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Abstract. For nonlinear systems that are known to be globally asymptotically stabilizable,
control over networks introduces a major challenge because of the asynchrony in the transmission
schedule. Maintaining global asymptotic stabilization in sampled-data implementations with zero-
order hold and with perturbations in the sampling schedule is not achievable in general, but we show
in this paper that it is achievable for the class of feedforward systems. We develop sampled-data
feedback stabilizers which are not approximations of continuous-time designs but are discontinuous
feedback laws that are specifically developed for maintaining global asymptotic stabilizability under
any sequence of sampling periods that is uniformly bounded by a certain “maximum allowable
sampling period.”
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1. Introduction. Achieving stabilization by sampled-data feedback and ensur-
ing robustness to perturbations in the sampling schedule are the central challenges
in nonlinear control over networks, where asynchrony is ubiquitous. In this paper
we achieve these goals for the class of uncertain feedforward systems, for which these
goals are achievable due to the absence of exponential and finite escape time in-
stabilities, despite the presence of nonlinearities of superlinear growth. We propose a
saturation-based forwarding feedback, which we construct specifically for the sampled-
data problem (namely, not as an approximation of a continuous design) and in such
a way that it guarantees robustness of global asymptotic stability to perturbations in
the sampling schedule.

Feedforward systems. Research on feedforward systems has played an im-
portant role in the development of nonlinear control theory, starting with the in-
troduction of this class and the first feedback laws by Teel [54], followed by the
key advances by Mazenc and Praly [31] and Jankovic, Sepulchre, and Kokotovic
[15], and continuing with various extensions and generalizations by many authors
[1, 2, 3, 4, 7, 8, 12, 13, 14, 16, 24, 28, 29, 30, 32, 33, 34, 35, 36, 37, 38, 39, 40, 46,
47, 48, 49, 50, 51, 52, 53, 55, 56, 57] . More recently, feedforward systems with input
delays and/or measurement delays have been studied [5, 6, 21, 25].
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1390 IASSON KARAFYLLIS AND MIROSLAV KRSTIC

Results of this paper. In this work we focus on the problem of robust global
stabilization of uncertain feedforward systems of the form

(1.1)

ẋ1 = u,
ẋ2 = x1 + g2(d, x1, u)
...

ẋn−1 = xn−2 + gn−1(d, x1, . . . , xn−2, u),
ẋn = xn−1 + gn(d, x1, . . . , xn−1, u),
x = (x1, . . . , xn)

′ ∈ �n, u ∈ �, d ∈ D,

where D ⊂ �l is a nonempty compact set and all mappings gi : D × �i−1 × � → �
(i = 2, . . . , n) are locally Lipschitz and such that there exists a smooth nondecreasing
function L ∈ C0(�+;�+) with the following property:

(1.2)

∣∣gi(d, xi−1, u)
∣∣ ≤ L

(∣∣(xi−1, u)
∣∣) ∣∣xi−1

∣∣2 + L
(∣∣(xi−1, u)

∣∣) ∣∣xi−1

∣∣ |u| ,
xi−1 := (x1, . . . , xi−1)

′ ∈ �i−1 ∀(d, x, u)
∈ D ×�n ×� and i = 2, . . . , n.

More specifically, we solve the problem of robust global stabilization of (1.1) by means
of bounded sampled-data feedback control applied with zero-order hold, i.e., with a
controller of the form

(1.3)

u(t) = k(x(τi)), t ∈ [τi, τi+1),

τi+1 = τi + r exp(−w(τi)), τ0 = 0,

w(t) ∈ �+,

where r > 0 is a constant (the maximum allowable sampling period (MASP); see
[45]) and k : �n → � is a bounded function with k(0) = 0. The input w : �+ → �+

represents possible perturbations in the sampling schedule. More specifically, the
input w : �+ → �+ allows the consideration of all sampling schedules which are
partitions of �+ with upper diameter r > 0, i.e., allows the consideration of all
increasing sequences {τi}∞i=0 with lim τi = +∞ and supi=0,1,... (τi+1 − τi) ≤ r.

Global stabilization under sampling. The problem of global stabilization
under sampling is important for real-time implementations of control of feedforward
systems, especially over networks, and to the best of our knowledge has not been
addressed so far. The literature on sampled-data control provides control design
methodologies that guarantee global stability for the following cases:

1. Linear stabilizable systems, ẋ = Ax+Bu, where x ∈ �n, u ∈ �m, A ∈ �n×n,
B ∈ �n×m.

2. Nonlinear systems of the form ẋ = f(x) + g(x)u, x ∈ �n, u ∈ �, where the
vector field f : �n → �n is globally Lipschitz and the vector field g : �n →
�n is locally Lipschitz and bounded, which can be stabilized by a globally
Lipschitz feedback law u = k(x) (see [11]).

3. Nonlinear systems of the form ẋi = fi(x, u)+ gi(x, u)xi+1 for i = 1, . . . , n− 1
and ẋn = fn(x, u) + gn(x, u)u, where the drift terms fi(x, u) (i = 1, . . . , n)
satisfy the linear growth conditions |fi(x, u)| ≤ L|x1|+· · ·+L|xi| (i = 1, . . . , n)
for a certain constant L ≥ 0 and there exist constants b ≥ a > 0 such that
a ≤ gi(x, u) ≤ b for all i = 1, . . . , n, x ∈ �n, u ∈ � (see [19]).

4. Asymptotically controllable homogeneous systems with positive minimal power
and zero degree (see [9]).
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5. Systems satisfying the reachability hypotheses of Theorem 3.1 in [20] or hy-
potheses (A1), (A2), (A3) in section 4 of [18].

6. Nonlinear systems ẋ = f(x, u), for which there exists a global diffeomorphism
Θ : �n → �n such that the change of coordinates z = Θ(x) transforms the
system into one of the above cases.

However, nonlinear feedforward systems of the form (1.1) under hypothesis (1.2)
rarely belong to one of the above classes (an exception is the class of linearizable feed-
forward systems; see [24, 49, 50, 51, 52]). On the other hand, there are well-established
standard control design methodologies that guarantee stabilization of system (1.1) un-
der sampled-data control with zero-order hold [10, 22, 23, 26, 27, 41, 42, 43, 44], but
only in the practical and semiglobal sense. Therefore, the problem of robust global
stabilization of (1.1) by means of bounded sampled-data feedback control applied with
zero-order hold is open. Moreover, it was recently shown that the combination of a
robust global sampled-data stabilizer with predictor schemes achieves global stabiliza-
tion for systems with input and measurement delays [21]. Consequently, the solution
of the problem of robust global stabilization of (1.1) by means of bounded sampled-
data feedback control applied with zero-order hold automatically yields the solution
of the same problem even in the presence of arbitrary measurement and input delays.

Relation with other approaches. The emulation-based feedback laws, or
the feedback laws based on approximate discrete-time model design [10, 22, 23, 26,
27, 41, 42, 43, 44] for sampled-data stabilization of nonlinear systems guarantee
semiglobal practical stability and exploit the wealth of feedback designs available
in the continuous-time and the discrete-time framework. However, if global and non-
practical stabilization is the goal, then these approaches face the following theoretical
obstructions when combined with the two basic design strategies for control of feed-
forward systems:

1. The integrator forwarding approach [15, 24, 31, 48] yields stabilizing feedback

laws u = k(x) that have (in general) superlinear growth, i.e., supx �=0
|k(x)|
|x| =

+∞. Moreover, the control Lyapunov functions constructed by using the in-
tegrator forwarding approach demand (in general) unbounded control inputs.
Feedback laws with superlinear growth would not yield (in general) global
stabilization in an emulation-based sampled-data implementation (even the
scalar system ẋ = u cannot be globally stabilized using any feedback law
u = k(x) of superlinear growth if the sampling rate is positive).

2. The nested saturation approach [31, 53, 54] results in bounded stabilizing
feedback laws u = k(x), but in many cases it does not yield a Lyapunov
function for the closed-loop system.

It may appear from the emulation approach or the approximate discrete-time
model design, which both guarantee semiglobal practical stability, that the loss of
globality and attractivity of the origin is an unavoidable consequence of sampling. In
fact, this is a consequence of not taking sampling into account in the design process.

With the approach developed in this paper, in which we take sampling into ac-
count in the design process, we not only prevent the loss of globality and of attractivity
of the origin, but as a bonus also guarantee robustness to perturbations in the sam-
pling schedule. Our approach results in the design of sampled-data feedback laws
that are similar to the feedback laws designed by means of the nested saturation ap-
proach. Therefore, the results of the paper can be viewed as the extension of the
nested saturation approach to the sampled-data case with zero-order hold.

Approach developed in the paper. The key result of the present work is the
“sampled-data forwarding lemma” (Lemma 3.1 below). The sampled-data forwarding
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lemma deals with a composite system that consists of two subsystems, the x-subsystem

(1.4)
ẋ = F (d, x, u),
x ∈ �n, d ∈ D, u ∈ �,

and the scalar y-subsystem

(1.5) ẏ = G(d, x, u), y ∈ �.

