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a b s t r a c t

This paper studies both the full order and the reduced order dead-beat observer problem for a class of
nonlinear systems, linear in the unmeasured states. A novel hybrid observer design strategy is proposed,
with the help of the notion of strong observability in finite time. The proposed methodology is applied
for the estimation of the frequency of a sinusoidal signal. The results show that accurate estimation can
be provided even if the signal is corrupted by high frequency noise. A brief discussion of the robustness
properties of the proposed observer with respect to measurement errors is also provided.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The observer problem occupies an important place in mathe-
matical control theory. It is concerned with the estimation of un-
measured states of a dynamic control systemusing the information
of inputs and outputs. There has been a large amount of literature
on the problems of existence and design of observers (see for in-
stance [1–17] and the references therein). In this work, we focus
on nonlinear systems of the form:

ẋ(t) = A(y(t), u(t))x(t) + b(y(t), u(t))

ẏi(t) = fi(y(t), u(t)) +

n−
j=1

ci,j(y(t))xj(t), i = 1, . . . , k

x(t) = (x1(t), . . . , xn(t))′ ∈ ℜ
n,

y(t) = (y1(t), . . . , yk(t))′ ∈ ℜ
k

(x(t), y(t)) ∈ O ⊆ ℜ
n
× ℜ

k, u(t) ∈ U ⊆ ℜ
m

(1.1)

where O ⊆ ℜ
n+k is an open set, U ⊆ ℜ

m is a non-empty closed
set, A(y, u) = {ai,j(y, u), i, j = 1, . . . , n} and all mappings ai,j :

Ω ×U → ℜ (i, j = 1, . . . , n), b : Ω ×U → ℜ
n, ci,j : Ω → ℜ (i =

1, . . . , k, j = 1, . . . , n) and fi : Ω × U → ℜ (i = 1, . . . , k) are
locally Lipschitz, where Ω = {y ∈ ℜ

k
: ∃x such that (x, y) ∈ O}.

It is assumed that the component of the state vector y, also known

∗ Corresponding author. Tel.: +30 2821069183.
E-mail addresses: ikarafyl@enveng.tuc.gr (I. Karafyllis), zjiang@poly.edu

(Z.-P. Jiang).

as the output, is available for the feedback design and that the re-
maining state component x is unmeasured and is to be estimated.

Systems of the form (1.1) are termed as ‘‘systems linear in the
unmeasured state components’’ in the literature (see [18–23]).
The dynamic output feedback stabilization problem has been stud-
ied extensively in the past for this class of systems in [18–23].
Exponential observers for systems linear in the unmeasured state
components were provided in [3], under a persistency of excita-
tion condition. It should be noted that systems of the form (1.1) are
related to systems with output dependent incremental rate. For
systems with output dependent incremental rate the dynamic
high-gain approach was exploited in [24] for the solution of the
output feedback stabilization problem.

The purpose of the present work is to study the observability
properties of systems linear in the unmeasured state components
and to propose a novel observer design procedure that guarantees
features which cannot be provided by conventional observers:
we propose hybrid observers which provide exact estimation
of the unmeasured state components in finite time (dead-beat
observers). Moreover, we consider the general case where the
system evolves in an open set O and not in ℜ

n+k. It should be
noted that hybrid observers were recently proposed in [4] as
well. Moreover, dead-beat observers have been proposed in the
literature for linear systems:

• by means of sliding modes (see [8,12,25]),
• by means of delays (see [6]).

The approach of using delays for the observer designwas exploited
in [13] for a special class of nonlinear systems (with nonlinear
output injection terms) and was extended to globally Lipschitz
nonlinear systems in [11]. High-gain techniques were utilized in
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[5,15] for the design of semi-global finite-time observers for a class
of nonlinear systems.

In Section 2 of the present work, we study the observability
properties of system (1.1). The notion of strong observability
is introduced for general nonlinear systems. Conditions for the
construction of inputs which do not distinguish between events in
finite time (see [26]) for system (1.1) are proposed. In Section 3 it
is shown that under strong observability in time r > 0 for system
(1.1), it is possible to give explicit formulas for a deterministic
system (Σ) with states z(t) ∈ O and inputs y : ℜ

+
→ Ω ,

u : ℜ
+

→ U so that

z(t) = (x(t), y(t)), for all t ≥ r. (1.2)

The proposed observer (Σ) is a hybrid system which uses delays:
the history of the output is utilized in order to estimate the state
component x of system (1.1). For the overall system (1.1) with
(Σ) the classical semigroup property does not hold: however, the
weak semigroup property holds (see [27–29]). Also, the overall
system (1.1) with (Σ) is autonomous in the sense described in
[27–29]. The proposed hybrid observer relies on the minimization
of an appropriate L2 norm and is methodologically close to the
procedure used for optimization-based observers (see [1] and
references therein).

In Section 4 of the present work, we present an application
dealing with the estimation of the frequency of a sinusoidal signal.
The problem was recently studied in [30] (see also [31,32]). It
is shown that the proposed hybrid, dead-beat observer provides
robust estimation of the frequency of the measured signal. Indeed,
the observer is tested in the presence of high frequency noise
and exactly the same test of robustness with the one in [30] is
performed. The results show that the sensitivity to measurement
noise decreases as the time horizon of the minimized L2 norm
increases, i.e., as the length of the history of the output which is
utilized for the state estimation increases. This feature is expected
and it is common to optimization-based observers (see [1] and
references therein).

The robustness properties of the proposed observer with re-
spect to measurement errors are studied in detail in Section 5.
Proposition 5.1 implies that the difference of the state of system
(1.1) and the observer state satisfies the Bounded-Input Bounded-
Output (BIBO) property (statement (a) of Proposition 5.1) and the
Converging-Input Converging-Output (CICO) property (statement
(c) of Proposition 5.1) with the measurement error as input, un-
der certain hypotheses. The result is important, because the topic
of the robustness properties of observers for nonlinear systems is
rarely studied both numerically and theoretically.

Notations. Throughout this paper, we adopt the following nota-
tions:

* Let I ⊆ ℜ+ := [0, +∞) be an interval. By L∞(I;U) (L∞

loc(I;U)),
we denote the space of measurable and (locally) essentially
bounded functions u(·) defined on I and taking values in U ⊆

ℜ
m.

* By C0(A; Ω), we denote the class of continuous functions on A,
which take values in Ω .

* For a vector x ∈ ℜ
n, we denote by x′ its transpose and by |x| its

Euclidean norm. The determinant of a square matrix A ∈ ℜ
n×n

is denoted by det(A). A′
∈ ℜ

n×m denotes the transpose of the
matrix A ∈ ℜ

m×n.
* By A = diag(l1, l2, . . . , ln) we mean a diagonal matrix with
l1, l2, . . . , ln on its diagonal.

2. Strong observability

Consider an autonomous system described by ordinary differ-
ential equations of the form:

ẋ(t) = F(x(t), u(t))
x(t) ∈ D ⊆ ℜ

n, u(t) ∈ U ⊆ ℜ
m (2.1)

where D ⊆ ℜ
n is an open set, U ⊆ ℜ

m is a non-empty closed set
and the mapping F : D × U → ℜ

n is locally Lipschitz. The output
of system (2.1) is given by

y(t) = h(x(t)) (2.2)

where the mapping h : D → ℜ
k is continuous. For system (2.1)

we adopt the following notion of observability. We assume that
for every x0 ∈ D and u ∈ L∞

loc(ℜ+;U) there exists a unique solution
[0, +∞) ∋ t → x(t) = x(t, x0; u) ∈ D for (2.1) satisfying (2.1) for
almost every t ≥ 0 and x(0) = x(0, x0; u) = x0.

