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Global stabilization and asymptotic tracking for a class of
nonlinear systems by means of time-varying feedback

I. Karafyllis and J. Tsinias®"

Department of Mathematics, National Technical University of Athens, Zografou Campus 15780, Athens, Greece

SUMMARY

A simple backstepping design scheme is proposed and sufficient conditions for non-uniform in time global
stabilization for parameterized systems by means of time-varying feedback are established. Our
methodology is applicable to a special class of systems that in general cannot be stabilized by static
feedback and includes non-holonomic systems in chained form. For this class of systems the main results
on feedback stabilization enable us to derive sufficient conditions for the solvability of the tracking
problem. Copyright © 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The purpose of this paper is to explore the global feedback stabilization problem for a class of
systems whose dynamics contain time-varying unknown parameters. For such systems,
sufficient conditions for the existence of time-varying feedback stabilizers, exhibiting non-
uniform in time global asymptotic stability at the equilibrium, are derived. Our approach
generalizes the backstepping design scheme presented in Reference [1]. The main results on
feedback stabilization are used to derive sufficient conditions for the tracking problem for a
class of non-holonomic systems. Our work constitutes continuation of References [1, 2] dealing
with non-uniform in time global asymptotic stabilization of time-varying systems.

The paper is organized as follows. In Section 2 we provide some definitions and preliminary
results that play a key role in proving the main results of the paper. In Section 3 a generalization
of the main result in Reference [1] is established for triangular parameterized systems of the form:

X = fit,0,x1,...,x) + ndi(Oxir, i=1,..n

U = Xpt1

x=n...,x) R, 0eR, n=0,....n)eR" (1)
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560 I. KARAFYLLIS AND J. TSINIAS

where (6,1) are unknown parameters and u is the control input. Particularly, Corollary 3.2
provides sufficient conditions for the existence of a linear time-varying feedback

u = k(t)x 2)

where k: BT — R is of class C', exhibiting non-uniform in time global asymptotic stability of
the origin for the closed-loop system (1) with (2).

In Section 4 we apply Corollary 3.2 for the solvability of the stabilization problem as well as
for the tracking problem for a certain class of two input systems. Particularly, in Section 4.1 we
focus our attention on the solvability of the global feedback stabilization problem for two input
systems of the form:

z = Az + bu, (3a)
X =F(0,z,u1,x1,...,x) + Gz, up)xip, i=1,....n
Uy = Xpp (3b)

x =0 x0), (X, 0) € R x R x RE, (ug,u0) e W2

In Proposition 4.1 we establish that, under certain hypotheses, global stabilization for (3) is
achieved by means of a smooth time-varying feedback

(ur1,u2) = (U1, 2,x), Ua(t,x)) “4)
The above class of systems includes the case:

Z:ul
X =u (o1 + filx,...x)), 1<isn—1

Xy :fn(xl, .- -,xn) + up
(ur,u2) € R (5)

The stabilization problem as well as the tracking problem for the above class of systems (5),
especially when f; =0 for i = 1,...,n (non-holonomic chained-form case), has attracted the
interest of many researchers (see References [3—15]). In Section 4.2 (Proposition 4.5) we use the
result of Corollary 3.2 in order to derive sufficient conditions for the solvability of the tracking
problem for the case (5).

2. DEFINITIONS AND PRELIMINARY RESULTS

Throughout this paper we use the notation ./" to denote the class of continuous (C°), non-
decreasing, non-negative functions defined on R* = [0, +00). We say that a C° function a:
(RT)? > R is of class AN, if for each s3>0 both a(-, s) and a(s, -) are of class .#". The notation
N & is used to denote the class of C°, non-negative functions a:R" x KT —» R, with the
property that for each s>0 the function a(.,s) is of class .4~ with lim,_, ;, a(s,?) = 0. Likewise,
the notation A "4 is used to denote the class of C°, non-negative functions a: Rt x Rt x
R — RT, with the property that for each r,s>0, the functions a(-,r,s) and a(r, -, s) are of class
A with lim,,  « a(r,s,t) = 0. By L¥(A4)(L7 (A)) we denote the class of measurable (locally)

loc
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GLOBAL STABILIZATION AND ASYMPTOTIC TRACKING 561

essentially bounded functions 6: 4 — R’ and we adopt the notation ||6]] = ess,c4 sup |0(¢)], where
| | is the usual Euclidean norm.

We also introduce certain classes of functions, which are involved in the statements of our
main results.

Definition 2.1

We denote by S the set of C° functions a : R* — R such that for any real constant 7 it holds that
+00
/ (a() + ) dt = +00 (©)

0

and by SL the set of C° functions a: R" x R" — N satisfying the following properties:

(I) For each s>0 the mapping a(-,s) is of class S.
(IT) For each ¢>=0, the mapping a(t, ) is non-increasing.

For example the functions ¢ and exp{¢} are of class S and a(z,s) = exp{t} — s, is of class SL.

Definition 2.2
We denote by L the class of C! functions d : Rt — R for which the following properties hold:

(I) There exist constants ¢ >0 and K > 0, such that
(O] + (0| <K expiet},  Vi=0 (7a)

(d denotes the derivative of d);
(II) A pair of constants p>1 and >0 can be found such that

t
1
tlim\ n /|d(r)|P exp{rt} dt = +00 (7b)
0

Example 2.3
The output y(z,x0) = Hx(t,x0) = H exp{At}xo of an autonomous linear system x = Ax, x € R"
with x(0,x0) = xo € R" and (H, 4) € RV x R™" being an observable pair of constant matrices,
belongs to L, when x#0. Indeed, (7a) holds for ¢ =|4|:=sup{|dx|/|x|, x#0} and
K = |H|(1 4 |4|)|xo|. Moreover, since the pair (H,A) is observable, it follows that for any
0 > 0 there exists a constant ¢ > 0 such that
b
/ YA (t,x0) dt=¢elxo> >0, for any xo#0 (®)
0

Notice that f;” Y (1,x0) dt = x{ exp{ATt}[fg expiATtyHTH exp{At} dt]exp{dt}xo, which by
virtue of (8) implies ffﬂ) V2(1,x0) ds =g exp{—2|A|t}|xo|* for £>0 and thus we get for any positive

integer N:
Né

N—1
[ P eptCUl+ e dezadnl 3 exp i) ©)

0 n=0
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562 I. KARAFYLLIS AND J. TSINIAS

Let >0 and let N be an integer with No<t<(N + 1)d. Consequently, by (9)

t

1 Texp{—0} &
- /yz(‘[,xo) exp{(2l4] + 1)} dr>% Z; expind)} (10)
; -
which yields lim,_,, 1/7 fé V2 (1,x0) exp{(2]4] + 1)t} dt = 400, thus (7b) is satisfied with p =2
and r = 2|4| + 1.
The following lemma provides some elementary properties of the class L. Its proof is given in
Appendix A.

Lemma 2.4
Suppose that d(-) belongs to L. Then for every constant u>0 there exist a C*™ function
E:R" x R > R, a function puEN and constants ¢>0, R > 0 such that:

d()E(,d()) €S (I1a)

+00
/ max{M|d(?)| exp{ut} — d()E(t,d(1)),0} dt<p, (M), VM =0 (11b)

0
d(t)E(t,d()) =0, V=0 (11¢)
|E(t,s)| <Rexp{ot}, V=0, seNR (11d)
‘C(litE(t, d())| <R + |d(0)| + |d(1)]) exp{at}, Vi=0 (11e)
Consider the system

x= f(t,x), xeR", (=0 (12)

where f:R" x R" — R”" is measurable in ¢ and locally Lipschitz in x, satisfying f(z,0) = 0, for
all £>0. Let us denote its solution initiated from xy at time # by x(z). We say that 0 € R" is
globally asymptotically stable (GAS) with respect to (12), if for any initial (¢y,x) x() is defined
for all 1>, and the following conditions hold:
(P1) For any ¢>0 and 7>0, it holds that sup{|x(¢)|; =10, |xo| <&, t €[0,T]} < + oo and
there exists a 0 = d(e, T') > 0, such that:
[xo| <0, 2 €[0,T] = sup |x(r)|<e (Stability) (13a)

=1
(P2) For any ¢ >0, T>0 and R>0, there exists a t = (¢, T, R) >0, such that:
Ixo| <R, 1o €[0,T] = sup [x(¢)]<e (Attractivity) (13b)

t=t+1

We note that the above type of non-uniform in time asymptotic stability has been recently
used in Reference [1] for the problem of feedback stabilization and further analysed in
References [16, 17] where Lyapunov characterizations of robust GAS are established.
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GLOBAL STABILIZATION AND ASYMPTOTIC TRACKING 563

It is known (see for instance Reference [18]) that (equi)attractivity implies stability, non-
uniform with respect to initial time #y. The following lemma is a slight modification of this fact
and for completeness its proof is given in Appendix A.

