MD} � ε.

(Uniform robust Lyapunov stability)

• For every ε > 0 and s � 0, there exists a τ := τ(ε, s) � 0, such that

sup{|x(t, x0; d)|; t � τ, |x0| � s, d ∈ MD} � ε.

(Uniform attractivity for bounded sets of initial states)

For disturbance-free systems, we say that 0 ∈ �n is uniformly globally asymptotically stable
(UGAS) for system (1.1).

It should be noted that the notion of uniform robust global asymptotic stability coincides with the
notion of uniform robust global asymptotic stability presented in Lin et al. (1996). We next provide the
notion of global exponential stability (see also Khalil, 1996).

DEFINITION 2.2 We say that 0 ∈ �n is uniformly robustly globally exponentially stable (URGES)
for (1.1) under hypotheses (H1)–(H3) if there exist constants M � 1, σ > 0 such that the following
inequality holds for all t � 0, (x0, d) ∈ �n × MD:

|x(t, x0; d)| � M exp(−σ t)|x0|.
The following result is a generalization of the discretization approach for the autonomous case (1.1).

PROPOSITION 2.3 Consider system (1.1) under hypotheses (H1)–(H3) and suppose that there
exist a positive definite and radially unbounded V ∈ C0(�n ; �+), a positive definite function q ∈
C0(�+; �+), a function a ∈ K∞ and a locally bounded function T : �n\{0} → (0, +∞) such that for
each x0 ∈ �n\{0}, d ∈ MD , the solution of (1.1) x(t, x0; d) with initial condition x(0, x0; d) = x0
corresponding to d ∈ MD exists on [0, T (x0)] and satisfies the following inequalities:

V (x(t, x0; d)) � a(V (x0)), ∀ t ∈ [0, T (x0)], (2.1)

min
t∈[0,T (x0)]

V (x(t, x0; d)) � V (x0) − q(V (x0)). (2.2)

Then 0 ∈ �n is URGAS for (1.1). Moreover, if T (x) ≡ r > 0, a(s) := Ms, q(s) := qs, where
M, r > 0, q ∈ (0, 1), and there exist constants 0 < K1 < K2 with K1|x |2 � V (x) � K2|x |2 for all
x ∈ �n , then 0 ∈ �n is robustly globally exponentially stable for (1.1).
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Proof. Let σ ∈ K L be the function with the following property.

Property (P): If {Vi � 0}∞i=0 is a sequence with Vi+1 � Vi − q(Vi ), then Vi � σ(V0, i) for all i � 0.

The existence of σ ∈ K L which satisfies property (P) is guaranteed by Lemma 4.3 in Jiang & Wang
(2002).

Define T (0) = 1. Let x0 ∈ �n , d ∈ MD , arbitrary and define the following sequences:

xi+1 = x(ti , xi , Pτi d), Ti = T (xi ), τi+1 = τi + ti , Vi = V (xi ), i � 0, (2.3a)

with τ0 = 0, where Pτ d ∈ MD is defined by (Pτ d)(t) = d(t + τ) for t � 0 and ti ∈ [0, Ti ] satisfies

V (x(ti , xi ; Pτi d)) = min
t∈[0,Ti ]

V (x(t, xi ; Pτi d)) (2.3b)

for the case xi �= 0 and ti = Ti = 1 for the case xi = 0. Note that by virtue of the semigroup property,
we obtain that xi = x(τi , x0; d).

Inequality (2.2) and definitions (2.3a) imply that

Vi+1 � Vi − q(Vi ) (2.4)

for the case xi �= 0. For the case xi = 0, by uniqueness of solution of (1.1) we have xi+1 = 0 and
consequently inequality (2.4) holds as well in this case. Therefore, property (P) guarantees that

Vi � σ(V0, i) for all i � 0, (2.5)

where σ ∈ K L is the function involved in property (P).
Inequality (2.1), definitions (2.3a) and the semigroup property guarantee that V (x(t, x0; d)) =

V (x(t − τi , xi ; Pτi d)) � a(Vi ) for all t ∈ [τi , τi+1] for the case xi �= 0. By uniqueness of solution
of (1.1), it follows that V (x(t, x0; d)) = V (x(t − τi , xi ; Pτi d)) � a(Vi ) for all t ∈ [τi , τi+1] for the
case xi = 0 as well. Since {Vi � 0}∞i=0 is non-increasing (a consequence of (2.4)), we obtain

V (x(t, x0; d)) � a(V (x0)) for all t ∈ [0, sup τi ). (2.6)

Next we show that

V (x(t, x0; d)) � a(V (x0)) for all t � 0. (2.7)

It should be noted that Robust Lyapunov and Lagrange stability follows directly from inequality (2.7).
For the proof of inequality (2.7), we distinguish two cases:
Case 1. sup τi < +∞. By virtue of inequality (2.5), we obtain that lim Vi = 0 and consequently

limt→(sup τi )− V (x(t, x0; d)) = 0. This implies that limt→(sup τi )− x(t, x0; d) = 0, which implies that
x(t, x0; d) = 0 for all t � sup τi . Therefore, inequality (2.7) is a consequence of (2.6) and the fact that
V (x(t, x0; d)) = 0 for all t � sup τi .

Case 2. sup τi = +∞. In this case, inequality (2.7) is a direct consequence of inequality (2.6).
We next show robust attractivity. Exploiting the fact that V ∈ C0(�n ; �+) is a continuous, positive

definite and radially unbounded function, it suffices to show that for every ε > 0, R � 0, there exists
T̂ (ε, R) � 0 such that V (x(t, x0; d)) � ε for all t � T̂ (ε, R), x0 ∈ �n with |x0| � R and d ∈ MD .

Let ε > 0, R � 0, x0 ∈ �n with |x0| � R and d ∈ MD be arbitrary. By virtue of (2.7) and the
semigroup property follows that if Vi � a−1(ε) for some i � 0 then we have V (x(t, x0; d)) � ε for
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I. KARAFYLLIS

all t � τi . Define J := min{i � 0: Vi � a−1(ε)} and B(R) := max{V (x): |x | � R}. Let Nε(R) ∈ Z+
such that σ(B(R), Nε(R)) � a−1(ε) and note that inequality (2.5) and the fact that V (x0) � B(R)
implies J � Nε(R).

Next suppose that J � 1. Since Vi � a−1(ε) for all i � J − 1 (a consequence of definition
J := min{i � 0: Vi � a−1(ε)}), we get from (2.3a) and the facts that {Vi � 0}∞i=0 is non-increasing (a
consequence of (2.4)) and V (x0) � B(R):

τi+1 = τi + ti � τi + Ti � τi + T̃ (R) for all i � J − 1,

where T̃ε(R) := sup{T (x): a−1(ε) � V (x) � a−1(ε) + B(R)}. Therefore, τi+1 � i T̃ε(R), for all i �
J − 1, and therefore, inequality J � Nε(R) implies τJ � Nε(R)T̃ε(R). It follows that V (x(t, x0; d)) �
ε for all t � Nε(R)T̃ε(R).

The above conclusion holds as well in the case J = 0, namely we have V (x(t, x0; d)) � ε for all
t � Nε(R)T̃ε(R).

Thus, for every ε > 0, R � 0, there exists T̂ (ε, R) = Nε(R)T̃ε(R) � 0 such that V (x(t, x0; d)) � ε
for all t � T̂ (ε, R), x0 ∈ �n with |x0| � R and d ∈ MD .