Definition 2.1. Consider system (2.1) with output (2.2). We say
that the input u ∈ L∞([0, r];U) strongly distinguishes the state
x0 ∈ D in time r > 0, if the following condition holds

max
t∈[0,r]

|h(x(t, x0; u)) − h(x(t, ξ ; u))| > 0,

for all ξ ∈ D with x0 ≠ ξ . (2.3)

Remark 2.2. Following the terminology in [26], Definition 2.1
implies that, if the input u ∈ L∞([0, r];U) strongly distinguishes
the state x0 ∈ D in time r > 0, then for every ξ ∈ Dwith x0 ≠ ξ the
input u ∈ L∞([0, r];U) distinguishes between the events (x0, 0)
and (ξ , 0) for system (2.1) with output (2.2) (see [26]).

For system (1.1), we assume that for every (x0, y0) ∈ O and
u ∈ L∞

loc(ℜ+;U) there exists a unique mapping [0, +∞) ∋

t → (x(t), y(t)) = (x(t, x0, y0; u), y(t, x0, y0; u)) ∈ O satisfying
(1.1) for almost every t ≥ 0 and (x(0), y(0)) = (x(0, x0, y0; u),
y(0, x0, y0; u)) = (x0, y0).
Denote by Φ(t, x0, y0; u) the transition matrix of the linear time-
varying system ẋ(t) = A(y(t), u(t))x(t) when u ∈ L∞

loc(ℜ+;U)
and y(t) = y(t, x0, y0; u) for t ≥ 0 are considered as the inputs.
Then the following fact holds for the solutions of system (1.1). It
follows directly from integration of the differential equations (1.1).

Fact I. For every (x0, y0) ∈ O and u ∈ L∞([0, r];U) the following
equations hold for all t ≥ 0:

x(t, x0, y0; u) = Φ(t, x0, y0; u)x0 + θ(t, x0, y0; u) (2.4)

p(t, x0, y0; u) = q′(t, x0, y0; u)x0 (2.5)

where f (y, u) := (f1(y, u), . . . , fk(y, u))′ and

q(t, x0, y0; u) :=

∫ t

0
Φ ′(s, x0, y0; u)C(s, x0, y0; u)ds (2.6)

θ(t, x0, y0; u) :=

∫ t

0
Φ(t, x0, y0; u)

× Φ−1(τ , x0, y0; u)b(y(τ , x0, y0; u), u(τ ))dτ(2.7)

C ′(t, x0, y0; u)

:=

c1,1(y(t, x0, y0; u)) . . . c1,n(y(t, x0, y0; u))
...

...
ck,1(y(t, x0, y0; u)) . . . ck,n(y(t, x0, y0; u))


∈ ℜ

k×n (2.8)

p(t, x0, y0; u) := y(t, x0, y0; u) − y0

−

∫ t

0
f (y(s, x0, y0; u), u(s))ds

−

∫ t

0
C ′(s, x0, y0; u)θ(s, x0, y0; u)ds. (2.9)

It is important to note at this point that all expressions involved
in (2.4)–(2.9) are evaluated by means of the output trajectory
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y(τ ) = y(τ , x0, y0; u) for τ ∈ [0, t] and the input u(τ ) for
τ ∈ [0, t]. Particularly, the transition matrix Φ(t, x0, y0; u) can
be evaluated by solving the linear matrix differential equation
d
dτ Φ(τ ) = A(y(τ ), u(τ ))Φ(τ ) for τ ∈ [0, t] with initial condition
Φ(0) = I , where I denotes the identity matrix. Similarly,
C(τ ) := C(τ , x0, y0; u) is simply C ′(τ ) := {ci,j(y(τ )), i =

1, . . . , k, j = 1, . . . , n} for τ ∈ [0, t] and θ(t) = θ(t, x0, y0; u)
can be computed by solving the linear system of differential
equations d

dτ θ(τ ) = A(y(τ ), u(τ ))θ(τ ) + b(y(τ ), u(τ )) for τ ∈

[0, t] with initial condition θ(0) = 0 ∈ ℜ
n. Finally, the

differential equations d
dτ q(τ ) = Φ ′(τ )C(τ ) and d

dτ ξ(τ ) =

(f1(y(τ ), u(τ )), . . . , fk(y(τ ), u(τ )))′ + C ′(τ )θ(τ ), for τ ∈ [0, t]
can be utilized to provide the quantities q(t) = q(t, x0, y0; u) and
p(t, x0, y0; u) = y(t) − y(0) − ξ(t).

The following proposition provides characterizations of the
class of inputs u ∈ L∞([0, r];U) which strongly distinguish the
state (x0, y0) ∈ O in time r > 0 for system (1.1). The basic idea
of Proposition 2.3 is the conversion of the observability property
to the minimization of an appropriate L2 norm. Therefore, our ap-
proach is close to the procedure used for optimization-based ob-
servers (see [1] and references therein). The proof of the following
proposition is postponed to the Appendix.

Proposition 2.3. Consider system (1.1). The following statements are
equivalent:

(a) The input u ∈ L∞([0, r];U) strongly distinguishes the state
(x0, y0) ∈ O in time r > 0.

(b) The problem

min
ξ∈B(y0)

∫ r

0

p(t, x0, y0; u) − q′(t, x0, y0; u)ξ
2 dt (2.10)

where B(y0) := {ξ ∈ ℜ
n

: (ξ , y0) ∈ O}, admits the unique
solution ξ = x0.

(c) The symmetric matrix

Q (r, x0, y0; u) :=

∫ r

0
q(t, x0, y0; u)q′(t, x0, y0; u)dt (2.11)

is positive definite. Moreover, it holds that

x0 = Q−1(r, x0, y0; u)
∫ r

0
q(t, x0, y0; u)p(t, x0, y0; u)dt. (2.12)

(d) The following implication holds:

q′(t, x0, y0; u)ξ = 0, ∀t ∈ [0, r] ⇒ ξ = 0 ∈ ℜ
n. (2.13)

The following corollary utilizes Proposition 2.3 and provides
sufficient conditions for an input u ∈ L∞([0, r];U) to strongly
distinguish the state (x0, y0) ∈ O in time r > 0 for system (1.1).

Corollary 2.4. Consider system (1.1) with k = 1 and let (x0, y0) ∈

O, u ∈ L∞([0, r];U) for which there exist t, t1, . . . , tn−1 ∈ [0, r]
such that

det




C ′(t, x0, y0; u)Φ(t, x0, y0; u)
C ′(t1, x0, y0; u)Φ(t1, x0, y0; u)

...
C ′(tn−1, x0, y0; u)Φ(tn−1, x0, y0; u)


 ≠ 0. (2.14)

Then the input u ∈ L∞([0, r];U) strongly distinguishes the state
(x0, y0) ∈ O in time r > 0. Moreover, the symmetric matrix
Q (r, x0, y0; u) defined by (2.11) is positive definite and (2.12) holds.

Proof. Suppose that k = 1 and that the input u ∈ L∞([0, r];U)
does not strongly distinguish the state (x0, y0) ∈ O in time r > 0

for system (1.1). The equivalence (a) ⇔ (d) shows that there exists
ξ ∈ ℜ

n, ξ ≠ 0 such that q′(t, x0, y0; u)ξ = 0 for all t ∈ [0, r]. It
follows that d

dt q
′(t, x0, y0; u)ξ = C ′(t, x0, y0; u)Φ(t, x0, y0; u)ξ =

0, for all t ∈ [0, r]. Consequently, we obtain:

det




C ′(t, x0, y0; u)Φ(t, x0, y0; u)
C ′(t1, x0, y0; u)Φ(t1, x0, y0; u)

...
C ′(tn−1, x0, y0; u)Φ(tn−1, x0, y0; u)


 = 0,

for all t, t1, . . . , tn−1 ∈ [0, r]. (2.15)

This contradicts (2.14). The proof is complete. �

It is convenient to exploit condition (2.15) in order to construct
inputs which do not strongly distinguish the state (x0, y0) ∈ O
in time r > 0. The following example illustrates how the results
of Proposition 2.3 and Corollary 2.4 can allow the study of the
observability properties of a nonlinear system.

