
INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL
Int. J. Robust Nonlinear Control 2003; 13:559–588 (DOI: 10.1002/rnc.738)

Global stabilization and asymptotic tracking for a class of
nonlinear systems by means of time-varying feedback
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SUMMARY

A simple backstepping design scheme is proposed and sufficient conditions for non-uniform in time global
stabilization for parameterized systems by means of time-varying feedback are established. Our
methodology is applicable to a special class of systems that in general cannot be stabilized by static
feedback and includes non-holonomic systems in chained form. For this class of systems the main results
on feedback stabilization enable us to derive sufficient conditions for the solvability of the tracking
problem. Copyright # 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The purpose of this paper is to explore the global feedback stabilization problem for a class of
systems whose dynamics contain time-varying unknown parameters. For such systems,
sufficient conditions for the existence of time-varying feedback stabilizers, exhibiting non-
uniform in time global asymptotic stability at the equilibrium, are derived. Our approach
generalizes the backstepping design scheme presented in Reference [1]. The main results on
feedback stabilization are used to derive sufficient conditions for the tracking problem for a
class of non-holonomic systems. Our work constitutes continuation of References [1, 2] dealing
with non-uniform in time global asymptotic stabilization of time-varying systems.

The paper is organized as follows. In Section 2 we provide some definitions and preliminary
results that play a key role in proving the main results of the paper. In Section 3 a generalization
of the main result in Reference [1] is established for triangular parameterized systems of the form:

’xxi ¼ fiðt; y; x1; . . . ; xiÞ þ ZidiðtÞxiþ1; i ¼ 1; . . . ; n

u :¼ xnþ1

x :¼ ðx1; . . . ; xnÞ 2 Rn; y 2 Rl; Z :¼ ðZ1; . . . ; ZnÞ 2 Rn ð1Þ
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where ðy; ZÞ are unknown parameters and u is the control input. Particularly, Corollary 3.2
provides sufficient conditions for the existence of a linear time-varying feedback

u ¼ kðtÞx ð2Þ

where k :Rþ ! R1�n is of class C1; exhibiting non-uniform in time global asymptotic stability of
the origin for the closed-loop system (1) with (2).

In Section 4 we apply Corollary 3.2 for the solvability of the stabilization problem as well as
for the tracking problem for a certain class of two input systems. Particularly, in Section 4.1 we
focus our attention on the solvability of the global feedback stabilization problem for two input
systems of the form:

’zz ¼ Azþ bu1 ð3aÞ

’xxi ¼ Fiðy; z; u1; x1; . . . ; xiÞ þ Giðz; u1Þxiþ1; i ¼ 1; . . . ; n

u2 :¼ xnþ1 ð3bÞ

x :¼ ðx1; . . . ; xnÞ; ðz; x; yÞ 2 Rm �Rn �Rk ; ðu1; u2Þ 2 R2

In Proposition 4.1 we establish that, under certain hypotheses, global stabilization for (3) is
achieved by means of a smooth time-varying feedback

ðu1; u2Þ ¼ ðU1ðt; z; xÞ;U2ðt; xÞÞ ð4Þ

The above class of systems includes the case:

’zz ¼ u1

’xxi ¼ u1ðxi�1 þ fiðx1; . . . ; xiÞÞ; 14i4n� 1

’xxn ¼ fnðx1; . . . ; xnÞ þ u2

ðu1; u2Þ 2 R2 ð5Þ

The stabilization problem as well as the tracking problem for the above class of systems (5),
especially when fi � 0 for i ¼ 1; . . . ; n (non-holonomic chained-form case), has attracted the
interest of many researchers (see References [3–15]). In Section 4.2 (Proposition 4.5) we use the
result of Corollary 3.2 in order to derive sufficient conditions for the solvability of the tracking
problem for the case (5).

2. DEFINITIONS AND PRELIMINARY RESULTS

Throughout this paper we use the notation N to denote the class of continuous ðC0Þ; non-
decreasing, non-negative functions defined on Rþ ¼ ½0;þ1Þ: We say that a C0 function a :
ðRþÞ2 ! Rþ is of class NN; if for each s50 both að�; sÞ and aðs; �Þ are of class N: The notation
NL is used to denote the class of C0; non-negative functions a :Rþ �Rþ ! Rþ; with the
property that for each s50 the function að�; sÞ is of class N with limt!þ1 aðs; tÞ ¼ 0: Likewise,
the notation NNL is used to denote the class of C0; non-negative functions a :Rþ �Rþ �
Rþ ! Rþ; with the property that for each r; s50; the functions að�; r; sÞ and aðr; �; sÞ are of class
N with limt!þ1 aðr; s; tÞ ¼ 0: By L1ðAÞðL1locðAÞÞ we denote the class of measurable (locally)
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essentially bounded functions y : A ! Rl and we adopt the notation jjyjj ¼ esst2A sup jyðtÞj; where
j j is the usual Euclidean norm.

We also introduce certain classes of functions, which are involved in the statements of our
main results.

Definition 2.1
We denote by S the set of C0 functions a :Rþ ! R such that for any real constant r it holds that

Zþ1

0

ðaðtÞ þ rÞ dt ¼ þ1 ð6Þ

and by SL the set of C0 functions a :Rþ � Rþ ! R satisfying the following properties:

(I) For each s50 the mapping að�; sÞ is of class S:
(II) For each t50; the mapping aðt; �Þ is non-increasing.

For example the functions t and expftg are of class S and aðt; sÞ ¼ expftg � s; is of class SL:

Definition 2.2
We denote by L the class of C1 functions d :Rþ ! R for which the following properties hold:

(I) There exist constants c50 and K > 0; such that

jdðtÞj þ j ’ddðtÞj4K expfctg; 8t50 ð7aÞ

( ’dd denotes the derivative of d);
(II) A pair of constants p51 and r50 can be found such that

lim
t!1

1

t

Z t

0

jdðtÞjp expfrtg dt ¼ þ1 ð7bÞ

Example 2.3
The output yðt; x0Þ ¼ Hxðt; x0Þ ¼ H expfAtgx0 of an autonomous linear system ’xx ¼ Ax; x 2 Rn

with xð0; x0Þ ¼ x0 2 Rn and ðH ;AÞ 2 R1�n �Rn�n being an observable pair of constant matrices,
belongs to L; when x0=0: Indeed, (7a) holds for c ¼ jAj :¼ supfjAxj=jxj; x=0g and
K :¼ jH jð1þ jAjÞjx0j: Moreover, since the pair ðH ;AÞ is observable, it follows that for any
d > 0 there exists a constant e > 0 such that

Zd
0

y2ðt; x0Þ dt5ejx0j2 > 0; for any x0=0 ð8Þ

Notice that
R tþd
t y2ðt; x0Þ dt ¼ xT0 expfATtg½

R d
0 expfA

TtgHTH expfAtg dt� expfAtgx0; which by

virtue of (8) implies
R tþd
t y2ðt; x0Þ ds5e expf�2jAjtgjx0j2 for t50 and thus we get for any positive

integer N : ZNd

0

y2ðt; x0Þ expfð2jAj þ 1Þtg dt5ejx0j2
XN�1

n¼0

exp fndg ð9Þ

Copyright # 2003 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2003; 13:559–588

GLOBAL STABILIZATION AND ASYMPTOTIC TRACKING 561



Let t5d and let N be an integer with Nd4t5ðN þ 1Þd: Consequently, by (9)

1

t

Z t

0

y2ðt; x0Þ expfð2jAj þ 1Þtg dt5
ejx0j2 expf�dg

ðN þ 1Þd

XN
n¼1

expfndg ð10Þ

which yields limt!1 1=t
R t
0 y

2ðt; x0Þ expfð2jAj þ 1Þtg dt ¼ þ1; thus (7b) is satisfied with p ¼ 2

and r ¼ 2jAj þ 1:
The following lemma provides some elementary properties of the class L: Its proof is given in

Appendix A.

Lemma 2.4
Suppose that dð�Þ belongs to L: Then for every constant m50 there exist a C1 function
E :Rþ �R ! R; a function rm 2 N and constants s50; R > 0 such that:

dð�ÞEð�; dð�ÞÞ 2 S ð11aÞ

Zþ1

0

maxfM jdðtÞj expfmtg � dðtÞEðt; dðtÞÞ; 0g dt4rmðMÞ; 8M50 ð11bÞ

dðtÞEðt; dðtÞÞ50; 8t50 ð11cÞ

jEðt; sÞj4R expfstg; 8t50; s 2 R ð11dÞ

d

dt
Eðt; dðtÞÞ

����
����4Rð1þ jdðtÞj þ j ’ddðtÞjÞ expfstg; 8t50 ð11eÞ

Consider the system

’xx ¼ f ðt; xÞ; x 2 Rn; t50 ð12Þ

where f :Rþ �Rn ! Rn is measurable in t and locally Lipschitz in x; satisfying f ðt; 0Þ ¼ 0; for
all t50: Let us denote its solution initiated from x0 at time t0 by xðtÞ: We say that 0 2 Rn is
globally asymptotically stable (GAS) with respect to (12), if for any initial ðt0; x0Þ xð�Þ is defined
for all t5t0 and the following conditions hold:

(P1) For any e > 0 and T50; it holds that supfjxðtÞj; t5t0; jx0j4e; t0 2 ½0; T �g5þ1 and
there exists a d ¼ dðe; T Þ > 0; such that:

jx0j4d; t0 2 ½0; T � ) sup
t5t0

jxðtÞj4e ðStabilityÞ ð13aÞ

(P2) For any e > 0; T50 and R50; there exists a t ¼ tðe; T ;RÞ50; such that:

jx0j4R; t0 2 ½0; T � ) sup
t5t0þt

jxðtÞj4e ðAttractivityÞ ð13bÞ

We note that the above type of non-uniform in time asymptotic stability has been recently
used in Reference [1] for the problem of feedback stabilization and further analysed in
References [16, 17] where Lyapunov characterizations of robust GAS are established.
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It is known (see for instance Reference [18]) that (equi)attractivity implies stability, non-
uniform with respect to initial time t0: The following lemma is a slight modification of this fact
and for completeness its proof is given in Appendix A.