Assuming that the x-subsystem can be robustly globally stabilized by means of
sampled-data control applied with zero-order hold, under appropriate conditions on
the mappings F,G we are in a position to construct a stabilizing feedback for the
interconnected system (1.4), (1.5). The intuition behind the sampled-data forwarding
lemma is as follows: we would like to bring the state (x, y) of system (1.4), (1.5) to a
neighborhood of the origin, where the linearization of (1.4), (1.5) prevails, and keep it
there using a linear feedback strategy. In order to achieve this objective, we first apply
the sampled-data feedback stabilizer for (1.4), which brings the x-component of the
state (x, y) close to zero. Once we have brought x close to zero, we keep x close to zero
while simultaneously driving y close to zero. Having brought (x, y) to an appropriate
neighborhood of zero, we apply linear feedback to drive (x, y) to zero. A set of tech-
nical conditions is assumed in order to guarantee that this control strategy is feasible.

The sampled-data forwarding lemma provides an explicit formula for the robust
feedback stabilizer and can be applied recursively for the robust global sampled-data
stabilization of feedforward systems (Theorem 3.7 below). Moreover, if the assumed
feedback stabilizer for (1.4) is bounded, then the constructed feedback stabilizer for
(1.4), (1.5) is bounded too. Robustness to perturbations in the sampling schedule
is guaranteed by treating x(τi), where τi is a sampling time, as a perturbation of
the current value of the state x(t): by restricting the MASP r > 0, we are in a
position to guarantee that |x(t)− x(τi)| is sufficiently small. The same methodology
was introduced in the first author’s papers [19, 20], where robustness to perturbations
in the sampling schedule and global stabilization were achieved for certain classes of
nonlinear systems.

Organization of the paper. The structure of the paper is as follows. Section 2
provides the stability notions used in the paper and some technical results. Section 3
contains the sampled-data forwarding lemma (Lemma 3.1 below), which is applied
recursively for the stabilization of (1.1). The main result (Theorem 3.7) guarantees the
solvability of the problem of robust global stabilization of (1.1) by means of bounded
sampled-data feedback control applied with zero-order hold. The formulae for the
feedback stabilizers for feedforward systems contain parameters which can be tuned
in order to guarantee good performance. A three-dimensional feedforward example is
presented in section 4 of the paper, which shows the importance of proper selection of
the values of the parameters. Moreover, an additional example in section 4 indicates
that the sampled-data forwarding lemma is not restricted to feedforward systems.
Section 5 contains the concluding remarks of the paper. Finally, the appendix contains
the proofs of all technical lemmas appearing in section 3.

Notation. Throughout this paper we adopt the following notation:
(i) Let I ⊆ �+ := [0,+∞) be an interval. By L∞(I;U) (L∞

loc(I;U)) we denote
the space of measurable and (locally) essentially bounded functions u( · ) defined on
I and taking values in U ⊆ �m. Notice that we do not identify functions in L∞(I;U)
or L∞

loc(I;U) which differ on a measure zero set.
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(ii) By C0(A ; Ω), we denote the class of continuous functions on A ⊆ �n,
which take values in Ω ⊆ �m. By Ck(A ; Ω), where k ≥ 1, we denote the class of
continuous functions on A ⊆ �n, which have continuous derivatives of order k ≥ 1
and take values in Ω ⊆ �m.

(iii) For a vector x ∈ �n we denote by x′ its transpose and by |x| its Euclidean
norm. A′ ∈ �n×m denotes the transpose of the matrix A ∈ �m×n.

(iv) By sat : � → [−1, 1], we denote the continuous function sat(x) = x
max(1,|x|)

for all x ∈ �. B(x, ρ) ⊆ �n denotes the closed ball in �n of radius ρ ≥ 0 centered at
x ∈ �n, i.e., B(x, ρ) := { y ∈ �n : |y − x| ≤ ρ }.

(v) We say that an increasing continuous function γ : �+ → �+ is of class K∞
if γ(0) = 0 and lims→+∞ γ(s) = +∞. By KL we denote the set of all continuous
functions σ = σ(s, t) : �+ × �+ → �+ with the following properties: (i) for each
t ≥ 0 the mapping σ( · , t) is nondecreasing; (ii) for each s ≥ 0, the mapping σ(s, · ) is
nonincreasing with limt→+∞ σ(s, t) = 0.

2. Background material and preliminary results. The stability notions
used in the present work are applied to sampled-data systems of the form

(2.1)
ẋ(t) = f(d(t), x(t), x(τi)), t ∈ [τi, τi+1),
τ0 = 0, τi+1 = τi + r exp(−w(τi)), i = 0, 1, . . . ,

x(t) ∈ �n, d(t) ∈ D, w(t) ∈ �+,

where D ⊂ �l is a nonempty set and r > 0 is a constant, under the following hypoth-
esis:

(H) f(d, x, x0) is continuous with respect to (d, x) ∈ D × �n, and there exist a
symmetric positive definite matrix P ∈ �n×n and a function a ∈ K∞ such that the
following inequalities hold:

(2.2)

sup

{
(x− y)

′
P (f(d, x, x0)− f(d, y, x0))

|x− y|2 : x, y, x0 ∈ B(0, s), x �= y, d ∈ D

}
< +∞ ,∀s > 0,

(2.3) |f(d, x, x0)| ≤ a (|x|+ |x0|) ∀(d, x, x0) ∈ D ×�n ×�n.

Hypothesis (H) guarantees that 0 ∈ �n is an equilibrium point for (2.1) and is
automatically satisfied if D ⊂ �l is compact, f(d, x, x0) is locally bounded and locally
Lipschitz with respect to x ∈ �n, and f(d, 0, 0) = 0 = lim(x,x0)→(0,0) f(d, x, x0) for all
d ∈ D. Moreover, by virtue of Proposition 2.5 in [17], hypothesis (H) guarantees that
for every (x0, d, w) ∈ �n × L∞

loc(�+;D)×L∞
loc(�+;�+), system (2.1) admits a unique

solution x : [0, tmax) → �n with x(0) = x0, where tmax ∈ (0,+∞] is the maximal
existence time of the solution. Furthermore, if tmax < +∞, then lim supt→t−max

|x(t)| =
+∞. The unique solution of (2.1) with x(0) = x0 corresponding to inputs (d, w) ∈
L∞
loc(�+;D)×L∞

loc(�+;�+) will be denoted by x(t, x0, d, w). The set of times {τi}∞i=0

is called the set of sampling times.
We next provide the definition of robust global asymptotic stability of (2.1).
Definition 2.1. Consider system (2.1) under hypothesis (H). We say that 0 ∈

�n is robustly globally asymptotically stable (RGAS) for system (2.1) if the following
properties hold:

P1. System (2.1) is robustly Lagrange stable; i.e., for every ε > 0, it holds that

sup { |x(t, x0, d, w)| ; t ≥ 0, |x0| ≤ ε, (d, w) ∈ L∞
loc (�+;D ×�+) } < +∞.
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P2. System (2.1) is robustly Lyapunov stable; i.e., for every ε > 0 there exists
δ := δ (ε) > 0 such that

|x0| ≤ δ ⇒ |x(t, x0, d, w)| ≤ ε ∀t ≥ 0, ∀(d, w) ∈ L∞
loc(�+;D)× L∞

loc(�+;�+).

P3. System (2.1) satisfies the robust attractivity property; i.e.for every ε > 0
and R ≥ 0, there exists a T := T (ε,R) ≥ 0, such that

|x0| ≤ R ⇒ |x(t, x0, d, w)| ≤ ε ∀t ≥ T, ∀(d, w) ∈ L∞
loc(�+;D)× L∞

loc(�+;�+).

Remark 2.2. Using Lemma 2.17 in [18] (with zero gain function) we can guarantee
that 0 ∈ �n is RGAS for system (2.1) if and only if there exists a function σ ∈ KL such
that the following estimate holds for all (x0, d, w) ∈ �n ×L∞

loc(�+;D)×L∞
loc(�+;�+)

and t ≥ 0:

(2.4) |x(t)| ≤ σ ( |x0| , t ) .

The reader should also notice that the sampling period is allowed to be time-varying.
The factor exp (−w(τi)) ≤ 1, with w(t) ≥ 0 some nonnegative function of time, is
an uncertainty factor in the end-point of the sampling interval. Proving RGAS for
(2.1) guarantees stability for all sampling schedules with τi+1 − τi ≤ r (robustness to
perturbations of the sampling schedule). Therefore, it is justified to call the constant
r > 0 the maximum allowable sampling period (MASP).

We finish this section by providing a technical result which will be used in the
following sections.

Lemma 2.3. Let b > a be constants, and let x : [a, b] → �n be absolutely
continuous. Suppose that there exist constants Q,G ≥ 0 such that

(2.5) |ẋ(t)| ≤ Q |x(t)|+G |x(a)| for t ∈ [a, b) a.e.