Example 2.5. Consider the system

ẋ1(t) = a1(y(t))x1(t)
ẋ2(t) = a2(y(t))x2(t)
ẏ(t) = u(t) + c1(y(t))x1(t) + c2(y(t))x2(t)

x(t) = (x1(t), x2(t)) ∈ ℜ
2, y(t) ∈ ℜ, u(t) ∈ ℜ

(2.16)

where ci : ℜ → (0, +∞), ai : ℜ → ℜ, i = 1, 2 are continuously
differentiable functions. For system (2.16) we assume forward
completeness for all u ∈ L∞

loc(ℜ+; ℜ), which can be guaranteed if
the functions ai : ℜ → ℜ, i = 1, 2 are bounded from above and
the functions ci : ℜ → (0, +∞), i = 1, 2 satisfy a linear growth
condition, i.e., |ci(y)| ≤ K1 |y| + K2, i = 1, 2 for all y ∈ ℜ and for
certain constants K1, K2 ≥ 0.

By virtue of Corollary 2.4, if the input u ∈ L∞([0, r]; ℜ) does not
strongly distinguish the state (x0, y0) ∈ ℜ

3 in time r > 0, then the
following condition must hold:

c2(y0)c1(y(t, x0, y0; u))

× exp
∫ t

0
(a1(y(s, x0, y0; u)) − a2(y(s, x0, y0; u))) ds


= c1(y0)c2(y(t, x0, y0; u)), for all t ∈ [0, r]. (2.17)

Notice that in this case we have Φ(t, x0, y0; u) = diag

exp

 t
0 a1

(y(s, x0, y0; u))ds

, exp

 t
0 a2(y(s, x0, y0; u))ds


. Condition (2.17)

coincideswith condition (2.15) for n = 2, t1 = 0. By differentiating
(2.17) we obtain:

κ(y(t, x0, y0; u))ẏ(t, x0, y0; u) + (a1(y(t, x0, y0; u))
− a2(y(t, x0, y0; u))) = 0, for almost all t ∈ [0, r] (2.18)

where

κ(y) =
d
dy

ln

c1(y)
c2(y)


. (2.19)

Moreover, using (2.16) and (2.17) with x0 = (x1,0, x2,0)′ ∈ ℜ
2, it

holds:

ẏ(t, x0, y0; u) = u(t) + c2(y(t, x0, y0; u))

× exp
∫ t

0
a2(y(s, x0, y0; u))ds


x2,0 + x1,0

c1(y0)
c2(y0)


,

for almost all t ∈ [0, r]. (2.20)

If we further assume that κ(y) ≠ 0, for all y ∈ ℜ, thenwe conclude
from (2.18) and (2.20) that
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‘‘If the input u ∈ L∞([0, r]; ℜ) does not strongly distinguish the
state (x0, y0) ∈ ℜ

2
×ℜ in time r > 0with x0 = (x1,0, x2,0)′ ∈ ℜ

2

for system (2.16), then the input u ∈ L∞([0, r]; ℜ) satisfies for
almost all t ∈ [0, r]:

u(t) =
a2(y(t)) − a1(y(t))

κ(y(t))
− c2(y(t))

× exp
∫ t

0
a2(y(s))ds


x2,0 + x1,0

c1(y0)
c2(y0)


(2.21)

where y : [0, r] → ℜ is the solution of the initial value problem

ẏ(t) =
a2(y(t)) − a1(y(t))

κ(y(t))
, with y(0) = y0’’. (2.22)

Therefore, condition (2.15) has allowed us to construct inputs
which do not strongly distinguish the state (x0, y0) ∈ ℜ

3 in time
r > 0. Indeed, without additional hypotheses it is unclear that
every input u ∈ L∞([0, r]; ℜ) will strongly distinguish every
state (x0, y0) ∈ ℜ

3 in time r > 0. For example, if there exists
y∗

∈ ℜ such that a1(y∗) = a2(y∗) = 0 then the input u(t) ≡

u∗
= −c2(y∗)x2,0 − c1(y∗)x1,0 cannot distinguish between the

state (x0, y∗) = (x1,0, x2,0, y∗) ∈ ℜ
2

× ℜ and the state (ξ , y∗) =

(ξ1, ξ2, y∗) ∈ ℜ
2

× ℜ with ξ2 = x2,0 +
c1(y∗)

c2(y∗)


x1,0 − ξ1


. Indeed,

both states produce the same output response y(t) ≡ y∗ when the
constant inputu(t) ≡ u∗

= −c2(y∗)x2,0−c1(y∗)x1,0 is applied. �
We next define the notion of strongly observable systems in time
r > 0.

Definition 2.6. Consider system (2.1) with output (2.2). We say
that (2.1) is strongly observable in time r > 0 if every input
u ∈ L∞([0, r];U) strongly distinguishes every state x0 ∈ D in time
r > 0.

Remark 2.7. Proposition 2.3 guarantees that system (1.1) is
strongly observable in time r > 0, if the symmetric matrix
Q (r, x0, y0; u) defined by (2.11) is positive definite for all (x0, y0) ∈

O and u ∈ L∞([0, r];U). It is clear that observability for the lin-
ear time-invariant system ẋ = Ax + Bu, y = c ′x, where x ∈ ℜ

n,
y ∈ ℜ

k, A ∈ ℜ
n×n, B ∈ ℜ

n×m, c ∈ ℜ
k×n is equivalent to strong

observability in time r > 0 for every r > 0. In general, strong ob-
servability in time r > 0 implies observability in time r > 0 in the
sense of [26]. However, for nonlinear systems the converse state-
ment does not hold. Notice that system (2.16) of Example 2.5 is not
strongly observable in time r > 0; however, it is observable in time
r > 0 in the sense described in [26]: every input u ∈ L∞([0, r]; ℜ)
which does not satisfy (2.21) for almost all t ∈ [0, r] is an input
which distinguishes between the events (x0, y0, 0) and (ξ , y0, 0)
in time r > 0, where (x0, y0) = (x1,0, x2,0, y0) ∈ ℜ

3, (ξ , y1) =

(ξ1, ξ2, y1) ∈ ℜ
3.

3. Observer design under strong observability

In this section we utilize the results of the previous section
under the assumption of strong observability in time r > 0 for
system (1.1). More specifically, Proposition 2.3 shows that under
the following hypothesis for system (1.1):
(H1) System (1.1) is strongly observable in time r > 0.
We are in a position to define the operator:

P : L∞([0, r]; Ω) × L∞([0, r];U) → ℜ
n

where Ω = {y ∈ ℜ
k

: ∃x such that (x, y) ∈ O}. For each
(y, u) ∈ L∞([0, r]; Ω) × L∞([0, r];U), P(y, u) is defined by

P(y, u) = Φ(r, y; u)Q−1
∫ r

0
q(τ )p(τ )dτ + θ(r) (3.1)

where Φ(t, y; u) is the transition matrix of the linear system
ż(t) = A(y(t), u(t))z(t), Q =

 r
0 q(τ )q′(τ )dτ , q(τ ) =

 τ

0 Φ ′

(s, y; u)C(s)ds, C ′(τ ) := {ci,j(y(τ )), i = 1, . . . , k, j = 1, . . . ,
n}, p(τ ) = y(τ ) − y(0) −

 τ

0 f (y(s), u(s))ds −
 τ

0 C ′(s)θ(s)ds,
f (y, u) := (f1(y, u), . . . , fk(y, u))′, θ(τ ) :=

 τ

0 Φ(τ , y; u)Φ−1(s, y;
u)b(y(s), u(s))ds for all τ ∈ [0, r]. Proposition 2.3 guarantees that,
if hypothesis (H1) holds for system (1.1), then for every (x0, y0) ∈ O
and u ∈ L∞

loc(ℜ+;U) the following equality holds:

x(t, x0, y0; u) = P(δt−ry, δt−ru), for all t ≥ r (3.2)

where (δt−ry) (s) = y(t−r+s, x0, y0; u), (δt−ru) (s) = u(t−r+s)
for s ∈ [0, r].