Lemma 2.5
Consider system (12) and assume that there exists a function D 2 NNL; such that for all
ðt0; x0Þ 2 Rþ �Rn; the solution xðtÞ of (12) initiated from x0 at time t0 satisfies:

jxðtÞj4Dðjx0j; t0; tÞ; 8t5t0 ð14Þ

Then zero 0 2 Rn is GAS.
Finally, we consider the following class of systems whose dynamics contains a pair of time-

varying uncertainties ðy; ZÞ:

’xx ¼ f ðt; y; Z; xÞ

x 2 Rn; y 2 Rl; Z 2 Rm; t50
ð15Þ

where f is measurable in t; continuous with respect to ðy; ZÞ and locally Lipschitz with respect to
x; with f ðt; y; Z; 0Þ ¼ 0 for all ðt; y; ZÞ 2 Rþ �Rl �Rm: The set of admissible uncertainties
ðyð�Þ; Zð�ÞÞ is the space L1ðRþÞ � L1locðR

þÞ:
Let Pt � Rl �Rm be a closed time-varying set, such that its projection on Rl along Rm

coincides with the whole space Rl: We say that 0 2 Rn is Pt-GAS for (15) if for every ðt0; x0Þ and
input

ðyð�Þ; Zð�ÞÞ 2 L1ð½t0;þ1ÞÞ � L1locð½t0;þ1ÞÞ; ðyðtÞ; ZðtÞÞ 2 Pt; 8t5t0 ð16Þ

the corresponding solution xðtÞ of (15) initiated from x0 at time t0 is defined for all t5t0 and
further satisfies:

(P1) For every e > 0 and T50; it holds that supfjxðtÞj ; t5t0; jx0j4e; t0 2 ½0; T �; ðyð�Þ; Zð�ÞÞ
satisfying (16)g5þ1 and for every pair ðyð�Þ; Zð�ÞÞ satisfying (16), there exists a d :¼ dðe; T Þ > 0;
such that (13a) holds.

(P2) For every e > 0; T50, R50 and for every pair ðyð�Þ; Zð�ÞÞ satisfying (16), there exists a
t :¼ tðe; T ;RÞ50; such that (13b) holds.

The following lemma provides a Lyapunov-like criterium forPt-global asymptotic stability of
the origin for systems of the form (15). Its proof is straightforward and is given in
Appendix A.

Lemma 2.6
Consider the parameterized system (15) and assume that there exist a C1 function V :Rþ �
Rn ! Rþ; a function a :ðRþÞ2 ! R of class SL; and constants s50; K1;K2 > 0; such that for
every ðt; x; y; ZÞ 2 Rþ �Rn �Pt it holds that

K1 expf�stgjxj24V ðt; xÞ4K2jxj
2 ð17aÞ

@V
@t

ðt; xÞ þ
@V
@x

ðt; xÞf ðt; y; Z; xÞ4� aðt; jyjÞV ðt; xÞ ð17bÞ
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Then zero 0 2 Rn is Pt-GAS. Particularly, there exists a function D 2 NL in such a way that:

lim
t!þ1

expfetgDðs; tÞ ¼ 0; 8e50; s50 ð18aÞ

jxðtÞj4Dðjjyjj; tÞ exp
1

2

Zt0
0

jaðs; jjyjjÞj ds

8<
:

9=
;jx0j; 8t5t0 ð18bÞ

where xðtÞ denotes the solution of (15) initiated from x0 at time t0 and corresponding to a pair of
uncertainties ðyð�Þ; Zð�ÞÞ 2 L1ð½t0;þ1ÞÞ � L1locð½t0;þ1ÞÞ; with ðyðtÞ; ZðtÞÞ 2 Pt for all t5t0:

3. PARAMETERIZED SYSTEMS

In order to derive sufficient conditions for the problem of global feedback stabilization for case
(1), we first need the following lemma that provides a simple backstepping design scheme and
generalizes the backstepping technique introduced in Lemma 2.1 in Reference [1]. The result of
Lemma 3.1 is inductively used in Corollary 3.2, where sufficient conditions for global
stabilization of parameterized systems (1) by means of a linear time-varying feedback are
established.

Lemma 3.1
Consider the single-input parameterized system

’xx ¼ f ðt; y; Z; xÞ þ gðt; y; ZÞy ð19aÞ

’yy ¼ hðt; y; Z; x; yÞ þ #ZZdðtÞu ð19bÞ

ðx; yÞ 2 Rn �R; ðy; Z; #ZZÞ 2 Rl �Rm �R

where yð�Þ; Zð�Þ; #ZZð�Þ are time-varying measurable mappings, f ; g; h are measurable in t;
continuous with respect to ðy; ZÞ and locally Lipschitz with respect to rest variables and satisfy
f ðt; y; Z; 0Þ ¼ 0; hðt; y; Z; 0; 0Þ ¼ 0; for every ðt; y; ZÞ 2 Rþ �Rl �Rm; and suppose that d belongs
to L\ CjðRþÞ (for some integer j51). Furthermore, assume that there exists a non-empty time-
varying set Pt � Rl �Rm of the form

Pt :¼ fðy; ZÞ 2 Rl �Rm : zi;1ðt; yÞ4Zi4zi;2ðt; yÞ; i ¼ 1; . . . ;mg ð19cÞ

for certain C0 functions, zi;1; zi;2, in such a way that:
A1. There exist a C1 function V :Rþ �Rn ! Rþ; a Cj mapping k :Rþ ! R1�n; a function

a :Rþ �Rþ ! R of class SL; constants Ki > 0; i ¼ 1; 2; 3; and s50; such that the following
hold for all ðt; x; y; ZÞ 2 Rþ �Rn �Pt:

K1 expf�stgjxj24V ðt; xÞ4K2jxj2 ð20aÞ

@V
@x

ðt; xÞ

����
����4K3jxj ð20bÞ
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’VV jð19aÞ;y¼kðtÞx :¼
@V
@t

ðt; xÞ þ
@V
@x

ðt; xÞðf ðt; y; Z; xÞ þ gðt; y; ZÞkðtÞxÞ

4 � aðt; jyjÞV ðt; xÞ ð20cÞ

A2. There exist a function r of class N and constants K > 0; r50; such that for every
ðt; y; ZÞ 2 Rþ �Pt we have:

jkðtÞj þ j ’kkðtÞj4K expfrtg ð21aÞ

jgðt; y; ZÞj þ sup
x=0

jf ðt; y; Z; xÞj
jxj

4rðjyjÞ expfrtgjdðtÞj ð21bÞ

jaðt; sÞj4rðsÞ expfrtg and aðt; sÞ4rðsÞ expfrtgjdðtÞj; 8s50 ð21cÞ

sup
ðx;yÞ=0

jhðt; y; Z; x; yÞj
jðx; yÞj

4rðjyjÞ expfrtgjdðtÞj ð21dÞ

Then

* For every pair of constants R > 0 and b50 and for every function z 2 N with zð0Þ5R; there
exist a C1 function W :Rþ �Rnþ1 ! Rþ; a Cj mapping %kk :Rþ ! R1�ðnþ1Þ; functions %aa 2
SL and %rr 2 N; positive constants %KK ; %KK i > 0 i ¼ 1; 2; 3; %ss; %rr; and a non-empty time-varying
set %PPt � Rl �Rmþ1 of the form:

%PPt :¼ Pt � f#ZZ 2 R : R expf�btg4#ZZ4zðjyjÞ expfbtgg ð22aÞ

such that all properties (20), (21) are satisfied with %ZZ :¼ ðZ; #ZZÞ; %xx :¼ ðx; yÞ; %KK ; %KK i ði ¼ 1; 2; 3Þ;
%ss; %rr; %aa; %kk; %rr; %PPt;W ,

%ff ðt; y; %ZZ; %xxÞ :¼
f ðt; y; Z; xÞ þ gðt; y; ZÞy

hðt; y; Z; x; yÞ

 !
and %ggðt; y; %ZZÞ :¼

0

#ZZdðtÞ

 !
ð22bÞ

instead of Z; x;K;Ki ði ¼ 1; 2; 3Þ; s; r; a; k; r;Pt; V ; f ; and g; respectively.
* It turns out that the origin of the closed-loop system (19) with u ¼ %kkðtÞ %xx is %PPt-GAS.

Particularly, there exists a function D 2 NL satisfying (18a) and in such a way that the
solution %xxðtÞ of the closed-loop system (19) with u ¼ %kkðtÞ %xx satisfies the estimation (18b) with
a :¼ %aa; for every pair ðyð�Þ; %ZZð�ÞÞ 2 L1ð½t0;þ1ÞÞ � L1locð½t0;þ1ÞÞ; with ðyðtÞ; %ZZðtÞÞ 2 %PPt for
all t5t0:

Proof
For simplicity we adopt the notation %xx ¼ ðx; yÞ: Let R; b be arbitrary positive constants and
define

W ðt; %xxÞ :¼ V ðt; xÞ þ dðtÞðy � kðtÞxÞ2 ð23Þ

%kkðtÞ :¼ �
1

2R
expfbtgEðt; dðtÞÞð�kðtÞ; 1Þ ð24Þ
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dðtÞ :¼
2K1 expf�stg

1þ 2K2 expf2rtg
ð25Þ

m :¼ 4r þ 2sþ c ð26Þ

where the constants c; K1;s; K; r are defined in (7a), (20) and (21), respectively and Eð�; �Þ is any
C1 function which satisfies (11a)–(11e) with m as defined by (26) and for the specific dð�Þ above.
By (20a), (21a), (23) and by using the elementary inequalities jxj4j %xxj; jyj4j %xxj; 1

2
jyj2 � jkðtÞxj24

ðy � kðtÞxÞ24jyj2 þ jkðtÞxj2 þ 2jyjjkðtÞxj; we find

K1 expf�stgjxj2 þ 1
2
dðtÞjyj2 � dðtÞK2 expf2rtgjxj2

4W ðt; %xxÞ4ðK2 þ dðtÞð1þ KÞ2 expf2rtgÞj %xxj2 ð27aÞ

and by taking into account (25) we estimate:

K1

1þ 2K2
expf�ðsþ 2rÞtg4

K1 expf�stg
1þ 2K2 expf2rtg

¼ K1 expfstg

� K2dðtÞ expf2rtg ð27bÞ

2K1

1þ 2K2
expf�ðsþ 2rÞtg4dðtÞ4

K1

K2
expf�2rtg ð27cÞ

and consequently (27a)–(27c) it follows that

%KK1 expf� %sstgj %xxj24W ðt; %xxÞ4 %KK2j %xxj
2 ð28Þ

with %ss :¼ 2r þ s and for certain constants %KK1; %KK2 > 0: By definition (23)