Finally, for the case T (x) ≡ r > 0, a(s) := Ms, q(s) := qs and K1|x |2 � V (x) � K2|x |2 for
all x ∈ �n , where M, r > 0, q ∈ (0, 1) and 0 < K1 < K2, we note that inequality (2.4) implies
Vi � (1 − q)i V0 for all i � 0. Therefore, using the inequality V (x(t, x0; d)) � a(Vi ) for all t ∈
[τi , τi+1], in conjunction with definition a(s) := Ms gives V (x(t, x0; d)) � (1 − q)i MV0 for all
t ∈ [τi , τi+1]. The previous inequality combined with the inequalities K1|x |2 � V (x) � K2|x |2 for

all x ∈ �n gives |x(t, x0; d)| � exp(−σ i)
√

K2 M
K1

|x0|, for all t ∈ [τi , τi+1], where σ > 0 is defined

by the equation exp(−2σ) = 1 − q. Using the fact that t � τi+1 � (i + 1)r , we obtain the inequality
exp(−σ i) � exp(σ ) exp

(−σ
r t
)
, for all i � 0 and t ∈ [τi , τi+1]. Consequently, by distinguishing again

the cases sup τi < +∞ and sup τi = +∞, we have |x(t, x0; d)| � exp
(−σ

r t
)

exp(σ )
√

K2 M
K1

|x0|, for all

t � 0, which implies that 0 ∈ �n is robustly globally exponentially stable for (1.1).
The proof is complete. �

REMARK 2.4 The reader should note that the converse of Proposition 2.3 holds, i.e. if 0 ∈ �n is
URGAS for (1.1), then for every positive definite and radially unbounded function V ∈ C0(�n ; �+),
there exist a function a ∈ K∞ and a locally bounded function T : �n\{0} → (0, +∞) such that for
each x0 ∈ �n\{0}, d ∈ MD , the solution of (1.1) x(t, x0; d) with initial condition x(0, x0; d) = x0
corresponding to d ∈ MD exists on [0, T (x0)] and satisfies the inequalities (2.1) and (2.2). Indeed, if
0 ∈ �n is URGAS for (1.1), then there exists σ ∈ K L such that for each x0 ∈ �n , d ∈ MD , the solution
of (1.1) x(t, x0; d) with initial condition x(0, x0; d) = x0 corresponding to d ∈ MD satisfies

|x(t, x0; d)| � σ(|x0|, t), ∀ t � 0. (2.8)

Without loss of generality, we may assume that for each s > 0 the mapping t → σ(s, t) is strictly
decreasing (if not replace σ(s, t) by σ(s, t) + s exp(−t)). Since V ∈ C0(�n ; �+) is positive definite
and radially unbounded, there exist functions a1, a2 ∈ K∞ such that

a1(|x |) � V (x) � a2(|x |), ∀ x ∈ �n . (2.9)

Combining (2.8) and (2.9), we obtain

V (x(t, x0; d)) � a2(σ (a−1
1 (V (x0)), t)), ∀ t � 0. (2.10)
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Let q ∈ (0, 1) and let t (s) > 0 be the solution of the equation a2(σ (a−1
1 (s), t (s))) = (1 − q)s, for

each s > 0. It can be shown by contradiction that the mapping (0, +∞)s → t (s) is bounded on every
compact set S ⊂ (0, +∞). Therefore, by virtue of (2.10), we conclude that inequalities (2.1) and (2.2)
hold with a(s) := a2(σ (a−1

1 (s), 0)), q(s) := qs and T (x) := t (V (x)) + 1. �
The following proposition is less demanding in terms of the inequalities that guarantee URGAS.

However, in contrast to Proposition 2.3, we have to assume that system (1.1) is forward complete and
that hypothesis (H4) holds. We say that system (1.1) is forward complete if for every x0 ∈ �n , d ∈ MD

the solution of (1.1) x(t, x0; d) with initial condition x(0, x0; d) = x0 corresponding to d ∈ MD is
defined for all t � 0.

PROPOSITION 2.5 Consider system (1.1) under hypotheses (H1), (H2) and (H4) and assume that sys-
tem (1.1) is forward complete. Furthermore, suppose that there exist a positive definite and radially
unbounded V ∈ C0(�n ; �+), a positive definite function q ∈ C0(�+; �+) and a locally bounded func-
tion T : �n → (0, +∞) such that for each x0 ∈ �n\{0}, d ∈ MD , the solution of (1.1) x(t, x0; d) with
initial condition x(0, x0; d) = x0 corresponding to d ∈ MD exists on [0, T (x0)] and satisfies inequality
(2.2). Then 0 ∈ �n is URGAS for (1.1).

The reader should note that an additional difference between Propositions 2.5 and 2.3 is the fact
that Proposition 2.3 demands the function T : �n\{0} → (0, +∞) to be locally bounded, while Proposi-
tion 2.5 demands the function T : �n → (0, +∞) to be locally bounded. Since the value T (0) plays no
role, it is clear that the extra assumption required for Proposition 2.5 can be replaced by the condition
lim supx→0 T (x) < +∞.

Proof of Proposition 2.5. The key idea of the proof is to show that forward completeness + hypothesis
(H4) + lim supx→0 T (x) < +∞ imply the existence of a function a ∈ K∞ such that inequality (2.1)
holds as well. Then Proposition 2.3 guarantees that 0 ∈ �n is URGAS for (1.1).

Indeed, since (1.1) is forward complete and since hypothesis (H4) holds, Proposition 5.1 in
Karafyllis (2005) guarantees that system (1.1) is robustly forward complete (see Karafyllis 2005).
Lemma 2.3 in Karafyllis (2005) guarantees the existence of functions ζ ∈ K∞, μ ∈ C0(�+; (0, +∞))
such that the following inequality holds for all x0 ∈ �n , d ∈ MD and t � 0:

|x(t, x0; d)| � μ(t)ζ(|x0|). (2.11)

Without loss of generality, we may assume that μ ∈ C0(�+; (0, +∞)) is non-decreasing. Since V ∈
C0(�n ; �+) is positive definite and radially unbounded, there exist functions a1, a2 ∈ K∞ such that
inequality (2.9) holds. Combining (2.9) and (2.11), we obtain that for each x0 ∈ �n\{0}, d ∈ MD , the
solution x(t, x0; d) of (1.1) satisfies the following inequality:

V (x(t, x0; d)) � a2(μ(T (x0))ζ(|x0|)), ∀ t ∈ [0, T (x0)]. (2.12)

Define p(s) := a2(μ(sup|x |�s T (x))ζ(s)) for all s � 0. Since T : �n → (0, +∞) is locally bounded, it
follows that p(s) is well defined for all s � 0 and is a non-decreasing function. Moreover, it holds that
lims→0+ p(s) = p(0) = 0. Define ã(s) := s + 1

s

∫ 2s
s p(ξ)dξ for s > 0 and ã(0) := 0. The function ã is

of class K∞ and satisfies ã(s) � p(s) for all s � 0. Consequently, using (2.12) we obtain that for each
x0 ∈ �n\{0}, d ∈ MD , the solution x(t, x0; d) of (1.1) satisfies the following inequality:

V (x(t, x0; d)) � ã(|x0|), ∀ t ∈ [0, T (x0)]. (2.13)
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Using (2.9) and (2.13), it follows that inequality (2.1) holds with a(s) := ã(a−1
1 (s)). The proof is

complete. �

3. Main results

Next, the main result of the present work is stated.

THEOREM 3.1 Consider system (1.1) under hypotheses (H1), (H2) and (H4) and suppose that there
exist a positive definite and radially unbounded function V ∈ C1(�n ; �+), a family of functions Wi ∈
C1(�n ; �) with Wi (0) = 0, bi ∈ C0(�+; �+) (i = 0, . . . , k), ρ, c1, c2, g, γ ∈ K∞, with ρ(s) >
c1(s) � c2(s) for all s > 0, λ ∈ K with λ(s) < s for all s > 0, a locally bounded function r : �+ →
(0, +∞) and a C1 function μ: �+ → � with μ(0) = 0 for which the function κ(s) := c1(s) + μ(s) is
non-decreasing such that the following inequalities hold:

max
d∈D

∇V (x) f (d, x) � −ρ(V (x)) + W0(x), for all x ∈ �n, (3.1)

max
d∈D

∇Wi (x) f (d, x) � Wi+1(x), for all i = 0, . . . , k − 1 and for all x ∈ �n

with W0(x) � c2(V (x)), (3.2)

Wi (x) � bi (V (x)), for all i = 0, . . . , k and for all x ∈ �n with W0(x) � c2(V (x)), (3.3)

max
d∈D

∇Wk(x) f (d, x) � −g(V (x)), for all x ∈ �n with W0(x) � c2(V (x)), (3.4)

max
d∈D

∇W0(x) f (d, x) + max
d∈D

μ′(V (x))∇V (x) f (d, x) � 0,

for all x ∈ �n with c1(V (x)) � W0(x) � c2(V (x)), (3.5)

c1(λ(s)) + μ(λ(s)) > c2(γ (s)) + μ(γ (s)), for all s > 0, (3.6)

c2(λ(s)) + g(λ(s))
rk+1(s)

(k + 1)!
>

k∑
i=0

r i (s)

i!
bi (s), for all s > 0, (3.7)

γ (s) � max

{
s, ρ−1

(
max

τ∈[0,r(s)]

[
k∑

i=0

τ i

i!
bi (s) − g(λ(s))

τ k+1

(k + 1)!