Therefore, if hypothesis (H1) holds for system (1.1), thenwe are
in a position to provide a hybrid, dead-beat observer for system
(1.1). Given t0 ≥ 0, (z0, w0) ∈ O, we calculate (z(t), w(t)) ∈ O by
the following algorithm:
Step i: Calculation of z(t) for t ∈ [t0 + ir, t0 + (i + 1)r].

(1) Calculate z(t) for t ∈ [t0 + ir, t0 + (i + 1)r) as the
solution of ż(t) = A(w(t), u(t))z(t) + b(w(t), u(t)), ẇi(t) =

fi(w(t), u(t)) +
∑n

j=1 ci,j(w(t))zj(t) (i = 1, . . . , k), with
w(t) = (w1(t), . . . , wk(t))′ ∈ ℜ

k.
(2) Set z(t0 + (i+1)r) = P(δt0+iry, δt0+iru) andw(t0 + (i+1)r) =

y(t0 + (i+1)r), where P : C0([0, r]; Ω)× L∞([0, r];U) → ℜ
n

is the operator defined by (3.1).

For i = 0 we take (z(t0), w(t0)) = (z0, w0) (initial condition).
The proposed observer can be represented by the following system
of equations:

ż(t) = A(w(t), u(t))z(t) + b(w(t), u(t)), t ∈ [τi, τi+1)

ẇi(t) = fi(w(t), u(t)) +

n−
j=1

ci,j(w(t))xj(t),

i = 1, . . . , k, t ∈ [τi, τi+1)

z(τi+1) = P(δτiy, δτiu), w(τi+1) = y(τi+1)

τi+1 = τi + r

z(t) = (z1(t), . . . , zn(t))′ ∈ ℜ
n,

w(t) = (w1(t), . . . , wk(t))′ ∈ ℜ
k

(z(t), w(t)) ∈ O ⊆ ℜ
n
× ℜ

k.

(3.3)

Thus, from all the above results, we obtain the following corollary.

Corollary 3.1. Consider system (1.1) and assume that hypothesis
(H1) holds. Consider the unique solution (x(t), y(t), z(t), w(t)) ∈

O×O of (1.1), (3.3)with arbitrary initial condition (x0, y0, z0, w0) ∈

O × O corresponding to arbitrary input u ∈ L∞

loc(ℜ+;U). Then the
solution (x(t), y(t), z(t), w(t)) ∈ O × O of (1.1), (3.3) satisfies:

z(t) = x(t) and w(t) = y(t), for all t ≥ r. (3.4)

Proof. The solution (z(t), w(t)) ∈ O of ż(t) = A(w(t), u(t))z(t)+
b(w(t), u(t)) and ẇi(t) = fi(w(t), u(t)) +

∑n
j=1 ci,j(w(t))xj(t),

i = 1, . . . , k exists for all t ∈ [0, r) (notice that this is just a copy of
system (1.1), for which we have assumed forward completeness)
and it is bounded on the interval [0, r). Moreover, it follows from
(2.4), (2.12) and definition (3.1) that x(τ1) = x(r) = P(δ0y, δ0u) =

P(δτ0y, δτ0u). Therefore, the switching rules of system (3.3) imply
that z(τ1) = x(τ1) and w(τ1) = y(τ1). By virtue of uniqueness of
solutions of system (1.1) we obtain z(t) = x(t) and w(t) = y(t)
for all t ∈ [r, 2r). Applying trivial induction arguments we can
guarantee that (3.4) holds. �

Remark 3.2. The proposed observer (3.3) is a hybrid systemwhich
uses delays: the history of the output is utilized in order to estimate
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the state component x of system (1.1). For the overall system
(1.1) with (3.3) the classical semigroup property does not hold:
however, the weak semigroup property holds (see [27–29]). Also,
the overall system (1.1) with (3.3) is autonomous in the sense
described in [27–29]. Finally, it should be noted that by virtue of
Corollary 2.4 for the case k = 1 a sufficient condition for hypothesis
(H1) is the following condition:

‘‘For every(x0, y0) ∈ O, u ∈ L∞([0, r];U) there exist t , t1, . . . ,
tn−1 ∈ [0, r] such that (2.14) holds’’.

Next assume that the following hypothesis holds in addition to
hypothesis (H1).

(H2) There exist open sets D ⊆ ℜ
n andΩ ⊆ ℜ

k such that O = D×Ω .
Moreover, for every ξ ∈ D and for every (y, u) ∈ L∞([0, r]; Ω) ×

L∞([0, r];U), the solution z(t) of ż(t) = A(y(t), u(t))z(t) +

b(y(t), u(t)) with z(0) = ξ satisfies z(t) ∈ D for all t ∈ [0, r].
If hypothesis (H2) holds, then we can design a reduced order,
hybrid, dead-beat observer for system (1.1) of the form:

ż(t) = A(y(t), u(t))z(t) + b(y(t), u(t)), t ∈ [τi, τi+1)

z(τi+1) = P(δτiy, δτiu)
τi+1 = τi + r

z(t) = (z1(t), . . . , zn(t))′ ∈ D ⊆ ℜ
n

(3.5)

where P : L∞([0, r]; Ω) × L∞([0, r];U) → ℜ
n is the operator

defined by (3.1).

Corollary 3.3. Consider system (1.1) and assume that hypotheses
(H1), (H2) hold. Consider the unique solution (x(t), y(t), z(t)) ∈

D×Ω×D of (1.1), (3.5)with arbitrary initial condition (x0, y0, z0) ∈

D × Ω × D corresponding to arbitrary input u ∈ L∞

loc(ℜ+;U). Then
the solution (x(t), y(t), z(t)) ∈ D × Ω × D of (1.1), (3.5) satisfies:

z(t) = x(t), for all t ≥ r. (3.6)

Sketch of Proof. The proof is exactly the same as the proof of
Corollary 3.1. The only difference is that hypothesis (H2) guaran-
tees that the solution z(t) ∈ D of ż(t) = A(y(t), u(t))z(t) +

b(y(t), u(t)) exists for all t ∈ [0, r) and it is bounded on the in-
terval [0, r). �

The following example illustrates how Corollary 3.3 can be applied
for the dead-beat hybrid observer design of nonlinear systems.

Example 3.4. Consider the system

ẋ(t) = a(y(t), u(t))x(t)
ẏ(t) = f (y(t), u(t)) + c(y(t))x(t)
x(t) ∈ D, y(t) ∈ Ω, u(t) ∈ U

(3.7)

where D = ℜ or D = (0, +∞), Ω ⊆ ℜ is an open set, U ⊆ ℜ

is a closed non-empty set, a : Ω × U → ℜ, f : Ω × U → ℜ,
c : Ω → ℜ are continuously differentiable mappings satisfying
the following hypothesis:
(H3) dc

dy (y)f (y, u) ≠ 0, for all (y, u) ∈ Ω × U with c(y) = 0.
We also assume that for every (x0, y0) ∈ D × Ω and u ∈ L∞

loc
(ℜ+;U) there exists a unique mapping [0, +∞) ∋ t →

(x(t), y(t)) = (x(t, x0, y0; u), y(t, x0, y0; u)) ∈ D × Ω sat-
isfying (3.7) for almost every t ≥ 0. It is clear from (3.7),
the fact that D = ℜ or D = (0, +∞) and the integral for-
mula x(t) = x(0) exp

 t
0 a(y(s), u(s))ds


that hypothesis (H2)

holds. Moreover, hypothesis (H3) and Corollary 2.4 guarantee that
system (3.7) is strongly observable in time r > 0, for every
r > 0. Indeed, notice that det