@W
@ %xx

ðt; %xxÞ ¼
@V
@x

ðt; xÞ � 2dðtÞðy � kðtÞxÞkðtÞ; 2dðtÞðy � kðtÞxÞ
� �

and, using (20b) and (21a), we can also easily estimate:

@W
@ %xx

ðt; %xxÞ

����
����4K3j %xxj þ 2dðtÞð1þ KÞ2 expf2rtgj %xxj

and thus by (27c):

@W
@ %xx

ðt; %xxÞ

����
����4 %KK3j %xxj ð29Þ

for certain %KK3 > 0: Next we evaluate the time derivative ’WW :¼
d

dt
W ðt; %xxðtÞÞjð19Þ;u¼ %kkðtÞ %xx of W along

the trajectories of (19) with

u ¼ %kkðtÞ %xx ¼ �
1

2R
expfbtgEðt; dðtÞÞðy � kðtÞxÞ and ðy; Z; #ZZÞ 2 %PPt

First, by using (19), (21d), (22a), (23) and (24) we find:

@W
@t

ðt; %xxÞ ¼
@V
@t

ðt; xÞ þ ’ddðtÞðy � kðtÞxÞ2 � 2dðtÞðy � kðtÞxÞ ’kkðtÞx

4
@V
@t

ðt; xÞ þ j’ddðtÞjjy � kðtÞxj2 þ 2dðtÞj ’kkðtÞjjxjjy � kðtÞxj ð30aÞ
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@W
@ %xx

ðt; %xxÞð %ff ðt; y; %ZZ; %xxÞ þ %ggðt; y; %ZZÞ %kkðtÞ %xxÞ

4
@V
@x

ðt; xÞðf ðt; y; Z; xÞ þ gðt; y; ZÞkðtÞxÞ

þ
@V
@x

ðt; xÞgðt; y; ZÞ
����

����jy � kðtÞxj � dðtÞdðtÞEðt; dðtÞÞðy � kðtÞxÞ2

þ 2dðtÞjhðt; y; Z; x; yÞjjy � kðtÞxj þ 2dðtÞjkðtÞjjf ðt; y; Z; xÞjjy � kðtÞxj

þ 2dðtÞjkðtÞjjgðt; y; ZÞjðy � kðtÞxÞ2

þ 2dðtÞjkðtÞj2jgðt; y; ZÞjjxjjy � kðtÞxj ð30bÞ

jhðt; y; Z; x; yÞj4rðjyjÞjdðtÞj expfrtgðð1þ jkðtÞjÞjxj þ jy � kðtÞxjÞ ð30cÞ

It turns out from (20b)–(20c), (21a)–(21b) and (30a)–(30c) that

’WW4I1ðt; x; y; jyjÞ þ I2ðt; x; y; jyjÞ þ I3ðt; x; yÞ ð31aÞ

I1ðt; x; y; jyjÞ :¼
j’ddðtÞj
dðtÞ

þ 2rðjyjÞjdðtÞj expfrtgð1þ jkðtÞjÞ

 !
dðtÞðy � kðtÞxÞ2

� aðt; jyjÞV ðt; xÞ � dðtÞEðt; dðtÞÞdðtÞðy � kðtÞxÞ2 ð31bÞ

I2ðt; x; y; jyjÞ :¼ rðjyjÞjdðtÞj expfrtgðK3 þ 2dðtÞð1þ jkðtÞjÞ2Þjxjjy � kðtÞxj ð31cÞ

I3ðt; x; yÞ ¼: 2dðtÞj ’kkðtÞjjxjjy � kðtÞxj ð31dÞ

Taking into account (25) and combining (21a) and (26) we get expfrtgð1þ jkðtÞjÞ4ð1þ
KÞ expfmtg and j’ddðtÞj=dðtÞ4sþ 2r: Similarly, by (23) we have dðtÞðy � kðtÞxÞ24W ðt; %xxÞ and thus
by taking into account definition (31b) of I1ð�Þ; we estimate:

I1ðt; x; y; jyjÞ4� aðt; jyjÞV ðt; xÞ þ 2ð1þ KÞrðjyjÞjdðtÞj expfmtgdðtÞðy � kðtÞxÞ2

þ ðsþ 2rÞW ðt; %xxÞ � dðtÞEðt; dðtÞÞdðtÞðy � kðtÞxÞ2 ð32Þ

By completing the squares in (31c) and (31d) and using (20a), (21a), (23), (25), (27c) and (7a) we
also get:

I2ðt; x; y; jyjÞ4C1rðjyjÞðV ðt; xÞ þ jdðtÞj expfmtgdðtÞðy � kðtÞxÞ2Þ ð33Þ

I3ðt; x; yÞ4C2W ðt; %xxÞ ð34Þ

for certain C1;C2 > 0: By (21c), (23), (26), (31a), (32)–(34) we conclude that

’WW4� %aaðt; jyjÞW ðt; %xxÞ ð35Þ

%aaðt; sÞ :¼ aðt; sÞ �MðsÞ �maxf0;MðsÞ expfmtgjdðtÞj � dðtÞEðt; dðtÞÞg ð36Þ

where MðsÞ :¼ M0rðsÞ þ sþ 2r þ C2; for certain constant M0 > 0 is a function of class N:

We claim that %aa is of class SL: Indeed, definition (36) asserts that %aa : Rþ �Rþ ! R is a C0

function and, since Mð�Þ is of class N; for each fixed t50 the mapping %aaðt; �Þ is non-increasing.
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Furthermore, by virtue of (11b) of Lemma 2.4 and the fact that a is of class SL; it follows that
for each fixed s50 the mapping %aað�; sÞ belongs to S; since for every real constant r it holds:Z t

0

ð %aaðt; sÞ þ rÞ dt5
Z t

0

ðaðt; sÞ þ r �MðsÞÞ dt� rmðMðsÞÞ

and thus
Rþ1
0 ð %aaðt; sÞ þ rÞ dt ¼ þ1: Consequently, %aa is of class SL:

The latter in conjunction with (28), (35) asserts by virtue of Lemma 2.6 that the origin of the
closed-loop system (19) with u ¼ %kkðtÞ %xx is %PPt-GAS. Particularly, there exists a function D 2 NL
satisfying (18a) and in such a way that the solution %xxðtÞ of the closed-loop system (19) with
u ¼ %kkðtÞ %xx satisfies the estimation (18b) with a :¼ %aa: Finally, the desired analogues of inequalities
(21) for the dynamics %ff ; %gg and the feedback %kk are straightforward consequences of (7a), (11d),
(11e), (21) and (22). &

As a consequence of Lemma 3.1 we obtain the following result, which provides sufficient
conditions for the stabilization of a time-varying system that contains unknown parameters.

Corollary 3.2
Consider the system (1) where each fi is measurable in t; continuous in y and locally Lipschitz
with respect to rest variables satisfying fiðt; y; 0; . . . ; 0Þ ¼ 0 for all ðt; yÞ 2 Rþ �Rl and each d;
belongs to L\ CjðRþÞ ðj51Þ: Furthermore, suppose that there exist a function r 2 N and
constants K > 0; r50 in such a way that

sup
ðx1;...;x1Þ=ð0;...;0Þ

jfiðt; y; x1; . . . ; xiÞj
jðx1; . . . ; xiÞj

4rðjyjÞ expfrtgjdiðtÞj;

8ðt; y; xÞ 2 Rþ �Rl �Rn ði ¼ 1; . . . ; nÞ ð37Þ

jdi�1ðtÞj4K jdiðtÞj expfrtg; 8t50 ði ¼ 2; . . . ; nÞ ð38Þ

Then

* For every pair of constants R > 0 and b50 and for every function z 2 N with zð0Þ5R; there
exist a Cj mapping k :Rþ ! R1�n; a positive definite C1 time-varying matrix P ðtÞ 2 Rn�n;
functions a 2 SL; %rr 2 N and positive constants s; %rr;Ki ði ¼ 1; 2; 3Þ such that, if we define:

Pt ¼ fðy; ZÞ 2 Rl �Rn : R expf�btg4Zi4zðjyjÞ expfbtg; i ¼ 1; . . . ; ng ð39Þ

the following hold for all ðt; x; y; ZÞ 2 Rþ �Rn �Pt:

K1 expf�stgjxj24xTP ðtÞx4K2jxj
2 ð40Þ

d

dt
xTP ðtÞx

����
ð1Þ;u¼kðtÞx

4� aðt; jyjÞxTP ðtÞx ð41Þ

jkðtÞj þ j ’kkðtÞj4K3 expf%rrtg ð42Þ

jaðt; sÞj4 %rrðsÞ expf%rrtg and aðt; sÞ4 %rrðsÞ expf%rrtgjdnðtÞj; 8s50 ð43Þ

* It turns out that the origin of the closed-loop systems (1) with (2) is Pt-GAS. Particularly,
there exists a function D 2 NL; in such a way that (18a) is satisfied and in such a way that
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the solution xðtÞ of the closed-loop system (1) with u ¼ kðtÞx satisfies the estimation (18b)
with að�Þ as defined in (41) and (43), for every pair ðyð�Þ; Zð�ÞÞ 2 L1ð½t0;þ1ÞÞ � L1locð½t0;þ1ÞÞ;
with ðyðtÞ; ZðtÞÞ 2 Pt for all t5t0:

Proof
The proof will be made by induction.