Lemma 2.5
Consider system (12) and assume that there exists a function A € /'A%, such that for all
(to,x0) € R x R", the solution x(¢) of (12) initiated from x, at time ¢, satisfies:

(I <A(xol, 0, 1), V=1t (14)

Then zero 0 € R” is GAS.
Finally, we consider the following class of systems whose dynamics contains a pair of time-
varying uncertainties (0, 7):

x = f(t0,n,x)

(15)
xeR", 0eR, neR", >0

where f is measurable in ¢, continuous with respect to (6, 7) and locally Lipschitz with respect to
x, with f(2,0,7,0) =0 for all (¢,0,n) e R" x R’ x R". The set of admissible uncertainties
(0(-),n(-)) is the space L¥(R") x LS (R™).

Let IT, € R/ x K™ be a closed time-varying set, such that its projection on R’ along R”
coincides with the whole space R’. We say that 0 € R" is I1,-GAS for (15) if for every (fo, xo) and

input
(0¢),n()) € L*([to, +00)) X Lp.([to, +00)); (0(2),n()) e L, Vi=1o (16)

the corresponding solution x(¢) of (15) initiated from x( at time #, is defined for all 1>¢, and
further satisfies:

(P1) For every ¢>0 and 7>0, it holds that sup{|x(¢)|; =1, |xo|<e, ty € [0, T], (0(-), n(-))
satisfying (16)} < + oo and for every pair (6(-), n(-)) satisfying (16), there exists a 6 := (g, T') > 0,
such that (13a) holds.

(P2) For every ¢>0, T>0, R>0 and for every pair (0(-),n(-)) satisfying (16), there exists a
7:=1(¢, T, R) >0, such that (13b) holds.

The following lemma provides a Lyapunov-like criterium for I1,-global asymptotic stability of
the origin for systems of the form (15). Its proof is straightforward and is given in
Appendix A.

Lemma 2.6

Consider the parameterized system (15) and assume that there exist a C' function V : R" x
R" - R, a function « :(fR*)2 — R of class SL, and constants ¢ >0, K;, K, >0, such that for
every (£;x,0,n7) € RT x R" x I, it holds that

Ky exp{—at} > <V (t,x) <Kalxf? (17a)

Q00+ 0 1,01, — ale, )V 0,) (17b)
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564 I. KARAFYLLIS AND J. TSINIAS

Then zero 0 € R" is I1,-GAS. Particularly, there exists a function D € A% in such a way that:

tlir+n expiet}D(s,t) =0, Ve=0, s=0 (18a)
1]

k(@< D(|l0l, 1) exp E/Ia(s,llell)lds ol, Vi=to (18b)
0

where x(¢) denotes the solution of (15) initiated from x, at time £y and corresponding to a pair of
uncertainties (0(-), 7(-)) € L*([ty, +00)) x L7 ([to, +00)), with (0(¢), n(¢)) € 1, for all t>1,.

loc

3. PARAMETERIZED SYSTEMS

In order to derive sufficient conditions for the problem of global feedback stabilization for case
(1), we first need the following lemma that provides a simple backstepping design scheme and
generalizes the backstepping technique introduced in Lemma 2.1 in Reference [1]. The result of
Lemma 3.1 is inductively used in Corollary 3.2, where sufficient conditions for global
stabilization of parameterized systems (1) by means of a linear time-varying feedback are
established.

Lemma 3.1

Consider the single-input parameterized system
x = f(t,0,n,x) + g(t,0,n)y (19a)
y="h(t0,1n,x,y)+ 4d(t)u (19b)

(r, 1) eR" xR, 0,1,7) e R x R" xR

where 0(-), n(-), #(-) are time-varying measurable mappings, f, g, & are measurable in ¢,
continuous with respect to (6,7) and locally Lipschitz with respect to rest variables and satisfy
£(t,0,1,0) = 0, h(z,0,1,0,0) = 0, for every (¢,0,17) € R" x R’ x K™, and suppose that d belongs
to L n C/(RT) (for some integer j>1). Furthermore, assume that there exists a non-empty time-
varying set IT, ¢ R’ x R™ of the form

T, = {(0.n) € R x R 01, 0)<n, <Lix(t,0), i=1,....m} (19)

for certain C° functions, {;, (5, in such a way that:

Al. There exist a C! function V: R" x " > R, a ¢/ mapping k: R™ — K", a function
a: M x R" - N of class SL, constants K; >0, i = 1,2,3, and ¢>0, such that the following
hold for all (#;x;0,17) € RT x R" x I;:

Ky exp{—at} x> <V (t,x) <K x| (20a)

<Kzlx| (20b)

oV
’a(ta x)
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GLOBAL STABILIZATION AND ASYMPTOTIC TRACKING 565

. oV oV
V(19a), y=k(eyx = E(t’x) + a(f, X)(f(2,0,n,x) + g(t, 0, k(t)x)

< —alt, |0V (t,x) (20¢)

A2. There exist a function p of class ./ and constants K >0, »>0, such that for every
(t;0,n) € R x I1, we have:

Jk(0)] + k(t)| <K expirt} (21a)

o001+ sup L)< o) exptre o) (21b)

la(t, )| <p) expiry and  alt,5)<p(s) explrald(0), V>0 (210)
015 Dl oy exp o o) (21d)

w20 1Y)l
Then
e For every pair of constants R > 0 and >0 and for every function { € .4 with {(0) >R, there
exist a C! function W : R x R > R*, a ¢/ mapping k: R" - R, functions a e
SL and p € /7, positive constants K,K; >0i=1,2,3, g, r, and a non-empty time-varying
set IT, = R’ x R"*! of the form:
I, =TI, x {1 € R: Rexp{—pt} <A<{(0]) exp{pr}} (22a)
such that all properties (20), (21) are satisfied with 7 :== (1, %), X = (x, ), K, K; (i=1,2,3),
O_-,f,ﬂ_l,k,ﬁ,nt, Ws

_ S, 0,n,x)+g(t,0,n)y 0
0,1n,x) = d g,0,n) = 22b
f(t,0,17,%) ( HEOomx. 3) ) and  g(¢,0,7) <ﬁd(t)> (22b)

instead of #,x,K,K; (i = 1,2,3), o,r,a,k,p,I1,,V, f, and g, respectively. _

e It turns out that the origin of the closed-loop system (19) with u = k(#)% is IT,-GAS.
Particularly, there exists a function D € A" satisfying (18a) and in such a way that the
solution x(¢) of the closed-loop system (19) with u = k(¢)x satisfies the estimation (18b) with
a = a, for every pair (0(:),7(-)) € L™([ty, +00)) x L} .([to, +00)), with (0(z),7(1)) € I, for
all 1>1,.

Proof
For simplicity we adopt the notation X = (x, y). Let R, § be arbitrary positive constants and
define

W(t,%) = V(t,x) + (t)(y — k(t)x)* (23)

R = 5 exp{ By B d(D) (KO, ] 24)

Copyright © 2003 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2003; 13:559—588



566 I. KARAFYLLIS AND J. TSINIAS

_ 2K expi—oat}
00 = oKz expiam] (25)
w=4r+2c+c (26)

where the constants ¢; K;,o0; K,r are defined in (7a), (20) and (21), respectively and E(-, ) is any
C* function which satisfies (11a)—(11e) with u as defined by (26) and for the specific d(-) above.
By (20a), (21a), (23) and by using the elementary inequalities |x| <[, |y <|%|, 3|yI* — Ik()x* <
(v — k()x)* <|yI* + k(x| + 2| y|lk(2)x], we find

Ky exp{—at}x|* +16(0)|yI> — S()K? exp{2rt}|x|?