C ′(t, x0, y0; u)Φ(t, x0, y0; u)


=

c(y(t, x0, y0; u)) exp
 t

0 a (y(s, x0, y0; u), u(s)) ds

. Let r > 0

be arbitrary. We claim that there exists t ∈ [0, r] such that
det


C ′(t, x0, y0; u)Φ(t, x0, y0; u)


≠ 0, i.e., the hypotheses

of Corollary 2.4 hold for every (x0, y0) ∈ D × Ω and u ∈

L∞

loc(ℜ+;U). Notice that if we assume the contrary (i.e., det([C ′

(t, x0, y0; u)Φ(t, x0, y0; u)]) = 0 for all t ∈ [0, r]), then we
must have c(y(t, x0, y0; u)) = 0 for all t ∈ [0, r]. Consequently,
we must have d

dt c(y(t, x0, y0; u)) = 0 for almost all t ∈ (0, r),
which combinedwith (3.7) gives dc

dy (y(t, x0, y0; u))f (y(t, x0, y0; u),
u(t)) = 0 for almost all t ∈ (0, r). The previous conclusion is in
complete contradiction with hypothesis (H3).
Using the formulas Φ(t, y, u) = exp

 t
0 a(y(s), u(s))ds


, q(τ ) = τ

0 c(y(s)) exp
 s

0 a(y(w), u(w))dw

ds, p(τ ) = y(τ ) − y(0) − τ

0 f (y(s), u(s))ds, Q =
 r
0

 τ

0 c(y(s)) exp
 s

0 a(y(w), u(w))

dw

ds
2
dτ , we conclude that the system:

ż(t) = a(y(t), u(t))z(t), t ∈ [τi, τi+1)

z(τi+1) = P(δτiy, δτiu)
τi+1 = τi + r

(3.8)

where, P(y, u) (see Box I), is a dead-beat reduced order observer
for system (3.7). �

Weend this section by providing a discussion for the casewhere
O = ℜ

n
× ℜ

k, the matrix A(y, u) is constant, i.e., A(y, u) ≡ A ∈

ℜ
n×n, and the matrix C ∈ ℜ

n×k defined by (2.8) is constant. In this
case, system (1.1) takes the form

ẋ(t) = Ax(t) + b(y(t), u(t))

ẏ(t) = C ′x(t) + f (y(t), u(t))

x(t) ∈ ℜ
n, y(t) ∈ ℜ

k, u(t) ∈ U ⊆ ℜ
m

(3.10)

where f (y, u) := (f1(y, u), . . . , fk(y, u))′. Strong observability in
(arbitrary) time r > 0 is guaranteed if the pair of matrices (A, C ′)
is observable. Notice that system (3.10) is a linear time-invariant
system with nonlinear output injection terms. In this case, the
mapping P : L∞([0, r]; Ω) × L∞([0, r];U) → ℜ

n defined by (3.1)
is expressed by the formula

P(y, u) := S
∫ r

0

∫ t

0
exp(A′s)ds


× C


y(t) − y(0) −

∫ t

0


f (y(s), u(s))

−

∫ r

s
C ′ exp (A(s − τ)) b(y(τ ), u(τ ))dτ


ds

dt (3.11)

where

S := exp (Ar)
∫ r

0

∫ t

0
exp(A′s)ds



× CC ′

∫ t

0
exp(As)ds


dt
−1

. (3.12)

A standard Luenberger-type reduced order observer (see [10,26])
for system (3.10)would be a systemof the form ż = (A+LC ′)z(t)+
b(y(t), u(t)) + Lf (y(t), u(t)), x̂(t) = z(t) − Ly(t), where L ∈

ℜ
n×k is a matrix which guarantees that the matrix (A + LC ′) ∈

ℜ
n×n is Hurwitz and x̂(t) is the state estimate. The reduced order

observer (3.5) is a completely different observer and is based on a
completely different philosophy. A comparison between the two
observers can be made:

• Observer (3.5) is a dead-beat observer, which guarantees
zero estimation error after r time units. Fast convergence of
the estimation error for the Luenberger-type reduced order
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P(y, u) = exp
∫ r

0
a(y(s), u(s))ds

  r
0


y(τ ) − y(0) −

 τ

0 f (y(s), u(s))ds
  τ

0 c(y(s)) exp
 s

0 a(y(w), u(w))dw

ds

dτ r

0

 τ

0 c(y(s)) exp
 s

0 a(y(w), u(w))dw

ds
2

dτ
(3.9)

Box I.

observer would mean that the eigenvalues of the matrix (A +

LC ′) ∈ ℜ
n×n have large real parts, which means a ‘‘large’’ gain

matrix L ∈ ℜ
n×k and sensitivity with respect to measurement

errors. The same sensitivity to measurement errors is noticed
for the dead-beat reduced order observer (3.5), if r is made very
small (see following section).

• The matrix S ∈ ℜ
n×n defined by (3.12) can be computed off-

line. However, for large scale systems the integrations involved
in the operator P : L∞([0, r]; Ω) × L∞([0, r];U) → ℜ

n

defined by (3.11) may have a high computational cost. On
the other hand, the implementation of the Luenberger-type
reduced order observer is straightforward even for large scale
systems.

In general, the implementation of the dead-beat hybrid ob-
server (3.3) requires the on-line solution of 2n2

+ 2n + nk + 2k
differential equations as well as the solution of a system of n lin-
ear algebraic equations. This may demand a high computational
effort when n is large (large scale systems). This is a disadvantage
of the proposed observer (3.3), which must be taken into account
for practical implementation purposes.

4. Applications

This section is devoted to the study of an important application:
the robust estimation of the frequencyω > 0 of a sinusoidal signal
y(t) = A sin (ωt + ϕ). The problem can be cast as an observer
problem for the following system:

ẏ(t) = x1(t), ẋ1(t) = x2(t)y(t), ẋ2(t) = 0
(x1(t), x2(t), y(t)) ∈ O

(4.1)

where O :=

(x1, x2, y) ∈ ℜ

3
: y2 + x21 > 0, x2 < 0


and x2(t) =

−ω2. It should benoticed that system (4.1) is forward complete and
satisfies hypothesis (H1) for every r > 0. Indeed, only initial states
on the manifold y = x1 = 0 can give identical output responses.
The results of the previous section can be applied in order to give
the hybrid full order observer:

ẇ(t) = z1(t), ż1(t) = z2(t)w(t), ż2(t) = 0
(z1(t), z2(t), w(t)) ∈ O, for t ∈ [τi, τi+1) (4.2)

z1(τi+1) = 31−1
∫ τi+1

τi

φ2(t)dt −

∫ τi+1

τi

y(τ )dτ

×

∫ τi+1

τi

(t − τi)φ(t)dt
∫ τi+1

τi

(y(t) − y(τi))(t − τi)dt

+ 1−1

r3
∫ τi+1

τi

y(τ )dτ − 3
∫ τi+1

τi

(t − τi)φ(t)dt


×

∫ τi+1

τi

(y(t) − y(τi))φ(t)dt (4.3)

z2(τi+1) = −31−1
∫ τi+1

τi

(t − τi)φ(t)dt

×

∫ τi+1

τi

(y(t) − y(τi))(t − τi)dt + r31−1

×

∫ τi+1

τi

(y(t) − y(τi))φ(t)dt (4.4)

w(τi+1) = y(τi+1)
τi+1 = τi + r (4.5)

Fig. 1. Estimated frequency from formula (4.4) with r = 1, τi = 0, f = 10 as a
function of the phase angle ϕ.