Step 1: Consider the one-dimensional subsystem:

’xx1 ¼ f1ðt; y; x1Þ þ Z1d1ðtÞx2 with x2 as input ð44Þ

Define V ðt; x1Þ :¼ x21: Since d1 2 L; Lemma 2.4 guarantees the existence of a C1 function
E : Rþ �R ! R; such that (11a)–(11e) hold for m :¼ r and d � d1; where the constant r is
defined in (37), (38). Let R > 0; b50 be arbitrary constants and let z 2 N with zð0Þ5R: Define

k1ðtÞ :¼ �
1

R
expfbtgEðt; d1ðtÞÞ ð45Þ

Since (7a) and (11d)–(11e) hold with d � d1; it follows from definition (45) that (42) holds for
kðtÞ :¼ k1ðtÞ for appropriate constants K3; %rr > 0:We estimate the derivative ’VV of V ðt; x1Þ along the
trajectory of (44) with x2 ¼ k1ðtÞx1 assuming that ðyðtÞ; Z1ðtÞÞ 2 Pt for all t5t0; where Pt is the set
defined in (39) for n ¼ 1; namely:

Pt :¼ fðy; Z1Þ 2 Rl �R : R expf�btg4Z14zðjyjÞ expfbtgg ð46Þ

We get by using (37):

d

dt
V ðt; x1Þ

����
ð44Þ;x2¼k1ðtÞx1

4� a1ðt; jyjÞV ðt; x1Þ ð47aÞ

a1ðt; sÞ :¼ d1ðtÞEðt; d1ðtÞÞ �maxf0; 2rðsÞ expfrtgjd1ðtÞj � d1ðtÞEðt; d1ðtÞÞg ð47bÞ

Obviously, by (11a) of Lemma 2.4 the function d1ð�ÞEð�; d1ð�ÞÞ is of class S: Exploiting (11b) and
definition (47b) we can establish, as precisely made in the proof of Lemma 3.1, that the mapping
a1 is of class SL: This establishes (41) with x :¼ x1; P ðtÞ :¼ 1 and að�Þ :¼ a1ð�Þ: Inequalities (43)
for a1ð�Þ are consequences of definition (47b) of a1ð�Þ; in conjunction with the fact that (7a) and
(11d)–(11e) hold with d � d1: It turns out by Lemma 2.6 that the origin of the closed-loop
system (44) with x2 ¼ k1ðtÞx1 is Pt-GAS. Particularly, there exists a function D 2 NL; in such a
way that (18b) is satisfied and in such a way that the solution x1ðtÞ of the closed-loop system (44)
with x2 ¼ k1ðtÞx1 satisfies the estimation (18b) with að�Þ :¼ a1ð�Þ; for every pair ðyð�Þ; Zð�ÞÞ 2
L1ð½t0;þ1ÞÞ � L1locð½t0;þ1ÞÞ; with ðyðtÞ; ZðtÞÞ 2 Pt for all t5t0:

Step 2: Next, consider the two-dimensional subsystem:

’xx1 ¼ f1ðt; y; x1Þ þ Z1d1ðtÞx2; ’xx2 ¼ f2ðt; y; x1; x2Þ þ Z2d2ðtÞx3

with x3 as input ð48Þ

We claim that Assumptions Al and A2 of Lemma 3.1 are fulfilled for (48). Indeed, as established
in Step 1, A1 is fulfilled for kðtÞ :¼ k1ðtÞ; V ðt; x1Þ :¼ x21; að�Þ :¼ a1ð�Þ and Pt as defined by (46).
Furthermore, (21b) is a consequence of (37), (38) and (46). Indeed, combining (37),(38) and (46)
it follows:

jZ1jjd1ðtÞj þ sup
x1=0

jf1ðt; y; x1Þj
jx1j

4 *rrðjyjÞ expf*rrtgjd2ðtÞj; 8ðt; x; y; Z1Þ 2 Rþ �Rn �Pt
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for *rrðsÞ :¼ ð1þ KÞðrðsÞ þ zðsÞÞ; *rr 2 N and *rr :¼ 2r þ b: Inequalities (21a), (21c) are conse-
quences of (38), (42) and (43) with kð�Þ :¼ k1ð�Þ and að�Þ :¼ a1ð�Þ: Finally, (21d) is an immediate
consequence of our assumption (37).

It follows from Lemma 3.1 that there exist a C1 positive definite matrix P : Rþ ! R2�2; a Cj

mapping k : Rþ ! R1�2; functions a 2 SL and %rr 2 N; constants Ki > 0 i ¼ 1; 2; 3; s; %rr; such
that inequalities (40)–(43) are satisfied for all ðt; x1; x2; y; Z1; Z2Þ 2 Rþ �R2 �Pt; where Pt is the
set defined in (39) for n ¼ 2: It turns out by Lemma 2.6 that the origin of the closed-loop system
(48) with

x3 ¼ kðtÞ x1; x2
� �

is Pt-GAS. Particularly, there exists a function D 2 NL; in such a way that (18a) is satisfied
and in such a way that the solution x3ðtÞ of the closed-loop system (48) with

x3 ¼ kðtÞ x1; x2
� �

satisfies the estimation (18b).
The proof is completed by inductive use of Lemma 3.1. &

Example 3.3
Consider the linear time-varying system:

’xxi ¼ dðtÞxiþ1 ði ¼ 1; . . . ; n� 1Þ; ’xxn ¼ u ð49Þ

where dðtÞ :¼ H expfAtgz0; z0=0 is the output of an autonomous linear observable system
’zz ¼ Az; y ¼ Hz: The system has the structure of (1) with diðtÞ � dðtÞ; fi � 0 and ZtðtÞ � 1 for
i ¼ 1; . . . ; n: Notice that, by virtue of Example 2.3, d 2 L\ C1ðRþÞ: It turns out from Corollary
3.2 that there exists a C1 mapping k : Rþ ! R1�n; such that 0 2 Rn is GAS with respect to the
closed-loop system (49) with u ¼ kðtÞx:

4. APPLICATIONS

The results of Section 3 are used to derive sufficient conditions for global stabilization by means
of time-varying feedback for systems of form (3), as well as for the solution of the tracking
problem for the case of system (5).

4.1. Stabilization by smooth time-varying state feedback

We focus our attention to the case of systems (3) that in general cannot be stabilized by a C0

static (time-invariant) feedback. We show that, under certain hypotheses, there exists a C1 time-
varying feedback exhibiting non-uniform in time global asymptotic stability of (3) at zero.

Proposition 4.1
Consider system (3), where each Fi is continuous in y; locally Lipschitz with respect to rest
variables and satisfies Fiðy; z; u1; 0; . . . ; 0Þ ¼ 0 for all ðy; z; u1Þ 2 Rk �Rm �R and each Gi; has
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the form:

Giðz; u1Þ :¼ qi1 þ qi2ðczþ c0u1Þ ð50Þ

for certain c 2 R1�m and constants c0 2 R; qi1;Qi250 in such a way that

qi1 þ qi2 > 0 ði ¼ 1; . . . ; nÞ ð51Þ

Moreover, we make the following assumptions:
A1. The pair ðA; bÞ is stabilizable.
A2. There exists a function r 2 N such that:

sup
ðx1;...;xiÞ=0

jFiðy; z; u1; x1; . . . ; xiÞj
jðx1; . . . ; xiÞj

4rðjðy; z; u1ÞjÞ

8ðy; z; u1Þ 2 Rk �Rm �R ði ¼ 1; . . . ; nÞ ð52Þ

A3. The following condition holds:

jc0j þ
Xm�1

i¼0

jcAibj > 0 ð53Þ

Under the previous assumptions, there exists a pair of C1 functions U1ðt; z; xÞ and U2ðt; xÞ; with
U1ð�; 0; 0Þ ¼ U2ð�; 0Þ ¼ 0; in such a way that for any yð�Þ 2 L1ðRþÞ; the origin 0 2 Rm �Rn for the
closed-loop system (3) with (4) is GAS. Particularly, for any yð�Þ 2 L1ðRþÞ the corresponding
solution ðzðtÞ; xðtÞÞ of the closed-loop system satisfies:

lim
t!þ1

expfetgjðzðtÞ; xðtÞÞj ¼ 0 ð54Þ

for e > 0 small enough.

Proof
Using A1 and applying a linear change of co-ordinates, subsystem (3a) is written as

’zz1

’zz2

 !
¼

A11 A12

0 A22

 !
z1

z2

 !
þ

b1

0

 !
u1

z1 2 Rm1 ; z2 2 Rm�m1 ð55Þ

where A11;A12;A22 are constant real matrices, in such a way that

rankfb1;A11b1; . . . ;A
m1�1
11 b1g ¼ m1 ð56Þ

and A22 is Hurwitz, namely:

jexpfA22ðt � t0Þgj4M1 expf�lðt � t0Þg; 8t5t0 ð57Þ

for some constants M1; l > 0: In the above co-ordinates each term Gt takes the form:

Giðz; u1Þ ¼ qi1 þ qi2ðc1z1 þ c2z2 þ c0u1Þ; i ¼ 1; . . . ; n ð58Þ

for appropriate vectors c1 2 R1�m1 ; c2 2 R1�ðm�m1Þ: Notice that (53) implies that

jc0j þ jc1j > 0 ð59Þ

Without any loss of generality we may assume in the sequel that the pair ðA; bÞ has the canonical
form (55) and simultaneously (56)–(59) are fulfilled. The proof is separated into three parts.
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First, in Part I we construct the first component U1ðt; z; xÞ of the desired feedback stabilizer (4)
associated with appropriate mappings p :Rþ ! Rþ; T0 2 NN andU0 :R

þ �Rm ! R; such that

U1ðt; z; xÞ ¼ U0ðt; zÞ; for jxj5expf�pðtÞg ð60Þ

and in such a way that the solution zðtÞ of the closed-loop system (55) with u1 ¼ U0ðt; zÞ satisfies:

GiðzðtÞ;U0ðt; zðtÞÞÞ5q expf�btg; i ¼ 1; . . . ; n ð61aÞ

for t5T0ðt0; jzðt0ÞjÞ ð61bÞ

for some appropriate constants q; b > 0; where Gi’s are defined by (58). Part II is devoted to the
construction of the second component U2ðt; xÞ of the desired feedback (4), by employing the
results of Section 3. To be more precise, instead of subsystem (3b), we first deal with
the parameterized system

’xxi ¼ Fið*yy; x1; . . . ; xiÞ þ Zixiþ1; i ¼ 1; . . . ; n; u2 :¼ xn�1 ð62aÞ

*yy :¼ ðy; z; u1Þ ð62bÞ

that obviously has the same structure with system (1). It turns out by Corollary 3.2 that there
exists a feedback law u2 ¼ U2ðt; xÞ; such that 0 2 Rn is Pt-GAS for the closed-loop system (62)
with (4), where

Pt :¼ fð*yy; ZÞ 2 Rkþmþ1 �Rn; q expf�btg4Z14zðj*yyjÞ expfbtg; i ¼ 1; . . . ; ng ð63aÞ

zðsÞ :¼ ð1þ sÞðjc0j þ jcj þ 1Þ 1þ
Xn
i¼1

ðqi1 þ qi2Þ

 !
ð63bÞ

Z :¼ ðZ1; . . . ; ZnÞ ð63cÞ

Finally, in Part III of the proof we establish that 0 2 Rm �Rn is GAS for the closed-loop
system (3) with (4), by taking into account the analysis made in Parts I and II.