Suppose, furthermore, that (G + Q)(b − a) exp (Q(b− a)) < 1. Then the following
inequality holds for all t ∈ [a, b] :

(2.6) |x(t) − x(a)| ≤ (G+Q)(b− a) exp (Q(b− a))

1− (G+Q)(b − a) exp (Q(b− a))
|x(t)| .

Proof. Since x : [a, b] → �n is absolutely continuous, it holds that |x(t)− x(a)| ≤∫ t

a
|ẋ(s)|ds for all t ∈ [a, b]. Inequality (2.5) implies |x(t) − x(a)| ≤ Q

∫ t

a
|x(s)|ds +

G(b−a)|x(a)| for all t ∈ [a, b], and consequently we obtain |x(t)−x(a)| ≤ Q
∫ t

a
|x(s)−

x(a)|ds+(G+Q)(b−a)|x(a)| for all t ∈ [a, b]. Applying the Gronwall–Bellman lemma
to the previous inequality gives

|x(t) − x(a)| ≤ (G+Q)(b − a) exp (Q(b− a)) |x(a)| ∀t ∈ [a, b].

The above inequality in conjunction with the triangle inequality implies that

|x(t) − x(a)| ≤ (G+Q)(b − a) exp (Q(b− a)) |x(a)− x(t)|
+ (G+Q)(b− a) exp (Q(b− a)) |x(t)| ∀t ∈ [a, b].
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Since (G + Q)(b − a) exp(Q(b − a)) < 1, the above inequality directly implies (2.6).
The proof is complete.

3. Main results. All the results of the present work are proved by using
Lemma 3.1, which is stated next. We call it the sampled-data forwarding lemma
because it provides sufficient conditions for robust global stabilization by means of
sampled-data control with positive sampling rate of a system with “added integra-
tion”.

Assuming that a system (whose state is denoted by x) is stabilizable by sampled-
data feedback, the sampled-data forwarding lemma guarantees the existence of a
sampled-data feedback stabilizer when the system is augmented by an additional
state (y) in a cascade/feedforward configuration. Outside of the set x′Px < R2 in
the (x, y) state space (where P is an appropriate positive definite matrix and R > 0
is an appropriate constant) the feedback law uses the stabilizer for the x-subsystem
in order to make |x| small, whereas inside of the set x′Px < R2 the feedback law
uses a suitably saturated linear feedback law whose task is to drive |y + c′x| below
a prescribed small value ω−1 (where c is an appropriate vector), while keeping |x|
small. Once both |x| and |y + c′x| are rendered small, the linear feedback law prevails
in achieving exponential regulation to the origin. Robustness to perturbations in the
sampling schedule is proved by quantifying the error between the current value of
the state x and its most recent sampled value, and by showing the smallness of this
error for the closed-loop solutions provided all sampling periods fall uniformly below
a sufficiently small MASP.

The main result of the paper, Theorem 3.7, is established by recursively applying
this lemma to system (1.1) and by constructively satisfying the lemma’s key assump-
tions (inequalities (3.3), (3.4), (3.5) below) with the help of Lemma 3.6.

Lemma 3.1 (the sampled-data forwarding lemma). Consider the system

(3.1)

ẋ = Ax+ bu+ f(d, x, u),

ẏ = xn + g(d, x, u),

x = (x1, . . . , xn)
′ ∈ �n, y ∈ �, u ∈ �, d ∈ D ⊂ �l,

where b = (1, 0, . . . , 0)′ ∈ �n, D ⊂ �l is a nonempty compact set, f : D×�n×� → �n,
g : D ×�n × � → � are locally Lipschitz mappings with f(d, 0, 0) = 0, g(d, 0, 0) = 0
for all d ∈ D, A = {ai,j : i, j = 1, . . . , n} with ai,j = 1 if j = i− 1, i = 2, . . . , n, and
ai,j = 0 if otherwise. We assume that the following hypothesis holds:

(H) There exist a constant r > 0 and a locally bounded function k : �n → �,
with k(0) = 0 being continuous at 0 ∈ �n such that 0 ∈ �n is RGAS for the following
sampled-data system:

(3.2)

ẋ(t) = Ax(t) + bu(t) + f(d(t), x(t), u(t)),

u(t) = k(x(τi)), t ∈ [τi, τi+1),

τi+1 = τi + r exp(−w(τi)), τ0 = 0,

d(t) ∈ D, w(t) ∈ �+.

Let P ∈ �n×n be a symmetric positive definite matrix, and let p ∈ �n be a
constant vector such that the matrix P (A+bp′)+(A′+pb′)P is negative definite. Define
c = −(A′+pb′)−1(0, . . . , 0, 1)′ and assume the existence of constants M,R,K, ω, δ > 0
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such that

max
{
x′P (Ax+ f(d, x, u) + bu) : (d, x) ∈ D ×�n, x′Px = R2,(3.3)

|u− p′x| ≤ K |c′b| } < 0,

max
{ |g(d, x, u) + c′f(d, x, u)| : x′Px ≤ R2,(3.4)

d ∈ D, |u− p′x| ≤ K |c′b|} < K(c′b)2,
z (Mg(d, x, u) +Mc′f(d, x, u)−K(c′b)ωb′Px)(3.5)

≤ (MK(c′b)2ω − δ
) |z|2 − x′P ((A+ bp′ + δI)x + f(d, x, u))

∀(x, z, d) ∈ �n ×� ×D with x′Px ≤ R2,

ω |z| ≤ 1 and u = p′x−Kc′bωz.

Define k̃ : �n ×� → � by

(3.6) k̃(x, y) :=

{
k(x) if x′Px ≥ R2,

p′x−Kc′b sat(ω(y + c′x)) if x′Px < R2.

Then for sufficiently small r̃ > 0, 0 ∈ � × �n is RGAS for the sampled-data
system

(3.7)

ẋ(t) = Ax(t) + f(d(t), x(t), u(t)) + bu(t),

ẏ(t) = xn(t) + g(d(t), x(t), u(t)),

u(t) = k̃(x(τi), y(τi)), t ∈ [τi, τi+1),

τi+1 = τi + r̃ exp(−w(τi)), τ0 = 0,

d(t) ∈ D, w(t) ∈ �+.

Discussion of the assumptions of the sampled-data forwarding lemma.
Hypothesis (H) is an important assumption that guarantees that the x-subsystem can
be stabilized by sampled-data feedback. Inequalities (3.3) and (3.4) guarantee that
the control strategy of driving y close to zero, while keeping the state component x
in a neighborhood of zero, is feasible. Indeed,

• inequality (3.3) guarantees that the state cannot leave a neighborhood of the
set x = 0 (this neighborhood is the set

{
(x, y) ∈ �n × � : x′Px ≤ R2

}
) when

we use controls that are “perturbations” of a nominal feedback law, where
the nominal feedback law is the linear feedback u = p′x and the magnitude
of the “perturbation” is determined by |u− p′x| ≤ K |c′b|;

• inequality (3.5) guarantees that we can drive y close to zero when we use
controls which are “perturbations” of a nominal feedback law.

Finally, inequality (3.5) is a standard assumption that guarantees robust local
exponential stabilizability of the origin by means of a linear feedback. This becomes
clear when inequality (3.5) is written in the following way:

d

dt

(
x′Px+M (y + c′x)2

)
≤ −2δ |y + c′x|2 − 2δx′Px

for all (x, y, d) ∈ �n×�×D with x′Px ≤ R2, ω |y + c′x| ≤ 1, and u = p′x−Kc′bω(y+
c′x), where d/dt indicates differentiation along the trajectories of (3.1). Therefore,
it can be argued that inequalities (3.3), (3.4), and (3.5) are fundamental to having a
feedback strategy for driving y close to zero while keeping the state in a neighborhood
of the set x = 0.
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The proof of the sampled-data forwarding lemma is technical and is based on the
following four technical results. Their proofs are provided in the appendix.

Lemma 3.2. Let P ∈ �n×n be a symmetric positive definite matrix, and let
p ∈ �n be a constant vector such that the matrix P (A+ bp′) + (A′ + pb′)P is negative
definite. Define c = −(A′ + pb′)−1(0, . . . , 0, 1)′ and assume the existence of con-
stants M,R,K, ω, δ > 0 such that (3.3), (3.4), and (3.5) hold. Consider the solution
(x(t), y(t)) ∈ �n ×� of (3.7) under hypothesis (H), where k̃ : �n ×� → � is defined
by (3.6) and r̃ > 0, with arbitrary initial condition (x(0), y(0)) ∈ �n × � satisfying
x′(0)Px(0) < R2 and corresponding to arbitrary (d, w) ∈ L∞

loc (�+;D ×�+). If r̃ > 0
is sufficiently small, then x′(t)Px(t) < R2 for all t ∈ [0, τ1].