<W(1, %)< (K> + 0(0)(1 + K)? exp{2r})| % (27a)
and by taking into account (25) we estimate:
K K exp{—oat}
— 2t} K ———F———=K
2k PO 200 ST oy~ Kiexpian
— K25(r) exp{2rt} (27b)
2K, K
_ < <= _
e exp{—(o + 2r)t} <o(¢) e exp{—2rt} (27¢)
and consequently (27a)—(27c¢) it follows that
Ky exp{—a1}|X* < W (1, X) < K3 (28)

with ¢ == 2r + ¢ and for certain constants K, K, > 0. By definition (23)
ow ov
—=(t,%) = ( =, x) = 20()(y — k(O)x)k(2), 20(1)(y — k(2)x)
ox Ox

and, using (20b) and (21a), we can also easily estimate:

ow
‘E(t, %) <K3)% 4 20(0)(1 + K)* exp{2rt}|X]|

and thus by (27¢):

ow, 5 -
‘ax([’ 9| <Kil¥ (29)

.z . o d -
for certain K3 > 0. Next we evaluate the time derivative W = —W(t,%(1))| 9, ,—jz of W along
: : : de ’
the trajectories of (19) with

u=k()x = —% exp{BtLE(t, d(1))(y — k(t)x) and (0,n,7) e I,
First, by using (19), (21d), (22a), (23) and (24) we find:

P63 =00+ B0 — KO — 2000~ KOk(ox

0 . .
< a—lt/(t, x) + 16|y — k(Oxl + 20(0) k(@) lIdly — k(0)x| (30a)
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GLOBAL STABILIZATION AND ASYMPTOTIC TRACKING 567

a r -
aiz_/(t’ )E)(f(l, 0, 77, )_C) =+ g([’ 0’ f,)k(t)j.)
0
<« 20,009 + 900 0.k0¥0)

+ ‘%_:(t,x)g(t, 0, n)’|y — k(0] = S(Od(DE(, d(0)(y — k(D)

+ 20(0)h(t, 0,n,x, y)lly — k(x| + 26@) k()] £ (£, 0,1, )|| y — k(D)x|
+ 200k@)lg(r, 0, mI(y — k1))’

+ 26(0)k(0)[g(t, 0, x|l — k(2)x] (30b)
|h(t, 0,1, x, )| < p(10DId@)] exp{re; (1 + [k@ODx] + [y — k(0)x]) (30c)
It turns out from (20b)—(20c), (21a)—(21b) and (30a)—(30c) that

Wg]l(taxa s |0|) + ]2(t’x7 Vs |0|) + ]3(1,)6, y) (31a)

Li(t,x, y,10) = (I;SE_SI + 2p(10DId(2)] exp{rt}(1 + Ik(t)l)> S(0)(y — k(r)xy’
— a(t, 0DV (£, x) — d(E(t, d(£)d(1)(y — k(1)x)* (31b)
L(t,x, »,10) = p(10)|d(2)] exp{re} (K3 + 28(6)(1 + Ik(®)))xlly — k(2)x] (3lc)
L(t,x, y) = 20(0)k(0)]x]|y — k(2)x| (31d)

Taking into account (25) and combining (21a) and (26) we get exp{rt}(1 + k() <(1 +
K)exp{ut} and |6(¢)|/6(¢) <o + 2r. Similarly, by (23) we have o(¢£)(y — k(t)x)> < W(t,%) and thus
by taking into account definition (31b) of 7;(-), we estimate:

Li(t,x, 3, 10) < — a(t, 10DV (2,x) + 2(1 + K)p(I0DId(0)] exp {ut} d(1)(y — (1))’
+ (04 20)W (2, %) — d(E(t, d(0)3(t)(y — k(1)x)* (32)

By completing the squares in (31c) and (31d) and using (20a), (21a), (23), (25), (27c) and (7a) we
also get:

L(t,%, ,10) < Cip(10D(V (1, x) + |d(0)] exp e} 5(t)(y — k(2)x)?) (33)
L(t,x, y) < W (1, %) (34)
for certain Cj, C, > 0. By (21c¢), (23), (26), (31a), (32)—(34) we conclude that
W< —a(t, |0DW (1, %) (35)
a(t,s) = a(t,s) — M(s) — max{0, M(s) exp{ur}|d()] — d()E(t,d(1))} (36)

where M(s) = Myp(s) + o + 2r + C», for certain constant M, > 0 is a function of class /.

We claim that a is of class SL. Indeed, definition (36) asserts that a: R™ x R" - Risa C°
function and, since M(-) is of class ./, for each fixed >0 the mapping a(t, -) is non-increasing.
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568 I. KARAFYLLIS AND J. TSINIAS

Furthermore, by virtue of (11b) of Lemma 2.4 and the fact that a is of class SL, it follows that
for each fixed s >0 the mapping a(-,s) belongs to S, since for every real constant 7 it holds:

/ (a(t,s) +ryde= / (a(t,s) +7r— M(s)) dt — p,(M(s))
0 0

and thus f0+°° (a(t,s) + r)dt = +o00. Consequently, a is of class SL.

The latter in conjunction with (28), (35) asserts by virtue of Lemma 2.6 that the origin of the
closed-loop system (19) with u = k(¢) is IT,-GAS. Particularly, there exists a function D € A%
satisfying (18a) and in such a way that the solution X(#) of the closed-loop system (19) with
u = k(#)x satisfies the estimation (18b) with @ := a. Finally, the desired analogues of inequalities
(21) for the dynamics f, g and the feedback k are straightforward consequences of (7a), (11d),
(11e), (21) and (22). O

As a consequence of Lemma 3.1 we obtain the following result, which provides sufficient
conditions for the stabilization of a time-varying system that contains unknown parameters.

Corollary 3.2

Consider the system (1) where each f; is measurable in ¢, continuous in 6 and locally Lipschitz
with respect to rest variables satisfying f;(#,0,0,...,0) = 0 for all (z,0) e R* x R’ and each d,
belongs to L n C/(R*) (j=1). Furthermore, suppose that there exist a function p € .4 and
constants K >0, >0 in such a way that

i I,G,x R 1

sup L3 e o,

G 20,0 X, x)]

V(£,0,x) e R x RI xR (i=1,...,n) (37)
di 1 ()| <Kl|di(t)| expirty, Vt=0 (i=2,...,n) (38)

Then
e For every pair of constants R > 0 and >0 and for every function { € 4" with {(0) >R, there
exist a ¢/ mapping k: Rt — R, a positive definite C! time-varying matrix P(¢) € R"™",
functions a € SL, p € ./ and positive constants o, 7, K; (i = 1,2,3) such that, if we define:

I, = {(0;n) € R x R": Rexp{—Pt} <n, <0 exp{pt},i=1,...,n} (39)
the following hold for all (¢;x;0,7) € RT x R" x I1,:
Ky exp{—at}|x]* <x"P(t)x < K> |x? (40)
ngP(t)x < — a(t,|0)x"P(t)x (41)
dr (D) u=k(t)x
k(0)| + |k(6)| < K3 exp{it} (42)
la(z,s)| < p(s) expirty and a(t,s)<p(s) expire}|d, ()|, Vs=0 (43)

o [t turns out that the origin of the closed-loop systems (1) with (2) is I1,-GAS. Particularly,
there exists a function D € A".%, in such a way that (18a) is satisfied and in such a way that
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the solution x(¢) of the closed-loop system (1) with u = k(¢)x satisfies the estimation (18b)
with a(-) as defined in (41) and (43), for every pair (0(-), n(-)) € L™([t, +00)) x L};.([to, +00)),
with (0(¢), n(¢)) € I, for all t=+¢.