])}
, for all s > 0, (3.8)

lim sup
s→0+

∫ γ (s)

λ(s)

dτ

ρ(τ) − c1(τ )
< +∞. (3.9)

Then 0 ∈ �n is URGAS for (1.1).

REMARK 3.2 A sufficient condition for the existence of a locally bounded function r : �+ → (0, +∞)
that satisfies (3.7) is the set of inequalities lim sups→0+ bi (s)

g(λ(s)) < +∞, for i = 1, . . . , k, and lim sups→0+
b0(s)−c2(λ(s))

g(λ(s)) < +∞. More specifically, if the previous set of inequalities holds, then the map defined by

r(s) := 1 + max
{(

(k + 1)! (k+1)(b0(s)−c2(λ(s)))
g(λ(s))

) 1
k+1 , maxi=1,...,k

( (k+1)!
i!

(k+1)bi (s)
g(λ(s))

) 1
k+1−i

}
for s > 0 and

r(0) := 1 is a locally bounded function r : �+ → (0, +∞) that satisfies (3.7).
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REMARK 3.3 A sufficient condition for (3.9) is the existence of a constant K ∈ (0, 1) such that

ρ(s) � c1(s) + K s and γ (s) � K −1λ(s), for s > 0 sufficiently small.

However, the above condition is not necessary
(
e.g. if ρ(s) � c1(s) + K s2 and λ(s) � γ (s)

1+γ (s) for s > 0

sufficiently small, then (3.9) holds
)
.

The proof of Theorem 3.1 is heavily based on the following lemma. Its proof can be found in the
Appendix.

LEMMA 3.4 Consider system (1.1) under hypotheses (H1), (H2) and (H4) and suppose that there exist
a positive definite and radially unbounded function V ∈ C1(�n ; �+), a family of functions Wi ∈
C1(�n ; �) with Wi (0) = 0, bi ∈ C0(�+; �+)(i = 0, . . . , k), ρ, c1, c2, g, γ ∈ K∞, with ρ(s) >
c1(s) � c2(s) for all s > 0, λ ∈ K with λ(s) < s for all s > 0, a locally bounded function r : �+ →
(0, +∞) and a C1 function μ: �+ → � with μ(0) = 0 for which the function κ(s) := c1(s) + μ(s) is
non-decreasing such that inequalities (3.1–3.8) hold. Then system (1.1) is forward complete.

We are now ready to provide the proof of Theorem 3.1.

Proof of Theorem 3.1. By virtue of Proposition 2.5 and Lemma 3.4, it suffices to show that inequalities
(2.1) and (2.2) hold for each x0 ∈ �n\{0}, d ∈ MD , for the function V ∈ C1(�n; �+) with

T (x) := p(V (x)), (3.10)

p(s) := r(s) +
∫ γ (s)

λ(s)

dτ

ρ(τ) − c1(τ )
, for s > 0 and p(0) := 1, (3.11)

q(s) := s − λ(s). (3.12)

The reader should note that condition (3.9) and the fact that r : �+ → (0, +∞) is a locally bounded
function guarantee that the function p: �+ → (0, +∞) as defined by (3.11) is locally bounded.

Let x0 ∈ �n\{0}, d ∈ MD (arbitrary). We next show by contradiction that there exists t ∈ [0, T (x0)]
such that V (x(t, x0; d)) � λ(V (x0)). Then definition (3.12) automatically guarantees that inequality
(2.2) holds.

Assume next that V (x(t, x0; d)) > λ(V (x0)) for all t ∈ [0, T (x0)]. We show that this cannot happen.
We first start by stating the following fact. Its proof can be found in the Appendix.
FACT I: There exists t ∈ [0, r(V (x0))] with W0(x(t, x0; d)) < c2(V (x(t, x0; d))).
Define

t1 := inf{t ∈ [0, r(V (x0))]: W0(x(t, x0; d)) < c2(V (x(t, x0; d)))}. (3.13)

We next continue with the following fact. Its proof can be found in the Appendix.
FACT II: The following inequality holds:

V (x(t1, x0; d)) � γ (V (x0)). (3.14)

We next distinguish the following cases:
Case 1. W0(x(t, x0; d)) � c1(V (x(t, x0; d))) for all t ∈ [t1, T (x0)].
Define c(s) := ρ(s) − c1(s), which is a positive definite, continuous function. In this case,

inequality (3.1) implies that V̇ (t) � −c(V (t)), for t ∈ [t1, T (x0)], a.e., where V (t) := V (x(t, x0; d)).
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Consequently, we obtain
∫ V (T (x0))

V (t1)
ds

c(s) = ∫ T (x0)
t1

V̇ (t)
c(V (t))dt � −(T (x0) − t1). Combining the previous

inequality with the fact that t1 ∈ [0, r(V (x0))] and definition (3.11), we get
∫ V (t1)

V (T (x0))
ds

c(s)�
∫ γ (V (x0))
λ(V (x0))

ds
c(s) .

Since (3.14) holds, the previous inequality gives V (T (x0)) � λ(V (x0)), a contradiction.
Case 2. There exists t ∈ [t1, T (x0)] with W0(x(t, x0; d)) > c1(V (x(t, x0; d))).

In this case, continuity of mappings t → W0(x(t, x0; d)), t → V (x(t, x0; d)) guarantees the exis-
tence of times t2 < t3 with t1 � t2 < t3 � T (x0) and such that

W0(x(t, x0; d)) � c1(V (x(t, x0; d))), for all t ∈ [t1, t3], (3.15)

W0(x(t2, x0; d)) = c2(V (x(t2, x0; d))), W0(x(t3, x0; d)) = c1(V (x(t3, x0; d))), (3.16)

W0(x(t, x0; d)) � c2(V (x(t, x0; d))), for all t ∈ [t2, t3]. (3.17)

Inequality (3.15) in conjunction with inequality (3.1) guarantees that

V (t) � V (t2) −
∫ t

t2
(ρ(V (τ )) − c1(V (τ )))dτ , for all t ∈ [t2, t3], (3.18)

V (t) � V (t1), for all t ∈ [t1, t3]. (3.19)

Inequalities (3.15), (3.17) and (3.5) imply that

W0(t3) + μ(V (t3)) � W0(t2) + μ(V (t2)). (3.20)

It follows from (3.16) and (3.20) that

c1(V (t3)) + μ(V (t3)) � c2(V (t2)) + μ(V (t2)). (3.21)

If V (t3) � λ(γ −1(V (t2))), then using (3.14) and (3.19), we obtain V (t3) � λ(V (x0)), a contradiction.
Thus, we are left with the case V (t3) > λ(γ −1(V (t2))). In this case, inequality (3.21) and the fact

that the function κ(s) := c1(s) + μ(s) is non-decreasing give

c1(λ(γ −1(V (t2)))) + μ(λ(γ −1(V (t2)))) � c2(V (t2)) + μ(V (t2)).

The above inequality contradicts inequality (3.6) for s = γ −1(V (t2)).
The proof is complete. �

COROLLARY 3.5 Consider system (1.1) under hypotheses (H1), (H2) and (H4) and suppose that there
exist a positive definite and radially unbounded function V ∈ C1(�n ; �+), a locally Lipschitz function
φ: �n → (0, +∞), a family of functions Wi ∈ C1(�n ; �) with Wi (0) = 0, bi ∈ C0(�+; �+)(i =
0, . . . , k), ρ, c1, c2, g, γ ∈ K∞, with ρ(s) > c1(s) � c2(s) for all s > 0, λ ∈ K with λ(s) < s for all
s > 0, a locally bounded function r : �+ → (0, +∞) and a C1 function μ: �+ → � with μ(0) = 0
for which the function κ(s) := c1(s) + μ(s) is non-decreasing such that inequalities (3.3), (3.5), (3.6),
(3.7), (3.8) and (3.9) hold as well as the following inequalities:

max
d∈D

∇V (x) f (d, x) � −φ(x)ρ(V (x)) + φ(x)W0(x), for all x ∈ �n, (3.22)

max
d∈D

∇Wi (x) f (d, x) � φ(x)Wi+1(x),

for all i = 0, . . . , k − 1 and for all x ∈ �n with W0(x) � c2(V (x)), (3.23)
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max
d∈D

∇Wk(x) f (d, x) � −φ(x)g(V (x)), for all x ∈ �n with W0(x) � c2(V (x)). (3.24)

Then 0 ∈ �n is URGAS for (1.1).