Using induction and Lemma 3.2, we obtain the following result.
Lemma 3.3. Let P ∈ �n×n be a symmetric positive definite matrix and p ∈ �n

be a constant vector such that the matrix P (A + bp′) + (A′ + pb′)P is negative def-
inite. Define c = −(A′ + pb′)−1(0, . . . , 0, 1)′ and assume the existence of constants
M,R,K, ω, δ > 0 such that (3.3), (3.4), and (3.5) hold. Consider the solution
(x(t), y(t)) ∈ �n ×� of (3.7) under hypothesis (H), where k̃ : �n ×� → � is defined
by (3.6) and r̃ > 0, with arbitrary initial condition (x(0), y(0)) ∈ �n × � satisfying
x′(0)Px(0) < R2 and corresponding to arbitrary (d, w) ∈ L∞

loc (�+;D ×�+). If r̃ > 0
is sufficiently small, then the solution (x(t), y(t)) ∈ �n×� of (3.7) exists for all t ≥ 0
and satisfies x′(t)Px(t) < R2 for all t ≥ 0.

The following lemma uses the result of Lemma 3.3 and shows attractivity for a
certain region in the state space.

Lemma 3.4. Let P ∈ �n×n be a symmetric positive definite matrix, and let
p ∈ �n be a constant vector such that the matrix P (A+ bp′) + (A′ + pb′)P is negative
definite. Define c = −(A′ + pb′)−1(0, . . . , 0, 1)′ and assume the existence of con-
stants M,R,K, ω, δ > 0 such that (3.3), (3.4), and (3.5) hold. Consider the solution
(x(t), y(t)) ∈ �n ×� of (3.7) under hypothesis (H), where k̃ : �n ×� → � is defined
by (3.6) and r̃ > 0, with arbitrary initial condition (x(0), y(0)) ∈ �n × � satisfying
x′(0)Px(0) < R2 and corresponding to arbitrary (d, w) ∈ L∞

loc (�+;D ×�+). If r̃ > 0
is sufficiently small, then there exists T ∈ C0 (�;�+) such that

|z(t)| ≤ max
{ |z(0)| , ω−1

} ∀t ≥ 0,(3.8)

|z(t)| ≤ ω−1 ∀t ≥ T (z(0)),(3.9)

where z(t) = y(t) + c′x(t).
Lemma 3.5. Let P ∈ �n×n be a symmetric positive definite matrix, and let

p ∈ �n be a constant vector such that the matrix P (A + bp′) + (A′ + pb′)P is neg-
ative definite. Define c = −(A′ + pb′)−1(0, . . . , 0, 1)′ and assume the existence of
constants M,R,K, ω, δ > 0 such that (3.3), (3.4), and (3.5) hold. Consider the so-
lution (x(t), y(t)) ∈ �n × � of (3.7) under hypothesis (H), where k̃ : �n × � → �
is defined by (3.6) and r̃ > 0, with arbitrary initial condition (x(0), y(0)) ∈ �n × �
satisfying x′(0)Px(0) < R2, |y(0) + c′x(0)| ≤ ω−1 and corresponding to arbitrary
(d, w) ∈ L∞

loc (�+;D ×�+).
If r̃ > 0 is sufficiently small, then there exists μ > 0 such that the following

differential inequality holds for t ≥ 0 a.e.:

(3.10) V̇ (t) ≤ −μV (t),

where z(t) = y(t) + c′x(t) and V (t) = M
2 z2(t) + 1

2x
′(t)Px(t).

The reader should notice that by virtue of Lemmas 3.3 and 3.4 the set S =
{(x, y) ∈ �n × � : x′Px < R2, |y + c′x| ≤ ω−1} is positively invariant for system
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(3.7). The differential inequality (3.10) guarantees that V (t) ≤ exp(−μ t)V (0) for
all t ≥ 0, provided that (x(0), y(0)) ∈ S. Since V (x, y) = M

2 |y + c′x|2(t) + 1
2x

′Px
is a positive definite quadratic function, the previous inequality shows that local
exponential stability is guaranteed for system (3.7) in the region S ⊆ �n ×�. Notice
that the size of the region S ⊆ �n ×� is determined by the constants R,ω.

We are now in a position to prove the sampled-data forwarding lemma.
Proof of Lemma 3.1. We will restrict r̃ > 0 so that

(3.11) r̃ ≤ r.

Notice that Lemma 3.3 and definition (3.6) imply that the set {x ∈ �n : x′Px <
R2} is positively invariant. Robust Lyapunov stability for system (3.7) is a direct
consequence of the differential inequality (3.10). Next we will show robust Lagrange
stability and robust attractivity for system (3.7). Consider the solution (x(t), y(t)) ∈
�n×� of (3.7) under hypothesis (H), with initial condition (x(0), y(0)) ∈ �n×� and
corresponding to arbitrary (d, w) ∈ L∞

loc (�+;D ×�+). By virtue of hypothesis (H),
inequality (3.11) and definition (3.6), there exists σ ∈ KL such that

(3.12) |x(t)| ≤ σ(|x(0)|, t)
for all times t ≥ 0 with x′(t)Px(t) ≥ R2. Inequality (3.12) in conjunction with
Lemma 3.3 implies that there exists a constant C > 0 such that the following inequal-
ity holds:

(3.13) |x(t)| ≤ max(σ(|x(0)|, 0), C) ∀t ≥ 0

and that there exists a nondecreasing T̃ ∈ C0(�+;�+) such that

(3.14) x′(t)Px(t) < R2 ∀t ≥ T̃ (|x(0)|).
Notice that hypothesis (H) implies the existence of ρ ∈ K∞ such that |k(x)| ≤ ρ (|x|)
for all x ∈ �n. Therefore, we can conclude that there exists γ ∈ K∞ such that

(3.15) |y(t) + c′x(t)| ≤ γ (|x(0)|+ |y(0)|)
for all times t ≥ 0 with x′(t)Px(t) ≥ R2. In order to see why (3.15) holds, we notice
that by virtue of the compactness ofD ⊂ �l, continuity of g : D×�n×� → �, the fact
that g(d, 0, 0) = 0 for all d ∈ D, and the fact that |k(x)| ≤ ρ (|x|) for all x ∈ �n, there
exists γ̃ ∈ K∞ such that |xn + g(d, x, k(x0))| ≤ γ̃ (|x|) + γ̃ (|x0|) for all (d, x, x0) ∈
D × �n × �n. Therefore, definition (3.6) and differential equations (3.7) imply that
the following inequality holds for almost all times t ≥ 0 with x′(t)Px(t) ≥ R2:

|ẏ(t)| ≤ γ̃ (|x(t)|) + γ̃ (|x(τi)|) ,
where τi is an appropriate sampling time satisfying t ∈ [τi, τi+1). Using (3.12), (3.14),
and the above differential inequality, we conclude that the following estimate holds
for all times t ≥ 0 with x′(t)Px(t) ≥ R2:

|y(t)| ≤ |y(0)|+ 2T̃ (|x(0)|) γ̃ (σ (|x(0)| , 0)) .
The above inequality shows that (3.15) holds with γ(s) := s+|c|σ(s, 0)+2T̃ (s)γ̃ (σ(s, 0)).
Inequality (3.15) in conjunction with Lemma 3.4 implies that

(3.16) |y(t) + c′x(t)| ≤ max
(
γ (|x(0)|+ |y(0)|) , |y(0) + c′x(0)| , ω−1

) ∀t ≥ 0.
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Estimates (3.13), (3.16) prove robust Lagrange stability. Finally, inequality (3.14) in
conjunction with Lemmas 3.4 and 3.5 imply that robust attractivity holds as well.
The proof is complete.

The following result shows that the assumptions of the sampled-data forwarding
lemma can be automatically satisfied for a certain class of nonlinearities.

Lemma 3.6. Suppose that there exists a nondecreasing function L ∈ C0(�+;�+)
such that the following inequality holds for the mappings f : D × �n × � → �n,
g : D ×�n ×� → �:

|f(d, x, u)|+ |g(d, x, u)| ≤ L(|(x, u)|) |x|2(3.17)

+ L(|(x, u)|) |x| |u| ∀(d, x, u) ∈ D ×�n ×�.
Then there exist constants R∗, C > 0 with C ≤ 1 such that for every ω > 0, R ∈
(0, R∗) there exist constants M, δ > 0 such that (3.3), (3.4), (3.5) hold with K = CR.

Theorem 3.7. Consider system (1.1) where all mappings gi : D×�i−1×� → �
are locally Lipschitz, and assume that there exists a smooth nondecreasing function
L ∈ C0(�+;�+) such that (1.2) holds. Then there exist a bounded k : �n → � with
k(0) = 0 being continuous at 0 ∈ �n and a constant r > 0 such that 0 ∈ �n is RGAS
for the closed-loop sampled-data system (1.1) with

(3.18)
u(t) = k(x(τi)), t ∈ [τi, τi+1),
τi+1 = τi + r exp(−w(τi)), τ0 = 0,
w(t) ∈ �+.