Fig. 2. Estimated frequency from formula (4.4) with r = 1, τi = 0, f = 100 as a
function of the phase angle ϕ.

with φ(t) =
 t
τi

 s
τi
y(l)dl


ds and 1 = r3

 τi+1
τi

φ2(t)dt −

3
 τi+1

τi
(t − τi)φ(t)dt

2
. It should be noted that hypothesis (H2)

does not hold for system (4.1). The frequency ω is estimated by
means of the formula ω̂ =

√
−z2(t).

We assume next that the measured signal is corrupted by high
frequency noise, i.e.,
y(t) = A sin (ωt + ϕ) + a sin(ft). (4.6)
Exactly the same test of robustness as the one in [30] is performed:
the parameters are chosen to be A = 2, a = 0.2,ω = 3. Three cases
are considered for the frequency of the noise: f = 10, f = 100 and
f = 1000.
The effectiveness of formula (4.4) with r = 1, τi = 0 is shown
in Figs. 1–3 as a function of the phase angle ϕ. It is shown that
the greatest estimation error is 6.6%, 1.3% and 0.083% for the cases
f = 10, f = 100 and f = 1000, respectively. The accuracy of the
estimation is similar to the one obtained in [30], where the steady
state estimation error was 10%, 1% and 0.1% for the cases f = 10,
f = 100 and f = 1000, respectively. It should be noted that the
estimated frequency for the hybrid observer is provided only after
r = 1 s, while in [30] at least 5 s are needed in order to obtain an
accurate estimate for the frequency.
However, if larger values for r > 0 are used, then the accuracy
of the estimation can be increased significantly. Fig. 4 shows the
estimated frequency from formula (4.4)with τi = 0 as a function of
r for the case f = 10. The phase angle was selected to be ϕ = 1.9:
this is the value of the phase angle that the largest error of the
estimation occurs (see also Fig. 1). For r = 3 the estimation error
is 0.066%, i.e., it is 100 times less than the error obtained for r = 1.
Finally, it should be noted that the full order observer (4.2)–(4.5)
can be used for system (4.1) even if the open set O is defined to
be O :=


(x1, x2, y) ∈ ℜ

3
: y2 + x21 > 0


. This is the case studied

in [33].
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Fig. 3. Estimated frequency from formula (4.4) with r = 1, τi = 0, f = 1000 as a
function of the phase angle ϕ.

Fig. 4. Estimated frequency from formula (4.4) with ϕ = 1.9, τi = 0, f = 10 as a
function of r .

5. Robustness issues

In this section, we discuss briefly the robustness properties of
the proposed observer. We focus on the case where both hypothe-
ses (H1), (H2) are satisfied with D = ℜ

n, Ω = ℜ
k (although the

same discussion can be applied to systems satisfying only hypoth-
esis (H1)). It should be noted that a systematic study of the robust-
ness properties of observers for nonlinear systems is rare and the
topic is completely ‘‘untouched’’.

The previous application showed (numerically) that the pro-
posed observermay be robust tomeasurement errors. Bymeasure-
ment error wemean a measurable and locally essentially bounded
input e : ℜ+ → ℜ

k which corrupts the output values that are fed
to the observer, i.e., the observer is described by the equations:

ż(t) = A(ỹ(t), u(t))z(t) + b(ỹ(t), u(t)), t ∈ [τi, τi+1)

z(τi+1) = P(δτi ỹ, δτiu)
τi+1 = τi + r

z(t) = (z1(t), . . . , zn(t))′ ∈ ℜ
n

(5.1)

where P : L∞([0, r]; ℜ
k) × L∞([0, r];U) → ℜ

n is the operator
defined by (3.1) and

ỹ(t) = y(t) + e(t), ∀t ≥ 0. (5.2)

First of all it should be noted that the dead-beat property can-
not be guaranteed under the presence of measurement errors.
However, different robustness properties can hold under appro-
priate assumptions. Taking into account the formula z(τi+1) =

P(δτi ỹ, δτiu) = P(δτiy + δτie, δτiu) for all i ≥ 0 and Corollary 3.3,
which guarantees that x(τi+1) = P(δτiy, δτiu) for all i ≥ 0, we con-
clude that the observer error induced by themeasurement error at
t = τi+1 (i ≥ 0) will satisfy:

|z(τi+1) − x(τi+1)| =
P(δτiy + δτie, δτiu) − P(δτiy, δτiu)

 ,
for all i ≥ 0. (5.3)

At this point, a pair of hypotheses is introduced in order to analyze
further the time evolution of the observer error.

(R1) For every (x0, y0) ∈ ℜ
n
× ℜ

k and u ∈ L∞(ℜ+;U), the unique
solution (x(t), y(t)) ∈ ℜ

n
× ℜ

k of (1.1), with initial condition
(x0, y0) ∈ ℜ

n
× ℜ

k corresponding to input u ∈ L∞(ℜ+;U) satisfies
supt≥0 |y(t)| + supt≥0 |x(t)| < +∞.

(R2) The operator L∞([0, r]; ℜ
k)×L∞([0, r];U)(y, u) → P(y, u) ∈

ℜ
n is completely continuous with respect to y ∈ L∞([0, r]; ℜ

k),
i.e., for every pair of bounded sets S ⊂ L∞([0, r]; ℜ

k), V ⊆

L∞([0, r];U) the image set P(S × V ) ⊂ ℜ
n is bounded and for every

ε > 0 there exists δ > 0 such that
P(y, u) − P(ŷ, u)

 < ε for every
y, ŷ ∈ S, u ∈ V with supt∈[0,r]

y(t) − ŷ(t)
 < δ.

Hypothesis (R1) imposes restrictions on the dynamic behavior
of system (1.1). On the other hand, hypothesis (R2) is a continuity
hypothesis which can be guaranteed easily for certain cases. A
case where hypothesis (R2) holds is the case where for every pair
of bounded sets S ⊂ L∞([0, r]; ℜ

k), V ⊆ L∞([0, r];U) there
exists a > 0 such that det(Q ) ≥ a for all y ∈ S, u ∈ V ,
where Q =

 r
0 q(τ )q′(τ )dτ , q(τ ) =

 τ

0 Φ ′(s, y; u)C(s)ds, C ′(τ ) :=

{ci,j(y(τ )), i = 1, . . . , k, j = 1, . . . , n} and Φ(t, y; u) is the
transition matrix of the linear system ż(t) = A(y(t), u(t))z(t).

Another thing that should be noted here is that the estima-
tion of the state of system (1.1) under hypothesis (R1) cannot be
performed in general by means of a high-gain observer (see [7]).
Indeed, although the subsystem ẋ(t) = A(y(t), u(t))x(t) +

b(y(t), u(t)) is globally Lipschitz when (R1) holds and a bounded
input u ∈ L∞(ℜ+;U) is applied, we are not aware of the Lip-
schitz constant of the system (since we do not assume knowl-
edge of supt≥0 |y(t)| < +∞), which in general will depend on
the initial conditions (x0, y0) ∈ ℜ

n
× ℜ

k and the applied input
u ∈ L∞(ℜ+;U).
Using hypotheses (R1), (R2), we are in a position to show the fol-
lowing robustness result.