Proof. Simply consider the dynamical system

ẋ = 1
φ(x) f (d, x),

x ∈ �n, d ∈ D.
(3.25)

Since φ: �n → (0, +∞) is locally Lipschitz, it follows that system (3.25) satisfies hypotheses (H1),
(H2) and (H4). Moreover, all requirements of Theorem 3.1 are fulfilled and consequently 0 ∈ �n is
URGAS for (3.25). Classical Lyapunov theory implies that 0 ∈ �n is URGAS for (1.1). The proof is
complete. �
REMARK 3.6 Here it should be noticed that Lyapunov’s direct method is a special case of Corollary 3.5.
Indeed, if there exists a positive definite continuous function q: �n → �+ such that maxd∈D ∇V (x)
f (d, x) � −q(x) for all x ∈ �n , then one can construct a locally Lipschitz function φ: �n → (0, +∞)
and a function ρ ∈ K∞ such that maxd∈D ∇V (x) f (d, x) � −φ(x)ρ(V (x)) for all x ∈ �n . Con-
sequently, inequality (3.22) holds with W0(x) ≡ 0. Therefore, all requirements of Corollary 3.5 are
satisfied with k = 0. The reader should note that since k = 0, inequalities (3.23) do not apply and since
W0(x) ≡ 0, the set of all x ∈ �n with W0(x) � c2(V (x)) is reduced to the singleton {0} for every
c2 ∈ K∞. Hence, inequality (3.24) holds with arbitrary g ∈ K∞. Moreover, inequality (3.3) holds with
b0(s) ≡ 0, inequality (3.5) holds with μ(s) ≡ 0 and inequalities (3.6), (3.7), (3.8) and (3.9) hold with
r(s) ≡ 1, γ (s) := s, c1(s) := 3

4ρ(s), c2(s) := 1
2ρ( s

2 ) and arbitrary λ ∈ K with λ(s) < s for all s > 0,
which satisfies λ(s) � max

{ s
2 , s − 1

4ρ( s
2 )
}

for s > 0 sufficiently small.

The following theorem provides stability criteria under minimal regularity requirements for system
(1.1). Here we do not assume the local Lipschitz assumption (H4).

THEOREM 3.7 Consider system (1.1) under hypotheses (H1), (H2) and (H3) and suppose that there
exist a positive definite and radially unbounded function V ∈ C1(�n ; �+), a family of functions Wi ∈
C1(�n ; �) with Wi (0) = 0, constants bi � 0 (i = 0, . . . , k) with b0 � ρ, ρ, c1, c2, g, γ, r > 0, with
ρ > c1 � c2 > 0, λ ∈ (0, 1) and μ � −c1 such that the following inequalities hold:

max
d∈D

∇V (x) f (d, x) � −ρV (x) + W0(x), for all x ∈ �n, (3.26)

max
d∈D

∇Wi (x) f (d, x) � Wi+1(x),

for all i = 0, . . . , k − 1 and for all x ∈ �n with W0(x) � c2V (x), (3.27)

Wi (x) � bi V (x), for all i = 0, . . . , k and for all x ∈ �n with W0(x) � c2V (x), (3.28)

max
d∈D

∇Wk(x) f (d, x) � −gV (x), for all x ∈ �n with W0(x) � c2V (x), (3.29)

max
d∈D

∇W0(x) f (d, x) + max
d∈D

μ∇V (x) f (d, x) � 0,

for all x ∈ �n with c1V (x) � W0(x) � c2V (x), (3.30)

(c1 + μ)λ > (c2 + μ)γ, (3.31)
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c2λ + gλ
rk+1

(k + 1)!
>

k∑
i=0

r i

i!
bi , (3.32)

γ � min

{
exp((b0 − ρ)r); max

τ∈[0,r ]

1

ρ

[
k∑

i=0

τ i

i!
bi − gλ

τ k+1

(k + 1)!

]}
. (3.33)

Then 0 ∈ �n is URGAS for (1.1). Moreover, if there exist constants 0 < K1 < K2 with K1|x |2 �
V (x) � K2|x |2 for all x ∈ �n , then 0 ∈ �n is robustly globally exponentially stable for (1.1).

Proof. Let x0 ∈ �n\{0} and d ∈ MD (arbitrary). Inequalities (3.26), (3.28) (for i = 0) and the fact
b0 � ρ imply that

V (x(t, x0; d)) � exp((b0 − ρ)t)V (x0), for all t � 0. (3.34)

Indeed, inequality (3.26) implies maxd∈D ∇V (x) f (d, x) � 0, when W0(x) � c2V (x). Moreover,
inequalities (3.26) and (3.28) (for i = 0) imply that maxd∈D ∇V (x) f (d, x) � (b0 − ρ)V (x), when
W0(x) � c2V (x). Since b0 � ρ, we conclude that maxd∈D ∇V (x) f (d, x) � (b0 − ρ)V (x) for all
x ∈ �n . Inequality (3.34) follows directly from the previous differential inequality.

The proof is exactly the same with the proof of Theorem 3.1 with ρ(s) := ρs, c1(s) := c1s,
c2(s) := c2s, g(s) := gs, γ (s) := γ s, λ(s) := λs, r(s) ≡ r , μ(s) := μs, with two major differences.

1. Instead of working with Proposition 2.5, we are working with Proposition 2.3. Indeed, inequality
(3.34) guarantees that inequality (2.1) holds with a(s) := s exp((b0 − ρ)T ), where T := r +
ln(γ )−ln(λ)

(ρ−c1)
.

2. Inequality (3.14) is obtained by a combined use of the proof of Fact II in the Appendix and
inequality (3.34).

Details are left to the reader. �
COROLLARY 3.8 Consider system (1.1) under hypotheses (H1), (H2) and (H3) and suppose that there
exist a positive definite and radially unbounded function V ∈ C1(�n ; �+), a locally Lipschitz function
φ: �n → (0, +∞), a family of functions Wi ∈ C1(�n; �) with Wi (0) = 0, constants bi � 0(i =
0, . . . , k) with b0 � ρ, ρ, c1, c2, g, γ, r > 0, with ρ > c1 � c2 > 0, λ ∈ (0, 1) and μ � −c1 such that
inequalities (3.28), (3.30), (3.31), (3.32) and (3.33) as well as the following inequalities hold:

max
d∈D

∇V (x) f (d, x) � −ρφ(x)V (x) + φ(x)W0(x), for all x ∈ �n, (3.35)

max
d∈D

∇Wi (x) f (d, x) � φ(x)Wi+1(x),

for all i = 0, . . . , k − 1 and for all x ∈ �n with W0(x) � c2V (x), (3.36)

max
d∈D

∇Wk(x) f (d, x) � −gφ(x)V (x), for all x ∈ �n with W0(x) � c2V (x). (3.37)

Then 0 ∈ �n is URGAS for (1.1). Moreover, if there exist constants 0 < K1 < K2 with K1|x |2 �
V (x) � K2|x |2and φ(x) � K1 for all x ∈ �n , then 0 ∈ �n is robustly globally exponentially stable
for (1.1).
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Proof. Again the proof of Corollary 3.8 is made with the help of Theorem 3.7 and system (3.25).
Exponential stability follows directly from the fact that for every (t, x0, d) ∈ �+ × �n × MD , the
unique solution x(t, x0; d) of (1.1) is related to the unique solution y(t) of (3.25) with initial condition
y(0) = x0 corresponding to the same d ∈ MD by the equation x(t, x0; d) = y

(∫ t
0 φ(x(τ, x0; d))dτ

)
. �

Since the estimation of the function γ ∈ K∞ is crucial for the verification of inequalities (3.6), (3.8)
and (3.9) of Theorem 3.1 and Corollary 3.5, less conservative estimates of the solution of system (1.1)
can be useful. The following theorem uses an additional differential inequality, which can be used to
replace inequality (3.8) by a less demanding inequality.