Define Qi ∈ �i×n with Qix = (x1, . . . , xi)
′ for i = 1, . . . , n, b1 = [1] ∈ �, bi =

(1, 0, . . . , 0)′ ∈ �i for i = 2, . . . , n, A1 = [0] ∈ �1×1, Ai = {ak,j : k, j = 1, . . . , i} ∈
�i×i for i = 2, . . . , n with ak,j = 1 if j = k − 1, k = 2, . . . , i, and ak,j = 0 if
otherwise. Let arbitrary constants K0 > 0, ωi > 0 (i = 0, . . . , n−1), arbitrary matrices
Pi ∈ �i×i(i = 1, . . . , n−1) being symmetric and positive definite, and arbitrary vectors
pi ∈ �i(i = 1, . . . , n − 1) be such that the matrices Pi(Ai + bip

′
i) + (A′

i + pib
′
i)Pi(i =

1, . . . , n − 1) are negative definite. Define ci = −(A′
i + pib

′
i)

−1(0, . . . , 0, 1)′ ∈ �i for
i = 1, . . . , n− 1. Then there exist constants r > 0, Ki > 0, Ri > 0 (i = 1, . . . , n− 1)
such that 0 ∈ �n is RGAS for the closed-loop sampled-data system (1.1) with (3.18),
where k : �n → � is defined by

(3.19) k(x) := p′iQix−Kic
′
ibi sat(ωi(xi+1 + c′iQix)),

where i = i(x) ∈ {1, . . . , n− 1} is the largest integer such that

(3.20) x′Q′
iPiQix < R2

i

and

(3.21) k(x) := −K0 sat(ω0x1) if min
l=1,...,n−1

(
x′Q′

lPlQlx−R2
l

) ≥ 0.

Theorem 3.7 contains two statements. The first statement (above (3.18)) is an
existence-type result, which guarantees the existence of a robust global sampled-data
stabilizer. The second statement (below (3.18)) is a design result which provides a
family of bounded robust global sampled-data stabilizers for (1.1). The reader should
notice that since the pairs of matrices (Ai, bi) are controllable pairs for i = 1, . . . , n−
1, it is straightforward to obtain symmetric, positive definite matrices Pi ∈ �i×i
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(i = 1, . . . , n − 1) and vectors pi ∈ �i (i = 1, . . . , n − 1) such that the matrices
Pi(Ai + bip

′
i) + (A′

i + pib
′
i)Pi (i = 1, . . . , n− 1) are negative definite.

Proof of Theorem 3.7. The proof is based on a repeated application of the
sampled-data forwarding lemma and Lemma 3.6. Notice that the subsystem ẋ1 = u
can be stabilized by the bounded sampled-data feedback

u(t) = −K0 sat (x1(τi)) , t ∈ [τi, τi+1),
τi+1 = τi +K−1

0 exp(−w(τi)), τ0 = 0,
w(t) ∈ �+,

where K0 > 0 is an arbitrary positive constant. The sampled-data forwarding lemma
is applied for j = 1, . . . , n − 1 with x ∈ �n replaced by (x1, . . . , xj)

′ ∈ �j ; y ∈ �
replaced by xj+1 ∈ �; A ∈ �n×n replaced by Aj ∈ �j×j ; b ∈ �n replaced by bj ∈ �j ;
g(d, x, u) ∈ � replaced by gj+1(d, x1, . . . , xj , u) ∈ �; f(d, x, u) ∈ �n replaced by
f(d, x, u) = (0, g2(d, x1, u), . . . , gj(d, x1, . . . , xj−1, u))

′ ∈ �j for j ≥ 2 and f(d, x, u) =
0 ∈ � for j = 1; P ∈ �n×n, p ∈ �n; c = −(A′ + pb′)−1(0, . . . , 0, 1)′ replaced
by Pj ∈ �j×j , pj ∈ �j , cj = −(A′

j + pjb
′
j)

−1(0, . . . , 0, 1)′ ∈ �j , respectively; and

k : �n → � replaced by kj : �j → � which is defined by the following equalities:
• for j ≥ 2

(3.22) kj(x1, . . . , xj) := p′iQix−Kic
′
ibi sat(ωi(xi+1 + c′iQix)),

where i = i(x1, . . . , xj−1) ∈ {1, . . . , j − 1} is the largest integer such that
(3.20) holds and

(3.23) kj(x1, . . . , xj) := −K0 sat(ω0x1) if min
l=1,...,j−1

(
x′Q′

lPlQlx−R2
l

) ≥ 0;

• for j = 1

(3.24) k1(x1) := −K0 sat(ω0x1).

By virtue of (1.2), it follows that (3.17) holds with x ∈ �n replaced by (x1, . . . , xj)
′ ∈

�j , g(d, x, u) ∈ � replaced by gj+1(d, x1, . . . , xj , u) ∈ �, f(d, x, u) ∈ �n replaced by
f(d, x, u) = (0, g2(d, x1, u), . . . , gj(d, x1, . . . , xj−1, u))

′ ∈ �j for j ≥ 2 and f(d, x, u) =
0 ∈ � for j = 1, and L ∈ C0(�+;�+) replaced by Lj ∈ C0(�+;�+), where Lj(s) =
jL(s) and L is the function involved in (1.2). Therefore, by virtue of Lemma 3.6, it
follows that there exist constants R∗

j , Cj > 0 with Cj ≤ 1 such that for every ωj > 0,
Rj ∈ (0, R∗

j ) there exist constants Mj , δj > 0 such that (3.3), (3.4), (3.5) hold with
K = Kj = CjRj , R = Rj , ω = ωj, M = Mj , and δ = δj. The proof is complete.

Remark 3.8. Notice that the proof of Theorem 3.7 guarantees that for every
G > 0, the sampled-data feedback stabilizer k : �n → � can be selected in such a
way that |k(x)| ≤ G for all x ∈ �n. To see this, first select arbitrary constants ωi > 0
(i = 0, . . . , n − 1), arbitrary matrices Pi ∈ �i×i (i = 1, . . . , n − 1) being symmetric
and positive definite, and arbitrary vectors pi ∈ �i (i = 1, . . . , n − 1) such that the
matrices Pi(Ai + bip

′
i) + (A′

i + pib
′
i)Pi (i = 1, . . . , n − 1) are negative definite. The

selection of Ki > 0, Ri > 0 (i = 1, . . . , n − 1) made in the proof of Theorem 3.7
guarantees that the constants Ri ∈ (0, R∗

i ) (i = 1, . . . , n − 1) can be selected in an
arbitrary way, where R∗

i > 0 (i = 1, . . . , n− 1) are appropriate constants. Moreover,
the inequalities Ki ≤ Ri hold for i = 1, . . . , n−1. It follows from (3.19), (3.20), (3.21)
that

(3.25) |k(x)| ≤ max

{
K0, max

i=1,...,n−1
Ri

( |pi| a−1
i + |c′ibi|

)} ∀x ∈ �n,
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where ai > 0 (i = 1, . . . , n − 1) are constants satisfying x′Q′
iPiQix ≥ a2i |Qix|2 for

all x ∈ �n. It follows from (3.25) that if K0 ≤ G and Ri ≤ G

|pi|a−1
i +|c′ibi| for i =

1, . . . , n − 1, then |k(x)| ≤ G for all x ∈ �n. Notice that we can always select
K0 ≤ G and Ri ≤ G

|pi|a−1
i +|c′ibi| for i = 1, . . . , n− 1 (K0 > 0 and Ri ∈ (0, R∗

i ) are free

parameters).

4. Illustrative examples. In this section we present two examples that illus-
trate the results of the previous section. The first example shows the application of
Theorem 3.7 to a feedforward system.

Example 4.1. We consider the three-dimensional feedforward system

(4.1)

ẋ1 = u,
ẋ2 = x1 + x1u,
ẋ3 = x2 + x2

1,
x = (x1, x2, x3)

′ ∈ �3, u ∈ �.
The solution map of system (4.1) can be explicitly found: the resulting discrete-time
system that corresponds to a constant sampling period r > 0 and input u ∈ � applied
with zero-order hold is given by the following equations:

(4.2)

x+
1 = x1 + ur,

x+
2 = x2 + (x1 + ux1)r + (u+ u2)

r2

2
,

x+
3 = x3 + (x2 + x2

1)r + (x1 + 3ux1)
r2

2
+ (u+ 3u2)

r3

6
.

However, as already noted in the introduction, system (4.1) is not included in one
of the classes of systems noted in the introduction for which there exists a feedback
design methodology that results in the design of a globally stabilizing sampled-data
feedback (notice that (4.1) is not linearizable). Other approaches for sampled-data
systems can be also applied (see [10, 22, 23, 26, 27, 41, 42, 43, 44]), but the result is
semiglobal and practical sampled-data stabilization of system (4.1).

Here we apply the step-by-step feedback design methodology described in Theo-
rem 3.7. The feedback law will be given by (3.19), (3.20), (3.21). For simplicity, we
select ω0 = ω1 = ω2 = 1 and K0 = 1. We also select

P1 = [1], p1 = [−1], P2 =

[
1 1
1 2

]
, p2 =

[ −2
−2

]
.