Proof
The proof will be made by induction.
Step 1: Consider the one-dimensional subsystem:

X1 = fi(t,0,x1) + n,di(t)x, with x, as input (44)
Define V(t,x)) = x%. Since d) € L, Lemma 2.4 guarantees the existence of a C*™ function

E:R" x R - N, such that (11a)~(11e) hold for u:=r and d = d;, where the constant r is
defined in (37), (38). Let R >0, >0 be arbitrary constants and let { € .4~ with {(0)>R. Define

h(0) = — pexp{piE(.di(0) 45)

Since (7a) and (11d)—(11e) hold with d = d|, it follows from definition (45) that (42) holds for
k(t) = k(¢) for appropriate constants K3, 7 > 0. We estimate the derivative V" of V(¢,x)) along the
trajectory of (44) with x, = k;(#)x; assuming that (0(¢), #,(¢)) € I, for all =1y, where I1, is the set
defined in (39) for n = 1, namely:

I, = {(0,m) € R x R:Rexp{—pr} <y <L(0) exp{fe}} (46)

We get by using (37):

4y < — a0V () (7a)
ds (44) X3k (1))
a1(1,5) = di(DE(t, dh (1)) — max{0, 20(s) exp it} s (0] — d(DE(E d(0))} (47b)

Obviously, by (11a) of Lemma 2.4 the function d,(-)E(:,d;(-)) is of class S. Exploiting (11b) and
definition (47b) we can establish, as precisely made in the proof of Lemma 3.1, that the mapping
ay is of class SL. This establishes (41) with x .= x;, P(¢) := 1 and a(:) .= a;(-). Inequalities (43)
for ay(-) are consequences of definition (47b) of a;(:), in conjunction with the fact that (7a) and
(11d)—(11e) hold with d = d,. It turns out by Lemma 2.6 that the origin of the closed-loop
system (44) with x, = k(¢)x; is I1,-GAS. Particularly, there exists a function D € A%, in such a
way that (18b) is satisfied and in such a way that the solution x;(¢) of the closed-loop system (44)
with x; = ki(¢)x; satisfies the estimation (18b) with a(-) = a;(-), for every pair (6(-),7n(-)) €
L>([ty, +00)) x L} ([to, +00)), with (0(z), n(?)) € I1, for all 1>1,.
Step 2: Next, consider the two-dimensional subsystem:

X1 = f1(6,0,x1) + mdi(Oxa, X2 = fo(t,0,x1,%2) + 1,da(0)x3
with x3 as input (48)
We claim that Assumptions Al and A2 of Lemma 3.1 are fulfilled for (48). Indeed, as established
in Step 1, Al is fulfilled for k() == ki(¢), V(t,x1) = x}, a(-) = ai(-) and TI, as defined by (46).

Furthermore, (21b) is a consequence of (37), (38) and (46). Indeed, combining (37),(38) and (46)
it follows:

t,0,x N N "
il o1+ sup LEED o0 exp o, Vs 0.m) € 7 x 9 1,

X #£0 |x1]
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for p(s) = (14 K)(p(s) + {(s)), pe N and 7:=2r+ f. Inequalities (21a), (21c) are conse-
quences of (38), (42) and (43) with £(-) .= ki(-) and a(-) == a;(-). Finally, (21d) is an immediate
consequence of our assumption (37).

It follows from Lemma 3.1 that there exist a C' positive definite matrix P : R" — R>?% a ¢/
mapping k: RT — R1*2, functions a € SL and p e N, constants K; >0 i=1,2,3, g, ¥, such
that inequalities (40)—(43) are satisfied for all (¢;x1,x;0,7,,1,) € R x R? x I1,, where I, is the
set defined in (39) for n = 2. It turns out by Lemma 2.6 that the origin of the closed-loop system
(48) with

x3 = k(®)(x1, x2)

is IT,-GAS. Particularly, there exists a function D € A%, in such a way that (18a) is satisfied
and in such a way that the solution x3(¢) of the closed-loop system (48) with

x3 = k(®)(x1, x2)

satisfies the estimation (18b).
The proof is completed by inductive use of Lemma 3.1. O

Example 3.3
Consider the linear time-varying system:

Xi=dOxi (=1,....n—1); X,=u (49)

where d(f) .= H exp{At}zy, zo#0 is the output of an autonomous linear observable system
z = Az, y = Hz. The system has the structure of (1) with di(¥) = d(¢), f; =0 and n,(t) =1 for
i =1,...,n. Notice that, by virtue of Example 2.3, d € L n C*(R"). It turns out from Corollary
3.2 that there exists a C*™ mapping k : R™ — R'*", such that 0 € R" is GAS with respect to the
closed-loop system (49) with u = k(¢)x.

4. APPLICATIONS

The results of Section 3 are used to derive sufficient conditions for global stabilization by means
of time-varying feedback for systems of form (3), as well as for the solution of the tracking
problem for the case of system (5).

4.1. Stabilization by smooth time-varying state feedback

We focus our attention to the case of systems (3) that in general cannot be stabilized by a C°
static (time-invariant) feedback. We show that, under certain hypotheses, there exists a C*™ time-
varying feedback exhibiting non-uniform in time global asymptotic stability of (3) at zero.

Proposition 4.1
Consider system (3), where each F; is continuous in 6, locally Lipschitz with respect to rest
variables and satisfies Fj(0,z,u;,0,...,0) =0 for all (0,z,u;) € R x R” x R and each G, has
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the form:
Gi(z,u1) = qin + qin(cz + cour)
for certain ¢ € R and constants ¢, € R, qi1, 02 =0 in such a way that
g1 +q2>0 (G=1,...,n)

Moreover, we make the following assumptions:
Al. The pair (4, b) is stabilizable.
A2. There exists a function p € ./~ such that:

|E(9,Z,HI,XI, s ’xi)|
sup
(1) 20 I(et, . uxi)l
V(0,z,u1) e RE xR xR (i=1,...,n)
A3. The following condition holds:

<p(I(0:z,u)l)

m—1

ol + > led'p| > 0
i=0

571

(50)

(51

(52)

(53)

Under the previous assumptions, there exists a pair of C* functions U,(¢,z,x) and Us(t,x), with
Ui(-,0,0) = Us(-,0) = 0, in such a way that for any 0(-) € L*(R"), the origin 0 € R” x R" for the
closed-loop system (3) with (4) is GAS. Particularly, for any 0(-) € L*(R") the corresponding

solution (z(¢), x(¢)) of the closed-loop system satisfies:
lim exp{er}|(z(2), x(2))| = 0
t—>+00

for ¢ > 0 small enough.

Proof

Using Al and applying a linear change of co-ordinates, subsystem (3a) is written as

2 A A\ (=1 b
= —|— up
22 0 Azz Vo) 0
VANS ‘.le, Zy € |
where 41, A412,A2 are constant real matrices, in such a way that
rank{bl,A”bl, . ,ATll_lbl} = m

and Ay, is Hurwitz, namely:
lexp{daa(t — to)}| <My exp{—I(t — to)}, V=t

for some constants M;, [ > 0. In the above co-ordinates each term G, takes the form:

Gi(z,u1) = qa + qo(cizi + cazo + couy), i=1,...,n

for appropriate vectors ¢; € R*™, ¢, € R™*("=m)_ Notice that (53) implies that

lcol 4 le1] > 0

(54)

(55)

(56)

(57)

(58)

(59)

Without any loss of generality we may assume in the sequel that the pair (4, b) has the canonical
form (55) and simultaneously (56)—(59) are fulfilled. The proof is separated into three parts.
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First, in Part I we construct the first component U, (¢,z,x) of the desired feedback stabilizer (4)
associated with appropriate mappings p: R™ — R*, Ty e /A" and Uy : R x R” — R, such that

Ui(t,z,x) = Up(t,2), for [x|=exp{—p(1)} (60)

and in such a way that the solution z(¢) of the closed-loop system (55) with u; = Ujy(¢, z) satisfies:
Gi(z(t), Up(t,z(t))) = qexp{—pt}, i=1,...,n (61a)

for 1= To(to, 1(to)I) (61b)

for some appropriate constants ¢, f > 0, where G;’s are defined by (58). Part II is devoted to the
construction of the second component Us(¢,x) of the desired feedback (4), by employing the
results of Section 3. To be more precise, instead of subsystem (3b), we first deal with
the parameterized system

xi:F}(éaxl’-'-yxi)+nixi+ls i= 19'“9”; Uy = Xp—1 (623)

6:=(0,z,u;) (62b)

that obviously has the same structure with system (1). It turns out by Corollary 3.2 that there
exists a feedback law u; = Us(¢,x), such that 0 € R” is I1,-GAS for the closed-loop system (62)
with (4), where

I, = {(0,n) e R x R, gexp{—pt} <n <O expipt}, i=1,....n}  (63a)

{(s) = (1 +s)(col + || + 1)(1 +

_ (g + 6]i2)> (63b)

i=1

=0, n,) (63¢c)

Finally, in Part III of the proof we establish that 0 € R" x R" is GAS for the closed-loop
system (3) with (4), by taking into account the analysis made in Parts I and 11.