COROLLARY 3.9 Consider system (1.1) under hypotheses (H1), (H2) and (H4) and suppose that there
exist a positive definite and radially unbounded function V ∈ C1(�n ; �+), a locally Lipschitz function
φ: �n → (0, +∞), a family of functions Wi ∈ C1(�n ; �) with Wi (0) = 0, bi ∈ C0(�+; �+)(i =
0, . . . , k), ρ, c1, c2, g ∈ K∞, with ρ(s) > c1(s) � c2(s) for all s > 0, λ ∈ K with λ(s) < s for all
s > 0, a locally bounded function r : �+ → (0, +∞) and a C1 function μ: �+ → � with μ(0) = 0 for
which the function κ(s) := c1(s) + μ(s) is non-decreasing such that inequalities (3.22), (3.23), (3.24),
(3.3) and (3.7) hold. Moreover, suppose that there exist functions g̃, γ ∈ K∞ such that inequalities (3.6)
and (3.9) hold as well as the following inequalities:

max
d∈D

∇Wk(x) f (d, x) � −φ(x)g̃(V (x)),

for all x ∈ �n with W0(x) � c2(V (x)) and max
i=1,...,k

Wi (x) � 0 (3.38)

γ (s) � min

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

s, ρ−1

⎛
⎜⎜⎜⎜⎝ max

τ ∈ [0, r(s)],
V (x) = s

[
k∑

i=0

τ i

i!
Wi (x) − g̃(λ(s))

τ k+1

(k + 1)!

]⎞⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

, for all s > 0. (3.39)

Then 0 ∈ �n is URGAS for (1.1).

The reader should note that in general the function g̃ ∈ K∞ involved in (3.38) will be greater than
the function g ∈ K∞ involved in (3.24). Therefore, (3.39) is a less demanding inequality than (3.8).
Proof. It suffices to show that the result holds for the special case φ(x) ≡ 1. Then a similar argument
to the one used in the proof of Corollary 3.5 can show the validity of the result to the general case.
Therefore, we assume that inequalities (3.1), (3.2), (3.4) and (3.38) with φ(x) ≡ 1 hold.

The reader should note that inequality (3.8) in the proofs of Theorem 3.1 and Lemma 3.4 is used
only for the derivation of inequality V (t1) � γ (V (t0)), where t0 < t1 are times with

t1 − t0 � r(V (t0)), (3.40)

W0(x(t, x0; d)) � c2(V (x(t, x0; d))), for all t ∈ [t0, t1], (3.41)

V (t) > λ(V (t0)), for all t ∈ [t0, t1]. (3.42)

Particularly, for Theorem 3.1 we have t0 = 0. Using inequalities (3.2), (3.4), (3.41) and (3.42), we obtain
that inequalities (A8) and (A9) hold for t ∈ [t0, t1] a.e. Moreover, inequalities (A8) and (A9) show that
if there exists T ∈ [t0, t1] such that maxi=1,...,k Wi (T ) � 0, then we have maxi=1,...,k Wi (t) � 0 and
W0(t) � W0(T ) for all t ∈ [T, t1].
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We next distinguish the following cases.
Case 1. maxi=1,...,k Wi (t) > 0 for all t ∈ [t0, t1]. In this case, inequality (3.38) implies that inequal-

ities (A9) and (A10) hold with g ∈ K∞ replaced by g̃ ∈ K∞ for all t ∈ [t0, t1] (inequality (A9) holds
for t ∈ [t0, t1] a.e.). Consequently, by virtue of (3.40), we get

max
t∈[t0,t1]

W0(x(t, x0; d)) � max
τ∈[0,r(V (t0))]

[
k∑

i=0

τ i

i!
Wi (t0) − g̃(λ(V (t0)))

τ k+1

(k + 1)!

]
. (3.43)

Case 2. There exists T ∈ (t0, t1] such that maxi=1,...,k Wi (T ) � 0. In this case, we must have
maxi=1,...,k Wi (t) � 0 for all t ∈ [t0, T ]. Therefore, inequality (3.38) implies that inequalities (A9) and
(A10) hold with g ∈ K∞ replaced by g̃ ∈ K∞ for all t ∈ [t0, T ] (inequality (A9) holds for t ∈ [t0, T ]
a.e.). Moreover, since W0(t) � W0(T ) for all t ∈ [T, t1], it follows that maxt∈[t0,t1] W0(x(t, x0; d)) =
maxt∈[t0,T ] W0(x(t, x0; d)). We conclude that (3.43) holds in this case as well.

Case 3. maxi=1,...,k Wi (t0) � 0. In this case, we have W0(t) � W0(t0) for all t ∈ [t0, t1] and we
conclude that inequality (3.43) holds in this case as well.

By virtue of (3.1) and (3.43), we obtain for t ∈ [t0, t1] a.e.

V̇ (t) � −ρ(V (t)) + max
τ∈[0,r(V (t0))]

[
k∑

i=0

τ i

i!
Wi (t0) − g̃(λ(V (t0)))

τ k+1

(k + 1)!

]
. (3.44)

Differential inequality (3.44) directly implies that

V (t) � max

{
V (t0), ρ

−1

(
max

τ∈[0,r(V (t0))]

[
k∑

i=0

τ i

i!
Wi (t0) − g̃(λ(V (t0)))

τ k+1

(k + 1)!

])}
, for all t ∈ [t0, t1].

The above inequality in conjunction with inequality (3.39) implies that inequality V (t1) � γ (V (t0))
holds. It should be noted that inequality V (t1) � γ (V (t0)) holds as well for the case t1 = t0 (since
(3.39) implies that V (t0) � γ (V (t0))). The proof is complete. �

Similarly with Corollary 3.9, we obtain the following result.

COROLLARY 3.10 Consider system (1.1) under hypotheses (H1), (H2) and (H3) and suppose that there
exist a positive definite and radially unbounded function V ∈ C1(�n ; �+), a locally Lipschitz function
φ: �n → (0, +∞), a family of functions Wi ∈ C1(�n ; �) with Wi (0) = 0, constants bi � 0 (i =
0, . . . , k) with b0 � ρ, ρ, c1, c2, g, r > 0, with ρ > c1 � c2 > 0, λ ∈ (0, 1) and μ � −c1 such
that inequalities (3.35), (3.36), (3.37), (3.28), (3.30) and (3.32) hold. Moreover, suppose that there exist
constants g̃, γ > 0 such that inequality (3.31) holds as well as the following inequalities:

max
d∈D

∇Wk(x) f (d, x) � −g̃φ(x)V (x),

for all x ∈ �n with W0(x) � c2V (x) and max
i=1,...,k

Wi (x) � 0, (3.45)

γ � min

{
exp((b0 − ρ)r), sup

τ∈[0,r ],x∈�n

1

ρ

[
k∑

i=0

τ i

i!

Wi (x)

V (x)
− g̃λ

τ k+1

(k + 1)!

]}
. (3.46)

Then 0 ∈ �n is URGAS for (1.1). Moreover, if there exist constants 0 < K1 < K2 with K1|x |2 �
V (x) � K2|x |2 and φ(x) � K1 for all x ∈ �n , then 0 ∈ �n is robustly globally exponentially stable
for (1.1).

Finally, we end this section with a remark on the disturbance-free case.
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REMARK 3.11 Consider the disturbance-free smooth dynamical system:

ẋ = f (x), x ∈ �n, (3.47)

where f (0) = 0 and suppose that there exists a positive definite and radially unbounded function
V : �n → �+, constants a1, . . . , ak � 0, ρ > c1 > c2 > 0 a non-negative integer k and a function
g ∈ K∞ such that

L(k+2)
f V (x) + (ρ + a1)L(k+1)

f V (x) +
k∑

i=2

(ai−1(ρ − c2) + ai )L(k+2−i)
f V (x) + ak(ρ − c2)L f V (x)

� −g(V (x)) for all x ∈ �n with L f V (x) + (ρ − c2)V (x) � 0, (3.48)

where L f V (x) denotes the Lie derivative of V (x) along the vector field f (x) and L(i)
f V (x) = L f L(i−1)

f
V (x) with i � 2 denotes the repeated Lie derivative of V (x) along the vector field f (x). Then inequal-
ities (3.1), (3.2) and (3.4) hold with ρ(s) := ρs, c2(s) := c2s and

W0(x) := L f V (x) + ρV (x), (3.49)

W1(x) := L(2)
f V (x) + (ρ + a1)L f V (x) + a1(ρ − c2)V (x), (3.50)

Wi (x) := L(i+1)
f V (x) + (ρ + a1)L(i)

f V (x)

+
i∑

j=2

(a j−1(ρ − c2) + a j )L(i+1− j)
f V (x) + ai (ρ − c2)V (x), i = 2, . . . , k. (3.51)

Inequality (3.48) for k = 2 can be compared with the main result in Butz (1969): in Butz (1969), the
inequality is assumed to hold everywhere, which directly leads to the existence of a positive definite
function with a negative definite derivative (see Ahmadi, 2008).