Using the formula ci = −(A′
i+pib

′
i)

−1(0, . . . , 0, 1)′ ∈ �i for i = 1, 2, we obtain c1 = [1]

and c2 =
[ 1/2

1

]
. The only constants that remain to be determined are R1, R2,K1,K2.

In order to determine R1,K1 > 0, we use the sampled-data forwarding lemma.
We apply the sampled-data forwarding lemma with n = 1, A = [0], b = [1], P = [1],
p = [−1] , c = [1], f(d, x, u) ≡ 0, and g(d, x, u) = x1u. Conditions (3.3), (3.4), (3.5)
are satisfied with M = K

R+K , ω = 1 for δ > 0 sufficiently small, provided that

(4.3)
R2

1−R
< K < R and R+K < 1.

Inequalities (4.3) hold with R = 3
8 and K = 1

4 . Therefore, we select R1 = 3
8 and

K1 = 1
4 .
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In order to determine R2,K2 > 0, we use again the sampled-data forwarding
lemma. We apply the sampled-data forwarding lemma with n = 2, A =

[
0 0
1 0

]
, b =

[
1
0

]
, P =

[
1 1
1 2

]
, p =

[ −2
−2

]
, c =

[
1/2
1

]
, f(d, x, u) =

[
0

x1u

]
, and g(d, x, u) = x2

1.

After some tedious calculations, we conclude that conditions (3.3), (3.4), (3.5) are

satisfied with M = K 2+(3+2
√
2)R

4R , ω = 1 for δ > 0 sufficiently small, provided that

(4.4)
4R2

1− 2
√
2R

< K < 2R
1− 2

(
2 +

√
2
)
R

R + 1
and (4 + 2

√
2)R + (3− 2

√
2)R2 < 1.

Inequalities (4.4) hold with R = K = 1
20 . Therefore, we select R2 = K2 = 1

20 . We
conclude that the sampled-data feedback law (3.18) defined by
(4.5)

k(x) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−sat(x1) if 8 |x1| ≥ 3 and 20

√
x2
2 + (x1 + x2)

2 ≥ 1,

−x1 − 1
4 sat (x2 + x1) if 8 |x1| < 3 and 20

√
x2
2 + (x1 + x2)

2 ≥ 1,

−2 (x1 + x2)− 1
40 sat

(
x3 + x2 +

1
2x1

)
if 20

√
x2
2 + (x1 + x2)

2 < 1

achieves global stabilization of system (4.1) provided that the MASP r > 0 is suf-
ficiently small. Indeed, simulations show that global stabilization of system (4.1) is
achieved with r = 0.01. However, under these conservative choices of design param-
eters, which satisfy the sufficient conditions of Theorem 3.7, the closed-loop system
shows different dynamic behaviors in different time scales. The state variables x1, x2

converge very fast, while the state variable x3 exhibits slow convergence, which lasts
about 900 time units.

Therefore, it is crucial to determine tight bounds for the range of values for
R2,K2 > 0 which guarantee global asymptotic stability. Numerical experiments show
that values higher than 0.05 for R2,K2 > 0 can guarantee global asymptotic stability
for r = 0.2. Figure 1 shows the evolution of the state variables for the closed-loop
system (4.1) with (3.18), where k is defined by
(4.6)

k(x) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−sat(x1) if 8 |x1| ≥ 3 and

√
x2
2 + (x1 + x2)

2 ≥ 1,

−x1 − 1
4 sat (x2 + x1) if 8 |x1| < 3 and

√
x2
2 + (x1 + x2)

2 ≥ 1,

−2 (x1 + x2)− 1
2 sat

(
x3 + x2 +

1
2x1

)
if
√
x2
2 + (x1 + x2)

2
< 1

with r = 0.2, w(t) = ln( 2
1+| sin(t)| ), and initial condition x1(0) = x2(0) = x3(0) = 1.

It is clear that the selection R2 = K2 = 1 guarantees good performance even when
perturbations of the sampling schedule are present. Figure 2 shows the corresponding
input behavior, and Figure 3 focuses on the evolution of the input for t ∈ [4, 8].

The second example shows that the sampled-data forwarding Lemma (Lemma
3.1) can be also applied to some nonlinear systems outside of the class of feedforward
systems.

Example 4.2. Consider the nonlinear system

(4.7)
ẋ = Ax+ bu+ f(d, x),
ẏ = xn + g(d, x),
x ∈ �n, y ∈ �, d ∈ D, u ∈ �,

where b = (1, 0, . . . , 0)′ ∈ �n, A = {ai,j : i, j = 1, . . . , n} with ai,j = 1 if j =
i − 1, i = 2, . . . , n, and ai,j = 0 if otherwise, D ⊂ �l is a nonempty compact set,
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Fig. 1. Time evolution of the state variables x1(t), x2(t), x3(t) for the closed-loop system (4.1)
with (3.18), where k is defined by (4.6) with r = 0.2, w(t) = ln( 2

1+| sin(t)| ), and initial condition

x1(0) = x2(0) = x3(0) = 1.
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Fig. 2. Time evolution of the input u(t) for the closed-loop system (4.1) with (3.18), where k is
defined by (4.6) with r = 0.2, w(t) = ln( 2

1+| sin(t)| ), and initial condition x1(0) = x2(0) = x3(0) = 1.
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Fig. 3. Time evolution of the input u(t), t ∈ [4, 8] for the closed-loop system (4.1) with (3.18),
where k is defined by (4.6) with r = 0.2, w(t) = ln( 2

1+| sin(t)| ), and initial condition x1(0) = x2(0) =

x3(0) = 1.

f : D × �n → �n, g : D × �n → � are locally Lipschitz mappings that satisfy the
following inequalities:

max { |f(d, x)| , |g(d, x)| } ≤ L1 |x| ∀(d, x) ∈ D ×B(0, ρ),(4.8)

|f(d, x)| ≤ L2 |x| ∀(d, x) ∈ D ×�n(4.9)

for certain constants L2 ≥ L1 > 0 and ρ > 0. At this point we should note the crucial
difference between (4.8), (4.9), and (3.17). While in (3.17) the nonlinearities f and g
are restricted to be locally quadratic, and in (4.8), (4.9) the nonlinearities are allowed
to have linear growth at the origin.
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We also assume the existence of a symmetric positive definite matrix P ∈ �n×n,
a constant vector p ∈ �n, and a constant q > 0 such that the matrix P (A + bp′) +
(A′ + pb′)P is negative definite and such that

(4.10) x′P (A+ bp′)x+ x′Pf(d, x) ≤ −q |x|2 ∀ (d, x) ∈ D ×�n.

Finally, we assume that

(4.11) L1 <
qa1 |c′b|

(1 + |c|) a2 |Pb| ,

where c = −(A′ + pb′)−1(0, . . . , 0, 1)′ and a2 ≥ a1 > 0 are constants satisfying

(4.12) a21x
′Px ≤ |x|2 ≤ a22x

′Px ∀x ∈ �n.

Inequalities (4.8), (4.9), (4.10), and (4.11) are the “translation” of inequalities
(3.3), (3.4), (3.5) for the case (4.7). Therefore, inequalities (4.8), (4.9), (4.10), and
(4.11) guarantee that the control strategy of driving y close to zero, while keeping the
state in a neighborhood of the set x = 0, is feasible.

We show next that for every ω,R > 0 with a2R ≤ ρ there exist constants K, r̃ > 0
such that 0 ∈ � × �n is RGAS for the closed-loop system (4.7) with

(4.13)

u(t) = k̃(x(τi), y(τi)), t ∈ [τi, τi+1),

τi+1 = τi + r̃ exp(−w(τi)), τ0 = 0,

d(t) ∈ D, w(t) ∈ �+,

where k̃ : �n ×� → � is defined by

(4.14) k̃(x, y) :=

{
p′x if x′Px ≥ R2,

p′x−Kc′b sat(ω(y + c′x)) if x′Px < R2.

Indeed, this can be shown by a direct application of the sampled-data forwarding
lemma with k(x) := p′x, arbitrary ω,R > 0 with a2R ≤ ρ, constants M,K > 0
satisfying

(4.15)
(1 + |c|)L1a2R

|c′b|2 < K <
qa1R

|Pb| |c′b| and M =
K |c′b|ω |Pb|
(1 + |c|)L1

,

and sufficiently small constant δ > 0. Notice that by virtue of (4.10) and (4.12),
inequality (3.3) is satisfied provided that K |Pb| |c′b| < qa1R (a direct consequence
of (4.15)). Moreover, since a2R ≤ ρ, it follows from (4.8) and (4.12) that inequality
(3.4) holds provided that (1 + |c|)L1a2R < K(c′b)2 (a direct consequence of (4.15)).
Finally, using the fact that a2R ≤ ρ in conjunction with (4.8), (4.10), (4.12), we
conclude that inequality (3.5) with M as defined in (4.15) holds for sufficiently small
δ > 0 provided (1 + |c|)L1 |Pb| < q |c′b| (a direct consequence of (4.11)).