Part I: Construction of Uj.

Notice first that (56) guarantees the existence of a constant vector /€ R'™™ in such a way
that, by denoting

A =An +bif (64)
it holds:
lexp{d s(t — to)}| <My exp{ =21t — 1))}, Vi=lp (65)
for certain constant M, > 0. Define
¢ =cr+eof (66)
and let f be a constant with
1
0< /3 < 5 (673)
co — cr(Ay + B by #0 (67b)

(A detailed establishment of the existence of f5, satisfying (67a), (67b) is given in Appendix A).
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By (67b) we may define
. 1
A= -
co — Cf(Af + pI)” b

(68)

and let
Uo(t,z) = fz1 + Lexp{—pt} (69)

Notice that the z; component of the solution of the closed-loop system (55) with u; = Uy(t,z),
satisfies:
t
z1(1) = exp{d (1 — t0)}z1(t0) + / expid (1 — 1)} A12z2(7) dt

to

+ Aexp{—Pto}(As + )" expid (¢ — to)} by

— dexp{—pti(d, + )by (70)
hence, we evaluate fori=1,...,n:
Gi(2(t), Up(t, 2(1))) = qi1 + Agin(co — cp(Ay + BI) " "by) expi—Bt} + gné(?) (71)

where

E(t) =cpexpid (t — to)}z1(to) + Aexp{—Ptotc (A + PI) " exp{d ;(t — to)}b;

+ (cf/ expid (t — 1)} A1 expidn(t — t)} dt

to

+crexp{dn(t — lo)}> 25(to) (72)

By (57), (65) and (72) we estimate
IEOI<M3(1 + |z(10)]) exp{—1(t — t0)},  Vi=1o (73)
for some constant M3 > 0. From (67a), (68), (71) and (73) it follows that (61) holds, where

1 .
q =7 min (gi1 +g2)

.....

which according to hypothesis (51) is strictly positive and
2
To(t,s) =2t + 710g(M4(1 +5)) (74)

for certain constant M4 > 1.

We are now in a position to build the desired map U;(-). Consider a non-decreasing C™
function ¢ : R — R with

$0)=0; ¢(s)=1 fors=>1 (75)
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and define:

Ui(t,2,x) = fz1 + 2p(xl” exp{2 p(1)}) exp {—pt} (76a)

p(1) = expiexp{t}} (76b)

where / is given by (68). Obviously U; is C*, and (60) is an immediate consequence of (75) and
definitions (69) and (76a) of Uy and U, respectively. Moreover, (76b) guarantees the existence of
a function 6 € A4".A", such that

sup (sexp{ut} — p(t)) <o(u,s), Vu,s=0 (77)
t=0

(for example we may take d(u, s) = exp{2u’}s(1 + s)). Estimation (77) above is used in Part I1I
for the stability analysis of the closed-loop system.

Part II. Construction of U,.

In order to define U(-), we consider the parameterized system (62). By A2 all assumptions of
Corollary 3.2 hold for (62) with d1(f) = --- = d,(f) = 1 e L n C®°(RT) and therefore there exists
a C™ mapping k: RT - R functions a € SL and p € .V, and constants 7, K > 0, such that
the following hold for all (z,5) € (R*)*:

Ik(2)] + |k()| <K exp {7t} (78a)

la(z, s)| < p(s) exp{rt} (78b)

Moreover, Corollary 3.2 asserts the existence of a function D € 4%, in such a way that the
following estimate holds:

Ili+m expiet}D(s,t) =0 for all &,5>0 (79a)
1f

(Ol < D10, 0 exp 5 / la(z. 101D] e ol Ve=1o (79b)
0

where x(7) denotes the solution of the closed-loop system (62) with u, = k(#)x, corresponding to a
pair of inputs (6(-),n()) € L>([tg, +00)) X Ly,.([to, +00)) with (0(2),n(#)) € II, for all =1,

loc

initiated from x, at time ¢,, where 6, I, and # are defined by (62b), (63a) and (63c), respectively.
The desired feedback U,(+) is defined as:

Us(t,x) = k(f)x (80)

Part III: Stability analysis for the closed-loop system.

We claim that for any 0(-) € L*(R™) the origin 0 € R” x R" is GAS with respect to the closed-
loop system (3) with (4), where U, (-) and U,(-) are defined by (76) and (80), respectively, namely,
with respect to

z=Az+ bU(t,z,x) (81a)
X, =F(0,z, Ui(t,z,x),x1,...,x) + Gi(z, Uy (t, z,x))xir1, i=1,...,n
Xpy1 = Un(t,x) (81b)
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Fact 1
The solution (z(¢),x(z)) of (81) initiated from (zg,xp) at time # and corresponding to some
0(-) € L°(R™) satisfies:

2O + U1 (1, 2(0), ()| < Cr exp{— Bt — 1)} (|20l + 1), Vi=1 (82)

exp{—(|zo| + 1101]) exp {7t} } xol < le(0)| < expiy(lzol + [|0]) exp {7t} }Hxol, Ve=1to (83)

for certain C; >0 and € /", where f,7 are the constants involved in (67) and (78a), (78b),
respectively.

Indeed, (82) is a straightforward consequence of (57), (64), (65), (67a), (75), (76a) and
application of Gronwall’s inequality in (81a). By virtue of (50), (52), (63b) and (78a), we have:

(D] < Calp((0(0), 2(), Ur (2, 2(2), x())])
+ L), Ui, 2(0), x()))]) exp {7} x(0)]

for certain C, > 0. The desired inequality (83) is a consequence of the inequality above. (82) and
application of Gronwall’s inequality in (81b). For completeness, we note that (83) is valid by
taking

Y(s) = C3(p((1 + C)(1 + ) + {1+ C)( +5))) (84)

for appropriate constant C3 > 0.

Fact 11
There exist mappings T : R x (R"\{0}) x R" x LY(RT) > R, ¥ € A4 and D e &/ ¥ with

lim exp{et}D(s,f) =0 Ve, s=0 (85)
t—>400

such that the solution x(z) of subsystem (81b), corresponding to 0(-) € L(R") satisfies the
estimate:

b(0)| < D(I01] + lzol, £) exp{ir(110]] + lzo]) exp{FT} } ol
for all =T = T(ty,x0,z0;0(-), x(t)) =x0#0 and £, >0 (86)

In order to establish (86), notice first that the left-hand side inequality of (83) and definition
(76b) of p(-) yield:

[x(¢)| exp{ p(t)} - +00 ast— +oo for any initial xo#0 87)

By taking (87) into account we define a map 77 : R x (R"\{0}) x R" x LX(R") - R, which
satisfies

Ty = Ti(t, X0, 20, 0(-)) = min{t =10 : [x(s)| exp{ p(s)} =1, Vs=1} (88)

where p(-) is defined in (76b). Obviously, the mapping 7)(-) is well-defined and, according to
definition (88), it holds |x(77)| = exp{— p(T1)}, for the case T} > ty. Moreover, we have by (60)
and (88):

Ui(t,z(1),x(t)) = Uo(t,z(r)), Vt=T) (89)
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Define:
T = T(t,x0,20, 0()) = To(T1 (%0, X0, 20, 0(-)), C1(|z0| + 1)) (90)

where the map 7j is defined in (74) and Cj is the constant involved in (82). Notice that (74), (82)
and (88) imply:

T (20,0, 20, 0(-)) = To(Th, |2(T1)]) = 1o On

We also define:
J5) = 571+ C(1 )+ 906) (922)
D(s,t) = D((1 + C)(1 +5),1) (92b)

where 7, p, D and y are defined in (78a), (78b), (79a), (79b) and (84), respectively. Obviously,
since p, Yy € A" and D € A% and satisfies (79a), we have that l[l and D are functions of class .4
and A%, respectively and satisfy (85).