Part I: Construction of U1:
Notice first that (56) guarantees the existence of a constant vector f 2 R1�m1 ; in such a way

that, by denoting

Af :¼ A11 þ b1f ð64Þ

it holds:

jexpfAf ðt � t0Þgj4M2 expf�2lðt � t0Þg; 8t5t0 ð65Þ

for certain constant M2 > 0: Define

cf :¼ c1 þ c0f ð66Þ

and let b be a constant with

05b4
1

2
ð67aÞ

c0 � cf ðAf þ bIÞ�1b1=0 ð67bÞ

(A detailed establishment of the existence of b; satisfying (67a), (67b) is given in Appendix A).
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By (67b) we may define

l :¼
1

c0 � cf ðAf þ bIÞ�1b1
ð68Þ

and let

U0ðt; zÞ :¼ fz1 þ l expf�btg ð69Þ

Notice that the z1 component of the solution of the closed-loop system (55) with u1 ¼ U0ðt; zÞ;
satisfies:

z1ðtÞ ¼ expfAf ðt � t0Þgz1ðt0Þ þ
Z t

t0

expfAf ðt � tÞgA12z2ðtÞ dt

þ l expf�bt0gðAf þ bIÞ�1 expfAf ðt � t0Þgb1

� l expf�btgðAf þ bIÞ�1b1 ð70Þ

hence, we evaluate for i ¼ 1; . . . ; n:

GiðzðtÞ;U0ðt; zðtÞÞÞ ¼ qi1 þ lqi2ðc0 � cf ðAf þ bIÞ�1b1Þ expf�btg þ qi2xðtÞ ð71Þ

where

xðtÞ :¼ cf expfAf ðt � t0Þgz1ðt0Þ þ l expf�bt0gcf ðAf þ bIÞ�1 expfAf ðt � t0Þgbi

þ cf

Z t

t0

expfAf ðt � tÞgA12 expfA22ðt� t0Þg dt

0
@

þ c2 expfA22ðt � t0Þg

!
z2ðt0Þ ð72Þ

By (57), (65) and (72) we estimate

jxðtÞj4M3ð1þ jzðt0ÞjÞ expf�lðt � t0Þg; 8t5t0 ð73Þ

for some constant M3 > 0: From (67a), (68), (71) and (73) it follows that (61) holds, where

q :¼
1

2
min

i¼1;...;n
ðqi1 þ qi2Þ

which according to hypothesis (51) is strictly positive and

T0ðt; sÞ :¼ 2t þ
2

l
logðM4ð1þ sÞÞ ð74Þ

for certain constant M4 > 1:

We are now in a position to build the desired map U1ð�Þ: Consider a non-decreasing C1

function f :R ! Rþ with

fð0Þ ¼ 0; fðsÞ ¼ 1 for s51 ð75Þ
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and define:

U1ðt; z; xÞ :¼ fz1 þ lfðjxj2 expf2pðtÞgÞ expf�btg ð76aÞ

pðtÞ :¼ expfexpftgg ð76bÞ

where l is given by (68). Obviously U1 is C1; and (60) is an immediate consequence of (75) and
definitions (69) and (76a) of U0 and U1; respectively. Moreover, (76b) guarantees the existence of
a function d 2 NN; such that

sup
t50

ðs expfmtg � pðtÞÞ4dðm; sÞ; 8m; s50 ð77Þ

(for example we may take dðm; sÞ :¼ expf2m2gsð1þ sÞmÞ: Estimation (77) above is used in Part III
for the stability analysis of the closed-loop system.

Part II: Construction of U2:
In order to define U2ð�Þ; we consider the parameterized system (62). By A2 all assumptions of

Corollary 3.2 hold for (62) with d1ðtÞ ¼ � � � ¼ dnðtÞ � 1 2 L\ C1ðRþÞ and therefore there exists
a C1 mapping k :Rþ ! R1�m; functions a 2 SL and %rr 2 N; and constants %rr;K > 0; such that
the following hold for all ðt; sÞ 2 ðRþÞ2:

jkðtÞj þ j ’kkðtÞj4K expf%rrtg ð78aÞ

jaðt; sÞj4 %rrðsÞ expf%rrtg ð78bÞ

Moreover, Corollary 3.2 asserts the existence of a function D 2 NL; in such a way that the
following estimate holds:

lim
t!þ1

expfetgDðs; tÞ ¼ 0 for all e; s50 ð79aÞ

jxðtÞj4Dðjj*yyjj; tÞ exp
1

2

Zt0
0

jaðt; jj*yyjjÞj dt

8<
:

9=
;jx0j; 8t5t0 ð79bÞ

where xðtÞ denotes the solution of the closed-loop system (62) with u2 ¼ kðtÞx; corresponding to a
pair of inputs ð*yyð�Þ; Zð�ÞÞ 2 L1ð½t0;þ1ÞÞ � L1locð½t0;þ1ÞÞ with ð*yyðtÞ; ZðtÞÞ 2 Pt for all t5t0;
initiated from x0 at time t0; where *yy; Pt and Z are defined by (62b), (63a) and (63c), respectively.
The desired feedback U2ð�Þ is defined as:

U2ðt; xÞ :¼ kðtÞx ð80Þ

Part III: Stability analysis for the closed-loop system.
We claim that for any yð�Þ 2 L1ðRþÞ the origin 0 2 Rm �Rn is GAS with respect to the closed-

loop system (3) with (4), where U1ð�Þ and U2ð�Þ are defined by (76) and (80), respectively, namely,
with respect to

’zz ¼ Azþ bU1ðt; z; xÞ ð81aÞ

’xxi ¼ Fiðy; z;U1ðt; z; xÞ; x1; . . . ; xiÞ þ Giðz;U1ðt; z; xÞÞxiþ1; i ¼ 1; . . . ; n

xnþ1 ¼U2ðt; xÞ ð81bÞ
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Fact I
The solution ðzðtÞ; xðtÞÞ of (81) initiated from ðz0; x0Þ at time t0 and corresponding to some
yð�Þ 2 L1ðRþÞ satisfies:

jzðtÞj þ jU1ðt; zðtÞ; xðtÞÞj4C1 expf�bðt � t0Þgðjz0j þ 1Þ; 8t5t0 ð82Þ

expf�cðjz0j þ jjyjjÞ expf%rrtggjx0j4jxðtÞj4expfcðjz0j þ jjyjjÞ expf%rrtggjx0j; 8t5t0 ð83Þ

for certain C1 > 0 and c 2 N; where b; %rr are the constants involved in (67) and (78a), (78b),
respectively.

Indeed, (82) is a straightforward consequence of (57), (64), (65), (67a), (75), (76a) and
application of Gronwall’s inequality in (81a). By virtue of (50), (52), (63b) and (78a), we have:

j ’xxðtÞj4C2ðrðjðyðtÞ; zðtÞ;U1ðt; zðtÞ; xðtÞÞÞjÞ

þ zðjðzðtÞ;U1ðt; zðtÞ; xðtÞÞÞjÞÞ expf%rrtgjxðtÞj

for certain C2 > 0: The desired inequality (83) is a consequence of the inequality above. (82) and
application of Gronwall’s inequality in (81b). For completeness, we note that (83) is valid by
taking

cðsÞ :¼ C3ðrðð1þ C1Þð1þ sÞÞ þ zðð1þ C1Þð1þ sÞÞÞ ð84Þ

for appropriate constant C3 > 0:

Fact II
There exist mappings T :Rþ � ðRnWf0gÞ �Rm � L1ðRþÞ ! Rþ; *cc 2 N and *DD 2 NL with

lim
t!þ1

expfetg *DDðs; tÞ ¼ 0 8e; s50 ð85Þ

such that the solution xðtÞ of subsystem (81b), corresponding to yð�Þ 2 L1ðRþÞ satisfies the
estimate:

jxðtÞj4 *DDðjjyjj þ jz0j; tÞ expf *ccðjjyjj þ jz0jÞ expf%rrT ggjx0j

for all t5T :¼ T ðt0; x0; z0; yð�ÞÞ; xðt0Þ ¼ x0=0 and t050 ð86Þ

In order to establish (86), notice first that the left-hand side inequality of (83) and definition
(76b) of pð�Þ yield:

jxðtÞj expfpðtÞg ! þ1 as t ! þ1 for any initial x0=0 ð87Þ

By taking (87) into account we define a map T1 :R
þ � ðRnWf0gÞ �Rm � L1ðRþÞ ! Rþ; which

satisfies

T1 :¼ T1ðt0; x0; z0; yð�ÞÞ ¼ minft5t0 : jxðsÞj expfpðsÞg51; 8s5tg ð88Þ

where pð�Þ is defined in (76b). Obviously, the mapping T1ð�Þ is well-defined and, according to
definition (88), it holds jxðT1Þj ¼ expf�pðT1Þg; for the case T1 > t0: Moreover, we have by (60)
and (88):

U1ðt; zðtÞ; xðtÞÞ ¼ U0ðt; zðtÞÞ; 8t5T1 ð89Þ
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Define:

T ¼ T ðt0; x0; z0; yð�ÞÞ :¼ T0ðT1ðt0; x0; z0; yð�ÞÞ;C1ðjz0j þ 1ÞÞ ð90Þ

where the map T0 is defined in (74) and C1 is the constant involved in (82). Notice that (74), (82)
and (88) imply:

T ðt0; x0; z0; yð�ÞÞ5T0ðT1; jzðT1ÞjÞ5t0 ð91Þ

We also define:

*ccðsÞ :¼
1

2%rr
%rrðð1þ C1Þð1þ sÞÞ þ cðsÞ ð92aÞ

*DDðs; tÞ :¼ Dðð1þ C1Þð1þ sÞ; tÞ ð92bÞ

where %rr; %rr; D and c are defined in (78a), (78b), (79a), (79b) and (84), respectively. Obviously,
since %rr; c 2 N and D 2 NL and satisfies (79a), we have that *cc and *DD are functions of class N
and NL; respectively and satisfy (85).