4. Examples

This section is devoted to the presentation of two illustrative examples. Both examples can be handled
easily by classical Lyapunov analysis (i.e. it is easy to find a continuously differentiable, positive definite
and radially unbounded function with negative definite derivative). However, here the issue is to show
how we can prove robust global asymptotic (or exponential) stability by using a positive definite function
with non sign-definite derivative. In both examples, the simplest continuously differentiable, positive
definite function V (x) = |x |2 is used; this function fails to satisfy the requirements of Lyapunov’s
direct method.

EXAMPLE 4.1 Consider the planar system

ẋ1 = −x1,

ẋ2 = dβ(x1) − x2,

x = (x1, x2)
′ ∈ �2, d ∈ [−p, p],

(4.1)

where p � 0 is a constant parameter, β: � → � is a locally Lipschitz mapping with β(0) = 0 and the
Lyapunov function

V (x) = x2
1 + x2

2 . (4.2)
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The reader should note that the derivative of the Lyapunov function defined by (4.2) is not necessarily
sign definite and classical Lyapunov analysis does not help. Of course, there are Lyapunov functions

that can be used directly for classical Lyapunov analysis
(
e.g. V (x) = x2

1 + x2
2 + p2

∫ x1
0

β2(y)
y dy

)
. Here,

for illustration purposes, we apply the result of Theorem 3.1 and we show that for every p � 0, 0 ∈ �2

is URGAS for system (4.1).
We have

V̇ (x) = −2V (x) + 2 dβ(x1)x2 � −V (x) + p2β2(x1), ∀ x ∈ �2. (4.3)

Let β̃: � → � be an odd C1 mapping such that its restriction on �+ is a convex K∞ function and
satisfies |β(x1)| � β̃(|x1|) for all x1 ∈ �. Inequality (4.3) shows that inequality (3.1) holds with ρ(s) :=
s and W0(x) := p2β̃2(x1).

Let 0 < c1 < 1 and define c1(s) := c1s. Moreover, note that since β̃: � → � is a locally Lipschitz
function with β̃(0) = 0, there exists b0 ∈ K∞ ∩ C1(�+; �+) such that inequality (3.3) for i = 0 holds
for all x ∈ �2. Without loss of generality, we may assume that b0(s) � s for all s � 0. Furthermore,
since β̃: � → � is a C1 mapping, we have

Ẇ0(x) = −2p2β̃(x1)β̃
′(x1)x1, ∀ x ∈ �2. (4.4)

If x1 � 0, then since the restriction of β̃: � → � on �+ is a convex K∞ function, we get β̃(x1) �
β̃ ′(x1)x1. Therefore, (4.4) implies for all x1 � 0:

Ẇ0(x) � −2W0(x). (4.5)

Since β̃: � → � is an odd mapping, we have β̃ ′(x1) = β̃(−x1) for all x1 < 0. Therefore, if x1 < 0, by
virtue of convexity we get −β̃(x1) � −β̃ ′(x1)x1. Thus, (4.5) holds for x1 < 0 as well.

Inequality (4.5) shows that inequalities (3.4) and (3.5) hold with k = 0, μ(s) ≡ 0 and g(s) :=
2c2(s), where c2 ∈ K∞ is an arbitrary function (yet to be selected) that satisfies c2(s) � c1s for all
s � 0. Consequently, since k = 0, inequality (3.2) does not apply in this case. Furthermore, since
k = 0, it follows that inequality (3.8) holds with γ (s) := b0(s) for every locally bounded mapping
r : �+ → (0, +∞).

Define λ(s) := λs, where λ ∈ (0, 1). Inequality (3.9) holds since lim sups→0+
∫ γ (s)
λ(s)

dτ
ρ(τ)−c1(τ ) �

1
1−c1

ln( R
λ ) < +∞, where R > 0 is an appropriate constant that satisfies b0(s) � Rs for all s > 0

sufficiently small (there exists such a constant since b0 ∈ K∞ ∩ C1(�+; �+)).
Finally, note that inequality (3.6) holds with c2(s) := c1λ

2b−1
0 (s). Note that since b0(s) � s for all

s � 0, we indeed obtain that c2(s) � λ2c1(s) < c1(s) for all s > 0. Moreover, since b0(s) � Rs for all
s > 0 sufficiently small, we obtain s � R

c1λ2 c2(s) for all s > 0 sufficiently small.

Thus, we are left with inequality (3.7). By virtue of Remark 3.2 and since b0(s) � Rs � R2

c1λ3 c2(λs)

for all s > 0 sufficiently small, we get lim sups→0+ b0(s)−c2(λ(s))
g(λ(s)) < +∞. Consequently, the locally

bounded mapping defined by r(s) := 1
2 + b0(s)

2c2(λ(s)) for s > 0 and r(0) := 1 satisfies inequality (3.7).

Therefore, all requirements of Theorem 3.1 hold. We conclude that for every p � 0, 0 ∈ �2 is
URGAS for system (4.1).

If we further assume that |β(x1)| � K |x1|, where K > 0, then the reader can verify that all require-
ments of Theorem 3.7 hold. Particularly, all the above hold with b0(s) := (1+ K 2)s. Indeed, in this case
we may conclude that for every p � 0, 0 ∈ �2 is URGES for system (4.1). �
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EXAMPLE 4.2 Consider the linear uncertain system

ẋ1 = x2,

ẋ2 = −(1 + d)x1 − 2x2,

x = (x1, x2)
′ ∈ �2, d ∈ D := [0, p],

(4.6)

where p � 0 is a constant parameter. Our goal is to determine the maximum allowable value of p � 0
for which 0 ∈ �2 is robustly globally exponentially stable. To this purpose, we will use the Lyapunov
function defined by (4.2) and Corollary 3.10 with φ(x) ≡ 1. It should be noted that the derivative of V
is not negative definite (it is only negative semi-definite only for the case d ≡ 0). Indeed, we have by
completing the squares

max
d∈D

∇V (x) f (d, x) = max
d∈D

(−2dx1x2 − 4x2
2) � p2x2

1 − 3x2
2 = −3V (x) + (3 + p2)x2

1 , (4.7)

where f (d, x) := (x2, −(1 + d)x1 − 2x2)
′. Inequality (4.7) shows that inequality (3.26) holds with

ρ := 3 and W0(x) := (3 + p2)x2
1 . We also have

max
d∈D

∇W0(x) f (d, x) = 2(3 + p2)x1x2. (4.8)

Equation (4.8) shows that inequality (3.27) for i = 0 holds for arbitrary c2 > 0 with W1(x) :=
2(3 + p2)x1x2. In addition, we get

max
d∈D

∇W1(x) f (d, x) = 2(3 + p2) max
d∈D

(x2
2 − (1 + d)x2

1 − 2x1x2) � 2(3 + p2)(x2
2 − x2

1 − 2x1x2).

(4.9)
Inequality (4.9) shows that inequality (3.29) for k = 1 holds for arbitrary c2 > 0 provided that

3 + p2

4 − 2
√

2
< c2. (4.10)

In order to determine the constant g̃ > 0 that satisfies (3.45) with φ(x) ≡ 1, we note that inequality
(4.9) in conjunction with the constraint W1(x) � 0 and (4.10) give

g̃ = 2(3 + p2) min

⎧⎨
⎩1 + 2y − y2

1 + y2
: 0 � y �

√
3 + p2 − c2

c2

⎫⎬
⎭ = 2(3 + p2). (4.11)

The reader should note that inequalities (3.28) hold with b0 = b1 = 3 + p2. Moreover, inequality (3.32)

holds with r = 1 + 2
√

3+p2

λg max
{
1, 2

√
3+p2

λg

}
(see Remark 3.2) for every λ ∈ (0, 1).

We next determine constants μ � 0 and c1 ∈ [c2, 3) so that inequality (3.30) holds. We have

max
d∈D

∇W0(x) f (d, x) + μ max
d∈D

∇V (x) f (d, x) � 2(3 + p2)x1x2 + μp2x2
1 − 3μx2

2 . (4.12)

The right-hand side of inequality (4.12) is non-positive for all x ∈ �2 with c2V (x) � W0(x) � c1V (x),

where 3+p2

4−2
√

2
< c2 < c1 < 3, provided that the following inequality holds:

μ � 2
√

c1(3 + p2 − c1)

3 − c1
. (4.13)
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Thus, we are left with the verification of inequalities (3.31) and (3.46). By virtue of (4.11) and previous
definitions, the following inequalities hold for every λ ∈ (0, 1),

sup
τ∈[0,r ],x∈�2

1

ρ

[
k∑

i=0

τ i

i!