We now take into account (61), (89), (91) and definitions (50), (62b), (63b) and (90) of
G, 0, {and T, respectively, and estimate

q exp{—Pt} < Gi(z(0), Ur (¢, 2(0), x(1))) < L(|(2(0), Ur (1, 2(0), x(e))) <exp{Bril(10)),  Vi=T  (93)
Consequently, by (93) and invoking (62b), (63a) we have:
(00), 2(2), Ur (8, 2(2), x(2)), G(=(2), Ui (1, 2(2), x(1)))) € I, Vi=T (94)

where G(z,u;) = (Gl(z,ul),...,Gn(z,ul))T. The desired (86) is a consequence of (6~2b), (7~8b),
(79b), (82), right-hand side of (83), (94) and definitions (62b) and (92a), (92b) of @ and , D,
respectively; particularly, we have:

T
- 1 -
(0] < DA, 0 exp{§ / la(, 6] dr} (D)
0

(78b) ~ 1 _ ~ -
< DA D exp{ 5 A1 exp s by

(62b),(82).(92b) 1
< D(I0ll + lzol, ) exp{ﬁp((l + ool

+ lz0l + 1)) exp{rT} } (7))

(83).0020) . N .
< D0+ lzol, 1) exp{y (1101l + Iz0]) exp{FT'} } x|

for any non-zero xo € R" and for all t>T = T(t, xo, zo, 0(-)).
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As a consequence of Facts I and II we obtain:
Fact 111
Estimation (86) is valid for all >, and every non-zero xy.

Indeed, from (79b) we have that:
t
1<D(s, t) exp % / la(z,s)|dt p  for all (7,5) € (R")?
0
which by virtue of (78b) gives:

1
1<D(s,t) exp{z—fp_(s) exp{rT} }, for all 0<¢<T, s=0, T>0
The right-hand side inequality of (83), in conjunction with the previous inequality yield:

(D < exp (101 + [zol) exp{FT '} } lxo

1
< D((1 + C)(I01] + lzol + 1), 1) eXP{ {27 AL+ CO(101] + |z + 1))

+ (101l + IZoI)]eXp{fT}}Ixol for all 1y <t<T, xoeR", T>1
and this by virtue of (92a), (92b) and Fact I guarantees that estimation (86) is valid for all 1> ¢,

and xo #0.
We complete the proof by establishing the following fact.

Fact 1V
There exists a function A € /N ¥ with

tlim exp{et}A(r,s,t) =0, Ve, r,s=0 (95)
—00
such that the solution x(¢) of subsystem (81b), corresponding to 0(-) € L*(R") and initiated from
xo at time 7y, satisfies the estimate:

@Ol <A(I0]] + |(z0, x0)l, 20, 7),  Vi=10 (96)

In order to prove (96), we first use Fact III and take into account definitions (74), (88) and
(90) of the mappings Ty, 71 and T, respectively. We find T = 2T + (2/1) log(Ma(1 + C; +
Cilz0|)) and, since (86) holds for all 1>1¢,, we get

(@) < D(101] + Izol, 2) exp{y(1101] + |z0) exp{27Ti } }xol, Ve=1to, x0#0 )

for certain y € /" (for example we can take y(s) := zﬂ(s)(M4(1 + C1 + C19))(2r/1)). We now recall
the precise definition (88) of the map 7} = Ti(¢y,x0,z0, 0(:)). As was pointed out, it holds that

(71)| = exp{—p(T1)}, when Ti >y, xo#0
and the latter, in conjunction with the left-hand side inequality of (83), yields
ol <exp{—p(T1) + exp{FTi }y(10l| + |z0)}, provided that T > 19, xo7#0 (98)
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Using (97), (98) and recalling (77), we find an estimation of the solution x(-) being independent
of T1

(1) < D([01] + lzol, 1) exp {67, w101 + z0]) + 7101 + 20}, V=10
provided that 71 = Ti(¢,x0, 20, 0(-)) > ty, xo0#0 (99)

Combining (97) and (99) for the cases 77 = #, and T} > t,, respectively, and using the elementary
inequalities |z| < |(zo,x0)l, xo| <|(zo,X0)|, as well as the fact that x(#) = 0 for xo = 0, it follows that
there exists an A" A" function A, such that both (95) and (96) are fulfilled. For example, we
may take:

A(s, 10, 7) = D(s, )[exp{(2F, (s) + 7(s))} + s exp{y(s) exp{27to} }]

that obviously is of class A" A4".% and which, by virtue of (85), satisfies (95). The desired GAS
and exponential convergence at the origin for the closed-loop system (81) are direct
consequences of (82), (95), (96) and Lemma 2.5. O

We use the result of Proposition 4.1 to give an alternative solution for the stabilization
problem for a class of two-input systems that cannot be stabilized by means of a C? static state
feedback, since they do not satisfy Brockett’s necessary condition, Reference [19].

Example 4.2

We consider the global feedback stabilization problem for (5) with /; =0 (i = 1,...,n). There
are many contributions in the literature for the solution of this problem using periodic
time-varying continuous feedback and periodically updated hybrid open loop/feedback controls
(see References [9-15,20] and references therein). An alternative solution is given here by
employing the result of Proposition 4.1. Indeed, system (5) satisfies all hypotheses of Proposition
4.1 and thus there exists a time-varying C*™ feedback law of form (4), which globally
asymptotically stabilizes (5) at zero. Moreover, by virtue of (54) the rate of convergence is
exponential. For the case n = 2, the analysis made in the proof of Proposition 4.1 asserts that
the feedback law

Ui(t,z,x) = — 2z — exp{—1}p(exp{2 p()} (x] + x3))
Us(t,x) = — exp{10¢}(xy + exp{2t}x;)

where p(¢) is defined by (76b) and ¢ : R — R is any non-decreasing C™ function that satisfies
(75), exhibits global stabilization for (5) at zero and further (54) holds for all e<1.

Example 4.3
Consider the problem of controlling a mobile robot moving on an uneven surface described by
the system (see Reference [21]):

J1=u, Jr=—-0iy+0ys —va(y)y2 — v3(¥)y3 +ua,  ¥3 =12

where v, v, are C*™ functions and 6}, 0, are treated in Reference [21] as known constants. In
Reference [21] a discontinuous time-invariant control law is proposed exhibiting the so-called
‘almost exponential stability’. Here we consider 6,60, as bounded time-varying unknown
parameters and we strengthen the result in Reference [21] by proposing a C*™ time-varying
feedback that guarantees exponential convergence and global asymptotic stability. The system is
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equivalently written as

X| = z22x2
Z] =2z
sz = X3
22 = Uuj
X3 = —01x3 + Ox; — v2(z1)x2 — v3(z1)x) + Uz

Obviously, for the system above all hypotheses of Proposition 4.1 are fulfilled, hence, the system
is globally asymptotically stabilized at 0 € ®° by means of C* time-varying feedback of form
(4). Particularly, we may apply

Ui(t,2,x) = — 621 — 525 — exp{—1} $(exp{2 p()} (x] + x5 + x3))
Us(t,x) = — exp{58¢}(x3 + exp{10t}x, + exp{12t}x;)

with same p(-) and ¢(-) as those selected in Example 4.2. The proposed feedback exhibits global
stabilization at zero and further (54) holds for all e<1.

Example 4.4
Likewise, we can handle the problem of controlling the Cartesian position and orientation of a
surface vessel with two independent propellers (see Reference [21]):

Vi=u, Jr=u, 3= (1 +cPp)y —cps

Details are left to the reader.

4.2. Application to Tracking Problem

In this section we apply the result of Corollary 3.2 for the asymptotic tracking problem for the
case of systems (5). The same problem has been studied in earlier works under the assumption
that /; =0, i =1,...,n (see References [3-8] and references therein). Our results are based on a
different set of hypotheses with those in the previously mentioned papers.