We now take into account (61), (89), (91) and definitions (50), (62b), (63b) and (90) of
Gi; *yy; z and T ; respectively, and estimate

q expf�btg4GiðzðtÞ;U1ðt; zðtÞ; xðtÞÞÞ4zðjðzðtÞ;U1ðt; zðtÞ; xðtÞÞÞjÞ4expfbtgzðj*yyðtÞjÞ; 8t5T ð93Þ

Consequently, by (93) and invoking (62b), (63a) we have:

ðyðtÞ; zðtÞ;U1ðt; zðtÞ; xðtÞÞ;GðzðtÞ;U1ðt; zðtÞ; xðtÞÞÞÞ 2 Pt; 8t5T ð94Þ

where Gðz; u1Þ :¼ ðG1ðz; u1Þ; . . . ;Gnðz; u1ÞÞ
T: The desired (86) is a consequence of (62b), (78b),

(79b), (82), right-hand side of (83), (94) and definitions (62b) and (92a), (92b) of *yy and *cc; *DD;
respectively; particularly, we have:

jxðtÞj 4
ð79bÞ

Dðjj*yyjj; tÞ exp
1

2

ZT
0

jaðt; jj*yyjjÞj dt

8<
:

9=
;jxðT Þj

4
ð78bÞ

Dðjj*yyjj; tÞ exp
1

2%rr
%rrðjj*yyjjÞ expf%rrtg

� �
jxðT Þj

4
ð62bÞ;ð82Þ;ð92bÞ

*DDðjjyjj þ jz0j; tÞ exp
1

2%rr
%rrðð1þ C1Þðjjyjj

�

þ jz0j þ 1ÞÞ expf%rrT ggjxðT Þj

4
ð83Þ;ð92aÞ

*DDðjjyjj þ jz0j; tÞ expf *ccðjjyjj þ jz0jÞ expf%rrT ggjx0j

for any non-zero x0 2 Rn and for all t5T :¼ T ðt0; x0; z0; yð�ÞÞ:
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As a consequence of Facts I and II we obtain:

Fact III
Estimation (86) is valid for all t5t0 and every non-zero x0:

Indeed, from (79b) we have that:

14Dðs; tÞ exp
1

2

Z t

0

jaðt; sÞj dt

8<
:

9=
; for all ðt; sÞ 2 ðRþÞ2

which by virtue of (78b) gives:

14Dðs; tÞ exp
1

2%rr
%rrðsÞ expf%rrT g

� �
; for all 04t4T ; s50; T50

The right-hand side inequality of (83), in conjunction with the previous inequality yield:

jxðtÞj4 expfcðjjyjj þ jz0jÞ expf%rrT ggjx0j

4Dðð1þ C1Þðjjyjj þ jz0j þ 1Þ; tÞ exp
1

2%rr
%rrðð1þ C1Þðjjyjj þ jz0j þ 1ÞÞ

��

þ cðjjyjj þ jz0jÞ�expf%rrT g
�
jx0j for all t04t4T ; x0 2 Rn; T5t0

and this by virtue of (92a), (92b) and Fact II guarantees that estimation (86) is valid for all t5t0
and x0=0:

We complete the proof by establishing the following fact.

Fact IV
There exists a function D 2 NNL with

lim
t!1

expfetgDðr; s; tÞ ¼ 0; 8e; r; s50 ð95Þ

such that the solution xðtÞ of subsystem (81b), corresponding to yð�Þ 2 L1ðRþÞ and initiated from
x0 at time t0; satisfies the estimate:

jxðtÞj4Dðjjyjj þ jðz0; x0Þj; t0; tÞ; 8t5t0 ð96Þ

In order to prove (96), we first use Fact III and take into account definitions (74), (88) and
(90) of the mappings T0; T1 and T ; respectively. We find T ¼ 2T1 þ ð2=lÞ logðM4ð1þ C1 þ
C1jz0jÞÞ and, since (86) holds for all t5t0; we get

jxðtÞj4 *DDðjjyjj þ jz0j; tÞ expfgðjjyjj þ jz0jÞ expf2%rrT1ggjx0j; 8t5t0; x0=0 ð97Þ

for certain g 2 N (for example we can take gðsÞ :¼ *ccðsÞðM4ð1þ C1 þ C1sÞÞð2%rr=lÞÞ: We now recall
the precise definition (88) of the map T1 :¼ T1ðt0; x0; z0; yð�ÞÞ: As was pointed out, it holds that

jxðT1Þj ¼ expf�pðT1Þg; when T1 > t0; x0=0

and the latter, in conjunction with the left-hand side inequality of (83), yields

jx0j4expf�pðT1Þ þ expf%rrT1gcðjjyjj þ jz0jÞg; provided that T1 > t0; x0=0 ð98Þ
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Using (97), (98) and recalling (77), we find an estimation of the solution xð�Þ being independent
of T1

jxðtÞj4 *DDðjjyjj þ jz0j; tÞ expfdð2%rr;cðjjyjj þ jz0jÞ þ gðjjyjj þ jz0jÞÞg; 8t5t0

provided that T1 ¼ T1ðt0; x0; z0; yð�ÞÞ > t0; x0=0 ð99Þ

Combining (97) and (99) for the cases T1 ¼ t0 and T1 > t0; respectively, and using the elementary
inequalities jz0j4jðz0; x0Þj; jx0j4jðz0; x0Þj; as well as the fact that xðtÞ � 0 for x0 ¼ 0; it follows that
there exists an NNL function D; such that both (95) and (96) are fulfilled. For example, we
may take:

Dðs; t0; tÞ :¼ *DDðs; tÞ½expfdð2%rr;cðsÞ þ gðsÞÞg þ s expfgðsÞ expf2%rrt0gg�

that obviously is of class NNL and which, by virtue of (85), satisfies (95). The desired GAS
and exponential convergence at the origin for the closed-loop system (81) are direct
consequences of (82), (95), (96) and Lemma 2.5. &

We use the result of Proposition 4.1 to give an alternative solution for the stabilization
problem for a class of two-input systems that cannot be stabilized by means of a C0 static state
feedback, since they do not satisfy Brockett’s necessary condition, Reference [19].

Example 4.2
We consider the global feedback stabilization problem for (5) with fi � 0 ði ¼ 1; . . . ; nÞ: There
are many contributions in the literature for the solution of this problem using periodic
time-varying continuous feedback and periodically updated hybrid open loop/feedback controls
(see References [9–15, 20] and references therein). An alternative solution is given here by
employing the result of Proposition 4.1. Indeed, system (5) satisfies all hypotheses of Proposition
4.1 and thus there exists a time-varying C1 feedback law of form (4), which globally
asymptotically stabilizes (5) at zero. Moreover, by virtue of (54) the rate of convergence is
exponential. For the case n ¼ 2; the analysis made in the proof of Proposition 4.1 asserts that
the feedback law

U1ðt; z; xÞ ¼ � 2z� expf�tgfðexpf2pðtÞgðx21 þ x22ÞÞ

U2ðt; xÞ ¼ � expf10tgðx2 þ expf2tgx1Þ

where pðtÞ is defined by (76b) and f :R ! Rþ is any non-decreasing C1 function that satisfies
(75), exhibits global stabilization for (5) at zero and further (54) holds for all e51:

Example 4.3
Consider the problem of controlling a mobile robot moving on an uneven surface described by
the system (see Reference [21]):

.yy1 ¼ u1; .yy2 ¼ �y1y2 þ y2y3 � v2ðy1Þy2 � v3ðy1Þy3 þ u2; ’yy3 ¼ ’yy1y2

where v1; v2 are C1 functions and y1; y2 are treated in Reference [21] as known constants. In
Reference [21] a discontinuous time-invariant control law is proposed exhibiting the so-called
‘almost exponential stability’. Here we consider y1; y2 as bounded time-varying unknown
parameters and we strengthen the result in Reference [21] by proposing a C1 time-varying
feedback that guarantees exponential convergence and global asymptotic stability. The system is
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equivalently written as

’zz1 ¼ z2

’zz2 ¼ u1

’xx1 ¼ z2x2

’xx2 ¼ x3

’xx3 ¼ �y1x2 þ y2x1 � v2ðz1Þx2 � v3ðz1Þx1 þ u2

Obviously, for the system above all hypotheses of Proposition 4.1 are fulfilled, hence, the system
is globally asymptotically stabilized at 0 2 R5 by means of C1 time-varying feedback of form
(4). Particularly, we may apply

U1ðt; z; xÞ ¼ � 6z1 � 5z2 � expf�tgfðexpf2pðtÞgðx21 þ x22 þ x23ÞÞ

U2ðt; xÞ ¼ � expf58tgðx3 þ expf10tgx2 þ expf12tgx1Þ

with same pð�Þ and fð�Þ as those selected in Example 4.2. The proposed feedback exhibits global
stabilization at zero and further (54) holds for all e51:

Example 4.4
Likewise, we can handle the problem of controlling the Cartesian position and orientation of a
surface vessel with two independent propellers (see Reference [21]):

.yy1 ¼ u1; .yy2 ¼ u2; .yy3 ¼ ðu1 þ c ’yy1Þy2 � c ’yy3

Details are left to the reader.

4.2. Application to Tracking Problem

In this section we apply the result of Corollary 3.2 for the asymptotic tracking problem for the
case of systems (5). The same problem has been studied in earlier works under the assumption
that fi � 0; i ¼ 1; . . . ; n (see References [3–8] and references therein). Our results are based on a
different set of hypotheses with those in the previously mentioned papers.