Proposition 5.1. Consider system (1.1) for which hypotheses (H1),
(H2) hold with D = ℜ

n, Ω = ℜ
k. Moreover, assume that

hypotheses (R1), (R2) hold as well. Then

(a) for every (x0, y0, z0) ∈ ℜ
n
× ℜ

k
× ℜ

n, (u, e) ∈ L∞(ℜ+;U) ×

L∞(ℜ+; ℜ
k) the solution (x(t), y(t), z(t)) ∈ ℜ

n
× ℜ

k
× ℜ

n of
(1.1), (5.1), (5.2)with initial condition (x0, y0, z0) ∈ ℜ

n
×ℜ

k
×ℜ

n

corresponding to inputs (u, e) ∈ L∞(ℜ+;U) × L∞(ℜ+; ℜ
k)

satisfies supt≥0 |z(t) − x(t)| < +∞,
(b) for every (x0, y0, z0) ∈ ℜ

n
× ℜ

k
× ℜ

n, u ∈ L∞(ℜ+;U) and
ε > 0 there exists δ > 0 such that for every e ∈ L∞(ℜ+; ℜ

k)with
supt≥0 |e(t)| < δ the solution (x(t), y(t), z(t)) ∈ ℜ

n
×ℜ

k
×ℜ

n

of (1.1), (5.1), (5.2)with initial condition (x0, y0, z0) ∈ ℜ
n
×ℜ

k
×

ℜ
n corresponding to inputs (u, e) ∈ L∞(ℜ+;U) × L∞(ℜ+; ℜ

k)
satisfies supt≥r |z(t) − x(t)| < ε,

(c) for every (x0, y0, z0) ∈ ℜ
n

× ℜ
k

× ℜ
n, (u, e) ∈ L∞(ℜ+;U)

× L∞(ℜ+; ℜ
k) with limt→+∞ |e(t)| = 0, the solution (x(t),

y(t), z(t)) ∈ ℜ
n

× ℜ
k

× ℜ
n of (1.1), (5.1), (5.2) with initial

condition (x0, y0, z0) ∈ ℜ
n

× ℜ
k

× ℜ
n corresponding to

inputs (u, e) ∈ L∞(ℜ+;U) × L∞(ℜ+; ℜ
k) satisfies limt→+∞

|z(t) − x(t)| = 0.

Proof. Let (x0, y0, z0) ∈ ℜ
n

× ℜ
k

× ℜ
n, (u, e) ∈ L∞(ℜ+;U) ×

L∞(ℜ+; ℜ
k) be given and consider the solution (x(t), y(t), z(t)) ∈

ℜ
n
×ℜ

k
×ℜ

n of (1.1), (5.1), (5.2)with initial condition (x0, y0, z0) ∈

ℜ
n

× ℜ
k

× ℜ
n corresponding to inputs (u, e) ∈ L∞(ℜ+;U) ×

L∞(ℜ+; ℜ
k). By virtue of hypothesis (R1) we have ‖y‖ =

supt≥0 |y(t)| < +∞ and ‖x‖ = supt≥0 |x(t)| < +∞. The proof is
based on the following fact, which exploits the fact that A(y, u) =

{ai,j(y, u), i, j = 1, . . . , n} and all mappings ai,j : ℜ
k
× U → ℜ

(i, j = 1, . . . , n), b : ℜ
k
× U → ℜ

n, are locally Lipschitz. Its proof
is standard and is omitted.
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Fact. There exist non-decreasing functions κ : ℜ+ → ℜ+ and
R : ℜ+ → ℜ+ such that

|x(t) − z(t)| ≤ [|x(τi) − z(τi)| + r ‖e‖ R (s)] exp (rκ (s)) ,

∀t ∈ (τi, τi+1) (5.4)

where s := ‖y‖ + ‖e‖ + ‖u‖ + ‖x‖, ‖y‖ = supt≥0 |y(t)| < +∞,
‖x‖ = supt≥0 |x(t)| < +∞, ‖u‖ = supt≥0 |u(t)| < +∞ and
‖e‖ = supt≥0 |e(t)| < +∞.
By virtue of hypothesis (R2),which implies that the image set P(S×
V ) ⊂ ℜ

n is bounded, where S ⊂ L∞([0, r]; ℜ
k) is the bounded set

of measurable and essentially bounded functions z : [0, r] → ℜ
k

with supt≥0 |z(t)| ≤ ‖y‖ + ‖e‖ and V ⊆ L∞([0, r];U) is the
bounded set of measurable and essentially bounded functions v :

[0, r] → U with supt≥0 |v(t)| ≤ ‖u‖, there exists K ≥ 0 such thatP(δτiy + δτie, δτiu)
 ≤ K and

P(δτiy, δτiu)
 ≤ K , for all i ≥ 0.

Consequently, we obtain from (5.3):

|z(τi+1) − x(τi+1)| ≤ 2K , for all i ≥ 0. (5.5)

Combining (5.4) and (5.5)we can conclude that supt≥0 |z(t) − x(t)|
< +∞.
Inequality (5.4) implies that for every ε > 0 there exists δ1 ∈

(0, ε) such that |x(t) − z(t)| < ε for all t ∈ (τi, τi+1), provided
that ‖e‖ < δ1 and |z(τi) − x(τi)| < δ1. Moreover, hypothesis
(R2) and (5.3) implies the existence of δ2 ∈ (0, δ1) such that
|z(τi+1) − x(τi+1)| < δ1, for all i ≥ 0, provided that ‖e‖ <
δ2. Combining the two previous inequalities, we conclude that
|x(t) − z(t)| < ε for all t ≥ r , provided that ‖e‖ < δ2. On the other
hand, if limt→+∞ |e(t)| = 0 then there exists i ≥ 0 sufficiently
large such that supt≥τi

|e(t)| < δ2. The previous inequalities imply
that |x(t) − z(t)| < ε for all t ≥ τi + r and since ε > 0 is arbitrary
we conclude that limt→+∞ |z(t) − x(t)| = 0.
The proof is complete. �

Remark 5.2. It should be noted that if A(y, u) = A(u), then there
is no need to assume that supt≥0 |x(t)| < +∞. Therefore, in this
case the conclusions of Proposition 5.1 hold if hypothesis (R1) is
replaced by the following weaker hypothesis:
(R3) For every (x0, y0) ∈ ℜ

n
× ℜ

k and u ∈ L∞(ℜ+;U), the unique
solution (x(t), y(t)) ∈ ℜ

n
× ℜ

k of (1.1), with initial condition
(x0, y0) ∈ ℜ

n
× ℜ

k corresponding to input u ∈ L∞(ℜ+;U) satisfies
supt≥0 |y(t)| < +∞.

Example 5.3. Consider system (3.7) with D = ℜ, Ω = ℜ,
U = ℜ, which was studied in Example 3.4. Here, we assume
that hypothesis (R1) holds for system (3.7) and that c(y) > 0
for all y ∈ ℜ. Therefore, hypothesis (H3) holds automatically.
Moreover, for every pair of bounded sets S ⊂ L∞([0, r]; ℜ), V ⊆

L∞([0, r];U), there exists M > 0 such that supt∈[0,r] |y(t)| ≤ M
and supt∈[0,r] |u(t)| ≤ M for all (y, u) ∈ S × V . Using the fact that
the functions a : Ω × U → ℜ, f : Ω × U → ℜ, c : Ω → ℜ are
locally Lipschitz and that the denominator in (3.9) satisfies∫ r

0

∫ τ

0
c(y(s)) exp

∫ s

0
a(y(w), u(w))dw


ds
2

dτ ≥
r3

3
µ2,

where µ := min
|y|≤M

c(y) exp


min

|y|≤M,|u|≤M
s∈[0,r]

(s a(y, u))


> 0

it is straightforward to show that hypothesis (R2) holds for the
mapping P(y, u) defined by (3.9).

Therefore, Proposition 5.1 guarantees the BIBO and CICO prop-
erties for the output Y (t) = z(t) − x(t) from the input e ∈

L∞(ℜ+; ℜ) for system (3.7) and the dead-beat hybrid observer

ż(t) = a(y(t) + e(t), u(t))z(t), t ∈ [τi, τi+1)

z(τi+1) = P(δτiy + δτie, δτiu)
τi+1 = τi + r

(5.6)

where P(y, u) is defined by (3.9). �

6. Concluding remarks

In this work, a novel hybrid strategy has been developed
for solving the dead-beat observer design problem for a class
of nonlinear systems with unmeasured states appearing linearly
in the differential equations. To this end, the notion of strong
observability of a nonlinear control system is introduced and
utilized. The proposedmethodology is applied for the estimation of
the frequency of a sinusoidal signal. The results show that accurate
estimates can be provided even if the signal is corrupted by high
frequency noise. The results can be applied to processes, which
operate only for a finite time (see the example of the batch reactor
in [34]).