We assume that each term f; (i = 1, ..., n) vanishes at zero and is globally Lipschitz, namely,
there is a positive constant L, such that:

[fiCGers o ooxi) — fiyvr, - YIS LI — yi,- 0% — P
V(Xrs X Vs ) ERI X R i=1,. .0 (100)

Consider a reference trajectory (z4(¢), x4(1)) = (za(2); x14(2), . . ., xpa(£)) € R"~L, 10 of system
(5) namely:

Zg=urg;  Xig = wra(fixXia, . . ., Xia) + xgrnd), 1<i<n—1 3 Xna = fulxq) +uog  (101)
for certain reference control inputs u4, u5; and denote the tracking error as

(ze(0), (1) = (2(2) — za(0), x(1) — xa(2))
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where (z(1), x(¢)) is any arbitrary solution of (5). Then (z.(¢), e(¢)) satisfies:
Ze = 1) (102a)

& = (ua(®) + vi)eim1 + gilt en, . . ., €) + v1(xG11)a(0)
+ fix1a(®), ..., xia(1))) 1<i<n—1 (102b)
én = gu(t,€) + 12
where
gi(t,er, ..., e) = filx1a(®) + e1, ..., xia(t) + €;) — fi(x14(?), ..., x4(t)), i=1,...,n (103a)

Uy = Uy —Uyg, U2 = Uy — Uy (103b)

The tracking problem (TP) is said to be globally solvable if there exists a pair of time-varying
feedback controllers of the form

v1 = Ui(t,ze,e), vy = Us(t,z,,e) (104)

such that 0 € R""' is GAS for the closed-loop system (102) with (104).
The result of the following proposition is a consequence of Corollary 3.2.

Proposition 4.5
Consider system (101), where each f; (i = 1,...,n) vanishes at zero and satisfies (100). Suppose
that:

o ujy(+) is of class L and uy4(+) is measurable and locally essentially bounded.
e The x,(-) component of the solution of (101) satisfies

bea ()| <M exp{it} (105)

for some constants M, 1>0.
Then there are C' mappings &; (i = 1,2) such that the time-varying feedback law

v1 = Uit,z0) = ki(D)ze, 02 = Us(t,e) = ka(t)e (106)
solves the TP globally.
Proof
We establish the existence of C! mappings k; (i = 1,2) such that 0 € R""! is GAS for the closed-

loop system (102) with (106). By taking into account (100), definition (103a) of g;(-) and our
hypothesis f;(0,...,0) = 0, we have:

lgit, er, ..., el <Ll(ey,. ... e)l (107a)
| fi(x1a5 - - > Xia)| < Lixal (107b)

Consider first the subsystem (102b) with zero input v;:
é = u]d(t)eH»l +u1d(t)g,-(t,e,...,e,-), I1<ig<n— 19 é, = gn(tae)+02 (108)

Because of (107a) and our assumption u;; € L, system (108) satisfies all hypotheses of Corollary
3.2, hence, there exist a C! mapping k: R" — R"", a C' positive definite time-varying matrix
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P() e R"", a function a € S and constants o,7,K; >0 (i = 1,2, 3) such that:

K, exp{—ot}le]* <e"P(t)e < K>lef (109a)
4 e (H)P(t)e(t) < — a(t)e" P(t)e(t) (109b)
de (108).02=k(H)e
la(t)| + k()| + k(0| < K3 exp{F, 1} (109¢)
We define:
ki(t) = —C exp{Czt}, ky(t) = k(1) (110)

where Cy, C, > 0 are certain constants yet to be specified and k(-) as defined in (109). We are in a
position to establish that 0 € R""!' is GAS for the closed-loop system (102) with (106), where
k; (i =1,2) are given by (110). Notice first that the solution z.(-) of (102a) with v; = k(¢)z,
where k is given by (110), satisfies

t

zo(t) = zo(ty) expq —C /exp{Czr} dt (111a)

to

Moreover, by (110) and (111a), it holds

[v1()] = Cy |ze(t0)|exp{C2t - C /exp{Cz‘c} dT} (111b)

to

We now take into account (105), (107a), (107b), (109a), (109b) and estimate

% et (H)P(1)e(r)

(102b),02=k(t)e

ex +gi(t,er)

< — a(Del (O)P(t)e(t) + 201 (1)e" (H)P(2)
e, + gn—l(t,el, cee ,en—l)

0
x24(1) + f1(x1a(2))
+ 201(0)eT (H)P(2)

Xna(t) + fum1(era(?) . . Xu—1)a(1))
0

< — (a(t) = Cloi(@)] exp{lt})e" ()P(1)e(?) + C exp{lt}|ui(0)] (112)
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for certain constants C >0 and /> 0 (specifically, we may take [ = 21 + o, where 4, are the
constants involved in (105), (109a), respectively). It follows from (109a) and (112) that

t fo
K 1 1
o<y [iZexnd =5 [ @0 - a)de fexpd 5 [ la@lde § Dt et Vizn (113)
1
0 0

where

t
D(t, ty,s;v1) .= exp %/ exp{/t}|vi(7)|dt ps
o
¢ T t 1/2
+ C/|vl(r)|exp lr+/|a(w)|dw+ C/exp{lw}|vl(w)|dw dt
to to r
It turns out by picking

2K

Cl=20+C)+2C+Cy; C=F (114)

r
and taking into account (109c) and (111b) that there exists a function E(%j, s) of class 44", such
that

D(t,t9,5;01) S E(l, 5 + |ze(00)]),  Vi=ty, s=0 (115)
(for example, we may take E(t,s) = exp{% exp{% exp{C,t} }s} <s + (CC|s)1/2 exp{ch1 exp{C,t} })
2 2

Notice that, since a € S, (113) and (115) guarantee the existence of a function A € A" A% such
that

le(Dl < A(lze(t0)] + le(to)l, 0, ),  Vi=1o (116)
The desired GAS for the closed-loop system (102) with (106) are direct consequences of (111a),
(116) and Lemma 2.5. Ul

Remark 4.6
For the case /; =0 (i =1,...,n), (105) can be relaxed by assuming that:

S a0 <M explin (117)
i=2

Indeed, if each f; vanishes identically then inequality (112) is a consequence of (117).

Remark 4.7
We make some comparison with earlier existing works for the tracking problem for the case
fi=0(@G=1,...,n). We first notice that the results in Reference [7] generalize those in

References [3-6]. Particularly, in Reference [7, Theorem 1] it is proved that the TP is solvable
under the assumptions that x;;(-) (i = 2,...,n), u14(-), (), tt14(-) are bounded over R and
u14(-) does not converge to zero as t — oo. Clearly, our assumption concerning x; is weaker,
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since it is not required to be bounded. Furthermore, it should be noticed that there are functions
of class L, which do not meet the requirements of Reference [7, Theorem 1]. A typical example is
the function u4(¢) = exp{—t} sin ¢, which obviously belongs to L (since it can be seen as the
output response of an appropriate linear system for non-zero initial condition), but does not
meet the requirements imposed in Reference [7]. We also mention the recent result [8,
Proposition 10.3.1], where it is proved that the TP is solvable, under the assumptions that u4(-)
is continuous, x;4(-) (i = 2, ...,n) are bounded over R™ and there exist positive constants J, ¢, &
such that for all > 0:

t+0
el < / wy(t, r)w,T(t, 1) dr<erl

t

¢ ¢ n—1

er(t,r) = 1,/u1d(s) ds,..., /uld(s) ds

T T

Again, our hypothesis concerning x, is weaker and there are functions of class L, which do not
meet the requirements of Reference [8, Proposition 10.3.1]; a typical example again is the
function wu,(f) = exp{—t} sint.

5. CONCLUSIONS

In this paper we explored the idea of non-uniform in time global asymptotic stabilization
to derive sufficient conditions for the existence of linear time-varying feedback that stabilizes
the equilibrium point of an uncertain triangular time-varying system. As applications we
considered the problem of robust stabilization for two-input systems that in general cannot be
stabilized by C° time-invariant feedback, as well as the state feedback tracking problem for
a class of systems that includes the non-holonomic chained form case. Our results require a
different set of hypotheses than those encountered in the literature and specifically for the
tracking problem, we have enriched the class of functions for which the tracking problem is
solvable.