The only thing that remains to be shown is that hypothesis (H) of Lemma 3.1
holds with k(x) := p′x and sufficiently small r > 0. By virtue of (4.10), we notice
that for every (x0, d, w) ∈ �n × L∞

loc(�+;D) × L∞
loc(�+;�+), the solution of ẋ =

Ax + bu + f(d, x) with x(0) = x0, u(t) = p′x(τi) satisfies the following differential
inequality for almost all t ∈ [τi, τi+1):

(4.16) V̇ (t) ≤ −2q |x(t)|2 + 2 |x(t)| |Pb| |p| |x(τi)− x(t)| ,
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where V (t) = x′(t)Px(t), τi+1 = τi + r exp(−w(τi)). By virtue of (4.11), it fol-
lows that the hypotheses of Lemma 2.3 hold for the absolutely continuous mapping
x : [τi, τi+1] → �n. Using Lemma 2.3 and inequality (4.16), we conclude that
for sufficiently small r > 0 there exists q̃ > 0 such that the differential inequality
V̇ (t) ≤ −q̃ |x(t)|2 holds for almost all t ≥ 0. Therefore, hypothesis (H) of Lemma 3.1
holds as well.

Notice that the case (4.7) includes systems which are not necessarily feedforward
systems. For example, the three-dimensional system

ẋ1 = k1d1x1 + u,

ẋ2 = k2d2x2 + x1,

ẏ = x2 + d3g(x),

x = (x1, x2)
′ ∈ �2, y ∈ �, d = (d1, d2, d3)

′ ∈ [−1, 1]3, u ∈ �,
where k1, k2 > 0 and g ∈ C1(�2;�) with g(0) = 0, is not a feedforward sys-
tem of the form (1.1). Inequalities (4.8), (4.9) hold for every ρ > 0 with L2 =
L1 = max{k1, k2,maxx∈B(0,ρ) |∇g(x)|}. Moreover, inequality (4.10) holds with P =
[ 1 1 + k2

1 + k2 (1 + k2)
2 + 1

]
, p′ = −[ 1 + S + k2 1 + S(1 + k2) ], S = 1

2 + k1 + 1
2 (1 +

k2)
2(k2 + k1)

2, q =

√
(1+k2)2+4−1−k2

2+2k2+2
√

(1+k2)2+4
.

5. Concluding remarks. To construct a globally asymptotically stabilizing
sampled-data feedback for feedforward systems subject to perturbations in the sam-
pling schedule, we have developed the recursive sampled-data feedback synthesis
tool—the sampled-data forwarding lemma, which is used to construct our main result
in Theorem 3.7.

Useful examples have shown that formulae (3.19), (3.20), (3.21) can be used in
a straightforward way in order to design a globally stabilizing sampled-data feedback
for an uncertain feedforward system of the form (1.1) under hypothesis (A2) in section
4 of [18]. However, the selection of the parameters Ki > 0, Ri > 0 (i = 1, . . . , n− 1)
involved in formulae (3.19), (3.20), (3.21) is crucial for performance: low values for
Ki > 0 will result in slow convergence of some state variables and high overshoot.

The results of the present paper in combination with the approach we intro-
duced in [21] allow us to compensate any amount of actuation or sensing delay when
controlling systems within the feedforward class using the sampled-data controllers
introduced in the present paper.

Appendix.
Proof of Lemma 3.2. Define

(A.1)
δ := −max

{
x′P (Ax+ f(d, x, u) + bu) : (d, x) ∈ D ×�n, x′Px = R2,

|u− p′x| ≤ K |c′b| } > 0.

The fact that δ as defined by (A.1) is positive is a consequence of (3.3). Clearly, by
virtue of continuity of the solution x(t), there exists τ ∈ (0, τ1] such that maxt∈[0,τ ]

x′(t)Px(t) < R2. The structure of system (3.7) guarantees that the solution of (3.7)
exists for all times τ ∈ (0, τ1] with maxt∈[0,τ ] x

′(t)Px(t) ≤ R2.
We prove by contradiction that maxt∈[0,τ1] x

′(t)Px(t) < R2. We therefore assume
that there exists τ ∈ (0, τ1] with x′(τ)Px(τ) ≥ R2. We define

(A.2) T := inf
{
t ∈ [0, τ1] : x′(t)Px(t) ≥ R2

}
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and notice that T ∈ (0, τ1]. Definition (A.2) and continuity of the solution x(t)
imply that maxt∈[0,T ] x

′(t)Px(t) = x′(T )Px(T ) = R2. Define V (t) = x′(t)Px(t) and
z(t) = y(t) + c′x(t). Notice that inequalities (3.2), (3.4) and the fact that u(t) :=
p′x(0)−Kc′b sat(ω z(0)) for all t ∈ [0, T ) imply that the following inequality holds for
almost all t ∈ [0, T ):

V̇ (t) ≤ −2x′(t)P (Ax(t) + b(p′x(t) + v) + f(d(t), x(t), p′x(t) + v))(A.3)

+ 2x′(t)P (f(d(t), x(t), p′x(0) + v)− f(d(t), x(t), p′x(t) + v))

+ 2x′(t)Pbp′(x(0)− x(t)),

where v := −Kc′b sat(ω z(0)). The differential equation (3.7), in conjunction with
maxt∈[0,T ] x

′(t)Px(t) ≤ R2 and u(t) := p′x(0) − Kc′b sat(ω z(0)), implies that there
exists a constant S > 0 such that |ẋ(t)| ≤ S for almost all t ∈ [0, T ). Consequently,
the following inequality holds for all t ∈ [0, T ]:

(A.4) |x(t) − x(0)| ≤ S t.

Using the facts that f(d, x, u) is locally Lipschitz, t ≤ T ≤ τ1 ≤ r̃, |v| ≤ K|c′b|, and
maxt∈[0,T ] x

′(t)Px(t) = x′(T )Px(T ) = R2 in conjunction with definition (A.1) and
inequalities (A.3), (A.4), we guarantee the existence of a constant L > 0 such that
the following inequality holds for almost all t ∈ [0, T ) sufficiently close to T :

(A.5) V̇ (t) ≤ −δ + L r̃.

If r̃ > 0 is sufficiently small, then inequality (A.5) implies that V̇ (t) ≤ −δ/2 for almost
all t ∈ [0, T ) sufficiently close to T . This contradicts the assumption maxt∈[0,T ] x

′(t)
Px(t) = x′(T )Px(T ) = R2. The proof is complete.

Proof of Lemma 3.4. Using the fact that c = −(A′+pb′)−1(0, . . . , 0, 1)′, we obtain
c′b �= 0. To see why c′b �= 0, notice that the definition c = −(A′ + pb′)−1(0, . . . , 0, 1)′

implies (A′ + pb′)c = −(0, . . . , 0, 1)′. Consequently, if c′b = 0, then we obtain
A′c = −(0, . . . , 0, 1)′ and (0, . . . , 0, 1)A′c = −1, which is a contradiction, since
(0, . . . , 0, 1)A′x = 0 for all x ∈ �n (notice that ai,n = 0 for all i = 1, . . . , n).

The definition c = −(A′+pb′)−1(0, . . . , 0, 1)′ implies that xn+c′Ax = −c′bp′x for
all x ∈ �n. The previous equality, in conjunction with the fact that u(t) := p′x(0)−
Kc′b sat(ω z(0)) for all t ∈ [0, τ1), implies that the following differential equation holds
for almost all t ∈ [0, τ1):
(A.6)
ż(t) = c′bp′(x(0)−x(t))+g(d(t), x(t), u(t))+c′f(d(t), x(t), u(t)) −K(c′b)2sat (ω z(0)) .

Define

(A.7)
J := max

{|g(d, x, u) + c′f(d, x, u)| : x′Px ≤ R2, d ∈ D,

|u− p′x| ≤ K |c′b|} < K(c′b)2.

Using definition (A.7) and the fact that the mappings f, g are locally Lipschitz, and
since x′(t)Px(t) < R2 for all t ≥ 0 (a consequence of Lemma 3.3), we obtain for all
t ∈ [0, τ1),

|g(d(t), x(t), u(t)) + c′f(d(t), x(t), u(t))|
≤ |g(d(t), x(t), p′x(t) + v) + c′f(d(t), x(t), k′x(t) + v)|
+ |g(d(t), x(t), p′x(0) + v)− g(d(t), x(t), p′x(t) + v)|
+ |c| |f(d(t), x(t), p′x(0) + v)− f(d(t), x(t), p′x(t) + v)|

≤ J + L |x(t)− x(0)| ,
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where v = −Kc′b sat(ω z(0)) and L > 0 is an appropriate constant. Assuming that
K(c′b)2ω r̃ < 1, integrating (A.6), and exploiting the above inequality, we conclude
that the following inequality holds for all t ∈ [0, τ1]:

(A.8) |z(t)| ≤
(
1− t

K (c′b)2 ω
max (1, ω |z(0)|)

)
|z(0)|+ t

[
Q max

0≤s≤t
|x(s)− x(0)|+ J

]
,

where Q > 0 is an appropriate constant. The differential equations (3.7) in conjunc-
tion with maxt∈[0,τ1] x

′(t)Px(t) ≤ R2 and u(t) := p′x(0)−Kc′b sat(ω z(0)) imply that
there exists a constant S > 0 such that |ẋ(t)| ≤ S for almost all t ∈ [0, τ1). Con-
sequently, inequality (A.4) holds for all t ∈ [0, τ1]. Combining (A.4), (A.8), we can
conclude that the following inequality holds for all t ∈ [0, τ1]:

(A.9) |z(t)| ≤
(
1− t

K (c′b)2 ω
max (1, ω |z(0)|)

)
|z(0)|+QS t2 + J t.