Wi (x)

V (x)
− g̃λ

τ k+1

(k + 1)!

]
� sup

τ∈[0,r ],x∈�2

3+p2

3

[
x2

1

V (x)
+ τ

2x1x2

V (x)
− λτ 2

]

� sup
x∈�2

3 + p2

3

[
x2

1

V (x)
+ x2

1 x2
2

λV 2(x)

]

= sup
x∈�2

3 + p2

3λ

[
(1 + λ)

x2
1

V (x)
− x4

1

V 2(x)

]

� 3 + p2

12λ
(λ + 1)2.

Consequently, inequality (3.46) will hold with γ := 3+p2

12λ (λ + 1)2. On the other hand, previous defini-
tions imply that inequality (3.31) holds provided that the maximum allowable value of p � 0 satisfies
the following inequality:

3(c1 − c2)(3 − c1)

c2(3 − c1) + 2
√

c1(3 + p2 − c1)
> p2 (4.14)

for certain constants 3+p2

4−2
√

2
< c2 < c1 < 3. Numerical calculations show that the maximum value of

p � 0 is greater than 1
5

√
7
5 ≈ 0.236643; inequalities (4.10) and (4.14) hold with p = 1

5

√
7
5 , c2 = 2.6094

and c1 = 2.8594.
It should be noted that the result is very conservative. Indeed, by following classical Lyapunov

analysis, the reader can verify that much higher values for p � 0 than 1
5

√
7
5 ≈ 0.236643 can be

allowed. For example, the quadratic Lyapunov function V (x) = 1
4 x2

1 + 1
2 (x2 + σ x1)

2 with σ = 1 +
√

2
2

has negative definite derivative for p < 1. However, here we have used a completely inappropriate
Lyapunov function, which has positive derivative in certain regions of the state space. The example
simply shows that stability analysis is possible even with completely inappropriate Lyapunov functions.

5. Concluding remarks

Novel criteria for global asymptotic stability are presented. The results (Theorem 3.1, Corollary 3.5,
Theorem 3.7 and Corollaries 3.8, 3.9 and 3.10) are developed for the autonomous uncertain case and
are obtained by a combination of

• suitable generalizations of the discretization approach (Propositions 2.3 and 2.5), which are nec-
essary and sufficient conditions for URGAS,

• the idea contained in the proof of the original Matrosov’s result concerning the division of the
state space into two regions: the good region, where the derivative of the Lyapunov function has
a negative upper bound, and the bad region, where the derivative of the Lyapunov function can be
positive.

The results can be used for the proof of global asymptotic stability by using continuously differentiable,
positive definite functions which do not have a negative semi-definite derivative. Illustrating examples
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are provided, which show how we can use very simple positive definite functions (e.g. V (x) = |x |2),
which do not have a sign-definite derivative.

Future work can address the issue of the extension of the obtained results to the local case or the
time-varying case.
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Appendix A

Proof of FACT I in the proof of Theorem 3.1. Suppose on the contrary that W0(x(t, x0; d)) � c2(V (x(t,
x0; d))) for all t ∈ [0, r(V (x0))]. Using inequalities (3.2), (3.4) and the fact that V (x(t, x0; d)) >
λ(V (x0)) for all t ∈ [0, r(V (x0))], we obtain for t ∈ [0, r(V (x0))] a.e.

Ẇi (t) � Wi+1(t), for i = 0, . . . , k − 1, (A.1)

Ẇk(t) � −g(λ(V (x0))), (A.2)

where Wi (t) := Wi (x(t, x0; d)) (i = 0, . . . , k). Inequalities (A.1) and (A.2) imply that the following
inequality holds for all t ∈ [0, r(V (x0))]

W0(t) �
k∑

i=0

t i

i!
Wi (x0) − g(λ(V (x0)))

tk+1

(k + 1)!
. (A.3)

Our assumption that W0(x(t, x0; d)) � c2(V (x(t, x0; d))) for all t ∈ [0, r(V (x0))] in conjunction with
the fact that V (x(t, x0; d)) > λ(V (x0)) for all t ∈ [0, r(V (x0))] and inequality (A.3) give

c2(λ(V (x0))) �
k∑

i=0

t i

i!
Wi (x0) − g(λ(V (x0)))

tk+1

(k + 1)!
, for all t ∈ [0, r(V (x0))]. (A.4)

Inequality (A.4) (for t = r(V (x0))) in conjunction with inequalities (3.3) (which give Wi (x0) �
bi (V (x0)) for i = 0, . . . , k) implies that the following inequality must hold:

c2(λ(V (x0))) �
k∑

i=0

r i (V (x0))

i!
bi (V (x0)) − g(λ(V (x0)))

rk+1(V (x0))

(k + 1)!
,

which contradicts inequality (3.7) with s = V (x0). The proof is complete. �
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Proof of FACT II in the proof of Theorem 3.1. Suppose first that t1 > 0. By virtue of definition (3.13),
it follows that W0(x(t, x0; d)) � c2(V (x(t, x0; d))) for all t ∈ [0, t1]. Using inequalities (3.2), (3.4) and
the fact that V (x(t, x0; d)) > λ(V (x0)) for all t ∈ [0, r(V (x0))], it follows that inequalities (A.1) and
(A.2) hold for t ∈ [0, t1] a.e. Consequently, inequality (A.3) holds for all t ∈ [0, t1]. Using inequality
(3.3) (which give Wi (x0) � bi (V (x0)) for i = 0, . . . , k), we get from (A.3)

W0(t) �
k∑

i=0

t i

i!
bi (V (x0)) − g(λ(V (x0)))

tk+1

(k + 1)!
. (A.5)

Inequality (A.5) and the fact that t1 ∈ [0, r(V (x0))] imply that

max
t∈[0,t1]

W0(x(t, x0; d)) � max
t∈[0,r(V (x0))]

[
k∑

i=0

t i

i!
bi (V (x0)) − g(λ(V (x0)))

tk+1

(k + 1)!

]
. (A.6)

By virtue of (3.1) and (A.6), we obtain for t ∈ [0, t1] a.e.

V̇ (t) � −ρ(V (t)) + max
τ∈[0,r(V (x0))]

[
k∑

i=0

τ i

i!
bi (V (x0)) − g(λ(V (x0)))

τ k+1

(k + 1)!

]
, (A.7)

where V (t) := V (x(t, x0; d)). Differential inequality (A.7) directly implies that

V (t) � max

{
V (x0), ρ

−1
(

max
τ∈[0,r(V (x0))]

[
k∑

i=0

τ i

i! bi (V (x0)) − g(λ(V (x0)))
τ k+1

(k+1)!

])}
, for all t ∈ [0, t1].

The above inequality in conjunction with inequality (3.8) implies that inequality (3.14) holds. It
should be noted that inequality (3.14) holds as well for the case t1 = 0 (since (3.8) implies that V (x0) �
γ (V (x0))). The proof is complete. �

Proof of Lemma 3.4. We will prove that system (1.1) is forward complete by contradiction. Suppose
that there exists x0 ∈ �n\{0}, d ∈ MD , the solution x(t, x0; d) of (1.1) is defined on [0, tmax), where
tmax ∈ (0, +∞), and cannot be further continued. Standard results on the continuation of the solutions
of ordinary differential equations imply that limt→t−max

V (t) = +∞, where V (t) := V (x(t, x0; d)).
We next prove the following claims.

Claim 1: There exists t0 ∈ [0, tmax) such that V (t) > λ(V (t0)), for all t ∈ [t0, tmax).

Proof of Claim 1. If Claim 1 were not true, then for every ti ∈ [0, tmax), there would exist ti+1 ∈
(ti , tmax) with V (ti+1) � λ(V (ti )). Consequently, we can construct an increasing sequence {ti }∞i=0 with
V (ti+1) � λ(V (ti )) and V (ti ) � λ(i)(V (t0)), where λ(i)(s) := (λ ◦ λ ◦ . . . ◦ λ︸ ︷︷ ︸

i times

)(s) for i � 1 and

λ(0)(s) := s. A standard contradiction argument shows that ti → T := sup ti � tmax and V (ti ) → 0.
If T = tmax, then we obtain lim inft→t−max

V (t) = 0, a contradiction with the fact that limt→t−max
V (t) = +∞.