We assume that each term fi ði ¼ 1; . . . ; nÞ vanishes at zero and is globally Lipschitz, namely,
there is a positive constant L; such that:

jfiðx1; . . . ; xiÞ � fiðy1; . . . ; yiÞj4Ljðx1 � y1; . . . ; xi � yiÞj

8ðx1; . . . ; xi; y1; . . . ; yiÞ 2 Rl �Rl; i ¼ 1; . . . ; n ð100Þ

Consider a reference trajectory ðzdðtÞ; xd ðtÞÞ ¼ ðzdðtÞ; x1d ðtÞ; . . . ; xnd ðtÞÞ 2 Rn�1; t50 of system
(5) namely:

’zzd ¼ u1d ; ’xxid ¼ u1d ðfiðx1d ; . . . ; xidÞ þ xðiþ1ÞdÞ; 14i4n� 1 ; ’xxnd ¼ fnðxd Þ þ u2d ð101Þ

for certain reference control inputs u1d ; u2d and denote the tracking error as

ðzeðtÞ; eðtÞÞ :¼ ðzðtÞ � zd ðtÞ; xðtÞ � xd ðtÞÞ
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where ðzðtÞ; xðtÞÞ is any arbitrary solution of (5). Then ðzeðtÞ; eðtÞÞ satisfies:

’zze ¼ v1 ð102aÞ

’eei ¼ ðu1d ðtÞ þ v1Þðei�1 þ giðt; e1; . . . ; eiÞÞ þ v1ðxðiþ1Þd ðtÞ

þ fiðx1dðtÞ; . . . ; xid ðtÞÞÞ 14i4n� 1

’een ¼ gnðt; eÞ þ v2

ð102bÞ

where

giðt; e1; . . . ; eiÞ :¼ fiðx1d ðtÞ þ e1; . . . ; xid ðtÞ þ eiÞ � fiðx1dðtÞ; . . . ; xid ðtÞÞ; i ¼ 1; . . . ; n ð103aÞ

v1 :¼ u1 � u1d ; v2 :¼ u2 � u2d ð103bÞ

The tracking problem (TP) is said to be globally solvable if there exists a pair of time-varying
feedback controllers of the form

v1 ¼ U1ðt; ze; eÞ; v2 ¼ U2ðt; ze; eÞ ð104Þ

such that 0 2 Rnþ1 is GAS for the closed-loop system (102) with (104).
The result of the following proposition is a consequence of Corollary 3.2.

Proposition 4.5
Consider system (101), where each fi ði ¼ 1; . . . ; nÞ vanishes at zero and satisfies (100). Suppose
that:

* u1dð�Þ is of class L and u2d ð�Þ is measurable and locally essentially bounded.
* The xd ð�Þ component of the solution of (101) satisfies

jxdðtÞj4M expfltg ð105Þ

for some constants M ; l50:
Then there are C1 mappings ki ði ¼ 1; 2Þ such that the time-varying feedback law

v1 ¼ U1ðt; zeÞ ¼ k1ðtÞze; v2 ¼ U2ðt; eÞ ¼ k2ðtÞe ð106Þ

solves the TP globally.

Proof
We establish the existence of C1 mappings ki ði ¼ 1; 2Þ such that 0 2 Rnþ1 is GAS for the closed-
loop system (102) with (106). By taking into account (100), definition (103a) of gið�Þ and our
hypothesis fið0; . . . ; 0Þ ¼ 0; we have:

jgiðt; e1; . . . ; eiÞj4Ljðe1; . . . ; eiÞj ð107aÞ

jfiðx1d ; . . . ; xidÞj4Ljxd j ð107bÞ

Consider first the subsystem (102b) with zero input v1:

’eei ¼ u1dðtÞeiþ1 þ u1d ðtÞgiðt; e; . . . ; eiÞ; 14i4n� 1; ’een ¼ gnðt; eÞ þ v2 ð108Þ

Because of (107a) and our assumption u1d 2 L; system (108) satisfies all hypotheses of Corollary
3.2, hence, there exist a C1 mapping k :Rþ ! R1�n; a C1 positive definite time-varying matrix
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P ð�Þ 2 Rn�n; a function a 2 S and constants s; %rr;Ki > 0 ði ¼ 1; 2; 3Þ such that:

K1 expf�stgjej24eTP ðtÞe4K2jej2 ð109aÞ

d

dt
eTðtÞP ðtÞeðtÞ

����
ð108Þ;v2¼kðtÞe

4� aðtÞeTP ðtÞeðtÞ ð109bÞ

jaðtÞj þ jkðtÞj þ j ’kkðtÞj4K3 expf%rr; tg ð109cÞ

We define:

k1ðtÞ :¼ �C1 expfC2tg; k2ðtÞ :¼ kðtÞ ð110Þ

where C1;C2 > 0 are certain constants yet to be specified and kð�Þ as defined in (109). We are in a
position to establish that 0 2 Rnþ1 is GAS for the closed-loop system (102) with (106), where
ki ði ¼ 1; 2Þ are given by (110). Notice first that the solution zeð�Þ of (102a) with v1 ¼ k1ðtÞze;
where k1 is given by (110), satisfies

zeðtÞ ¼ zeðt0Þ exp �C1

Z t

t0

expfC2tg dt

8<
:

9=
; ð111aÞ

Moreover, by (110) and (111a), it holds

jv1ðtÞj ¼ C1jzeðt0Þjexp C2t � C1

Z t

t0

expfC2tg dt

8<
:

9=
; ð111bÞ

We now take into account (105), (107a), (107b), (109a), (109b) and estimate

d

dt
eTðtÞP ðtÞeðtÞ

����
ð102bÞ;v2¼kðtÞe

4� aðtÞeTðtÞP ðtÞeðtÞ þ 2v1ðtÞeTðtÞP ðtÞ

e2 þ g1ðt; e1Þ

..

.

en þ gn�1ðt; e1; . . . ; en�1Þ

0

0
BBBBBB@

1
CCCCCCA

þ 2v1ðtÞeTðtÞP ðtÞ

x2dðtÞ þ f1ðx1d ðtÞÞ

..

.

xnd ðtÞ þ fn�1ðx1d ðtÞ . . . xðn�1Þd ðtÞÞ

0

0
BBBBBB@

1
CCCCCCA

4� ðaðtÞ � Cjv1ðtÞj expfltgÞeTðtÞP ðtÞeðtÞ þ C expfltgjv1ðtÞj ð112Þ
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for certain constants C > 0 and l > 0 (specifically, we may take l ¼ 2lþ s; where l;s are the
constants involved in (105), (109a), respectively). It follows from (109a) and (112) that

jeðtÞj4

ffiffiffiffiffiffi
K2

K1

r
exp �

1

2

Z t

0

ðaðtÞ � sÞ dt

8<
:

9=
;exp

1

2

Zt0
0

jaðtÞj dt

8<
:

9=
;Dðt; t0; eðt0Þ; v1Þ; 8t5t0 ð113Þ

where

Dðt; t0; s; v1Þ :¼ exp
C
2

Z t

t0

expfltgjv1ðtÞj dt

8<
:

9=
;s

þ C
Z t

t0

jv1ðtÞj exp ltþ
Zt
t0

jaðwÞj dwþ C
Z t

r

expflwgjv1ðwÞj dw

8<
:

9=
;dt

0
@

1
A

1=2

It turns out by picking

C1 :¼ 2ðlþ C2Þ þ
2K3

%rr
C2 þ C2; C2 :¼ %rr ð114Þ

and taking into account (109c) and (111b) that there exists a function Eðt0; sÞ of class NN; such
that

Dðt; t0; s; v1Þ4Eðt0; sþ jzeðt0ÞjÞ; 8t5t0; s50 ð115Þ

ðfor example; we may take Eðt; sÞ :¼ exp
CC1

2
exp

C1

C2
expfC2tg

� �
s

� �
sþ ðCC1sÞ

1=2 exp
C1

2C2
expfC2tg

� �� �
:

Notice that, since a 2 S; (113) and (115) guarantee the existence of a function D 2 NNL such
that

jeðtÞj4Dðjzeðt0Þj þ jeðt0Þj; t0; tÞ; 8t5t0 ð116Þ

The desired GAS for the closed-loop system (102) with (106) are direct consequences of (111a),
(116) and Lemma 2.5. &

Remark 4.6
For the case fi � 0 ði ¼ 1; . . . ; nÞ; (105) can be relaxed by assuming that:Xn

i¼2

jxidðtÞj4M expfltg ð117Þ

Indeed, if each fi vanishes identically then inequality (112) is a consequence of (117).

Remark 4.7
We make some comparison with earlier existing works for the tracking problem for the case
fi � 0 ði ¼ 1; . . . ; nÞ: We first notice that the results in Reference [7] generalize those in
References [3–6]. Particularly, in Reference [7, Theorem 1] it is proved that the TP is solvable
under the assumptions that xidð�Þ ði ¼ 2; . . . ; nÞ; u1d ð�Þ; u2d ð�Þ; ’uu1d ð�Þ are bounded over Rþ and
u1dð�Þ does not converge to zero as t ! 1: Clearly, our assumption concerning xd is weaker,
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since it is not required to be bounded. Furthermore, it should be noticed that there are functions
of class L; which do not meet the requirements of Reference [7, Theorem 1]. A typical example is
the function u1d ðtÞ ¼ expf�tg sin t; which obviously belongs to L (since it can be seen as the
output response of an appropriate linear system for non-zero initial condition), but does not
meet the requirements imposed in Reference [7]. We also mention the recent result [8,
Proposition 10.3.1], where it is proved that the TP is solvable, under the assumptions that u1dð�Þ
is continuous, xidð�Þ ði ¼ 2; . . . ; nÞ are bounded overRþ and there exist positive constants d; e1; e2
such that for all t > 0:

e1I 4
Ztþd

t

wrðt; tÞwT
r ðt; tÞ dt4e2I

wT
r ðt; tÞ :¼ 1;

Z t

t

u1d ðsÞ ds; . . . ;
Z t

t

u1d ðsÞ ds

0
@

1
A

n�1
0
B@

1
CA

Again, our hypothesis concerning xd is weaker and there are functions of class L; which do not
meet the requirements of Reference [8, Proposition 10.3.1]; a typical example again is the
function u1d ðtÞ ¼ expf�tg sin t:

5. CONCLUSIONS

In this paper we explored the idea of non-uniform in time global asymptotic stabilization
to derive sufficient conditions for the existence of linear time-varying feedback that stabilizes
the equilibrium point of an uncertain triangular time-varying system. As applications we
considered the problem of robust stabilization for two-input systems that in general cannot be
stabilized by C0 time-invariant feedback, as well as the state feedback tracking problem for
a class of systems that includes the non-holonomic chained form case. Our results require a
different set of hypotheses than those encountered in the literature and specifically for the
tracking problem, we have enriched the class of functions for which the tracking problem is
solvable.