The above inequality, in conjunction with inequality (3.4) (which implies that J <
K(c′b)2), shows that the following implications hold for sufficiently small r̃ > 0:

1. If ω |z(0)| ≥ 1, then |z(t)| ≤ |z(0)| for all t ∈ [0, τ1].
2. If ω |z(0)| ≤ 1, then |z(t)| ≤ ω−1 for all t ∈ [0, τ1].

It follows that |z(t)| ≤ max( |z(0)|, ω−1) for all t ∈ [0, τ1]. Using induction, it can be
shown that

(A.10) |z(t)| ≤ max
(|z(τi)| , ω−1

)
when t ∈ [τi, τi+1] ∀i = 0, 1, 2, . . . .

Moreover, inequality (A.9) shows that the following implication holds for sufficiently
small r̃ > 0:

(A.11) If ω |z(τi)| ≥ 1, then |z(τi+1)| ≤ |z(τi)| −G (τi+1 − τi) ,

where G > 0 is an appropriate constant.

Implication (A.11) shows that (3.9) holds with T (z) := max( 0, ω|z| −1)
ωG + r̃. Indeed,

we prove this by contradiction. Suppose that there exists t > max( 0, ω|z(0)| −1)
ωG + r̃ with

|z(t)| > ω−1. Let m ∈ Z+ be the largest integer with τm ≤ t < τm+1. By virtue of
(A.10) we conclude that |z(τm)| > ω−1. Moreover, since τm+1 ≤ τm+ r̃ it follows that

τm > max( 0, ω|z(0)| −1)
ωG . Estimate (A.10) shows that |z(τi)| > ω−1 for all i = 0, . . . ,m.

Implication (A.11) gives |z(τm)| ≤ |z(0)| − τmG, which is a contradiction.
The proof is complete.
Proof of Lemma 3.5. By virtue of Lemmas 3.3 and 3.4 the solution of (3.7)

satisfies x′(t)Px(t) < R2, |z(t)| ≤ ω−1 for all t ≥ 0. Let t ≥ 0 be a time where
V (t) = M

2 z2(t) + 1
2x

′(t)Px(t) is differentiable. Let m ∈ Z+ be the largest integer
with τm ≤ t < τm+1. Using (A6) we obtain

(A.12) V̇ (t) = S1(t) + S2(t),
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where

S1(t) := −MK(c′b)2ω z2(t)−Kc′bωz(t)x′(t)Pb(A.13)

+ x′(t)P (Ax(t) + bp′x(t) + f(d(t), x(t), p′x(t)−Kc′bωz(t)))
+ Mz(t)g(d(t), x(t), p′x(t) −Kc′bωz(t))
+ Mz(t)c′f(d(t), x(t), p′x(t)−Kc′bωz(t)),

S2(t) := [Mz(t)c′b+ x′(t)Pb] p′(x(τm)− x(t))(A.14)

+ Mz(t)[g(d(t), x(t), p′x(τm)−Kc′bωz(τm))

− g(d(t), x(t), p′x(t) −Kc′bωz(t))]
+ (x′(t)P +Mz(t)c′) [f(d(t), x(t), p′x(τm)−Kc′bωz(τm))

− f(d(t), x(t), p′x(t) −Kc′bωz(t))]
+ Kc′bω [Mc′b z(t) + x′(t)Pb] (z(t)− z(τm)).

Notice that inequality (3.5) implies that

(A.15) S1(t) ≤ −δ z2(t)− δ |x(t)|2 .
Moreover, since the mappings f, g are locally Lipschitz and x′(t)Px(t) < R2, |z(t)| ≤
ω−1 for all t ≥ 0, it follows that the hypotheses of Lemma 2.3 hold on the interval
[τm, τm+1] for the absolutely continuous map (z(t), x(t)) for appropriate constants
Q,G. Therefore, for sufficiently small r̃ > 0, there exists Γ > 0 such that the
following inequality holds for all t ∈ [τm, τm+1]:

(A.16) max ( |x(t) − x(τm)| , |z(t)− z(τm)| ) ≤ Γ r̃ |(x(t), z(t))| .
Using the facts that the mappings f, g are locally Lipschitz and x′(t)Px(t) < R2,
x′(τm)Px(τm) < R2, |z(τm)| ≤ ω−1, |z(t)| ≤ ω−1 in conjunction with inequality
(A.16) and definition (A.14), we obtain

(A.17) S2(t) ≤ Γ r̃q |z(t)|2 + Γ r̃q |x(t)|2

for a certain appropriate constant q > 0. Selecting r̃ > 0 sufficiently small and using
inequalities (A.15), (A.17), we can conclude that (3.10) holds with μ = δ

2 . The proof
is complete.

Proof of Lemma 3.6. Since P ∈ �n×n is a symmetric positive definite matrix,
there exist constants a2 ≥ a1 > 0 satisfying

(A.18) a21x
′Px ≤ |x|2 ≤ a22x

′Px ∀x ∈ �n.

Since P (A+ bp′) + (A′ + pb′)P is negative definite, there exists a constant q > 0 such
that

(A.19) x′P (A+ bp′)x ≤ −q |x|2 ∀x ∈ �n.

Let C > 0 be an arbitrary number with C < qa1

|Pb||c′b| , C ≤ 1, and let R∗ > 0 be a

positive number such that

Q (R∗) a2R∗ <
q |c′b|

(1 + |c|)
(

λ q
1+|p| + |Pb|

) (
1 + |p|+ a−1

2 C |c′b|)+ (1 + |p|) |P | |c′b|
,(A.20)

Q (R∗) a2R∗ <
C(c′b)2

(1 + |c|) ((1 + |p|) a2 + C |c′b|) ,(A.21)

Q(R∗)a2R∗ <
qa1 − C |Pb| |c′b|

(1 + |p|) |P | a2 + |P |C |c′b| ,(A.22)
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where Q(R) := L((1 + |p|)a2R+R|c′b|). We claim that there exists a constant δ > 0
such that (3.3), (3.4), (3.5) hold with arbitrary ω > 0, R ∈ (0, R∗), K = CR,

M = C|c′b|ω
(1+|c|)Q(R)

|P |Q(R)a2R+|Pb|
(1+|p|)a2+C|c′b| for the case Q(R) > 0, and M = CR|Pb|2ω

4q +1 for the

case Q(R) = 0. Indeed, using (3.17), (A.18), (A.19), in conjunction with the fact that
C ≤ 1, we conclude that conditions (3.3), (3.4) with K = CR are satisfied provided
that

(1 + |p|) |P |Q(R)a22R+ (|Pb|+ |P |Q(R)a2R)C |c′b| < qa1,(A.23)

(1 + |c|) (1 + |p|)Q (R) a22R+ (1 + |c|)Q (R) a2CR |c′b| < C(c′b)2.(A.24)

Inequalities (A.23), (A.24) are direct consequences of (A.21), (A.22), and the fact
that R ≤ R∗. Finally, after tedious calculations and using (3.17), (A.18), (A.19) in
conjunction with the fact that C ≤ 1, we conclude that condition (3.5) is satisfied
provided that there exists δ > 0 such that the following inequality holds for all (x, z) ∈
�n ×�:

(M (1 + |c|) (1 + |p|)Q (R)a2R +K |P | |c′b|ωQ (R) a2R+K |c′b| |Pb|ω
+M (1 + |c|)Q (R)K |c′b|) |x| |z| −MK(c′b)2ωz2

− (q − (1 + |p|) |P |Q (R) a2R) |x|2
≤ −δ |z|2 − δ |x|2 .

The existence of sufficiently small δ > 0 such that the above inequality holds is a
direct consequence of (A.20), the facts that K = CR, R ≤ R∗, and the selections

M =
C|c′b|ω

(1+|c|)Q(R)
|P |Q(R)a2R+|Pb|
(1+|p|)a2+C|c′b| for the case Q(R) > 0 and M = CR|Pb|2ω

4q + 1 for the

case Q(R) = 0. The proof is complete.
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[44] D. Nešić and L. Grüne, Lyapunov-based continuous-time nonlinear controller redesign for
sampled-data implementation, Automatica, 41 (2005), pp. 1143–1156.
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