If T < tmax, then we must have lim inft→T − V (t) = 0. Since the mapping t → V (t) is continuous,
we must have lim inft→T − V (t) = limt→T V (t) = V (T ) and this implies V (T ) = 0. Consequently, we
must have x(T, x0; d) = 0. Uniqueness of solutions for system (Σ) implies that x(t, x0; d) = 0, for all
t � T , which contradicts the fact that limt→t−max

V (t) = +∞.
Claim 2: There exists t ∈ [t0, tmax) with W0(x(t, x0; d)) < c2(V (x(t, x0; d))).
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Proof of Claim 2. Suppose on the contrary that W0(x(t, x0; d)) � c2(V (x(t, x0; d))) for all t ∈
[t0, tmax). Using inequalities (3.2) and (3.4) and the fact that V (x(t, x0; d)) > λ(V (t0)) for all t ∈
[t0, tmax), we obtain for t ∈ [t0, tmax) a.e.

Ẇi (t) � Wi+1(t), for i = 0, . . . , k − 1, (A.8)

Ẇk(t) � −g(λ(V (t0))), (A.9)

where Wi (t) := Wi (x(t, x0; d)) (i = 0, . . . , k). Inequalities (A.8) and (A.9) imply that the following
inequality holds for all t ∈ [t0, tmax):

W0(t) �
k∑

i=0

(t − t0)i

i!
Wi (t0) − g(λ(V (t0)))

(t − t0)k+1

(k + 1)!
. (A.10)

Our assumption that W0(x(t, x0; d)) � c2(V (x(t, x0; d))) for all t ∈ [t0, tmax) in conjunction with
inequality (A.10) gives

V (t) � c−1
2

(
k∑

i=0

(t − t0)i

i!
Wi (t0) − g(λ(V (t0)))

(t − t0)k+1

(k + 1)!

)
, for all t ∈ [t0, tmax),

which contradicts the fact that limt→t−max
V (t) = +∞.

Define

t1 := inf{t ∈ [t0, tmax): W0(x(t, x0; d)) < c2(V (x(t, x0; d)))}. (A.11)

Claim 3: t1 − t0 � r(V (t0))

Proof of Claim 3. Suppose on the contrary that t1 − t0 > r(V (t0)). Then definition (A11) implies
that W0(x(t, x0; d)) � c2(V (x(t, x0; d))) for all t ∈ [t0, t1]. Using inequalities (3.2) and (3.4) and the
fact that V (x(t, x0; d)) > λ(V (t0)) for all t ∈ [t0, tmax), we obtain that inequalities (A.8) and (A.9) hold
for t ∈ [t0, t1] a.e. Inequalities (A.8) and (A.9) imply that inequality (A.10) holds for all t ∈ [t0, t1].
Since W0(x(t, x0; d)) � c2(V (x(t, x0; d))) for all t ∈ [t0, t1] and V (x(t, x0; d)) > λ(V (t0)) for all
t ∈ [t0, tmax), we get from (A.10)

c2(λ(V (t0))) �
k∑

i=0

(t − t0)i

i!
Wi (t0) − g(λ(V (t0)))

(t − t0)k+1

(k + 1)!
, for all t ∈ [t0, t1].

Using inequalities (3.3) (which give Wi (t0) � bi (V (t0)) for i = 0, . . . , k), we get from the above
inequality:

c2(λ(V (t0))) �
k∑

i=0

(t − t0)i

i!
bi (V (t0)) − g(λ(V (t0)))

(t − t0)k+1

(k + 1)!
, for all t ∈ [t0, t1].

The above inequality for s = V (t0) and t = t0 + r(V (t0)) contradicts inequality (3.7).
Claim 4: The following inequality holds:

V (t1) � γ (V (t0)). (A.12)
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Proof of Claim 4. Suppose first that t1 > t0. By virtue of definition (A.11), it follows that W0(x(t,
x0; d)) � c2(V (x(t, x0; d))) for all t ∈ [t0, t1]. Using inequalities (3.2), (3.4) and the fact that V (x(t,
x0; d)) > λ(V (t0)) for all t ∈ [t0, tmax), we obtain that inequalities (A.8) and (A.9) hold for t ∈ [t0, t1]
a.e. Inequalities (A.8) and (A.9) imply that inequality (A.10) holds for all t ∈ [t0, t1]. Using inequalities
(3.3) (which give Wi (t0) � bi (V (t0)) for i = 0, . . . , k), we get from (A.10):

W0(t) �
k∑

i=0

(t − t0)i

i!
bi (V (t0)) − g(λ(V (t0)))

(t − t0)k+1

(k + 1)!
. (A.13)

Inequality (A.13) and Claim 3 imply that

max
t∈[t0,t1]

W0(x(t, x0; d)) � max
τ∈[0,r(V (t0))]

[
k∑

i=0

τ i

i!
bi (V (t0)) − g(λ(V (t0)))

τ k+1

(k + 1)!

]
. (A.14)

By virtue of (3.1) and (A.14), we obtain for t ∈ [t0, t1] a.e.

V̇ (t) � −ρ(V (t)) + max
τ∈[0,r(V (t0))]

[
k∑

i=0

τ i

i!
bi (V (t0)) − g(λ(V (t0)))

τ k+1

(k + 1)!

]
. (A.15)

Differential inequality (A.15) directly implies that

V (t) � max

{
V (t0), ρ

−1

(
max

τ∈[0,r(V (t0))]

[
k∑

i=0

τ i

i!
bi (V (t0))−g(λ(V (t0)))

τ k+1

(k + 1)!

])}
, for all t ∈ [t0, t1].

The above inequality in conjunction with inequality (3.8) implies that inequality (A.12) holds. It
should be noted that inequality (A.12) holds as well for the case t1 = t0 (since (3.8) implies that
V (t0) � γ (V (t0))).

Claim 5: There exists t ∈ [t1, tmax) with W0(x(t, x0; d)) > c1(V (x(t, x0; d))).

Proof of Claim 5. Suppose the contrary that W0(x(t, x0; d)) � c1(V (x(t, x0; d))) for all t ∈
[t1, tmax). Then inequality (3.1) and the fact that ρ(s) > c1(s) for all s > 0 imply that V̇ (t) � 0
for t ∈ [t1, tmax) a.e. Thus, we obtain V (t) � V (t1) for all t ∈ [t1, tmax), a contradiction with the fact
that limt→t−max

V (t) = +∞.
We are now ready to finish the proof. Continuity of mappings t→W0(x(t, x0; d)), t → V (x(t,

x0; d)) guarantees the existence of times t2 < t3 with t1 � t2 < t3 < tmax and such that

W0(x(t, x0; d)) � c1(V (x(t, x0; d))), for all t ∈ [t1, t3], (A.16)

W0(x(t2, x0; d)) = c2(V (x(t2, x0; d))), W0(x(t3, x0; d)) = c1(V (x(t3, x0; d))), (A.17)

W0(x(t, x0; d)) � c2(V (x(t, x0; d))), for all t ∈ [t2, t3]. (A.18)

Inequality (A.16) in conjunction with inequality (3.1) guarantees that

V (t) � V (t2) −
∫ t

t2
(ρ(V (τ )) − c1(V (τ )))dτ , for all t ∈ [t2, t3], (A.19)

V (t) � V (t1), for all t ∈ [t1, t3]. (A.20)
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Inequalities (A.16), (A.18) and (3.5) imply that

W0(t3) + μ(V (t3)) � W0(t2) + μ(V (t2)). (A.21)

It follows from (A.17) and (A.21) that

c1(V (t3)) + μ(V (t3)) � c2(V (t2)) + μ(V (t2)). (A.22)

If V (t3) � λ(γ −1(V (t2))), then using (A.12) and (A.20), we obtain V (t3) � λ(V (t0)), a contradiction
with Claim 1.

Thus, we are left with the case V (t3) > λ(γ −1(V (t2))). In this case, inequality (A.22) and the fact
that the function κ(s) := c1(s) + μ(s) is non-decreasing give

c1(λ(γ −1(V (t2)))) + μ(λ(γ −1(V (t2)))) � c2(V (t2)) + μ(V (t2))

The above inequality contradicts inequality (3.6) for s = γ −1(V (t2)). The proof is complete. �
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