APPENDIX A

Proof of Lemma 2.4
Let ¢ : R - R be any C™ bounded function that satisfies

xp(x)=0, Vxe M and ¢p(x) = sgn(x) for |x|>1 (A1)
Define
E(t,5) = ¢(s exp{Cit}) exp{Cat} (A2)
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for some constants Cy, C; > 0 yet to be chosen. Obviously, by (A1) and (A2) for any selection of
C1,C, >0, property (11¢) holds. In order to establish (11d) and (11e) let

d
0 = max (101 + |6

and notice that
|E(t,5)| < Qexp{Cat}

‘%E(r, (1) = |G, d(0) + exp{(Cr + Co S0 exp{Cur}) () + i)

< Q(Cy + [d(0)] + Cild (D)) expi(Cr + Co)t}
Thus (11d) and (11e) hold with R == O(1 + C; + (,), ¢ := C; + C,. We next show that (11b) is
satisfied for appropriate selection of the constants C; and C,. Indeed, let

Cl,Cy=1+u (A3)

and define

IT = {t=0:1d(t)| > exp{—Cit}}; I~ =R \J" (A4)

Notice that by (A1), (A3) and definitions (A2), (A4) of E and I'", respectively, we have:
d(DE(t,d(0) = (D) exp{Cat}, Viel® (A3)

M exp{ut}|d(t)| — |d(t)| exp{Crt} <0, Vi=M (A6)

Consequently, by (A3), (A4), (AS), (A6) and invoking (7a) we get
+00

/ max{M|d(t)| exp{ut} — d()E(t,d(t)),0} d¢
0

(A4),(AS)
< / max {M|d(0)] expiut} — |d(0)] exp{Cat}, 0} dr

I+

+ M [ expi(u— Ci)jde
/

(A3),(A6)
< M / |d(t)| exp{ut} dt + M < M(K exp{(c + pM} + 1)
I+ A[0,M]
Thus (11b) is fulfilled with p,(s) := s(K exp{(d + p)s} + 1). Finally, we show that (11a) holds,
provided that, in addition to (A3), the constants C;, C, satisfy

Ciz14+Cy; Gzr4+cep-1 (A7)
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where p>1 and >0 are the constants involved in (7b) and c is defined in (7a). Let ¢ be an
arbitrary real number and 7>0. By (11c), (A4) and (A5) we obtain:

T
(11c),(A4) r
/ AOEGA0) + g di 2 / d()E(, d(0) di — g
0 I n[0,7]
@ / d(0)] exp{Cat} di — I
I+A[0,7]

T
a9 / 1d(0) exp{Car}di — lgIT
0

— / |d(t)| exp{Cat} dt (A8)
I~ ~[0.7]
and by (7a) we get:
K'"Pexp{—c(p — Di}ld(0)|” <|d(2)| (A9)

Inequalities (A7), (A8), (A9) in conjunction with definition (A4) of the set /~, give:

(A4),(A8),(A9)

T T
L/W@ﬂﬁﬂm+qﬁh > K“f/W@VwNKb—dp—DMdt
0 0

- / expl(Cs — C)i} di
[0,7]

( p1

T
AT) 1 K
S|l / d(0)\? explrty di — |qlk?" —
0

The latter in conjunction with (7b), imply (11a) as 7" — +o00. We conclude that for appropriate
selection of C; and C», the map E(-) as defined by (A2) satisfies all properties of Lemma 2.4. []

Proof of Lemma 2.5
We recall our hypothesis that A € A" A"%, which implies that for any ¢ > 0, 7 >0 and R > 0 there
exists a time 7 = (g, R, T) >0 such that AR, T, &) <e, for all ¢ >rt; thus by virtue of (14) it holds:

Ix(t)|<e, Vi=ty+ 1, |xo|<R, the[0,T] (Attractivity) (A10)
In order to establish stability, notice first that, by virtue of (14), we have
Sup{|x(t)|a t=1y, |X()| <&l € [07 T]} < sup A(89 T: t) <+ 00 (Al 1)

t=0
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for all ¢ >0, T>0. Consider next the function L: (R")*> > R, defined as

L@m:mm{uﬁﬁggggﬁﬂ;remJLmsyJﬂsnx¢y} (A12)

This function is well-defined by the fact that the dynamics are locally Lipschitz with respect to
x € R". It turns out from definition (A12) that for each fixed s >0, the mappings L(s, -) and L(-, s)
are non-negative and non-decreasing and the following holds:

Lf(t,x)| <L(t, x|, V(t,x) e RT x R (A13)
From (14) and (A13) we have:
|/ (&, x(0)] <M(2, 1o, [xo|)x(2)]

M(t, ty,s) = L(l, sup A(S,l‘(),l”)) (A14)

0<r<t

where x(7) is the solution of (12) with x(¢)) = xo. Obviously, for each fixed (z, 7, s) € (R")?, the
mappings M(t,ty,-), M(-, ty,s) and M(t,-,s) are non-negative and non-decreasing. The latter
in conjunction with (12) and (A14) guarantees:

t
IX(t)|<eXp{/M(r,to,|xOl) d‘c}lxol, V=t (A15)
to

Since the mappings M(t, ty, -), M(t,-,s) and M(, ¢y, s) are non-negative and non-decreasing, (A15)
implies that for any ¢ >0, 7>0 and R > 0 it holds:

x(6)<e, Vtelto,to + 1],

T+t

Vixo| <0(e, T) = min{R,gexp{/ M(s,T,R)ds}}, to €10, 7] (A16)
T

It follows by using (A10) and (A16) that for any ¢ > 0 and 7'>0, there exists ¢ := (¢, T) > 0 such
that |x(7)|<e¢ for all ¢y € [0, T, =1y and |xo|<J. This fact, in conjunction with (A11), establishes
stability. O

Proof of Lemma 2.6
By (17b) and the fact that a(z,r) is non-increasing in r, we get:

9 0300) + T x(0) 16, 00, 1(0),3(0)
X

< — a4 |0))V (L, x(2)), ae. for 1=t (A16)

where x(-) denotes the solution of (15) corresponding to a pair of inputs (6(-),7n(:)) € L™ X
([to, +00)) x LY ([to, +00)) with (0(2), n(¢)) € I, for all £>1¢,. Using (A16) we obtain:

loc

V(t,x(£)) < V(ty, x(ty)) exp { — / a(s, [10)) ds} (A17)

to
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It follows by (17a) and (A17) that (18b) holds with

D(s, 1) = \/lli:jexp —%/ (a(z,s) — o) dz (A18)
0

since a(t,s) is non-increasing in s, it follows that for each >0 the mapping D(:,¢) is non-
decreasing. Furthermore, for every >0, it holds:

explet}D(s,t) = \/%exp —%/ (a(z,s) — o — 2¢e)dz (A19)
0

We now recall our assumption that for each fixed s>0, the map a(-,s) is of class S and
consequently lim,_, fé (a(t,s) — 6 — 2¢) dt = +00. This in conjunction with (A19) implies
(18a). We conclude that D is of class A4"%. Finally, by (18b) we get:

R(OI<A(lxol, 20,8), V=19 (A20)

)
1
A(s, 10, 1) = D(||0l, ) exp E/Ia(T,IIHII)IdT s (A21)
0

Obviously, (18a) and definition (A21) of A, implies that A is of class A A %. Therefore,
estimation (A20), guarantees by virtue of Lemma 2.5 that 0 € R" is I1,-GAS. O

Proof of (67)
Notice first by (65) that the matrix 4 + B/ is invertible for f small enough. In order to establish
(67b) suppose the contrary

co=cp(ds+ BN 'hy, V>0 close to zero (A22)
We define the complex rational function:
g(s) = cp(d; — s (A23)
which is the transfer function of the system:
X =Asx+ bu
Y= —csx (A24)

where 4, and ¢y are defined in (64) and (66), respectively. It then follows by (A22) and (A23)
that g(-) must be equal to ¢y for all real s<0 close to zero, which implies both ¢y = 0 and
crdy — sI)"'b; = 0 for almost all (complex) s. Since ¢y = 0, it turns out from (59) and (66) that
c1#0 and ci(4, —sI)"'b; = 0 for almost all s. The latter implies that the pair (Ay,by) is
uncontrollable and thus by (64) that the pair (4;,b;) is uncontrollable as well, which
contradicts hypothesis (56). O
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