Future work can shed new light to the problem of dynamic
output feedback stabilization, already studied in [18–23]. The
dead-beat feature of the proposed observer implies that any static
feedback stabilizer for (1.1) can be used in conjunction with the
hybrid dead-beat observer (3.3), provided that the inputs produced
by the applied feedback can distinguish all states in finite time
and that the solution does not blow up during the initial transient
period. Another direction for future work is the application of the
hybrid, dead-beat observer to systems of mathematical biology:
the chemostat model (see [35]) takes the form of system (1.1),
when the nutrient concentration is measured. Preliminary results
in this research direction can be found in [36].
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Appendix

Proof of Proposition 2.3. Weprove the implications (a)⇔ (b), (b)
⇔ (c) and (c) ⇔ (d).
(a) ⇒ (b) The proof of this implication will be made by
contradiction. Suppose that the input u ∈ L∞([0, r];U) strongly
distinguishes the state (x0, y0) ∈ O in time r > 0. Notice that Fact I
and definitions (2.6)–(2.9) imply that problem (2.10) is always
solvable and always admits the solution ξ = x0 with

0 =

∫ r

0

p(t, x0, y0; u) − q′(t, x0, y0; u)x0
2 dt

= min
ξ∈B(y0)

∫ r

0

p(t, x0, y0; u) − q′(t, x0, y0; u)ξ
2 dt. (A.1)

Consequently, the negation of (b) is the following statement:

‘‘Problem (2.10) admits the solution ξ = x1 ∈ ℜ
n with x1 ≠ x0

and (x1, y0) ∈ O’’.

Therefore, we assume that the above statement holds. By virtue of
(A.1) we must have 0 =

 r
0

p(t, x0, y0; u) − q′(t, x0, y0; u)x1
2 dt .

Continuity of the mappings t → p(t, x0, y0; u) and t →

q(t, x0, y0; u) implies that the following statement holds:

‘‘there exists x1 ≠ x0 with (x1, y0) ∈ O such that p(t, x0,
y0; u) = q′(t, x0, y0; u)x1 for all t ∈ [0, r]’’.

The above statement in conjunction with definitions (2.6), (2.7),
(2.9) shows that (by direct differentiation):

d
dt

y(t, x0, y0; u) = f (y(t, x0, y0; u), u(t)) + C ′(t, x0, y0; u)

× (Φ(t, x0, y0; u)x1 + θ(t, x0, y0; u))
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where f (y, u) := (f1(y, u), . . . , fk(y, u))′ and

d
dt

((Φ(t, x0, y0; u)x1 + θ(t, x0, y0; u)))

= A(y(t, x0, y0; u), u(t))((Φ(t, x0, y0; u)x1
+ θ(t, x0, y0; u))) + b(y(t, x0, y0; u), u(t))

for almost all t ∈ [0, r]. Consequently, uniqueness of solutions for
(1.1) implies that x(t, x1, y0; u) = Φ(t, x0, y0; u)x1+θ(t, x0, y0; u)
and y(t, x1, y0; u) = y(t, x0, y0; u) for all t ∈ [0, r]. Hence, it holds
that:

‘‘there exists x1 ≠ x0 with (x1, y0) ∈ O such that y(t, x1,
y0; u) = y(t, x0, y0; u) for all t ∈ [0, r]’’.

The above statement contradicts the assumption that the input
u ∈ L∞([0, r];U) strongly distinguishes the state (x0, y0) ∈ O in
time r > 0.
(b) ⇒ (a) Again the proof of this implication will be made by
contradiction. Suppose that problem (2.10) admits the unique
solution ξ = x0.
Assume that the input u ∈ L∞([0, r];U) does not strongly
distinguish the state (x0, y0) ∈ O in time r > 0. This implies that

‘‘there exists x1 ∈ ℜ
n with x1 ≠ x0 and (x1, y0) ∈ O such that

y(t, x1, y0; u) = y(t, x0, y0; u) for all t ∈ [0, r]’’.

The reader should notice that the y-components of the different
initial states (x0, y0) ∈ O and (x1, y0) ∈ O which produce
identical outputs for t ∈ [0, r], necessarily coincide. By virtue of
Fact I and definitions (2.6)–(2.9) it follows that p(t, x0, y0; u) =

q′(t, x0, y0; u)x1 for all t ∈ [0, r]. Hence, we must have:

0 =

∫ r

0

p(t, x0, y0; u) − q′(t, x0, y0; u)x1
2 dt.

The above equality shows that x1 ∈ ℜ
n with x1 ≠ x0 and (x1, y0) ∈

O is a solution of problem (2.10), which contradicts the uniqueness
of the solution for problem (2.10).
(b) ⇒ (c) Again the proof of this implication will be made by
contradiction. Suppose that problem (2.10) admits the unique
solution ξ = x0. Notice that the objective function for problem
(2.10) is the quadratic function:

R(ξ) :=

∫ r

0

p(t, x0, y0; u) − q′(t, x0, y0; u)ξ
2 dt

=

∫ r

0
|p(t, x0, y0; u)|2 dt

− 2
∫ r

0
p′(t, x0, y0; u)q′(t, x0, y0; u)dtξ

+ ξ ′Q (r, x0, y0; u)ξ (A.2)

whereQ (r, x0, y0; u) is defined by (2.11) and forwhich it holds that

R(ξ) = R(x0) + 2
[
−

∫ r

0
q(t, x0, y0; u)p(t, x0, y0; u)dt

+Q (r, x0, y0; u)x0

′

(ξ − x0) + (ξ − x0)′

×Q (r, x0, y0; u)(ξ − x0). (A.3)

Since ξ = x0 is a solution of problem (2.10) and since O is open the
above equality shows that we must necessarily have∫ r

0
q(t, x0, y0; u)p(t, x0, y0; u)dt = Q (r, x0, y0; u)x0. (A.4)

On the other hand assume that statement (c) does not hold,
i.e., assume that the symmetric and positive semidefinite matrix

Q (r, x0, y0; u) :=
 r
0 q(t, x0, y0; u)q′(t, x0, y0; u)dt is not positive

definite. Therefore there exists ζ ∈ ℜ
n, ζ ≠ 0 such that 0 =

ζ ′Q (r, x0, y0; u)ζ . It follows from (A.3), (A.4) and for sufficiently
small λ > 0 that the vector ξ = x0 + λζ will satisfy (ξ , y0) ∈ O
(because O is open) and R(ξ) = R(x0), i.e., the vector ξ = x0 +

λζ is an additional solution of problem (2.10) with ξ ≠ x0, a
contradiction.
Therefore Q (r, x0, y0; u) :=

 r
0 q(t, x0, y0; u)q′(t, x0, y0; u)dt is

positive definite. Eq. (2.12) is a direct consequence of Eq. (A.4).
(c) ⇒ (b) This implication is a direct consequence of (A.2)–(A.4),
which show that

R(ξ) = (ξ − x0)′Q (r, x0, y0; u)(ξ − x0),
for all ξ ∈ ℜ

n with (ξ , y0) ∈ O.

Notice that equality (2.5) guarantees that R(x0) = 0.
(c) ⇒ (d) This implication follows from the fact that ξ ′Q (r, x0,
y0; u)ξ :=

 r
0

q′(t, x0, y0; u)ξ
2 dt , for all ξ ∈ ℜ

n.
(d) ⇒ (c) Statement (c) follows from the fact that ξ ′Q (r, x0, y0;
u)ξ :=

 r
0

q′(t, x0, y0; u)ξ
2 dt , for all ξ ∈ ℜ

n and the fact that
the mapping t → q(t, x0, y0; u) is continuous. Equality (2.12) is a
direct consequence of Fact I and equality (2.5).
The proof is complete. �
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