APPENDIX A

Proof of Lemma 2.4
Let f :R ! R be any C1 bounded function that satisfies

xfðxÞ50; 8x 2 R and fðxÞ ¼ sgnðxÞ for jxj51 ðA1Þ

Define

Eðt; sÞ :¼ fðs expfC1tgÞ expfC2tg ðA2Þ
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for some constants C1;C2 > 0 yet to be chosen. Obviously, by (A1) and (A2) for any selection of
C1;C2 > 0; property (11c) holds. In order to establish (11d) and (11e) let

Q :¼ max
jsj41

jfðsÞj þ
df
dx

ðsÞ

����
����

� �

and notice that

jEðt; sÞj4Q expfC2tg

d

dt
Eðt; dðtÞÞ

����
���� ¼ C2Eðt; dðtÞÞ þ expfðC1 þ C2Þtg

df
dx

ðdðtÞ expfC1tgÞ ð ’ddðtÞ þ C1dðtÞÞ

����
����

4QðC2 þ j ’ddðtÞj þ C1jdðtÞjÞ expfðC1 þ C2Þtg

Thus (11d) and (11e) hold with R :¼ Qð1þ C1 þ C2Þ; s :¼ C1 þ C2: We next show that (11b) is
satisfied for appropriate selection of the constants C1 and C2: Indeed, let

C1;C251þ m ðA3Þ

and define

Iþ :¼ ft50 : jdðtÞj > expf�C1tgg; I� :¼ RþWIþ ðA4Þ

Notice that by (A1), (A3) and definitions (A2), (A4) of E and Iþ; respectively, we have:

dðtÞEðt; dðtÞÞ ¼ jdðtÞj expfC2tg; 8t 2 Iþ ðA5Þ

M expfmtgjdðtÞj � jdðtÞj expfC2tg40; 8t5M ðA6Þ

Consequently, by (A3), (A4), (A5), (A6) and invoking (7a) we get

Zþ1

0

maxfM jdðtÞj expfmtg � dðtÞEðt; dðtÞÞ; 0g dt

4
ðA4Þ;ðA5Þ

Z
Iþ

maxfM jdðtÞj expfmtg � jdðtÞj expfC2tg; 0g dt

þ M
Z
I�

expfðm� C1Þtg dt

4
ðA3Þ;ðA6Þ

M
Z

Iþ\½0;M �

jdðtÞj expfmtg dt þM4MðK expfðcþ mÞMg þ 1Þ

Thus (11b) is fulfilled with rmðsÞ :¼ sðK expfðsþ mÞsg þ 1Þ: Finally, we show that (11a) holds,
provided that, in addition to (A3), the constants C1; C2 satisfy

C151þ C2; C25r þ cðp � 1Þ ðA7Þ
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where p51 and r50 are the constants involved in (7b) and c is defined in (7a). Let q be an
arbitrary real number and T50: By (11c), (A4) and (A5) we obtain:

ZT
0

ðdðtÞEðt; dðtÞÞ þ qÞ dt 5
ð11cÞ;ðA4Þ

Z
Iþ\½0;T �

dðtÞEðt; dðtÞÞ dt � jqjT

¼
ðA5Þ

Z
Iþ\½0;T �

jdðtÞj expfC2tg dt � jqjT

¼
ðA4Þ

ZT
0

jdðtÞj expfC2tgdt � jqjT

�
Z

I�\½0;T �

jdðtÞj expfC2tg dt ðA8Þ

and by (7a) we get:

K1�p expf�cðp � 1ÞtgjdðtÞjp4jdðtÞj ðA9Þ

Inequalities (A7), (A8), (A9) in conjunction with definition (A4) of the set I�; give:

ZT
0

ðdðtÞEðt; dðtÞÞ þ qÞ dt 5
ðA4Þ;ðA8Þ;ðA9Þ

K1�p
ZT
0

jdðtÞjp expfðC2 � cðp � 1ÞÞtg dt

� jqjT �
Z

½0;T �

expfðC2 � C1Þtg dt

5
ðA7Þ

TK1�p 1

T

ZT
0

jdðtÞjp expfrtg dt � jqjKp�1 �
Kp�1

T

2
4

3
5

The latter in conjunction with (7b), imply (11a) as T ! þ1: We conclude that for appropriate
selection of C1 and C2; the map Eð�Þ as defined by (A2) satisfies all properties of Lemma 2.4. &

Proof of Lemma 2.5
We recall our hypothesis that D 2 NNL; which implies that for any e > 0; T50 and R > 0 there
exists a time t ¼ tðe;R; T Þ50 such that DðR; T ; xÞ4e; for all x5t; thus by virtue of (14) it holds:

jxðtÞj4e; 8t5t0 þ t; jx0j4R; t0 2 ½0; T � ðAttractivityÞ ðA10Þ

In order to establish stability, notice first that, by virtue of (14), we have

supfjxðtÞj; t5t0; jx0j4e; t0 2 ½0; T �g4 sup
t50

Dðe; T ; tÞ5þ1 ðA11Þ
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for all e > 0; T50: Consider next the function L : ðRþÞ2 ! Rþ; defined as

Lðt; rÞ :¼ sup
jf ðt; xÞ � f ðt; yÞj

jx� yj
; t 2 ½0; t�; jxj4r; jyj4r; x=y

� �
ðA12Þ

This function is well-defined by the fact that the dynamics are locally Lipschitz with respect to
x 2 Rn: It turns out from definition (A12) that for each fixed s50; the mappings Lðs; �Þ and Lð�; sÞ
are non-negative and non-decreasing and the following holds:

jf ðt; xÞj4Lðt; jxjÞjxj; 8ðt; xÞ 2 Rþ �Rn ðA13Þ

From (14) and (A13) we have:

jf ðt; xðtÞÞj4Mðt; t0; jx0jÞjxðtÞj

Mðt; t0; sÞ :¼ L t; sup
04r4t

Dðs; t0; rÞ
� �

ðA14Þ

where xðtÞ is the solution of (12) with xðt0Þ ¼ x0: Obviously, for each fixed ðt; t0; sÞ 2 ðRþÞ3; the
mappings Mðt; t0; �Þ; Mð�; t0; sÞ and Mðt; �; sÞ are non-negative and non-decreasing. The latter
in conjunction with (12) and (A14) guarantees:

jxðtÞj4exp

Z t

t0

Mðt; t0; jx0jÞ dt

8<
:

9=
;jx0j; 8t5t0 ðA15Þ

Since the mappings Mðt; t0; �Þ; Mðt; �; sÞ and Mð�; t0; sÞ are non-negative and non-decreasing, (A15)
implies that for any e > 0; T50 and R > 0 it holds:

jxðtÞj4e; 8t 2 ½t0; t0 þ t�;

8jx0j4dðe; T Þ :¼ min R; e exp �
ZTþt

T

Mðs; T ;RÞ ds

8<
:

9=
;

8<
:

9=
;; t0 2 ½0; T � ðA16Þ

It follows by using (A10) and (A16) that for any e > 0 and T50; there exists d :¼ dðe; T Þ > 0 such
that jxðtÞj4e for all t0 2 ½0; T �; t5t0 and jx0j4d: This fact, in conjunction with (A11), establishes
stability. &

Proof of Lemma 2.6
By (17b) and the fact that aðt; rÞ is non-increasing in r; we get:

@V
@t

ðt; xðtÞÞ þ
@V
@x

ðt; xðtÞÞf ðt; yðtÞ; ZðtÞ; xðtÞÞ

4� aðt; jjyjjÞV ðt; xðtÞÞ; a:e: for t5t0 ðA16Þ

where xð�Þ denotes the solution of (15) corresponding to a pair of inputs ðyð�Þ; Zð�ÞÞ 2 L1 �
ð½t0;þ1ÞÞ � L1locð½t0;þ1ÞÞ with ðyðtÞ; ZðtÞÞ 2 Pt for all t5t0: Using (A16) we obtain:

V ðt; xðtÞÞ4V ðt0; xðt0ÞÞ exp �
Z t

t0

aðs; jjyjjÞ ds

8<
:

9=
; ðA17Þ
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It follows by (17a) and (A17) that (18b) holds with

Dðs; tÞ :¼

ffiffiffiffiffiffi
K2

K1

r
exp �

1

2

Z t

0

ðaðt; sÞ � sÞ dt

8<
:

9=
; ðA18Þ

since aðt; sÞ is non-increasing in s; it follows that for each t50 the mapping Dð�; tÞ is non-
decreasing. Furthermore, for every e50; it holds:

expfetgDðs; tÞ ¼

ffiffiffiffiffiffi
K2

K1

r
exp �

1

2

Z t

0

ðaðt; sÞ � s� 2eÞ dt

8<
:

9=
; ðA19Þ

We now recall our assumption that for each fixed s50; the map að�; sÞ is of class S and
consequently limt!þ1

R t
0 ðaðt; sÞ � s� 2eÞ dt ¼ þ1: This in conjunction with (A19) implies

(18a). We conclude that D is of class NL: Finally, by (18b) we get:

jxðtÞj4Dðjx0j; t0; tÞ; 8t5t0 ðA20Þ

Dðs; t0; tÞ :¼ Dðjjyjj; tÞ exp
1

2

Zt0
0

jaðt; jjyjjÞj dt

8<
:

9=
;s ðA21Þ

Obviously, (18a) and definition (A21) of D; implies that D is of class NNL: Therefore,
estimation (A20), guarantees by virtue of Lemma 2.5 that 0 2 Rn is Pt-GAS. &

Proof of (67)
Notice first by (65) that the matrix Af þ bI is invertible for b small enough. In order to establish
(67b) suppose the contrary

c0 ¼ cf ðAf þ bIÞ�1b1; 8b > 0 close to zero ðA22Þ

We define the complex rational function:

gðsÞ :¼ cf ðAf � sIÞ�1b1 ðA23Þ

which is the transfer function of the system:

’xx ¼Af xþ b1u

y ¼ � cf x ðA24Þ

where Af and cf are defined in (64) and (66), respectively. It then follows by (A22) and (A23)
that gð�Þ must be equal to c0 for all real s50 close to zero, which implies both c0 ¼ 0 and
cf ðAf � sIÞ�1b1 ¼ 0 for almost all (complex) s: Since c0 ¼ 0; it turns out from (59) and (66) that
c1=0 and c1ðAf � sIÞ�1b1 ¼ 0 for almost all s: The latter implies that the pair ðAf ; b1Þ is
uncontrollable and thus by (64) that the pair ðA11; b1Þ is uncontrollable as well, which
contradicts hypothesis (56). &
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